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ABSTRACT
In response to the consistent increase of elder people living in
their apartments, and the need for innovative non-obtrusive
tools to connect elders to their caregivers, we started an
initiative with the Institute of Gerontology at Wayne State
University to explore the application of wireless sensor net-
works (WSNs) for the monitoring of elder people and the
communication of potential emergency conditions to their
remote caregivers. Motivated by the fact that sensor nodes
are resource-constrained and error-prone on one hand, and
mission urgency on the other hand, we argue that high avail-
ability is a vital requirement that viable WSNs for assisted-
living have to acquire. We propose the use of classical relia-
bility theory techniques to tackle this issue in a systematic
way. We develop analytical models of the WSN availability
in terms of the availability of the underlying sensor nodes.
These models help in planning for the required number of
nodes and the way these nodes are scheduled ON and OFF.
Our preliminary results show that using node scheduling al-
most doubles the expected WSN total uptime.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Health; G.3 [Mathematics of Computing]: Probability
and Statistics—Reliability and life testing

General Terms
Reliability, Algorithms

Keywords
Wireless Sensor Networks, Node Scheduling, Modeling

1. INTRODUCTION
It is expected that adults age 65 years and older will ac-

count for more than 18% of the U.S population by the year
2025 [7]. In 1991, DHHS created the Healthy People 2000
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project, which is the first national effort targeted at reducing
disability and promoting physical health in older adults. De-
spite this initiative, the numbers of elders with one or more
physical disabilities is increasing. In collaboration with the
Institute of Gerontology at Wayne State University, we pro-
pose to apply the technology of WSNs as a non-obtrusive
tool to better monitor the activities of elders living in their
apartments, providing an innovative approach to connect
seniors to their caregivers that facilitates the communica-
tion of any emergency conditions. A prevalent emergency
condition to which elders are susceptible is falling. Accord-
ing to the Centers for Disease Control and Prevention, falls
are the leading cause of injury deaths and the most com-
mon cause of nonfatal injuries and hospital admissions for
trauma. More than one third of adults age 65 and older fall
each year, and more than 60% of the people who die from
falls are 75 years of age and older. Thus, detecting falls
and responding quickly is critical. If falls are detected and
responded to immediately, more lives will be saved.

WSNs can be deeply deployed in the physical world in
a non-obtrusive fashion and provide remote and continuous
monitoring of the environment for potential target events.
A typical WSN consists of a set of sensor nodes. These
sensor nodes are similar to low-power minicomputers with
central processors and random-access memory, and thus the
capability of computation and storage. Upon deployment,
the sensor nodes self-organize into a connected network and
continuously monitor the environment. Once an emergency
event is detected by a set of sensor nodes, an alert is relayed
through a special sensor node (i.e., gateway) over the Inter-
net to a remote nursing station, who’s personal responds ap-
propriately. We coin this type of network as SAILNet, which
stands for Sensor Assisted Independent Living Networks.

Despite their evident potential, successful WSNs deploy-
ments in such mission-critical applications is hindered by the
resource constraints of the underlying sensor nodes includ-
ing power, computation, and communication quality. These
limitations render the sensor nodes highly unreliable and
susceptible to frequent failures. Given the unreliability and
the urgency of the WSN mission, we recognize high WSN
availability as a major concern that needs to be addressed
systematically along our journey toward implementing viable
WSNs for assisted-living. By systematic we mean the devel-
opment of analytical tools that capture sensor node failure
behavior and allow for modeling WSN availability in terms
of the availability of the underlying sensor nodes. These
models not only help in protocol design for SAILNet, but
also allow us to answer more fundamental questions con-



cerning deployment parameters such as predicting the num-
ber of nodes needed to empower the system (i.e., WSN) to
withstand failures and maintain availability. This promotes
autonomy of SAILNet and reduces human intervention.

Developing such models requires a clear understanding of
sensor node failure models. Sensor node failures may be
the result of a software or a hardware failure. The former
can be handled through restarting and/or re-programming
faulty nodes over the air. On the contrary, hardware failures
have no easy remedy. In this work, we target the fail-stop
hardware failures. From the perspective of hardware fail-
ures, we can identify two application categories: in-door [6]
and out-door [11]. The latter tends to have a hostile de-
ployment environment, which results in more frequent and
unexpected node failures due to harsh environmental condi-
tions [13]. Whereas, the former tends to provide more con-
trolled deployment environment, which results in fewer and
more expected sensor node failures. Therefore, adopting the
usage-based failure model, in which the probability of failure
depends on the time a node spends in the ON mode, is more
reasonable. Despite the controlled deployment environment
in in-door WSNs, sensor nodes are still failure-prone due to
their low cost design. Therefore, WSN deployments are en-
visioned to involve high degree of node redundancy [4, 13]
to overcome these limitations.
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Figure 1: Effect of node scheduling on the availabil-
ity of WSN.

Note that turning a node OFF in the usage-based failure
model prevents node failures. Hence, node scheduling does
indeed affect WSN availability behavior. In Fig. 1, we show
an interesting result on how node scheduling can affect WSN
availability. The x-axis represents time, and the y-axis rep-
resents system availability. In the queue scheduling scheme,
the m sensor nodes are divided in groups of κ′ nodes each,
these groups are turned ON sequentially in a queue like sched-
ule one group at a time. As shown in the figure, queue
scheduling exhibits better average availability than that of
no scheduling, in which all the nodes are turned ON since the
beginning.

Node redundancy and scheduling, which has been referred
to as topology management, has been studied extensively in
the literature [1, 4, 5, 6, 12]. In previous efforts, node re-
dundancy and scheduling is used to work around the sensor
node power constraint and to extend the WSN lifetime be-
yond the lifetime of a single sensor node. Nodes are redun-
dantly deployed so that multiple sensors are able to perform
the same function. Some nodes are turned OFF to save en-

ergy, while others stay ON and perform the function. Two
functions were considered, connectivity and coverage. Our
work complements their work by emphasizing availability as
a new requirement on the node redundancy and scheduling
algorithms. As topology (either connectivity or coverage)
does not pose a big challenge in SAILNet (Section 2), we
prefer to use redundancy management instead of topology
management in this paper.

Inspired by the natural analogy between WSNs for SAIL-
Net and classical systems, we use techniques from classical
reliability theory to model the WSN as a κ-out-of-m sys-
tem. In this setting, the system (i.e., WSN) is said to be
available (i.e., functioning) as long as there are at least κ
out of the m deployed sensor nodes are available (i.e., non
faulty). Based on our preliminary analytical model results,
we find that the WSN exhibits almost double the expected
total uptime under queue scheduling scheme in comparison
to using the no scheduling scheme.

Our contribution in this paper is three-fold. First, we
model the WSN availability using sound techniques from
the reliability theory [9]. Second, we use the model to solve
the redundancy management problems: deciding the number
of redundant nodes needed to meet desired availability behav-
ior, and the way these nodes should be scheduled to improve
availability. Third, we show that scheduling nodes in the
usage-based failure model does indeed improve availability.

The rest of the paper is organized as follows. Section 2
provides a deployment strategy of the sensor nodes in SAIL-
Net; Section 3 presents formal definitions and the assumed
sensor node failure model; In Section 4, we move on to
present our node scheduling schemes and their availability
modeling, and finally, formalize and solve the redundancy
management problems; Section 5 presents our preliminary
evaluation results; Finally, we present our current status and
future work in Section 6.

2. STRUCTURING WSN FOR SAILNET

2.1 A two-tier sensor node deployment
In in-door WSN deployment, we believe that a two-tier

structuring of the sensor nodes such as the lately proposed
Tenet architecture makes a perfect match [8]. Each room in
the target apartment is equipped with several sensor nodes,
which cluster together and form a single-hop network with
a predetermined and more powerful cluster head (i.e., first
tier). In the second tier, the cluster heads organize into an-
other single-hop network with a gateway connected to the
Internet. To avoid interference and increase network capac-
ity, cluster heads may use different wireless channel to com-
municate with the gateway. Unlike the prevalent large-scale
environmental deployments, coverage and connectivity do
not pose a big challenge. However, since the target events
are life-threatening, the WSN need to be highly available
and resilient to node failures.

Therefore, each room is redundantly equipped with m sen-
sor nodes out of which κ sensor nodes are needed available
in order to have a functioning cluster. κ sensor nodes are
needed instead of only one node to rule out sensor reading
errors due to faulty sensors and noisy environment [10]. De-
ciding the value of κ is out the scope of this work and is
considered as input to our model. However, deciding the
value of m to rule out node failures is our topic in this pa-
per. Due to low cost of sensor nodes, using node redundancy



to overcome resource limitations is an inevitable solution in
the WSN research community [4, 13]. Therefore, redun-
dantly deploying m sensor nodes when only κ are needed to
work around sensor node unreliability is inevitable.

2.2 SAILNet as a classical system
In classical reliability theory, a system is viewed as a set of

independent components that are connected serially, in par-
allel, or as compromise (i.e., κ-out-of-m). In a serial system,
the system is functioning if and only if all of its components
are functioning. In a parallel system, the system is function-
ing as long as at least one component is functioning. In a
κ-out-of-m system, at least κ components are required func-
tioning for the system to be considered functioning. We can
see that a κ-out-of-m system can be easily mapped into sen-
sor node cluster, and the set of clusters into a serial system.
The natural analogy between WSNs and classical systems
is the fundamental motivation behind our approach of us-
ing classical reliability theory techniques in our work. In
addition to this analogy, we have three more important rea-
sons for using classical reliability theory. First, WSN are
deeply embedded in the physical world, which makes them
susceptible to the same environmental conditions and suffer
similar tear and wear effects to those components of clas-
sical systems. Second, Using component redundancy is a
well-accepted and well-developed approach in boosting over-
all system reliability in classical systems. Likewise, sensor
node redundancy is a well-accepted and promising solution
to overcome resource limitations including sensor node unre-
liability. Third, the failure of one sensor node does not cause
the failure of other nodes in WSNs (i.e., independent sensor
node failures). Nonetheless, all sensor nodes are expected to
follow a similar failure model as they suffer similar environ-
mental conditions and once a node fails, it never becomes
available again (i.e., fail-stop).

3. PROBLEM STATEMENT AND METRICS
The purpose of our work is to model the availability of the

sensor cluster (denoted as A(t)) in terms of the availability
of the underlying components (denoted as Si(t) for sensor
i) under two scheduling schemes: no scheduling and queue
scheduling, formalize the redundancy management problem
in each scheduling scheme, and finally to compare their per-
formance in terms of average availability and the expected
total uptime. We use techniques from reliability theory [9] to
develop these analytical models and to formalize and solve
the redundancy management problems. Basically, we model
the availability of the system as a κ-out-of-m system. We
assume that all the sensor nodes have similar initial power
and perform similar workload, which enable them to func-
tion for an identical maximum period of time Tmax. In the
rest of the paper, we use the terms system and cluster in-
terchangeably.

Average availability (denoted as avgA(t)) is defined as∑Tmax
t=0 A(t)

Tmax+1
. The total uptime time and expected total up-

time are denoted as U and E[U ] respectively and defined
as the total time and expected total time, in which the
system is available. In Subsection 4.1 and Subsection 4.2,
we present formal definitions of U and E[U ] and show that
E[U ] = avgAno(t) · (Tmax + 1) for both the no scheduling
and queue scheduling schemes.

The redundancy management problem has slightly differ-

ent settings in each scheduling scheme. In the no scheduling
scheme, all the nodes are made ON since the beginning and
so, we are only left with finding the required number of nodes
(i.e., m) to meet some availability requirements (i.e., avgA(t)

or E[U ]). Whereas in the queue scheduling scheme, the m
nodes are divided into groups of κ′ nodes each, and made
ON in a queue-like manner, therefore, we have two problems
to solve. First, find m and corresponding κ′ to meet some
availability requirements. Second, given m, find κ′ that op-
timizes availability in terms of either avgA(t), or E[U ]. Note
that no scheduling scheme is indeed a special case of the
queue scheduling scheme (i.e., make κ′ = m), however, we
prefer to model the no scheduling scheme separately for two
reasons. First, modeling the no scheduling scheme is easy as
a classical κ-out-of-m system. Second, this scheme needs no
scheduling management at all, which makes its implementa-
tion different than that of queue scheduling.

The lifetime of usage-based components is typically di-
vided into three periods, each with a different failure rate.
First, an early period with decreasing failure rate, these fail-
ures are due to design and manufacturing faults. Second, a
stable period with a very low and stable failure rate. Third,
a wear-out period at the end of the component lifetime with
increasing failure rate, these failures are due to normal wear
and tear. A widely accepted approach to model this behav-
ior is to use a bathtub-shaped failure rate function, denoted
as (λi(t)). λi(t) represents the conditional probability inten-
sity that node i will fail in the next moment, given that it
has survived until time t (i.e., λi(t) = Pr{Xi ∈ [t+dt]|Xi >

t} = −Si(t)′
Si(t)

), where X ∈ [ 0, Tmax ] represents node i lifetime

and Si(t) is known as the survival function and represents
the unconditional probability that node i has no failures by
time t and so the node is available at time t. It is known
that Si(t) = exp{−

∫ t

0
λ(τ)dτ} [9]. In this paper, we use

a failure rate function proposed lately in [3]. λi(t) and the
corresponding Si(t) are defined as follows:

λi(t) = a b(a t)b−1 + (
a

b
)(a t)

1
b
−1 + h◦ (1)

Si(t) = exp{−(a t)b − (a t)
1
b − h◦t} (2)

0  
0

0.1
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°
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Figure 2: Sensor node failure-rate function.

Fig. 2 depicts λ(t) with assumed values for a, b, and h◦.
Based on our assumption that once a node dies it never
becomes available again (i.e., fail-stop), we may think of
Si(t) as the availability of node i at time t, which equals to
Pr{node i is available at time t}. Also, note that since all
the nodes follow the same failure model, we can simply use
λ(t) and S(t) in the rest of the paper.

4. AVAILABILITY MODELING
In the following two subsections, we present availabil-

ity modeling of two scheduling schemes, no scheduling and



queue scheduling, including formalizing and solving the re-
dundancy management problems in the context of these
scheduling schemes.

4.1 The no scheduling scheme
We simply model the availability of the cluster as a clas-

sical κ-out-of-m system. We say that the sensor cluster is
available at time t with probability Ano(t) if and only if
there exits at least κ nodes available at time t, put formally
as follows:

Ano(t) =

m∑
i=κ

(
m

i

)
S(t)i · (1 − S(t))(m−i) (3)
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Figure 3: No scheduling availability.

Fig. 3 shows an Ano(t) with m = 12 and κ = 1 and 2,
and a Tmax = 144. To find E[U ], note that the system as
a whole exhibits a fail-stop behavior following its fail-stop
components (i.e., sensor nodes). In other words, once there
are less than κ sensor nodes available, the system fails and
never becomes available again. Therefore, U is equivalent
to a random variable representing the time until first failure
(denoted as τ) with Pr{τ > t} = Ano(t). Note that the
random variable τ ≥ 0, and so the expected time until first
failure and hence E[U ] can be calculated as follows:

E[U ] =

Tmax∑
t=0

Ano(t) (4)

As there is no scheduling in this scheme (i.e., all nodes are
ON all the time, we are left with one question that hope the
model to answer:

Problem 1: Given a value of κ, find the lowest m
needed to meet either avgAno(t) or E[U ].

Problem 1 is a simple optimization problem that can be
solved iteratively over m starting with m = κ, incrementing
m by one each time, and checking whether the current value
of m meets the requirement (i.e., avgA(t) or E[U ]). To find
avgA(t), we simply follow the definition to calculate it for a
given m value. From the definition of avgA(t) in Section 3, we

get (Tmax + 1) · avgAno(t) =
∑Tmax

t=0 Ano(t), by substituting
in Equation (4), we get:

E[U ] = avgAno(t) · (Tmax + 1) (5)

Thus, the value of m needed to meet avgA(t) requirement,
is the same value of m that is needed to meet E[U ]. In other
words, the solution of Problem 1 for avgA(t) and E[U ] is
the same.

4.2 Queue scheduling scheme
Queue scheduling divides the m nodes into η = m

κ′ groups
(denoted as gi, where i = 1, . . . , η). Each group, gi, consists
of κ′ nodes, where (κ ≤ κ′ ≤ m). Given these η groups, the
time is divided into η epoches with equal periods denoted
as ∆ = Tmax

η
. Each group gi is turned ON, in a queue-

like scheduling, at the beginning of its corresponding epoch
(denoted as εi).

Tmax

5κ’

τ3
∆

m=ηκ’

3κ’
κ’

g3 “on”

g5 “on”

gη “on”

° of “on” 
nodes

τ2τ1 τη
ε1 ε2 ε3 εη

Figure 4: Time line of queue scheduling.

Fig. 4 depicts the queue scheduling time line. The x-axis
represents time, while the y-axis represents the total number
of ON nodes shown as discrete values multiple of κ′. Unlike
in the no scheduling scheme, the total uptime (i.e., U) in
queue scheduling is different than the time until the first
failure since the system may fail and become available again
when a new group is turned ON. However, in a single epoch,
the system exhibits a fail stop behavior. Therefore, we can
define the total uptime of the system as the summation of
random variables representing the time until first system
failure in each time epoch (shown as τi in Fig. 4). Formally,
U =

∑η
i=1 τi, where, 0 ≤ τi ≤ ∆. Hence:

E[U ] =

η∑
i=1

E[τi] (6)

Now, we turn our attention to find the system availabil-
ity (AQ(t)), which also represents the probability distribu-
tions of the random variable τi. Perhaps the first thing
that comes to mind when trying to model the availability
of queue scheduling is the renewal process model. Unfortu-
nately, the fact that renewals (i.e., bringing node groups (gi)
ON) are asynchronous to failures causes two major incom-
pliances with the classical renewal process model assump-
tions. First, lack of instantaneous repairs. In other words,
should the system fail during epoch i ( i.e., εi), it will not
be available until the beginning of the next time epoch (i.e.,
εi+1). Recall that in our usage-based failure model assump-
tion in Section 3, nodes have to be in OFF mode to avoid
failures, which makes them un-responsive to external events
and therefore can not be asked to become active on the spot
in case a failure is detected. On the other hand, in unat-
tended and remotely administered WSNs, human interven-
tion is infeasible and violates the key non-obtrusive applica-
tion requirement. Second, non-homogeneity of the availabil-
ity probability distribution during different time epoches. In
other words, τi in Fig. 4 are not identically distributed.

In light of the above queue scheduling algorithm complica-
tions, we use a recursive numerical function to model the sys-
tem availability at an arbitrary time instance (i.e., AQ(t)).
Let Q(t, e, i, p) be the probability that there are exactly i



1. function result=Q(t, e, i, p)
2. t’ = t – (e - 1) * ∆
3. if (e == 1){ // base case
4.    if (i > k’){
5.        return 0 // no enough nodes to choose from
6.    }
7.    return       * S(t’)i * (1 - S(t’))(k’- i) * p
8. }else{
9.       minJ = max(0, i - (e - 1) * k’)
10.       if (min > k’){
11.           return 0 // no enough nodes to choose from
12.      }
13.      maxJ = min(i, k’)      
14.      tmpP = 0
15.      for (j = minJ; j <= maxJ; j++){
16.         current_p = p * * S(t’)j * (1 - S(t’))(k’ - j)

17.         tmpP = tmpP + Q(t, e - 1, i - j, current_p)
18.      }
19.       return tmpP
20. }}

(i
k’)f

)( i
k’

k’( )j

Figure 5: Q: finds recursively the probability of hav-
ing exactly i nodes available.

nodes available at time t, then:

AQ(t) =

κ′· e∑
i=κ

Q(t, e, i, 1.0) , where (7)

e = b t

∆
c + 1
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Figure 6: Queue scheduling availability.

The function Q finds the probability of having exactly i
nodes available out of e · κ′ nodes that are already turned
ON by the time t. Q considers all the possible i node combi-
nations by looping recursively over e, which represents the
current group. Fig. 5 lists the pseudocode of function Q. In
line 2 of Fig. 5, Q finds the total ON time (t′) of the current
group (i.e., e) as a shift of the global time t. Hence, the
availability of the current node group becomes S(t′). Lines
3 through 6 in Fig. 5 represent the base case scenario (i.e.,
e = 1), in which only one group of nodes exists. Therefore,
Q returns the probability of having i nodes available out of
κ′ ON nodes. Lines 15 through 17, loops recursively over all
the possible combinations. Fig. 6 shows AQ(t) for m = 12,
κ = 1, and κ = 2, and Tmax = 144. κ′ is set equal to κ for
simplicity.

Now, we shift our gear to formalize and solve the re-
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Figure 7: The solutions of problem 3 for avgA(t).

dundancy management problems for the queue scheduling
scheme. As in no scheduling scheme, first redundancy man-
agement problem is concerned with finding the needed num-
ber of nodes (i.e., m) to meet the desired availability require-
ment put formally as follows:

Problem 2: Given κ, find the lowest m and corre-
sponding κ′ needed to meet either avgAQ(t) or E[U ].

Again, we may solve this simple optimization problem it-
eratively over m and κ′ starting from m = κ, incrementing
m by one, and checking against the requirement. For each
value of m, κ′ is changed from κ up to m. To find E[U ],
we may re-write avgAQ(t) as a piece-wise summation with
∆ time intervals as follows:

avgAQ(t) =

∑∆−1
t=0 AQ(t) + · · · +

∑η·∆−1
t=(η−1)·∆ AQ(t)

Tmax + 1
(8)

Note that the ith summation term in Equation (8) equals
to E[τi], hence, from Equation (6), E[U ] equals to avgAQ(t) ·
Tmax + 1. Therefore, optimizing for avgAQ(t) is the same as
optimizing for E[U ].

We can re-formulate Problem 2 to find the optimal κ′,
given a budget of m nodes from which at least κ nodes
should be available. Putting the problem this way is useful
in two scenarios. First, if there is a limited budget on the
allowed number of nodes m in the planning phase. Second,
if κ′ needs to be adapted during the operational phase by
considering the actual new m nodes available in the WSN
after some node failures. The optimization problem is put
formally as follows:

Problem 3: Given m and κ, find κ′ that maximizes
avgAQ(t).

Problem 3 can be solved iteratively over κ′ starting from
κ′ = κ and incrementing κ′ one by one until κ′ = m, and
finding the optimal κ′. Fig. 7 shows solutions of Problem
3 for avgAQ(t). We can observe that κ′ does not follow a

particular pattern and could take any value between κ and
m. For example, For m = 8 and κ = 2, Optimal κ′ is 4,
whereas, changing m to 9, decreases κ′ to 3.

5. EVALUATION RESULTS
In this section, we use our models to show that node

scheduling has the ability to improve the system availabil-
ity. We compare the performance of no scheduling and queue



scheduling schemes in terms of avgA(t) and E[U ] as the num-
ber of nodes, m, increases. We use values of 12 and 1 for m,
and κ respectively. In queue scheduling, κ′ is chosen to opti-
mize for avgAQ(t). More details of evaluation can be found

in our technical report version [2].
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In Fig. 8, we can see that queue scheduling exhibits consis-
tent and larger increase in the average availability compared
to no scheduling. For example, for m = 12 and κ = 1 , queue
scheduling almost doubles the average system availability
compared to no scheduling. For m = 12 in Fig. 8, the aver-
age availability goes from 0.5 up to 0.75. Also, note that as
m and κ get closer (i.e., less redundancy), the performance
of queue scheduling and no scheduling becomes closer, which
is simply because queue scheduling converges to no schedul-
ing. In other words, if m and κ are the same, the only way
to schedule the nodes is to make all of them ON since the
beginning.

In Fig. 9, we compare no scheduling and queue scheduling
in terms of the expected total uptime as m increases. Again,
we observe that queue scheduling outperforms no scheduling
by increasing the total time in which the system is available.
For example, for m = 12, the system total uptime is almost
105 hours when queue scheduling is used compared to less
than 60 hours when no scheduling is used. The improvement
is almost double.

In summary, we conclude that queue scheduling outper-
forms no scheduling significantly.

6. CURRENT STATUS AND FUTURE WORK
High availability is a vital aspect of SAILNet, we demon-

strate how reliability theory can be used systematically to
address it. Our analytical models help in predicting the re-
quired number of nodes needed to meet availability require-
ment. Furthermore, based on our preliminary results, we
show that in usage-based sensor node failure model, node
scheduling can boost the WSN availability. We are actively
collaborating with the colleagues at Institute of Gerontol-
ogy and local senior apartments and developing a SAILNet
prototype that monitors their living environment. More in-
formation about the project can be found at http://sail.

cs.wayne.edu.
In our future work, we plan to perform more extensive

simulations to validate our analytical modeling. We also,
plan to devise more performance metrics to quantify the
availability of the WSN and study the effects of node schedul-
ing.
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