
pTop: A Process-level Power Profiling Tool

Thanh Do, Suhib Rawshdeh, and Weisong Shi
Wayne State University

{thanh, suhib, weisong}@wayne.edu

ABSTRACT
We solve the problem of estimating the amount of
energy consumed by each application in the sys-
tem by presenting the design and implementation
of pTop, a simple and efficient process-level power
profiling tool. Being a service of the operating sys-
tem, pTop provides real-time information about the
energy consumed by each process in terms of differ-
ent resource components. pTop also supports a set
of well-defined energy-aware application program-
ming interfaces (API) helping the system and ap-
plication developers build energy optimization poli-
cies. Different from hardware-based measurement
tools, pTop is software-based, requires no additional
hardware, and therefore, it is easy to apply in var-
ious platforms. Using pTop APIs, we developed an
application adaptation scheme that extends the bat-
tery lifetime to meet certain time constraints. Ex-
periment results showed that pTop is lightweight
and easy to use.

1. INTRODUCTION
Nowadays, power management has become increas-

ingly important in both data centers and mobile
devices. Over the past five years, there has been a
significant increase in the number of data centers,
in addition to an estimated doubling of energy used
by servers and cooling systems [1]. Moreover, the
emergence of new technologies and a wide range of
new mobile revolutionary products and applications
have introduced a need for more power resources
in mobile devices. The existing power resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

are limited and still do not meet the requirements
of longer battery life time. Therefore, improving
energy-efficiency in both data centers and mobile
devices has become more and more demanding.

In this paper, we focus on energy optimization
in the application level, particularly application en-
ergy profiling. Some of the current solutions lack
accuracy and exhibit some drawbacks making them
difficult to use widely. First, they are hardware-
based [2, 3], making it expensive, inflexible, and
difficult to deploy widely. Second, they provide only
offline information, therefore making it difficult for
applications to adapt their behaviour at runtime.
Finally, energy profiling is not offered as a service
in the system, causing difficulty for system develop-
ers to implement energy-aware adaptation protocols
to obtain energy optimization.

We present the design and implementation of pTop,
a process-level energy profiling tool, with many help-
ful features. Being a service of the operating sys-
tem, pTop runs at the kernel level and provides
energy consumption data from all applications and
processes running in the system. pTop is software-
based, requires no additional hardware, therefore,
easy to be applied in various platforms. Evaluation
results showed that on average pTop consumes 3%
of the CPU and 0.15 percent of memory. pTop is
light-weight, thus, will not affect the performance of
other applications. Moreover, pTop provides a set
of well-defined energy-aware application program-
ming interfaces (APIs) which will play an impor-
tant role in making more energy real-time adapting
and scheduling decisions in both mobile devices and
cloud computing environments. With these APIs,
we have developed an application adaptation frame-
work (Section 4) for mobile devices that could ex-
tend the battery life time considerably, as well as
making energy-aware QoS for application sessions
across multiple domains [4]. Finally, we present fu-
ture work and conclude in Section 6.

Energy profiling
Daemon

Display Utility

In-memory
Data

APIs

User space

Kernel space

CPU
Disk
NIC
Memory

Figure 1: The architecture of pTop.

2. PTOP DESIGN

2.1 Energy model
Our tool uses a simple and feasible energy model.

An application’s energy consumption is estimated
indirectly through its resource utilization. The quan-
tity of energy consumed by an application Eappi

over any time interval t can be calculated as follow:
Eappi =

∑
Uij × Eresourcej + Einteraction

where Uij is the usage of application i on resource
j, Eresourcej is the amount of energy consumed by
resource j, and Einteraction is the indirect amount
of energy consumed by the application because of
the interaction among system resources, in the time
interval t.

Energy consumption of a particular resource is a
function of its states(read, write, etc) and transi-
tions. Given a particular resource, (e.g. The CPU,
memory, network interface, etc), by knowing its set
of states S and transitions T , its energy consump-
tion in a time interval t is estimated as followed:

Eresourcej =
∑

jinS

Pjtj +
∑

kinT

nkEk

We believe that this approach is general enough
and can easily be applied to different resources. Es-
timating Einteraction is more difficult, since this en-
ergy is often marked by system-level policies such as
caching and buffering. We left this for future work.

2.2 System architecture
The system architecture of pTop is illustrated in

Figure 1. pTop consists of an energy profiling dae-
mon running in the background, continuously profil-
ing resource utilization of each application process.
It also tracks statistic data of states and transitions
of each system resource if possible. The amount of
energy consumed by each application in each time
interval t is then calculated and stored temporarily

in memory. Running at the kernel space, the en-
ergy profiling daemon is able to track all available
system activity information.

The second component of pTop is a display util-
ity. This component is similar to that of top util-
ity, except that it provides additional information
about the break-down energy consumed by the ap-
plication on different resources such as the CPU,
network interface, memory and disk drive. Users
of battery-based mobile devices such as PDAs and
laptops can use this utility to figure out and kill
unnecessary and energy-consuming applications, in
order to save battery energy for other more impor-
tant ones.

The last but most interesting component of pTop
is a set of well-defined energy-aware (APIs). Any
process can call these APIs to acquire the energy
consumption in terms of different energy consuming
components in the last specified time period. The
definition of these APIs is articulated next.

2.3 APIs
In this section, we define a set of energy-aware

APIs that provide current and previous energy con-
sumption information of each application in terms
of different resources such as the CPU, network in-
terface, memory, hard disk and display. We envision
that these primitive and general APIs are very use-
ful for system developers to write energy optimiza-
tion middleware such as energy-aware application
adapters and energy-aware schedulers. For exam-
ple, the following API defines the interface through
which an application can query the energy consumed
by the CPU in a time interval.
int CPUEnergy(int PID, int length)
The inputs consist of process id (PID) and the

length of time in seconds (length) back from the
time when this API is called. The output is the
energy consumed by the CPU to serve the process
in terms of Joule. We should set the threshold of
length parameter appropriately, depending on the
amount of available memory. pTop only keeps an
energy profile of running processes for the last T
seconds. If a long term energy profile is needed, it
is the application’s task to sample every T seconds
to keep the record. The APIs for other resources
are similar by replacing the ”CPU” with their cor-
responding names. Based on these primitive and
general APIs, developers can write more complex
and specific ones.

3. IMPLEMENTATION
We implemented pTop using C++ programming

language in Linux (i.e., Fedora Core 10, kernel 2.6.28),

and we believe our ideas can be implemented in
other operating systems easily. The energy profiling
daemon runs in the kernel space to guarantee suffi-
cient privileges to access to data of system activities.
Like top utility, this daemon maintains a dynamic
list of running processes, which contains informa-
tion about each process’ resource utilization. This
data is obtained by accessing the ”/proc” directory.
Ideally, the operating system and hardware vendor
should provide interfaces to access power consump-
tion data of hardware at different states. Unfor-
tunately, such interfaces are not widely available;
therefore, pTop has a configuration file specifying
power data from hardware vendors. In the next sub-
section below, due to space limit, we briefly present
how we estimate the energy consumed by each of
most energy-consuming resources, namely the CPU,
wireless card and hard disk. Note that we are cur-
rently working on the memory energy consumption,
which will be included in pTop soon.

3.1 CPU energy
We estimate the processor energy consumption by

tracking the amount of time the processor running
at different frequencies and the number of transi-
tions between different frequencies in each sampling
interval. This information is available in the in-
terface ”/sys/devices/system/cpu/”. Based on this
data, total energy consumed by the processor dur-
ing the sampling interval T is calculated as follows:

ECPU =
∑
j

Pjtj +
∑
k

nkEk

where Pj and tj are the power consumption and
the time the processor running at a particular fre-
quency, respectively; nk is the number of times tran-
sition k occurs, and Ek is corresponding energy of
that transition. We attribute the total energy of
the CPU proportionally to the process’s total CPU
time.

3.2 Network interface energy
Since a wired network interface consumes a very

small amount of energy, in comparison with a wire-
less network interface, pTop only estimates the en-
ergy process consumes in the wireless network inter-
face. Energy spent on the wireless network interface
of a process ’i’ is calculated as follows:

ENeti = tsendi × Psend + trecvi × Precv

where tsendi and trecvi are the amount of time pro-
cess ’i’ sends and receives packet; Psend and Precv

are the power consumptions of the wireless card at
sending and receiving states. We used kernel patch
from atop [5] to get information about network ac-
tivities per process.

3.3 Hard disk energy
Energy spent on hard disk of a process ’i’ is cal-

culated as follows:
EDiski = treadi × Pread + twritei × Pwrite

where twritei and treadi are the amount of time
process ’i’ writes to the disk and reads from the
disk; Pwrite and Pread are the power consumptions
of the disk writing and reading states. We do not
consider the disk transition states caused by an ap-
plication, since such information is currently not
available with the operating system.

3.4 Discussions
Our energy estimation approach is based on re-

source consumptions of application and power spec-
ification information from hardware vendors. How-
ever, hardware vendors usually specify the Thermal
Design Power (TDP), i.e., the maximum amount
of power of the cooling system can dissipate. This
value is not usually equal the actual maximum power
consumed by the hardware component. We believe
that TDP is good enough for our purpose. More-
over, we also assume that energy consumed by a
hardware component is proportional to its current
usage. This assumption holds for most of the com-
puter hardware components.

We do realize that the accuracy of our approach is
mainly marked by the interaction between resource
activities and system policies. For example, a page
fault can lead to disk access, or different sizes in
the network buffer can lead to different estimation
results on network performance. We plan to inves-
tigate this interaction in the future.

4. PERFORMANCE EVALUATION
In order to evaluate the accuracy of our tool, we

used Watts Up Pro meter [6] to profile the energy
usage on the client machine, Watts Up Pro can sam-
ple the energy usage on a client machine with ap-
proximately one time per second.

Ideally pTop accuracy can be evaluated using spe-
cial hardware on the motherboard like in [3], we
are currently working on this. Figure 2 shows
the power usage measured using Watts Up and our
pTop tool under a random workload samples taken
every 10 seconds from our case study applications,
pTop is proved to be fine-grained, highly responsive
and accurate with less than 2 Watts median error
in power measurement according to our case study.

4.1 pTop Overhead
To evaluate the overhead of pTop, we ran pTop

in a laptop with the same configurations in Section
3. We used pTop to monitor resource usage info

0

3

6

9

12

15

18

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Po
w
er
 (W

)

Time (S)

pTop

Watts Up

Figure 2: pTop evaluation.

of all and more than 60 processes running in the
systems. For each process, we monitored CPU us-
age, Network usage and Hard Disk usage. We set
the sampling interval to 1 second. We measured the
overhead of pTop using top commands. Experiment
results showed that in average pTop consumes 3%
of the CPU and 0.15 percent of memory. This illus-
trates that pTop is light weight and may not affect
the performance of other applications.

4.2 Case Study
To show how important and feasible our pTop

tool is, we implemented a case study experiment on
a computer laptop, we used three Applications, a
sorter, downloader and image viewer, the goal of the
experiment is to extend battery life time to meet the
time requirement of the downloader application, to
download 500 MB of data before getting interrupted
because of the battery’s energy.

4.3 Adaptation Framework
In order to achieve our case study goal, a user-

level Adaptation model that works between user
applications and our energy profiling tool APIs has
been designed and implemented. Figure 3 shows
the overall framework design of our adaptation model.

Our adaptation model resides in the middle be-
tween user and kernel spaces, it consists of three
main modules, resource monitor, demand predic-
tor and adaptation manager. The resource moni-
tor module is responsible of polling the underlying
pTop API layer regarding power information of pro-
cesses the user is running , then it forwards this
information to the demand predictor module which
uses a simple prediction algorithm to predict the
power consumption of each process during the next
time period. It then forwards this information to
the adaptation manager which uses them along with
applications’ priority information to decide which

Energy profiling
Daemon

Display Utility

In-memory
Data

APIs

User space

Kernel space

CPU
Disk
NIC
Memory

Resource
monitor

Demand
predictor

Adaptation
manager

Kernel space

API calls

pTop tool

User space

User applications

Figure 3: Adaptation framework desgin.

application to be adapted and to what extent.

4.4 Experiment Setup
In this section, we implemented our case study

experiment on an IBM Thinkpad T42 laptop 1.7
GHz with 1 GB of memory based on Linux kernel
2.6.28 operating system, we installed our adapta-
tion framework and case study applications, a brief
description of each application is shown in Table 1.

Each application has specific rules among the en-
ergy saving techniques available, for the sorter ap-
plication the energy consumption scheme can be
reduced by gradually increasing the time interval
between successive sorting operations, in our ex-
periment we set different running modes for the
sorter application, those include 0, 2, 4, 8 and up
to 16 seconds interval between two successive sort-
ing operations, For the image viewer application
we believe that reducing the backlight brightness
level of the LCD screen will decrease its energy
consumption and the consumption of other appli-
cations as well. The LCD screen brightness of the
IBM ThinkPad can be adapted based on 7 different
modes ranging between 0% to 100% of brightness.

In the experiment and for ease of calculation we
normalized the current battery charge capacity to
30k Joules. The experiment was stopped when this
amount of energy was consumed, The experiment’s
goal was to allow the downloader application to fin-
ish downloading 500 MB of data during the time
specified. According to the downloading speed of
the wireless network at the time we ran the exper-
iment; it would take 20 minutes (1200 s) to finish
downloading the data from our server, this amount
of time was set as the target running time we wanted
to achieve. To help the downloader process finish
on time, a series of adaptation decisions have been
done by our framework to both the sorter applica-
tion and the display brightness.

Application Source Code Modification Power Consumption Due Priority Adaptation Modes

Sorter Yes CPU 2 0, 2, 4, 8, 16 s intervals
Downloader No Network + Disk 1 -
Image Viewer No Disk + Display 3 0% - 100% brightness

Table 1: Applications description.

0
5
10
15
20
25
30
35

0

1
4
4

2
8
8

4
3
2

5
7
6

7
2
0

8
6
4

1
0
0
8

1
2
1
0

En
e
rg
y
(K
J)

Time (S)

Energy Profile With Adaptation

Energy
profile

Estimation
lines

Figure 4: Adaptation decisions by time.

4.5 Experiment Results
We ran the experiment with the adaptation de-

cisions being made every 1.2 minutes, during this
time and with a sampling period of 3 seconds, the
demand predictor module collects 24 samples of the
energy consumption of each process; Figure 4 shows
the sequence of adaptation decisions performed af-
ter each data sampling process. The system’s target
lifetime has been successfully achieved at the end.

5. RELATED WORK
A lot of energy optimization techniques have been

applied so far in all three levels of computer sys-
tems. In computer architecture level, the notion
of energy-proportional hardware has been proposed
[7], low power hardware has also been introduced.
In the system layer, a lot of techniques were intro-
duced such as dynamic voltage scheduling, manage-
ment of devices power states, workload localization
and thermal-aware scheduling. And in the appli-
cation level, research efforts have been focusing on
techniques such as energy-adaptation by trading off
application fidelity [2], controlling dynamic voltage
and frequency scaling (DVFS) setting from within
applications [8], energy complexity estimation, and
energy-aware protocols [4, 2].

Many other studies and solutions have been done
in the area of energy profiling [2, 8, 9, 10]; how-
ever, some of these solutions lack accuracy and ex-
hibit some drawbacks making them difficult to use
widely. Hardware-based energy profiling methods
[2, 3] require multimeters for power sampling, mul-

timeters are expensive, bulky and difficult to be de-
ployed, other than that, energy profiling informa-
tion is provided offline, which make it difficult for
applications to adapt their behaviour at run-time.
In ECOSystem [10] however, energy profiling is of-
fered online. But we found that ECOSystem does
not model clock frequency scaling, which is an im-
portant feature supported by most recent CPUs.
Our profiling tool takes this into consideration and
profiles the CPU energy usage based on different
frequencies supported by the hardware.

6. SUMMARY AND FUTURE WORK
In this paper, we propose a process-level power

profiling tool pTop, which aims to provide real-time
information about the energy consumed by each
process in terms of different resource components.
pTop also supports a set of APIs, whose powerful-
ness is demonstrated by an adaptation case study.
Our future work includes three main directions. First,
we plan to improve the accuracy of pTop and add
support for memory. Second, we believe that future
operating systems should support our APIs. Fi-
nally, we intend to investigate more effective adap-
tation mechanisms by leveraging our APIs.

7. REFERENCES
[1] “Report to congress on server and data center energy

efficiency,” Environment Protection Agency, 2007.
[2] J. Flinn and M. Satyanarayanan, “Energy-aware

adaptation for mobile applications,” SOSP, 1999.
[3] Y. L. C Xian, Le Cai, “Power measurement of software

programs on computers with multiple i/o
components,” IEEE Transactions on Instrumentation
and Measurement, oct 2007.

[4] H. Lufei and W. Shi, “Energy-aware qos for application
sessions across multiple protocol domains in mobile
computing,” Comput. Netw., 2007.

[5] “An advanced monitor for linux-systems,”
http://www.atcomputing.nl/Tools/atop/index.html.

[6] “Watts up pro.,” http://www.wattsupmeters.com.
[7] L. A. Barroso and U. Holzle., “The case of energy

proportional computing,” IEEE Computer, sep 2007.
[8] X. Liu, P. Shenoy, and M. D. Corner, “Chameleon:

Application-level power management,” IEEE
Transactions on Mobile Computing, 2008.

[9] A. Kansal and F. Zhao, “Fine-grained energy profiling
for power-aware application design,” SIGMETRICS
Perform. Eval. Rev., 2008.

[10] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat,
“Ecosystem: managing energy as a first class operating
system resource,” SIGPLAN Not., 2002.

	Introduction
	pTop design
	Energy model
	System architecture
	APIs

	Implementation
	CPU energy
	Network interface energy
	Hard disk energy
	Discussions

	Performance Evaluation
	pTop Overhead
	Case Study
	Adaptation Framework
	Experiment Setup
	Experiment Results

	Related Work
	Summary and Future Work
	References

