
Submitted for Journal Publication 1

Automatic Network-Aware Service Access

Xiaodong Fu, Weisong Shi, Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

Abstract

Although advances in wireless networks and the increasing availability of mobile end devices raise the prospect
of ubiquitous access to network-based services, such access must cope with an inherent mismatch between the high
bandwidth, relatively static connection requirements of many services and the low bandwidth, limited resource, and
dynamic nature of mobile clients.

In this paper, we describe an application-level programmable network infrastructure called CANS (Composable
Adaptive Network Services), which alleviates this mismatch by enabling construction of service access paths aug-
mented with “impedance matching” components that handle operations such as caching, protocol conversion, and
content transcoding. The CANS infrastructure focuses on theautomatic creationanddynamic reconfigurationof such
network-aware access paths, relying upon three key mechanisms: (a) a high-level integrated type-based specification of
components and network resources; (b) an automatic path creation strategy; and (c) system support for low-overhead
path reconfiguration.

We evaluate the CANS infrastructure over a range of network and end-device characteristics using two application
scenarios, web access and image streaming, with client preferences for reduced response time and increased throughput
respectively. Our results validate the effectiveness of the CANS approach for enabling network-aware service access to
mobile clients, verifying that (1) automatic path creation and reconfiguration is achievable and desirable; and (2) that
despite their flexibility, both path creation and reconfiguration can be supported with low run-time overhead.

1 Introduction

Advances in wireless networking, combined with the growing number of communication-enabled portable end-devices
such as lightweight laptop computers, PDAs and cell phones, raise the prospect of a mobile user being able to interact
with network-based services in a seamless, ubiquitous fashion. To consider an example scenario, a mobile user who
initiates a teleconference using a laptop at his office desk can continue to participate in it even when he needs to step
away from his desk or altogether leave the building, relying upon a wireless LAN in the first case and a metro-area or
cellular wireless network in the second.

However, several challenges need to be addressed before this vision can become reality. Chief amongst these is
coping with the assumption made in many services that they will be accessed by relatively powerful clients using high
bandwidth, low latency network connections. This assumption, which manifests itself as rich content or low-latency
transactions associated with the service, is at odds with the low-bandwidth networks and resource-constrained portable
devices used by mobile clients. In our example above, the service may, by default, provide a stream with video size and
resolution higher than can be delivered to a user’s laptop over a wireless network. Further complicating the situation is
the fact that as above, a mobile user might encounter very different connection characteristics over time, ranging from
relatively high-bandwidth wireless LAN in a constrained office-like environment, to a metro-area network in populated
urban areas, to a cellular network elsewhere. Ideally, the user’s interactions with the service would continually adapt to
the capabilities of his device and connection.

Unfortunately, such mismatches are poorly handled by current infrastructures, which either provide differentiated
service to mobile users or rely upon a close coupling between the service and client applications to adapt to chang-
ing network conditions. The first approach, used by several popular news, e-mail, and stock trading services, has the
service providing mobile users with different presentation, content, and features than that available to those accessing
the service via higher bandwidth connections. Because mobile users are grouped into a small number of classes, they

may not seamlessly receive performance commensurate with the current capabilities of their device or network. This is
particularly true in dynamic environments with big variations in available bandwidth (e.g., a wireless LAN user who is
at different distances from an access point). The second approach, exemplified by automatic stream selection mecha-
nisms in commercial media players, increases the burden on the application developer limiting its general applicability.
Additionally, restricting adaptation to only the end points can often yield sub-optimal behavior. For example, a media
player application that switches to a lower quality stream because of congestion in the middle of the network might have
been able to continue playing the higher quality stream if the stream was rerouted along a different path.

This paper describes a different approach to resolving the mismatch problem, enabling seamless mobile access to ser-
vices in resource limited and dynamically changing network environments. Our approach, embodied in theComposable
AdaptiveNetwork Services (CANS) infrastructure, permits the dynamic insertion of application-specific components
along the network path between the service and the client application. These components, which can transparently han-
dle stream degradation, reconnection, and path rerouting in our example, and in general support arbitrary transcoding,
caching, and protocol conversion operations, serve to “impedance match” a mobile user’s connection with the network
service making itnetwork-aware. CANS supports flexible mapping of these components to path resources, for instance
allowing their creation on the user’s end device, a proxy server located close to the wireless access point, or an edge
server acting as the gateway into the general Internet. This flexibility permits CANS to uniformly cope with both diverse
network conditions as well as changing load on shared resources. Although most mobile user scenarios are likely to
benefit from components deployed in the last two or three network hops, CANS can also be used in wide-area overlay
networks to achieve increased control over the entire network path.

Other researchers have also recently proposed similar programmable network infrastructures [1,2,5,7,25,28], how-
ever CANS distinguishes itself by striving to create such network-aware paths completelyautomaticallyand additionally
support theirdynamic reconfiguration. To achieve this goal, CANS relies on three key mechanisms:

• A high-level integratedtype-based specification of components and network resources, which enables late binding
of components to paths, essential for flexibility. Unique to CANS is its expression of network characteristics in the
same type framework, e.g., network links are represented as components that transform the type of data passing
across them. This allows us to reduce the problem of finding appropriate components for given network conditions
into one of finding a type compatible sequence.

• An automatic path creation strategybased on a polynomial-time dynamic programming algorithm, which simul-
taneously finds a type-compatible sequence of components that transform the data type produced at the service
into a type that can be consumed by the client device, and maps these to underlying network resources so as to
optimize a global metric (e.g., client throughput or response time).

• System support forlow-overhead dynamic path reconfiguration, which includes restrictions on component inter-
faces and efficient protocols that leverage these restrictions to support three different reconfiguration semantics:
no continuity, continuity at the level ofsemantic segments, and full continuity.

We have developed a prototype Java-based implementation of the CANS infrastructure. This prototype is used in the
paper to evaluate the effectiveness of our approach, both in terms of the capabilities and performance of the constructed
paths as well as the overheads associated with path creation and reconfiguration. We report on experiments conducted
using two representative applications, web access and image streaming with client preferences of reduced response time
and increased throughput respectively, for multiple network and end-device characteristics reflecting typical mobile use
situations. Our results validate the CANS approach, verifying that (1) automatic path creation and reconfiguration is
achievable and does in fact yield substantial performance benefits; and (2) that despite their flexibility, both path creation
and reconfiguration can be supported with low run-time overhead.

The rest of this paper is organized as follows. Section 2 presents the overall architecture and implementation of the
CANS infrastructure. Sections 3–5 focus on the three mechanisms that enable automatic creation and reconfiguration
of network-aware paths, describing in turn the type framework, path creation strategy, and system support for path
reconfiguration. The CANS infrastructure is evaluated in Section 6 using the two applications. We discuss related work
in Section 7 and conclude in Section 8.

2

Service1

Service2

Laptop, Client2

Desktop, Client1 PDA, Client3

input output1

output2

 service

 driver

Figure 1: Logical view of a CANS network showing data paths constructed from typed components.

2 CANS Architecture

2.1 Logical View of a CANS Network

CANS views network environments as consisting of clientapplicationsand networkservices, connected bydata paths.
CANS extends the notion of a data path, traditionally limited to data transmission between end points, to include
application-specific components which are dynamically injected by end services, applications, or other entities. Besides
supplying consumable data to client applications, these components cooperate to continually adapt the data path to
properties of the underlying network and end devices (see Figure 1).

CANS data paths are created dynamically, based on information about user preferences, properties of services and
client applications, as well as characteristics of the underlying platform. The components which constitute a data
path, the interconnections amongst them, and their internal configuration parameters can all be modified at run time.
Modifications are triggered based on either system events (e.g., detection of bandwidth drop on a network link) or
component-initiated events (e.g., delayed arrival of data frames). The CANS infrastructure provides support to efficiently
reconfigure data paths, while preserving application specific semantics of the transmitted data.

2.1.1 CANS Components

CANS components are self-contained pieces of code that can perform a particular activity on input data, for example,
protocol conversion or data transcoding. Network-aware access paths are formed by connecting components with each
other based upon compatibility of output and input types (see Section 3 for details). Components come in two flavors:
mobile soft-state objects calleddriversand statefulservices.

Drivers serve as the basic building block for constructing adaptation-capable, customized data paths. Drivers are
standalonemobilecode modules that perform some operation on the data stream. However, to permit their efficient
composition and dynamic low-overhead reconfiguration of data paths, drivers are required to adhere to a restricted
interface. Specifically,

1. Drivers consume and produce data using a standarddata portinterface, called aDPort . DPort s are associated
with type information (see Section 3 for details) and distinguished based on whether they are being used for input
or output.

2. Drivers arepassive, moving data from input ports to output ports in a purely demand-driven fashion. Driver
activity is triggered only when an output port is checked for data or an input port receives data.

3. Drivers consume and produce data at the granularity of an integral number of application-specific units, called
semantic segments. These segments are naturally defined based on the application, e.g., an HTML page or an
MPEG frame.

4. Drivers contain onlysoft state, which can be reconstructed simply by restarting the driver. Examples of such state
include cache data, compression dictionaries, etc.

3

The first two properties enable dynamic composition and efficient transfer of data segments between multiple drivers
that are mapped to the same physical host (e.g., via shared memory). Moreover, they permit driver execution to be
orchestrated for optimal performance. For example, a single thread can be employed to execute, in turn, multiple driver
operations on a single data segment. This achieves nearly the same efficiency, modulo indirect function call overheads,
as if driver operations were statically combined into a single procedure call. The last two properties, semantic segments
and soft state, enable low-overhead data path reconfiguration and we defer their complete description to Section 5.2.

Services are the second core CANS component. Unlike drivers, which must follow a constrained interface, services can
export data using any standard internet protocol (e.g., TCP or HTTP), encapsulate more heavyweight functions, process
concurrent requests, and maintain persistent state. The different interface requirements of drivers and services stem from
the observation that most current services distributed in the internet are legacy in nature: their source code is general
unavailable, and rewriting or modifying them is impractical. The price paid for not adhering to a standard interface is
that unlike driver migration, CANS does not explicitly support service migration; a service individually determines how
it manages its own state transfer. This design choice reflects the view that services are migrated infrequently and doing
so requires protocols that are difficult to abstract cleanly.

CANS provides applications with a general platform to create, compose, and control services across the network. A
service is required to register itself by providing adelegate objectthat can control the service and act on its behalf in
interactions with the rest of CANS.

2.2 Physical View of a CANS Network

The CANS network is realized by partitioning the service and driver components belonging to multiple data paths onto
physical hosts, connected using existing communication mechanisms. The current version of the CANS infrastructure
does not address trust and security issues; we assume that hosts underlying the CANS network either belong to the
same network administration domain, or are under the control of the same organization. Examples in the first category
include campus-area hybrid wired and wireless networks in large shopping centers, office buildings, university, hospital,
and airport settings, while those in the second include geographically-distributed content distribution networks with a
final wireless hop. Although most mobile use scenarios are likely to benefit from components being deployed in the last
two or three hops of the network, CANS can also be used in wider area networks to achieve increased control over the
entire network path.

2.2.1 Execution Environment

The Execution Environment (EE) serves as the basic node run-time environment and is responsible for:

• downloading component code from a specified location and instantiating it as required.

• maintaining information about deployed drivers and managing data path operations both within and across EEs,
including inserting new drivers, creating new services, and reconfiguring existing paths based upon input from the
planning module described in Section 4.

• supporting system- and component-level event propagation within and across EEs (details below).

• interacting with external resource monitors to obtain information about system conditions such as CPU load,
network connections, and bandwidth available to a data path. We currently use simple heuristics to estimate
network information, however the CANS architecture can easily incorporate resource monitoring tools developed
by other researchers [3,16,17].

Communication Adapters Inter-EE data transmission is accomplished by auxiliary CANS components called com-
munication adapters, which transmit dataphysicallyacross the network to connect drivers that span different nodes. To
achieve this, these components expose a driver-likeDPort interface. Communication adapters also support two addi-
tional kinds of logical connections: (1) between client applications and drivers; and (2) between a driver and a service
that exports data using an interface other thanDPort .

To provide the above functionality, adapters establish point-to-point physical communication links between applica-
tion wrappers (see below), execution environments, and services. Multiple logical connections can be multiplexed on
a single physical link; the latter can exploit transport mechanisms best matched to the characteristics of the underlying
network. Communication adapters can additionally encapsulate behaviors that permit them to adapt to and recover from

4

minor variations in network characteristics. For instance, in nodes supporting both wired and wireless network connec-
tions, these adapters can be written to automatically reconnect with an upstream adapter using whichever connection is
currently available.

Event Propagation Exchange of control information between components within the same EE or across EEs is ac-
complished using events.

Components can raise events (tagged with the event name and source) to local registered listeners. This mechanism
is used, for example, by the EE to notify interested components about changes in system conditions. The EE also
supports a distributed event mechanism, permitting events to be raised on remote EEs. This basic mechanism enables
construction of flexible event delivery mechanisms. An example of this is support forpath level eventsin CANS:
components wanting to communicate control information with other components along the path raise an event that is
caught by a localpath event delegate, which in turn fires a distributed event to its counterpart on the next EE along the
data path. This delegate listens for path events arriving through the network, and in response raises a local event that is
caught by the local components belong to that path.

2.2.2 Support for Legacy Applications

The CANS infrastructure supports both CANS-aware and CANS-oblivious client applications. The former just hook into
the driver and service interfaces described earlier. The latter require more support but are easily integrated because of our
focus on stream-based transformations on the data path. Our solution relies on aninterception layerthat is transparently
inserted into the application and virtualizes its existing network bindings. The interception layer is injected using a
technique known as API interception [13], which relies on a run-time rewrite of portions of the memory image of the
application.

The interception layer provides the application with an illusion of a TCP socket, which can be bound to various
interfaces (CANS or native network) for actual data transmission. This binding in turn is influenced by an application
specific policy, which responds to events (such as connect requests) delivered to it by the interception layer. Thus,
enabling CANS support for a new legacy application would require only writing a specific policy for that application.
Finally, although our current implementation virtualizes the TCP layer, the technique can as easily support other well-
known protocols, such as HTTP.

2.3 Example: A Streaming Media Application

To demonstrate how the CANS infrastructure can enhance mobile user experience in dynamic resource limited environ-
ments, we describe a simple example modeled after the teleconference scenario described earlier. Consider a mobile
user with a laptop capable of both wired and wireless operation who connects to an Internet-based server to access a
media stream. This user starts off at his office desk but then has to leave in the middle to go elsewhere in the building.
Let us assume that the user wishes to continue viewing the stream using the laptop’s wireless connection, while retain-
ing the same privacy guarantees (freedom from eavesdroppers) he might have had on a wired connection even if, as we
assume here, the wireless link has inadequate security.

To ensure seamless mobile access to the network service, an ideal infrastructure would provide the user with good
stream quality when he is using a wired connection and that degrades gracefully depending on his distance from the
wireless access point. Additionally, the infrastructure would isolate the user from the switch between wired and wireless
connectivity and transparently provide the required privacy guarantees. Unfortunately these requirements cannot be sat-
isfied by any current infrastructure: media player applications capable of adapting stream quality to network bandwidth
cannot mask the reconnection event, and mobility-aware transport protocols [22, 24] are incapable of adjusting stream
quality in any intelligent fashion. Neither set of solutions can satisfy the user’s privacy requirements.

The CANS infrastructure successfully enables this scenario by augmenting the path between the user and media
server with the following six components:reconnector(src), reconnector(dest), padder, splitter, encryption, anddecryp-
tion. Thereconnector(src)andreconnector(dest)components cooperate to buffer and retransmit frames of the stream,
ensuring that the client application always receives a semantically valid frame, even when there is data loss in the switch
between the wired and wireless connections. Note that, since, in general, it is impossible to mask the time delay involved
in the reconnection, the infrastructure also needs to isolate this delay from the media player application. Thepadder
component helps with this, “filling in” legal media frames whenever its input stream stops. Thesplitter component
can split the incoming media stream into its video and audio portions, enabling adaptation in low-bandwidth situations.

5

P: padder
RD: reconnecter (dest) RS: reconnecter (src)
E: encryption D: decryption
S: splitter

Wireless
Network

Wireless
Network

Media ServerMediaPlayer

Path with
wired link

Path with
wireless link

R D SERSRD

R RSRD

Figure 2: CANS enables seamless mobile access to a network media server by constructing data paths customized to
different network conditions.

Finally, theencryptionanddecryptioncomponents cooperate to maintain privacy of stream data by encrypting it before
the wireless link and decrypting it before delivering it to the application.

Thus, these components permit construction of a data path customized to the network conditions encountered during
each stage of the example:

• (with the wired link) The data path consists of thereconnector(src)—reconnector(dest)—paddersequence, and
is capable of isolating the client application from detecting a future disconnection.

• (with the wireless link) Theencrypter—reconnector(src)—reconnector(dst)—decrypter—paddersequence, when
link capacities are sufficient to transmit video+audio to the client. When not enough capacity is present, the se-
quence would also need to include thesplittercomponent at a location determined by the bottleneck link.

While it should be clear by this stage that CANS-like infrastructures can provide substantial flexibility for adapting
to resource limited and dynamic network conditions, several concerns need to be addressed before such infrastructures
can be widely used. Can such infrastructuresautomaticallyconstruct appropriate data paths, while respecting constraints
imposed by the network (e.g., that the encrypter and decrypter components need to be at either end of the wireless link)?
Can component sequences be mapped to network resources to optimize performance metrics, while respecting node and
link capacity constraints? Can data paths bedynamicallyreconfigured whenever system conditions change? Can data
paths be constructed and reconfigured without negatively impacting the performance of the system?

The CANS infrastructure includes three key mechanisms—type-based specification of components and network re-
sources, automatic path creation strategy, and system support for dynamic path reconfiguration—which answer each of
these questions in the affirmative. We describe these mechanisms in the next three sections and evaluate their effective-
ness in Section 6.

3 Type-Based Specification of Components and Network Resources

To automatically construct data paths from a set of components, the first question that must be answered is which
application-specific components can be composed together. We formulate this composition problem as atype compati-
bility problem. Central to this formulation is the notion that all data flowing along a data path istyped, and that this type
is affected both by components along the data path as well as network resources making up the route. In the rest of this
section, we describe in turn the type-based representation of components and network resources.

3.1 Representing Component Properties

The composability of CANS components (both drivers and services) is decided by compatibility of type information
associated with the input and output ports being connected. The types used in CANS integrate two closely related
concepts:data typesand stream types. An additional notion ofdata type rankshelps capture application-specific
composition constraints.

Data types are the basic unit of type information, represented by a type object that in addition to a unique type name
can contain arbitrary attributes and operations for checking type compatibility. The CANS infrastructure assumes that,

6

in most application domains, it is possible to define aclosed, semantically unambiguous set of types, for instance MIME
types to represent common media objects.

Traditional mechanisms such as type hierarchies can still be used to organize data types; however, our scheme
permits flexible type compatibility relationships not easily expressed just by matching type names. For instance, it is
possible to define a CANS type for MPEG data, which contains attributes for defining the frame size. AnMPEGtype can
be defined compatible with anotherMPEGtype as long as the former’s frame size is smaller than the latter’s, naturally
capturing the behavior that a lower resolution MPEG stream can be played on a client platform capable of displaying a
higher resolution stream.

Stream types capture the aggregate effect of multiple CANS drivers operating upon a typed data stream. Stream types
are constructed at run time, and are represented as astackof data types. Operations allowed on stream types include
push, pop, peek,andclone, which have the standard meanings.

Each CANS component withm input ports andn output ports defines a function, which maps its input stream types
into output stream types:f(Tin1 ,Tin2 , ...,Tinm) → (Tout1 ,Tout2 , ...,Toutn) whereTini is the required stream type set
for the ith input port, andToutj is the resulting stream type produced on thejth output port. The type compatibility
between an input and an output port, which determines whether two components can be connected, is determined by
checking the top of the output port’s stream type against the required data type of the input port. Stream type information
flows downstream automatically when two ports get connected at run time.

MPEG512x256EncryptedBaseStream

Src Encryption SinkDecryption
MPEG500x200

MPEG500x200

Encrypted

MPEG500x200

Figure 3: A simple example of component type compatibility.

Figure 3 shows an example of the type compatibility scheme. The source produces MPEG data at resolution500×
200, which needs to be supplied to the sink that can consume MPEG data at resolution512×256 after going through two
components that respectively encrypt and decrypt the data. The figure shows the data types on each of the ports as well
as the stream types on the connections. To consider an example, theEncryptiondriver accepts data typeBaseStream
and pushes anEncrypted type object onto the incoming stream type. The output port ofSrc is compatible with the
input port ofEncryptionbecause theMPEGtype object extends theBaseStream type. Similarly, the output port of
Decryption, whose effect is to pop theEncrypted type from its incoming stream type, is compatible with the input
port ofSinkbecause of a type-specific compatibility operator for theMPEGtype that looks at the resolution attributes.

Figure 3 also highlights the composition advantages of representing stream types as a stack of data types. If com-
ponents were just modeled as consuming data of a particular type and producing data of another, it would be difficult to
express the behavior of theEncryptionandDecryptiondrivers in a way that permits their use with generic stream types
withoutlosing information about the original stream type at the output of theDecryptiondriver. In this case, determining
whether theDecryptiondriver’s output port is compatible with the input port onSinkwould require examining the entire
data path. In contrast, our stream type representation permits local decision making, enabling run-time adaptation via
dynamic component composition.

Data type ranks help express application-specific constraints on how CANS components can be composed together by
requiring that only types of monotonically increasing ranks can be stacked into a stream type. For instance, by giving the
encryption type a higher rank, we can ensure, for any CANS data path requiring both encryption and compression, that
encryption always happens after compression. Similarly, the ranking scheme can express that lossy compression can
happen after lossless compression but not vice versa, and as in the web access application described in Section 6, that
image resizing to reduce bandwidth requirements of web page delivery be employed only after image quality filtering.

To simplify use of CANS in mobile user scenarios, our infrastructure predefines certain common data types. These
types are partitioned into different classes such as encryption types, compression types, image transcoding types, etc.
Each class is assigned a range of rank values, capturing common constraints of the kind described above. New types
required for the application can be easily integrated into this rank hierarchy: the application developer first picks a class
in which to put the new data type and then chooses a rank from the class range. The chosen rank must satisfy certain
rules, for example, if typets is a subtype oft then rank ofts should not be lower than that oft. We have found this
linear organization of the type space to be sufficient for most applications; however, we are currently extending it using

7

a rule-based mechanism on top of type classes that allows the system to automatically place the types in a rank lattice.

3.2 Representing Network Resource Properties

Network resource characteristics can introduce additional constraints affecting both which components must be present
along a data path and how these can be composed. To revisit the example described in Section 2.3, the risk of packet
interception on the wireless link necessitates the presence of the encryption and decryption drivers to preserve privacy.
Similarly, the padder component is required because it is not possible to bound jitter when the user switches between
the wired and wireless networks. Since these drivers are not required if one just examines the type properties of the
data path source and sink locations, it is clear that one needs to factor in network resource characteristics into the
component selection process. Unfortunately, prior research has usually modeled these resources in an ad hoc fashion,
inserting components necessitated by characteristics such as link properties as a separate pass after type-compatibility
based selection. While this approach works, it compromises on optimality because of poor or redundant placement of
these required components.

In contrast, our approach unifies both type compatibility and network resource characteristics in the same framework.
We restrict our attention to network links in the following discussion, but the same principle extends to other network
resources. The basic idea of our approach is to represent link requirements implicitly by modeling how links affect the
types of data that go across them.

To capture the effect of link properties on data types, we introduce the notion of anaugmented type: each data
type is extended with a set of link properties that can take values from a fixed set such as security (used here to denote
transmission privacy), reliability, and timeliness, etc. Network links are modeled in terms of the same properties and
have the effect of modifying, in a type-specific fashion, values of the corresponding properties associated with different
data types. To consider an example, consider transmission of HTML data over an insecure link. Our type framework
captures this as follows: the data type produced at the source is represented byHTML(secure=true), the network link
is represented by the propertysecure=false , and the effect of the link propertysecureon theHTMLdata type by the
rule that the augmented typeHTML(secure=true) is modified toHTML(secure=false) upon crossing a link with the
propertysecure=false .

This base scheme is extended to stream types by introducing the notion ofisolation. Stated informally, specific
data types have the capability to isolate others below them in the stream’s type stack from having their properties be
affected by a link. For example, anEncrypted type can isolate thesecureproperty of types that it “wraps”, i.e., this
type of encrypted data still remains secure after crossing insecure links, irrespective of what specific type(s) the data
corresponds to.

3.3 Type-based Modeling of the Streaming Media Application

To permit automatic data path construction for the example application described in Section 2.3, the specification of
components need to include the following four pieces of information: data type definitions, network links modeled
in terms of a set of link properties, rules governing how data types are modified by links, and component properties
described in terms of input and output types.

Figure 4(a) shows the data type definitions.BaseStream is the basic stream type with three boolean link proper-
ties: reliable, secureandrealtime. RStream , Media , andEncrypted extend theBaseStream type, representing
reliable, media, and encrypted streams respectively.Video andAudio are two subtypes of theMedia type. The
RStream type is given a lower rank as compared to the other types to capture an application-specific composition
constraint involving theencryption/decryptionandreconnecterdrivers.

Figure 4(b) shows properties of the wired and wireless links. The wired link is modeled withreliable andrealtime
properties set tofalse to capture the fact that it can get disconnected during the access. Similarly, the wireless link
has thesecureproperty set tofalse to denote its limited support for transmission privacy.

Figure 4(c) shows how these link properties affect different types. “Effect isolation” refers to a type isolating the
effect of a link property for data type instances below it in the stack of types making up a stream type. For example, the
security property of theEncrypted type is unaffected when data of such type traverses an insecure link. Moreover,
the type isolates this effect for all of the wrapped types.

Figure 4(d) lists the input/output types of the six components described in Section 2.3, along with the types produced

8

 BaseStrem {
 bool reliable;
 bool secure;
 bool realtime;
 }

 Media::BaseStream
(rank:1)

Video::Media Audio::Media

 RStream::BaseStream
(rank:0)

 Encrypted::BaseStream
(rank:2)

(a)

properties
secure reliable realtime

wired T F F
wireless F T F

(b)

secure reliable realtime
T F T F T F

Media — F — F — F
RStream — F T* T* — F
Encrypted T* T* — F — F

—: no change *: Effect isolation
(c)

components Input & output type

Media
player
(sink)

media:{
 realtime = T;
 reliable = T;
 secure = T;
}

source
video:{
 realtime = T;
 reliable = T;
 secure = T;
}

splitter videoaudio

padder
media:{
 realtime = *;
 }

media:{
 realtime = T;
 }

encryption
*

Encrypted

*

decryption
Encrypted

**

reconnecter
(src) *

RStream

*

RStream

**
reconnecter

(dest)

(d)

Figure 4: Types in the streaming media example: (a) data type definitions; (b) link properties; (c) effect of link properties
on augmented types; and (d) input and output types of components.

by the source and that required by the sink. To consider some examples, the sink specification says that the client
application requires a reliable, real time, and secureMedia type. Thepadder, which fills in legal frames whenever it
does not receive input in a timely fashion, is represented as a component that transforms the input typeMedia with an
arbitrary value for therealtimeproperty, into the output typeMedia with realtime=true . Similarly, theencryption
component is modeled as an entity that converts an arbitrary stream type at its input into a new stream type consisting
of the Encrypted type wrapping whatever was originally present. Thedecryptioncomponent performs the reverse
operation, stripping away theEncrypted type out of the stream type.

The primary advantage of modeling component properties in a type framework is that all legal data paths associated
with a given set of network conditions correspond simply to type-compatible component sequences that transform the
source data type into that required by the sink. The important point here is that these legal sequences can be inferred
fully automatically. In this example, the two network conditions of interest are whether the user connects to the server
using a wired link or a wireless link.

With the wired link, the above type specifications yield the following two legal sequences:reconnecter(src)—
reconnecter(dest)—padder, andsplitter—reconnecter(src)—reconnecter(dest)—padder. Informally, the former might
be used when link capacities are sufficient for transmission of the original video+audio stream to the client, while the
latter is required when this is not the case.

With the wireless link, again we have two sequences:encryption—reconnecter(src)—reconnecter(dest)—decryption—
padder, andsplitter—encryption—reconnecter(src)—reconnecter(dest)—decryption—padder. Notice that theencryp-
tion anddecryptioncomponents are required to preserve the secure property of a stream transmitted across the wireless
link (see Figure 4(c)). Note also that an alternate type-compatible component sequencereconnecter(src)—encryption—
decryption—reconnecter(dest)—padderis disallowed because of the ranks associated with theRStream andEncrypted
types.

Having obtained legal sequences, the next step towards automating data path construction is choosing one of them
and mapping it to underlying network resources to optimize some global performance metric.

9

4 Automatic Path Creation Strategy

The CANS path creation strategy embodied in the EEplanning moduleautomatically selects and maps a type-compatible
component sequence to underlying network resources. In addition to satisfying type requirements, the strategy respects
constraints imposed by node and link capacities and optimizes some overall path metric such as response time, data
quality, or throughput.

In the following part of this section, we first describe the single path creation strategy and then discuss the reservation
scheme to handle multiple paths. Details of the path reconfiguration procedure are deferred to Section 5.

4.1 Single Path Creation

Creation of a single data path consists of two steps:route selectionwhere a graph of nodes and links is selected for
deploying the path, andcomponent selectionwhere appropriate components are selected and mapped to the selected
route. Route selection can be viewed as the shortest path problem in the node graph, which takes into consideration
bandwidth on links between nodes in different domains and the relative loads on nodes within the same domain. Given
the large amount of literature available on similar problems, we will not discuss this further.

The component selection process takes as input the augmented type at the data source, the augmented type required
at the sink, and the selected route (whose links may transform augmented types as described earlier). In this paper,
we restrict our attention to single input, single output components; i.e., all selected plans consist of a sequence of
components. Most of the application scenarios we have experimented with fall into this category.

The heart of our strategy is a dynamic programming algorithm to simultaneously select components and map them to
the route in a fashion that optimizes overall throughput, while ensuring a lower bound on data quality. Other optimization
metrics could also be used such as minimal latency, best data quality, etc. We first describe a base version of the algorithm
where only simple (non-stacked) data types are present and network resourcesdo notaffect the type of data crossing
them, and then discuss how this base algorithm is extended to handle the more general case of stream types and link
properties.

4.1.1 Base Algorithm

To describe the dynamic programming algorithm, we first need to introduce some terminology.

A driver component d is modeled in terms of itscomputation load factor, load(d), and itsbandwidth impact factor,
bwf(d). load(d) captures the average per-input byte cost of running the component, whilebwf(d) reflects the average
ratio between input and output bandwidths. For example, a compression component that reduces stream bandwidth by
a factor of two has abwf = 0.5. Similarly, for the corresponding decompressor,bwf = 2.0.

A data path, D = {d1, . . . , dn}, is a sequence of type-compatible components, as defined in Section 3. Atype
graph formalizes this notion: vertices in the graph represent types, and edges represent components that can transform
the type of one vertex to the type of the other. There might be multiple edges between two vertices in the type graph;
the degree of any vertex obviously does not exceed the total number of components in the system.

A route, R = {n1, n2, . . . , np}, is a sequence of nodes obtained using the route selection algorithm.R(ni, nj) refers
to the subsequence starting at nodeni and ending at nodenj . Each nodeni is modeled in terms of itscomputation
capacity, comp(ni), which represents the number of operations that the node can perform every unit time. A link
between two nodes,lij , is modeled in terms of its bandwidth,bw(lij). Bothcomp(ni) andbw(lij) are defined in terms
of route resources available for a particular path.

A mapping, M : D → R, associates components on data pathD with nodes in routeR. We are only interested in
mappings that satisfy the following restriction:M(di) = nu,M(di+1) = nq ⇒ u ≤ q; i.e., components are mapped
to nodes in path sequence order. This is a reasonable assumption for data paths crossing multiple networking segments
which have different properties.

The component selection process takes as its input a routeR, a source data typets, a destination data typetd, and
attempts to find a data pathD that transformsts to td and can be mapped toR to yield maximum throughput.

The problem as stated above is NP-hard. To make the problem tractable, we view the computation capacity as
partitionable into a fixed number ofdiscreteload intervals; i.e., capacity is allocated to components only at interval
granularity. Not only is this assumption practical, but it also allows us to define, for a routeR, the notion of anavailable

10

computation resource vector, ~A(R) = (r1, r2, . . . , rp), whereri reflects the available capacity intervals on nodeni

(normalized to the interval [0,1]). For this algorithm, we are interested only in a subset of all possible vectors that have
the pattern{1, . . . , 1, ri, 0, . . . , 0} for reasons explained below. It can be easily verified that the total number of such
legal vectors isp× L, wherep is the number of nodes andL is the number of the discrete load intervals.

Dynamic Programming Strategy
The intuition behind the algorithm is to construct, for different amount of route resources, optimal mappings for data
paths with increasing numbers of components, sayk + 1, using as input optimal partial solutions involvingk or fewer
components. The form of the legal resource vector above is explained as follows: when we decide to assign thek + 1th
componentdk+1 in the data path to a nodeni in the route, the drivers beforedk+1 cannot make use of the nodes afterni

because of our mapping definition. Thus, we need only consider partial solutions for resource vectors that take the form
{1, . . . , 1, ri, 0, . . . , 0}.

More formally, the algorithm builds up partial optimal solutions,s[t, ~A, k],∀t, ~A, k, where each such solution yields
maximum throughput for transforming the source typets to an arbitrary intermediate typet, using a data path withk
components or fewer and requiring no more resources than~A. The dynamic programming strategy defines how these
solutions can be constructed in a bottom up fashion:

• Step 1 solutions simply consist of zero-component paths (edges in the type graph) that transformts into an
arbitrary intermediate typet, and require no more than~A resources (for each~(A) for a given routeR).

• Assume that Stepk − 1 solutions have been constructed. These consist of optimal paths ofk − 1 or fewer
components that transform the source type into all intermediate type while using no more than~A resources (for
any ~A). The dynamic programming step works as follows.

• To construct a stepk solution for a given typet and resource vector~A, consider all possible intermediate typest′

that can be transformed tot; i.e., all those types for which an edged = (t′, t) is present in the type graph. For each
sucht′, consider all possible mappings of the associated componentd on nodes along the route that use no more
than ~A resources. For each such mapping that transforms the available resource vector to~A′ (after accounting for
load(d)), combine this component with the optimal Stepk − 1 solutions[t′, ~A′, k − 1]. Note for each mapping
whereM(d) = ni, we setr′k = 0 ∀k > i in ~A′. The combined mapping that yields the maximum throughput is
deemed the optimal Stepk solution.

The throughput achievable for a particular mapping can be computed given the node throughput and link bandwidth
properties. The throughput of nodeni itself is decided by the incoming bandwidth, its computation capacitycomp(ni),
and theload andbwf properties of components mapped to the node.

Two additional points need some clarification. First, in the above algorithm, we need to know how much resources
to set aside for componentd before we can combined with an optimal Stepk − 1 solution. The problem here is that
d’s resource requirementsload(d) are expressed in terms of per-input byte costs, and are difficult to evaluate without
knowing what the input bandwidth is, which itself is only known once the Stepk − 1 solution is selected. We break
this cyclic dependency by firstguessingthe resource requirement ofd and then evaluating the throughput for this guess.
The guess that yields the maximum throughput is picked to reflectd’s resource usage. Note that because of discretized
load levels, we only need to make a constant number of guesses at each step and moreover, one of these must yield the
optimal solution.

Second, in order to ensure the strategy optimizes throughputwhile ensuring a lower bound on quality, before com-
mitting to a Stepk solution, the algorithm must verify that the lower bound on quality is satisfiable in the unresolved
portion of the data path. Note that to resolve this question, we simply need partial solutions precomputed by running the
algorithm in the “reverse” direction, i.e., starting fromtd, with a different objective, that of maximizing data quality.

The algorithm terminates at Stepkmax = p×n, wherep is the number of nodes andn is the number of components.
This follows from the observation that for real components, there is no throughput benefit from mapping multiple copies
of the same component to the same node. The solution[td, ~Amax, kmax], if present, yields the optimal selection and
mapping of components to transformts to td along routeR. The complexity of this algorithm is0(n3 × p3) as opposed
to O(pn) for an exhaustive enumeration strategy. As stated earlier, in most mobile access scenarios benefiting from
CANS,p is expected to be a small constant, with overall complexity determined by the number of components.

11

4.1.2 Extension 1: Handling Stream Types

Stacked stream types complicate the type graph used in the base algorithm because of a need to represent each of the
stream types that can be generated by a stackable driver component. For instance, aZip driver can consume data of both
HTMLandWMLtypes producing different stream types, which must be separately represented. The naive approach of
explicitly enumerating each stream type in the graph (e.g.,Zip-HTML andZip-WML in the example) does not scale
because the size of the type graph grows exponentially with the number of simple data types.

We employ two strategies to ensure that the type graph does not become intractably large. First, we restrict the
type graph to include only those stream types that are reachable from the source data type, and which in turn can reach
the destination type required by the client. This reduces the number of enumerations by a large amount because of
the observation that the total number of possible stacking operations involving a specific type is limited. Second, we
exploit the data typeranksdescribed in Section 3.1, which impose constraints on component composition and thereby
reduce the number of stream types that will be constructed. In the web access application described in Section 6, the
combination of these two strategies reduces the number of type graph nodes to just3 when creating a path for the data
typemime/text and6 when creating one for the typemime/image . In contrast, the application drivers repository
included about 20 simple types that would have resulted in a substantially larger number of nodes otherwise.

4.1.3 Extension 2: Dealing with Network Resource Properties

The algorithm as described so far does not consider the possibility of network resources affecting stream data types.
Taking network links as an example, to cope with their effect on stream types, the algorithm needs to incorporate two
modifications. First, the type graph is now defined in terms of augmented types, making explicit the differences between
streams that have the same data type but different values of link properties. Because both the number of such properties
as well as the set of values associated with each property are expected to be small, such enumeration results in only a
small increase in the size of the type graph.

The other modification is to the recursive step in the dynamic programming algorithm described above. In particular,
when developing Stepk solutions, the optimal Stepk − 1 solution that is combined with the selected one-component
partial mapping must take into account possible type translations because of an intermediate link. In other words, for a
given intermediate typet′, we now need to consider solutionss[t′′, ~A′, k − 1] wheret′′ is translated by one component
and one link (if it exists in the corresponding mapping) intot′. This modification does not change the overall complexity
of the algorithm.

4.2 Management of Multiple Paths

To concurrently support multiple data paths over shared resources, we employ a strategy calledadjustable reservation.
The basic idea is very simple, each network resource (nodes, links, etc.) is partitioned into a number of equalshares
(see Figure 5). Individual data paths are provisioned by reserving node and link shares along the selected route, using
the single path creation strategy described earlier to deploy path components. Share enforcement is achieved using a
user-level sandboxing strategy [4], which provides control over CPU and network resource utilization. Note that after
allocation of shares, each of the paths can be created and maintained independently. For scalability, the controllers for
individual paths are distributed across the entire system.

Client

Node

Figure 5:Multiple paths are hosted on a shared set of resources by allocating shares of resources to each individual path.

12

Node and link shares are autonomously adjusted whenever the aggregate load on a resource changes, either because
data paths are deleted or new data paths need to be created, or because of external conditions such as link congestion.
Individual path controllers are informed of these adjustments using events, possibly triggering the reconfiguration pro-
cedure described in the next section. To balance between the need to efficiently use a resource and avoid potentially
high-overhead share adjustments, the partitioning procedure is discrete. To take an example, consider a resource that
is initially partitioned into four shares, all of which are being used by active data paths. When a fifth path needs to be
created, the resource is repartitioned to have eight shares (as opposed to five). This strategy trades off overall resource
utilization versus repartitioning frequency.

Our current scheme uniformly divides up shared resources amongst active paths. This can be easily extended, as in
network provisioning literature [10,11], to accomodate other schemes such as a weighted partitioning or even guaranteed
provisioning of route resources.

5 System Support for Efficient Path Reconfiguration

Data paths may need to be reconfigured to cope with dynamic changes in available resources. Our approach relies on two
kinds of system support to enable low-overhead reconfiguration: (1) appropriate restrictions on component interfaces,
and (2) reconfiguration protocols that leverage these restrictions. In this section, we first describe the reconfiguration
semantics supported by CANS, and then the required system support.

5.1 Reconfiguration Semantics

The central question about reconfiguration is what can the application assume about data in transit or buffered within
components when a portion of the network path is reconfigured. CANS reconfiguration protocols can be customized to
provide three levels of semantics:

• Level 1semantics provides no guarantees, leaving it up to the application to reconstruct any lost data. Applications
involving non-critical data (e.g., news feeds) can exploit in-order delivery guarantees to perform efficient recovery.

• Level 2 semantics provides the guarantee of delivering completesemantic segments, essentially simplifying the
task of the application recovery code. Semantic segments represent application-specific notions of a useful granu-
larity of data. For example, in a streaming media application, a semantic segment might correspond to individual
frames. Level 2 semantics ensure that a frame is either completely delivered or not delivered at all.

• Level 3semantics provide full continuity guarantees with exactly-once semantics, completely isolating the appli-
cation from the fact that the path has been reconfigured. Note that real-time applications can still detect a break
in data availability; we take the view that such applications are best handled by inserting additional application-
specific components that provide necessary timeliness guarantees. An example is thepaddercomponent of the
media streaming application described in Section 2.3.

5.2 Restrictions on the Driver Interface

To guarantee the above semantics, CANS relies upon thesemantic segmentandsoft stateproperties of drivers, introduced
in Section 2.

Semantic segments refer to demarcatable application-specific units of data transmission, e.g., an HTML page or an
MPEG frame. CANS drivers are required to consume and produce data at the granularity of an integral number of
semantic segments. Informally, this requirement ensures that the data in an input semantic segment can only influence
data in a fixed number of output segments, permitting construction of data path reconfiguration and error recovery
strategies that rely upon retransmission at the granularity of semantic segments.

Note that this property only refers to the logical view of the driver, and admits physical realizations that transmit data
at any convenient granularity as long as segment boundaries are somehow demarcated (e.g., with marker messages).

Soft state refers to the driver property, which allows internal state to be reconstructed simply by restarting the driver.
Stated differently, given a semantically equivalent sequence of input segments, a soft-state driver always produces a
semantically equivalent sequence of output segments. For example, a Zip driver that produces compressed data will
produce semantically equivalent output (i.e., uncompressed to the same string) if presented with the same input strings.

13

Source Renderer

(a) After D0 ouputs 2 segments

Frame
Duplicator

Frame
Composer

D1(1:3) D3D2(4:1)D0

reconfigurable portionupstream
point

downstream
point

(b) After D0 ouputs 4 segments

D1(1:3) D3D2(4:1)D0

Figure 6: An example of data path reconfiguration using semantics segments.

Together, these two properties enable low-overhead path reconfiguration as described below.

5.3 Reconfiguration Protocol

Path reconfiguration is triggered by events generated either by the EE, which relays a change in network resource char-
acteristics or available path resources to the path controller, or by a component that detects a change in an application-
specific quality metric. The reconfiguration process consists of three major steps: (1) generation of a new selection
and mapping of components (“plan” for short) by the path controller; (2) ensuring required semantics prior to freezing
data transmission; and (3) deploying the new plan and resuming data transmission. Step 1 uses the planning algorithm
described earlier, optionally reusing some of the partial solutions constructed during initial deployment, and can be
overlapped with ongoing transmission. Step 3 involves a standard two-phase commit like procedure to synchronize
reconfiguration activities among multiple nodes along the path. We describe Step 2 in additional details below.

Step 2 requires slightly different support for the three reconfiguration semantics described earlier. Since activities
for Levels 1 and 2 are a subset of that for Level 3, our description focuses on the latter. The underlying problem is that to
maintain semantic continuity and exactly-once semantics, any scheme must take into account the fact that the portion of
the data path being reconfigured can have stream data that has been partially processed: in the internal state of drivers,
in transit between execution environments, or data that has been lost due to failures. Note that the soft-state requirement
on its own does not provide any guarantees on semantic loss or in-order reception.

Figure 6 shows an example highlighting this problem. To introduce some terminology, we refer to the portion
of the data path that needs to be reconfigured because of network changes (failures are an extreme example) as the
reconfiguring portion, and the components immediately upstream and downstream of this portion with respect to the
data path as theupstream pointanddownstream pointrespectively. In the example, driverd0 is a source of MPEG
data, driverd1 is an MPEG frame duplicator which produces 3 frames for each incoming frame, driverd2 is an MPEG
frame composer which generates one MPEG frame upon receiving four incoming frames fromd1, andd3 is a renderer
of MPEG data. The reconfiguring portion consists of driversd1 andd2. Consider a situation where system conditions
change after the upstream pointd0 has output two frames, and the downstream pointd3 has received one frame. At
this point, the portion containingd1 andd2 cannot be reconfigured because doing so affects semantic continuity. It is
incorrect to retransmit either the second segment fromd0 whose effects have been partially observed atd3, or the third
segment, which would result in a loss of continuity atd3.

The reconfiguration protocol leverages the semantic segments and soft state restrictions placed on driver function-
ality as follows. Intuitively, the first restriction allows us to infer which segments arriving at the downstream point of
the reconfiguring portion depend on a specific segment injected at the upstream point and vice-versa, while the second
makes it always possible, even if any internal driver state is reset, to recreate the same output segment sequence at the
downstream point by just retransmitting selected input segments at the upstream point. Our solution exploits these char-
acteristics to provide the required guarantees by just combiningbufferinganddelayed forwardingof semantic segments
at the upstream and downstream points respectively, withselective retransmissionof segments that are incompletely
delivered. The correspondence between upstream and downstream segments is completely determined by driver charac-
teristics in the reconfigurable portion; the implementation just needs to track marker messages that demarcate segment
boundaries.

This scheme uniformly handles both the situation where drivers continue error-free operation but the data path needs
to be reconfigured in response to system conditions, as well as the situation where link or node errors cause partial driver
state to be lost; the difference in the two situations is only whether the protocol is executed on demand or always. For the
first situation, we defer reconfiguration to the time when the system can guarantee continuity and exactly once semantics

14

for Level 3 (respectively, complete delivery of a semantic segment for Level 2). Upon receiving an event that triggers
reconfiguration, the upstream point starts buffering segments while continuing to transmit them, in effect flushing out
the contents of intermediate drivers. The downstream point monitors the output segments arriving there, waiting until it
completely receives an output segment from upstream satisfying the property thatall subsequent segments correspond
only to input segments at the upstream point that are either buffered or not yet transmitted. For Level 2 semantics, one
need only wait for the simpler requirement that all semantic segments that originate from the same input segment are
delivered. At this time, the system can be stopped and the reconfigurable portion replaced by a semantically equivalent
set of drivers. To restart, the upstream point retransmits starting from the first segment whose corresponding output
segment was not delivered.

In our example, reconfiguration works as follows (assuming Level 3 semantics). To start with, the upstream point
(d0) starts buffering every segment it sends out after this time. When the downstream point (d3) receives a complete
upstream segment (in this case this happens when the third segment output byd2 is received), it raises an event. The path
controller can now freezed0, and replaced1 andd2 with a compatible driver graph. To restart,d0 retransmits starting
from segment 5. In this cased3 does not need to discard anything. Error recovery on this portion requiresd0 to buffer
its output segments and have the downstream point pass on segments tod3 only in units of 3 segments at a time.

6 Performance Evaluation

To evaluate the effectiveness of CANS mechanisms detailed in Sections 3–5 in enabling automatic creation and recon-
figuration, we measured the performance and overheads of automatically created network-aware data paths in mobile
usage scenarios in the context of two applications, web access and image streaming.

We describe in turn our experimental platform and an analysis of the effectiveness of automatic path creation and
reconfiguration. All experiments reported here were conducted using a Java-based prototype of the CANS infrastructure.
An early version of this prototype is available for download fromhttp://www.cs.nyu.edu/pdsg/projects/
cans

6.1 Experimental Platform

Edge Server Access PointInternet Service Mobile Client

wired link

L0 L1 L2

N0 N1 N2IBM Compatible

Figure 7: A typical network path between a mobile client and an internet services.

For all of our experiments, we consider a typical network path between a mobile client and an Internet server as
shown in Figure 7. This platform models a mobile user using a portable device (N2) such as a laptop, pocket PC or
cellular phone to access network services. The communication path from the device to the service typically spans three
hops: a wireless link (L2) connecting the user’s device to an access point, a wired link (L1) between the wireless access
point and a gateway to the general Internet, and finally a WAN link between the gateway and the host running the service.
We assume that CANS components can be deployed on three sites, the mobile device (N2), a proxy server located close
to the access point (N1), or an edge server located near the gateway (N0).1

Theweb access applicationconsists of a browser client and transcoding components that reduce download times
under low-bandwidth network conditions by dynamically compressing text and/or degrading image quality. Previous
research has shown that such an approach is effective [5, 20]. In this paper, we focus on the question of whether an

1Our use of the term “edge server” differs from its usage in content distribution networks. We use the term to refer to a host on the frontier of the
network administrative domain within which CANS components can be deployed.

15

appropriately customized subset of these components can be automatically deployed to minimize download time for
different network conditions.

The image streaming applicationconsists of a simple downloadable applet that sets up a connection with a server,
receiving and displaying images periodically pushed by the latter. This application is representative of news feeds and
tickers on many financial web pages. For our application, we require that images are available at the client within a
certain time deadline, and that the transmission is private.

Component Input/Output Types Load(ops/byte) Bandwidth Factor
ImageFilter F: Image−→ Image 1.64× 10−6 3.92

ImageResizer R: Image−→Image 8.335× 10−6 3.92
Zip Z: * −→ ZipType/* 1.3× 10−7 3.15

Unzip U: ZipType/*−→* 1.2× 10−7 0.32
Demultiplexer D: MIME −→ Image,Text negligible 1.0
Multiplexer M : Image,Text−→ MIME negligible 1.0
Encrypter E: * −→ Encrypted/* 4.35× 10−6 1.0
Decrypter D: Encrypted/*−→ * 4.35× 10−6 1.0

Table 1: Characteristics of components employed in the web access and image streaming applications.

Table 1 lists the characteristics of components used in the two applications. TheImageFilterand ImageResizer
components degrade image quality and theZip andUnzipcomponents work together to compress text pages as required.
Demultiplexerand Multiplexer enable different CANS paths for text and images, and theEncrypterand Decrypter
components help guarantee transmission privacy. The load values shown in Table 1 are normalized with respect to a
Pentium III 1 GHz machine, which is assumed to have a computing power of1 ops/second. The load and bandwidth
factor values were obtained by profiling component execution on representative data inputs: a web page containing 14
KB text and six 24 KB JPEG images for the first application, and a 24 KB JPEG image for the second. All experiments
used the same data inputs that the components were profiled on. This is a simplifying assumption, but reasonable
given our primary focus was evaluating whether our approach could effectively adapt to multiple network conditions.
Evaluating the effectiveness of the approach when component characteristics may be imprecise is a topic deferred to
future research.

6.2 Effectiveness of Automatic Path Creation

To model different network conditions likely to be encountered along a mobile access path, we defined twelve different
configurations listed in Table 2. These configurations represent the network bandwidth and node capacity available
to a single client, and reflect different loading of shared resources and different mobile connectivity options.2 These
configurations are grouped into three categories, based on whether the mobile linkL2 exhibits cellular, infrared, or
wireless LAN-like characteristics. Four of the configurations correspond to real hardware setups (tagged with a *), the
remainder were emulated using “sandboxing” techniques that constrain CPU, memory, and network resources available
to an application [4]. As before, the computation power of different nodes is normalized to a 1 GHz Pentium III node.

Table 2 also identifies, for each platform configuration, the plan automatically generated by CANS for the web
access application. The plans themselves are shown in Figure 8. To take an example, consider platform configuration
7 for which the path creation strategy generates Plan C. The reason for this plan is as follows. Since linkL1 has high
bandwidth whileL2 has moderate bandwidth, there is a need to reduce image transmission size, which is accomplished
using theImageFiltercomponent. TheZip andUnzipdrivers help improve download speeds by trading off computation
for network bandwidth. Both theImageFilterandZip components are placed on the proxy server, because it has more
capacity than the edge server. Contrast this plan with plan A (for configurations 1 and 2) where the proxy server now
contains both anImageFilterand anImageResizercomponent. The latter is required because the bandwidth reduction
due to just theImageFiltercomponent is insufficient to cross the 19.2 Kbps link.

Figure 9 shows the performance advantages of the automatically generated plans when compared to the response
times incurred for direct interaction between the mobile client and the server (denotedDirect in the figure). The bars
in Figure 9 are normalized with respect to the best response time achieved on each platform (so lower is better). In all

2The bandwidth between the internet server and edge server available to a single client is assumed to be 10 Mbps.

16

Platform Edge Server(N0) L1 Proxy Server(N1) L2 Client (N2) Plan

1 Medium Ethernet High 19.2 Kbps Cell Phone A
2 Medium Ethernet High 19.2 Kbps Pocket PC A

3∗ High Fast Ethernet Medium 57.6 Kbps Laptop B
4∗ High Fast Ethernet Medium 115.2 Kbps Laptop B
5 Medium Ethernet High 384 Kbps Pocket PC A
6∗ High Fast Ethernet Medium 576 Kbps Laptop B

7∗ Medium Fast Ethernet High 1 Mbps Laptop C
8 Medium Ethernet High 3.84 Mbps Pocket PC D
9 Medium Ethernet High 3.84 Mbps Laptop D
10 Medium DSL High 3.84 Mbps Laptop B
11 Medium DSL Low 3.84 Mbps Laptop B
12∗ Medium Fast Ethernet High 5.5 Mbps Laptop E

Relative computation power of different node types(normalized to a 1 GHz Pentium III node):
High = 1.0, Medium =0.5, Laptop =0.5, Low = 0.25, Pocket PC =0.1, Cell Phone =0.05
Link bandwidths:
Fast Ethernet =100 Mbps, Ethernet =10 Mbps, DSL = 384 Kbps

∗Experiment conducted on real (as opposed to “sandboxed”) hardware.

Table 2:Twelve configurations representing different loads and mobile network connectivity scenarios, identifying the
CANS plan automatically generated in each case.

D

M

Demultiplexer

Multiplexer

Z

U

ZipDriver

UnzipDriver

F

R

ImageFilter

ImageResizer

F

Z Utext

image

Plan AMD
R

Z

F R

Utext

image

Plan BMD

UZ text

image

Plan DMD

Z Utext

image

Plan EMD

Z Utext

image

Plan CMD
F

Edge Server Mobile ClientN0 N1 N2L2
GatewayL1

Figure 8: Component placement for the five automatically generated plans.

17

4.
09

3.
09

1.
98

1.
36

1

1.
23

1.
03

1

1.
53

1.
53

1.
02

6.
75

6.
78

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

Platform

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Direct Plan A Plan B

Plan C Plan D Plan E

Figure 9: Response times achieved by different plans for each of the twelve platform configurations compared to that
achieved by direct interaction. All times are normalized to the best performing plan for each configuration.

p1

p1 p8 p9. . .

294204,500

p2

. . .

500

0

205,398

206,848 335,004

350,455 749,100

787,236 787,605

p1 . . .p2 p9

300 1,630

160,000

p1 pn. . .p2

364

369

D Z

27 17 8 137 19 56

U M Application

10439 69 39 2725

D F

27 72 39 124 89

M Application

31 8 27 284 19

Request Response Request Response

Text Image1 Image2

N0

N2

R

13

Figure 10: Timeline of requests and responses for plan B running on platform configuration 10 (all times are microsec-
onds). The blocks markedD, M , Z, U, andF correspond to the executions of the respective components.
Communication overheads, including wait times, are shown using gray, whereas CANS overheads are shown
using hatched blocks.Applicationrefers to the overhead of communicating the data to the client application.

18

twelve configurations, the generated plans improve the response time metric, by up to a factor of seven. In addition,
these improvements would further increase if there were a web caching node along the route. Note that the lower
response times come at the cost of degraded image quality, but this is to be expected. The point here is that our approach
automatesthe decisions of when such degradation is necessary. Figure 9 also shows that different platforms require a
different “optimal” plan, stressing the importance of automating the component selection and mapping procedure. In
each case, the CANS-generated plan is the one that yields the best performance, also improving performance by up to a
factor of seven over the worst-performing transcoding path.

It is interesting to note that CANS achieves substantial performance improvements despite run-time overheads on
the critical path. To understand whether other applications with different component characteristics would yield similar
improvements, we profiled our implementation to construct a timeline of the operations involved in processing a client
request for the web page. Figure 10 shows the overall timeline for plan B running on platform configuration 10, and
breaks down portions of this timeline into individual operations performed by the CANS execution environment and
the components themselves for processing a single text and image packet. The original client request results in the
downloading of the text portion of the page, and is followed by requests for each of the six contained images. A text
request is received by the edge serverN1, which forwards it to the web server and waits for the latter to respond.
Text responses comprise several packets, each of which passes through theDemultiplexerand Zip drivers on the edge
server, and the Unzip andMultiplexerdrivers on the client before being delivered to the browser application. Similarly
a response to an image request comprise multiple packets, each of which flow through theDemultiplexer, ImageFilter,
andImageResizerdrivers on the edge server and theMultiplexeron the client before being delivered to the application.

The timeline shows that for this application, CANS overheads are negligible and dominated by the round-trip be-
tween the edge server and the web server (0.2 seconds on the text path and 0.16 seconds on the image path). Even if this
were not the case, CANS overheads (shown hatched in the figure) for retrieving data from the network and supplying
it to each driver in turn are small for all but very fine-grained components (theDemultiplexerandMultiplexer). For the
components used in this study, CANS incurs an average cost of about 25µs per driver invocation, and we expect these
overheads to improve significantly as the system is tuned for performance.

6.3 Performance of Data Path Reconfiguration

To evaluate the effectiveness of our path reconfiguration approach, we ran the image streaming application under dynam-
ically changing network conditions, letting the CANS infrastructure automatically generate and reconfigure its access
path. For this application, the three levels of reconfiguration semantics correspond to no guarantees about continu-
ity (Level 1), the guarantee that the application only sees complete images (Level 2), and that the application sees no
semantic information loss (Level 3). The base network configuration corresponds to Platform 7 in Table 2, with two
changes introduced 25 seconds and 50 seconds into the experiment. The first change degraded the bandwidth between
the client and the access point (L2) to 440 Kbps from the original 1 Mbps. The second change modeled the transition of
the network from (secure) wired connectivity to (insecure) wireless connectivity as in the example scenario described in
Section 2.3. Since our focus was on measuring the overheads of the reconfiguration procedure, our experiment had an
external procedure generate the necessary events and coordinate with the “sandbox” code to control bandwidth available
to the application.

Figure 11 shows the paths created by the planning procedure in response to the events (top left), and how the recon-
figuration procedure transitions among these paths along the execution timeline (top right). The initial pathA contains
only anImageFiltercomponent running on the proxy server. The first event, triggered when bandwidth drops, results in
the introduction of an additional component, theImageResizer, on the proxy server (pathB). Note that CANS reconfig-
uration is accomplished completely automatically, without any involvement from the application code. Depending on
the semantics that need to be supported, the total time for reconfiguration is either 0.65 seconds (for Levels 1 and 2) or
1.01 seconds (for Level 3). The path again gets reconfigured when the second event is received, corresponding to the
switch between wired and wireless connectivity; the new pathC now containsEncrypterandDecryptercomponents on
the proxy server and client nodes to ensure secure transmission. As before, reconfiguration is achieved automatically,
but incurs slightly larger overheads (0.74 seconds for Levels 1 and 2, and 1.15 seconds for Level 3), because of the
additional work involved in orchestrating reconfiguration activities across multiple nodes.

To better understand the contributing factors, we broke down the 1.01 seconds required for Level 3 reconfiguration
into four stages (bottom part of Figure 11): (1) construction of a new plan and computing the delta from the current
plan; (2) send command to the upstream and downstream points to start buffering and monitoring; (3) waiting for the

19

Gateway N1 Client N2

F

R

ImageFilter

ImageResizer

F

E

D

Encryption

Decryption

F R E D

F R

Start of
Reconfiguration

End of Reconfiguration
(Level 1 and 2)

End of Reconfiguration
(Level 3)

Start of
Reconfiguration

End of Reconfiguration
(Level 1 and 2)

End of Reconfiguration
(Level 3)

0.65

1.01

0.74

1.15

compute new plan

0.371 0.092

0.355
convey plan
to delegate

wait for downstream to get
segment

0.15

0.03

Time

A

B

C

A

B

C

diff
plans

0.003

(1)

(2)
(3)

(1): Start monitoring/bufferring
(2): Reconfiguration
(3): Ack

Figure 11: Path reconfiguration in the image streaming application. All times are in seconds.

reconfiguration condition(eg. next complete semantic segment arrival) to become true; and (4) the two-phase procedure
to install the new path and resume data transmission. Note that stage 3 is the time spent waiting for the server to send out
the next semantic segment, thus should not be counted as the overhead of reconfiguration. This stage can be bypassed
for a given reconfiguration semantics level, if it is possible to infer that the reconfiguration condition is immediately
satisfied (for this application, stage 3 can be bypassed for both Level 1 and Level 2). The cost breakdown shows that
the dominant contributors are plan creation (0.46 seconds) and waiting for the next semantic segment to arrive (0.35
seconds), with reconfiguration protocol steps (gray blocks) incurring very small overhead (0.18 seconds). It should also
be noted that although the total reconfiguration time is around 1 second, data keeps flowing downstream during the
first 3 stages of reconfiguration. For the first reconfiguration instance, data transmission need only be frozen for 0.18
seconds (4th stage). Even this time can be hidden from the client application employing client-side components such as
thepadderin Section 2.3.

7 Related Work and Discussion

7.1 Related Infrastructure

The research described in this paper is very closely related to several recently proposed infrastructures that aim to
augment the traditional notion of a network path with injected application-specific components. The application-specific
functionality can be introduced only at the end-points or could be distributed on intermediate nodes. Odyssey [21],
Rover [14] and InfoPyramid [18] are examples of systems that support end point adaptation. Each system provides
only minimal support for composing adaptation activities across multiple nodes, and consequently may not be flexible
enough to cope with changes in intermediate links.

The cluster-based proxies in BARWAN/Daedalus [5], TACC [6], MultiSpace [8], ICAP [9] and OPES [12] are
examples of systems where application-transparent adaptation happens in intermediate nodes (typically a small number)
in the network. Active Services [1] extends these systems to a distributed setting by permitting a client application
to explicitly start one or more services on its behalf that can transform the data it receives from an end service. A
different perspective is offered by systems such as Conductor [28], which automatically deploy multiple application-
transparent adaptors along the data path between applications and end services. Although such systems retain backward
compatibility with existing applications, the lack of application input limits their flexibility. Furthermore, such systems
rely upon self-describing properties of data streams, a condition that may or may not hold given increasingly proprietary
content.

20

7.2 Path Creation Strategy

The Ninja project’s Automatic Path Creation (APC) service [7] can be used to create paths between various end devices
and services. Both APC and our approach formulate the component selection problem in terms of type compatibility,
however, there are significant differences. At a high level, unlike the performance-oriented focus of our work, APC is a
function-oriented method, which ignores network link properties and node and link resource constraints. A consequence
of this difference is that a shortest-path approach to planning suffices for Ninja (with the restriction that a data type can
appear only once along a path), while we need a more sophisticated dynamic programming-based approach. Other
differences include our support for path reconfiguration and a more general notion of data, stream, and augmented
types, which were motivated by a desire to model link characteristics in a unified fashion and contrast with Ninja’s
notion of a relatively simple string type.

Kiciman and Fox [15] have proposed a general path infrastructure framework for composing mediators distributed
across a network of machines. This infrastructure builds upon Ninja’s APC service and suffers from the same limitations.
Furthermore, this approach separates out logical path creation (choice of components) from the mapping of components
to physical resources. As we have shown in Section 6, such decoupling can produce suboptimal solutions because of
poor or redundant component placement.

Recent work in the Scout project [19] has looked at a template based path construction algorithm for delivering
media objects that takes into consideration the latter’s resource requirements, user preferences, node capabilities, and
programmer-provided path rules. This work shares its performance focus with ours, however, the primary difference
arises from the fact that unlike our high-level type-driven approach, here a programmer must a priori construct path
templates and store them into a central database. The Scout algorithm takes a lower-level approach, simply choosing
an appropriate template and instantiating it based on other programmer-provided rules that decide whether or not a
component can be created on a resource. We avoid this last problem because of the application-level nature of our
components, which rely on a relatively standard execution environment interface (the Java virtual machine in our case).
On the flip side, the Scout approach does a better job of modeling low-level resource properties such as the availability
of a specific kind of video hardware or NIC.

The Panda project [23] also proposes a planning scheme for optimally placing network-level components to modify
an application’s data stream in response to unfavorable network conditions. While two schemes are discussed, one based
upon selection from a reusable plan set and the other based on exhaustive constraint space-based search, to the best of
our knowledge these schemes have not yet been implemented or evaluated with real applications.

7.3 Standardization Efforts

Our work is also complementary to emerging standards for efficient content delivery. The CC/PP (Composite Capa-
bilities/Preference Profiles) protocol from the World Wide Web Consortium (W3C) [27], and the UserAgent protocol
from the Wireless Application Protocol (WAP) forum [26] focus on small devices with different user preferences and
aims to automate the process of setting up the delivery. The Open Pluggable Edge Services architecture (OPES) [12]
and Internet Content Adaptation Protocol(ICAP) [9] aims to define the protocols for a broad set of services which can
cooperate with each other to achieve the efficient delivery of complex content over the Internet.

To the best of our knowledge, the approach described in this paper is one of the first schemes to not only consider
the functionality of the data path, but also takes both network link properties and node resource constraints into account.
Our work is also one of the first to perform a detailed evaluation of the overhead of path creation, and reconfigura-
tion, and measure the performance of the deployed paths. While we expect the performance to improve as the CANS
implementation is further tuned, the numbers in this paper provide a concrete baseline for the potential of automatic
approaches for constructing network-aware access paths.

We should also note that the limitations of our approach described here. First there is one limitation for CANS data
paths. In CANS what a component in data path can do basically is to transform the format of the data while keeping
the original semantic information (we are in the same belief as other researchers that it is hard to capture semantics
with type mechanism). Also we have not addressed the security issues in mobile code execution in this paper. Lastly
the efficiency of our planning algorithm is dependent on the resource monitoring entity which provides the dynamical
information for network resources, which currently is an external part of CANS framework. We are currently exploring
these issues and will cover them in our future work.

21

8 Conclusions and Future Work

This paper has presented an automatic approach for the dynamic deployment of intermediary components along client-
server paths, which can be efficiently reconfigured at run time, to enable ubiquitous, network-aware access to internet
services. This approach leverages a type-compatibility formulation of the problem, which takes as input only high
level specifications of component behavior and network route characteristics. Novel to this formulation is the fact that
constraints due to node and network link characteristics are naturally integrated into the type model simply by modeling
the latter as entities that transform the type of data passing across them. This formulation lends itself to a dynamic
programming based polynomial-time algorithm, which simultaneously selects and maps appropriate components to
optimize a global metric such as client throughput or response time. This algorithm is complemented by an efficient
semantics-preserving data path reconfiguration strategy. Experiments with the planning algorithm and reconfiguration in
the contexts of a web access scenario and an image streaming application using the CANS infrastructure under various
network and end device characteristics have verified that automatic path creation and reconfiguration is both feasible and
can yield substantial performance benefits. Thus, in contrast to current-day static access paths to internet services, our
work argues for a flexible approach where paths leading to these services are automatically and dynamically composed
to satisfy user preferences and network resource constraints.

CANS is one component of a larger project, Computing Communities, which focuses on distribution middleware
for legacy applications. Our future work involves generalizing the CANS planning algorithms to handle multiple si-
multaneous data paths, the strategy to support efficient reconfiguration for multi-ported components, efficient resource
monitoring across networks and integrating CANS with related efforts emphasizing resource management and security
issues.

References

[1] E. Amir, S. McCanne, and R. Katz. An Active Service Framework and its Application to Real-time Multimedia Transcoding.
In Proc. of the SIGCOMM’98, August 1998.

[2] A. T. Campbell and et al. A Survey of Programmable Networks.ACM SIGCOMM Computer Communication Review, April
1999.

[3] P. Chandra, A. Fisher, C. Kosak, T. S. Eugene Ng, P. Steenkiste, E. Takahashi, and H. Zhang. Darwin: Resource management for
value-added customizable network service. InSixth IEEE International Conference on Network Protocols (ICNP’98), October
1998.

[4] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level Resource-Constrained Sandboxing. InProc. of the 4th USENIX Windows
Systems Symposium, August 2000.

[5] A. Fox, S. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to Network and Client Variation Using Infrastructural Proxies:
Lessons and Prespectives.IEEE Personal Communication, August 1998.

[6] A. Fox, S. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based Scalable Network Services. InProc. of the 16th
ACM Symp. on Operating Systems Principles, October 1997.

[7] S. D. Gribble and et al. The Ninja Architecture for Robust Internet-Scale Systems and Services.Special Issue of IEEE Computer
Networks on Pervasive Computing, 2000.

[8] S. D. Gribble, M. Welsh, E.A.Brewer, and D. Culler. The MultiSpace: An Evolutionary Platform for Infrastructual Services. In
Proc. of the 1999 Usenix Annual Technical Conf., June 1999.

[9] ICAP Protocol Group. ICAP: the internet content adaptation protocol. Inhttp://www.i-cap.org/icap/media/draft-elson-opes-
icap-01.txt, February 2001.

[10] IETF Differentiated Services Working Group. Differentiated services (diffserv). Inhttp://www.ietf.org/html.charters/diffserv-
charter.html.

[11] IETF MPLS Working Group. Multiprotocol label switching (mpls). Inhttp://www.ietf.org/html.charters/mpls-charter.html.

[12] IETF OPES Working Group. Open pluggable edge services. Inhttp://www.ietf-opes.org/, 2000.

[13] G. Hunt. Detours: Binary interception of win32 functions. InProc. of the 3rd USENIX Windows NT Symp., Settle, WA, July
1999.

[14] A. D. Joseph, J. A. Tauber, and M. F. Kasshoek. Mobile Computing with the Rover Toolkit.IEEE Transaction on Comput-
ers:Special Issue on Mobile Computing, 46(3), March 1997.

22

[15] E. Kiciman and A. Fox. Using Dynamic Mediation to Intergrate COTS Entities in a Ubiquitous Computing Environment. In
Proc. of the 2nd Handheld and Ubiquitous Computing Conference (HUC’00), March 2000.

[16] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck link bandwidth. InProc. of the 3rd USENIX Symposium on
Internet Technologies and Systems (USITS), March 2001.

[17] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok. A resource query interface for network-aware
applications. In7th IEEE Symposium on High-Performance Distributed Computing, 1998.

[18] R. Mohan, J. R. Simth, and C.S. Li. Adapting Multimedia Internet Content for Universal Access.IEEE Transactions on
Multimedia, 1(1):104–114, March 1999.

[19] A. Nakao, L. Peterson, and A. Bavier. Constructing End-to-End Paths for Playing Media Objects. InProc. of the Ope-
nArch’2001, March 2001.

[20] B. Noble. System Support for Mobile, Adaptive Applications.IEEE Personal Communications, pages 44–49, February 2000.

[21] Brian D. Noble.Mobile Data Access. PhD thesis, School of Computer Science, Carnegie Mellon University, 1998.

[22] C. Perkins. IP Encapsulation within IP. InRFC 2003, 1996.

[23] P. Reiher, R. Guy, M. Yavis, and A. Rudenko. Automated Planning for Open Architectures. InProc. of OpenArch’2000, March
2000.

[24] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host mobility. InProc. 6th International Conference on
Mobile Computing and Networking (MobiCom), 2000.

[25] D. Tennenhouse and D. Wetherall. Towards an Active Network Architecture.Computer Communications Review, April 1996.

[26] WAP. WAP Forum Specifications. Technical report, http://www.wapforum.org/what/technical.htm, January 2000.

[27] W3C CC/PP Workgroup. CC/PP specification. Technical report, http://www.w3c.org, August 1999.

[28] M. Yavis, A. Wang, A. Rudenko, P. Reiher, and G. J. Popek. Conductor: Distributed Adaptation for complex Networks. In
Proc. of the Seventh Workshop on Hot Topics in Operating Systems, March 1999.

23

