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TrPF: A Trajectory Privacy-Preserving Framework
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Abstract—The ubiquity of the various cheap embedded sensors
onmobile devices, for example cameras, microphones, accelerome-
ters, and so on, is enabling the emergence of participatory sensing
applications. While participatory sensing can benefit the individ-
uals and communities greatly, the collection and analysis of the
participators’ location and trajectory data may jeopardize their
privacy. However, the existing proposals mostly focus on partici-
pators’ location privacy, and few are done on participators’ trajec-
tory privacy. The effective analysis on trajectories that contain spa-
tial-temporal history information will reveal participators’ where-
abouts and the relevant personal privacy. In this paper, we propose
a trajectory privacy-preserving framework, named TrPF, for par-
ticipatory sensing. Based on the framework, we improve the theo-
retical mix-zones model with considering the time factor from the
perspective of graph theory. Finally, we analyze the threat models
with different background knowledge and evaluate the effective-
ness of our proposal on the basis of information entropy, and then
compare the performance of our proposal with previous trajectory
privacy protections. The analysis and simulation results prove that
our proposal can protect participators’ trajectories privacy effec-
tively with lower information loss and costs than what is afforded
by the other proposals.

Index Terms—Participatory sensing, trajectory privacy-pre-
serving framework, trajectory mix-zones graph model, informa-
tion loss, entropy.

I. INTRODUCTION

W ITH the development of wireless communication tech-
nologies, such as WLAN, 3G/LTE, WiMax, Bluetooth,

Zigbee, and so on, mobile devices are equipped with a variety of
embedded sensors surveyed in [1] as well as powerful sensing,
storage and processing capabilities. Participatory sensing [2]
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(urban sensing [3]), which is the process that enables individ-
uals to collect, analyze and share local knowledge with their
own mobile devices, emerges as required under these well con-
ditions. Compared with WSNs, participatory sensing offers a
number of advantages on deployment costs, availability, spa-
tial-temporal coverage, energy consumption and so forth. It has
attracted many researchers in different areas such as Intelligent
Transportation System, healthcare and so on. There are lots of
existing prototype systems that include CarlTel [4], BikeNet [5],
DietSense [6], PEIR [7] and so on.
Nowadays, participatory sensing applications mainly depend

on the collection of data across wide geographic areas. The
sensor data uploaded by participators are invariably tagged
with the spatial-temporal information when the readings were
recorded. According to the analysis in [8], the possible threats
to a participator’s privacy information that include monitoring
data collection locations, tracing his/her trajectory, taking
photographs of private scenes and recording the intimate chat
logs. Once participators realize the serious consequences with
the disclosure of their sensitive information, they are unwilling
to participate in the campaign and use the services. Since the
success of participatory sensing campaign strongly depends on
the altruistic process of data collection, if the participators are
reluctant to contribute their collected data, it would weaken the
popularity and impact of this campaigns deployed at large scale
while also reducing the benefits to the users. Therefore, the
privacy problems are the significant barriers to data collection
and sharing. How to ensure the participators’ privacy is the
most urgent task.
In typical participatory sensing applications, the uploaded

data reports may reveal participators’ spatial-temporal informa-
tion. Analysts could obtain some valuable results from the pub-
lished trajectories for decision making, for example, merchants
may decide where to build a supermarket that can produce max-
imum profit by analyzing trajectories of customers in a certain
area and the Department of Transportation can make an opti-
mized vehicle scheduling strategy by monitoring trajectories of
vehicles. However, it may introduce serious threats to participa-
tors’ privacy. Adversary may possibly analyze the trajectories
which contain rich spatial-temporal history information to link
multiple reports from the same participators and determine cer-
tain private information such as the places where the data reports
are collected. Thus, it is necessary to unlink the participators’
identities from sensitive data collection locations. To best of our
knowledge, existing work on privacy in participatory sensing
mainly concentrate on data contribution and reporting process
[9]–[12]. If an adversary has a priori knowledge of a partici-
pator’s trajectory, it is effortless to deanonymize his/her reports.
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In this paper, we propose a trajectory privacy-preserving frame-
work, named TrPF, for participatory sensing. We observe that
the locations on or nearby participators’ trajectories may not all
be sensitive, and with this thought, our proposal only deals with
the sensitive trajectory segments that will be discussed in the
following. Moreover, mix-zones are regions [13], [14] where no
applications can track participators’ movements. Some works
[15], [16] focused on road network mix-zones, which are not
applicable in participatory sensing. For one thing, they all build
mix-zones at road intersection, which may restrict the random
data collection time and the number of ingress/egress locations;
for another thing, the trajectory segments at the road intersection
may not be sensitive, while the others would be. Therefore, we
improve the theoretical mix-zones model [13], [14] to construct
trajectory mix-zones model for protecting sensitive trajectory
segments from the perspective of graph theory. Compared with
existing trajectory privacy-preserving proposals, our proposal
has advantages of lower costs and information loss while the
privacy level would not decrease.
In this paper, the main contributions of our work are summa-

rized as follows:
• We propose a framework TrPF of participatory sensing for
trajectory privacy protection;

• We improve the theoretical mix-zones model with consid-
ering time factor from the perspective of graph theory to
construct trajectory mix-zones model for protecting partic-
ipators’ sensitive trajectory segments;

• We formalize privacy level metric, privacy loss metric and
information loss metric, and then analyze the attackmodels
with different background knowledge;

• Compared with previous trajectory privacy protections, we
run a set of simulation experiments to evaluate the effec-
tiveness of our proposals and then make a comparison of
the performance.

The remainder of this paper is organized as follows.
Section II presents the related work. In Section III, we pro-
pose the trajectory privacy-preserving system framework
TrPF for participatory sensing. In Section IV, we present two
algorithms, called GraphConstruct and WeightConstruct to
construct Trajectory Mix-zones Model from the perspective of
graph theory. In Section V, we measure the privacy in terms of
the privacy level metric and the privacy loss metric based on
the information entropy and then define the information loss
metric. In Section VI, we analyze two kinds of attack models
with different background knowledge. In Section VII, we run a
set of simulations to evaluate the effectiveness of our proposal,
and then compare the system performance with previous work.
Finally, we conclude this paper and present the future work in
Section VIII.

II. RELATED WORK

In this section, we discuss the current state of the art of
privacy-preserving techniques in participatory sensing. Kapadia
et al. [17] proposed the first implementation of a privacy-
aware architecture, named AnonySense, for the anonymous

task allocation and data reporting. From the perspective of
cryptography, De Cristofaro et al. [18] analyzed the realistic
architectural assumptions and privacy requirements, and then
provided an instantiation that achieved privacy protection in
participatory sensing with provable security. Christin et al.
[19] surveyed the privacy and security implications in three
types of application scenarios. In [8], [20], they analyzed
the privacy challenges in participatory sensing applications in
detail. Chow et al. [21] surveyed the privacy protection in terms
of data privacy protection, location privacy protection and
trajectory privacy protection in location-based services. Liu
[22] reviewed the definitions, the models and the appropriate
location privacy protection techniques from the perspective
of mobile data management.

A. Location Privacy Protection

There are several works [23]–[25] that survey the location
privacy-preserving schemes. We classify them into the fol-
lowing aspects.
1) Dummy Locations: Mechanisms proposed in [26], [27]

mainly employ the idea of dummy locations to protect a user’s
location privacy. Our previous work [28] focused on the
tradeoff between location and trajectory privacy protection and
QoS based on the dummy events.
2) Location k-Anonymity: Much of the work regarding loca-

tion privacy protection derive from k-anonymitymodel which is
first proposed by Sweeney in database [29]. For example, spa-
tial and temporal cloaking on the basis of this model to protect
location privacy was first proposed by Gruteser and Gruwald
[30]. Take the individuals’ requirements on location privacy into
consideration, Gedik and Liu [31] proposed a scalable architec-
ture for location privacy protection. Bettini et al. [32] proposed
a formal framework to protect a user’s anonymity when re-
questing location-based services. They provided the safeguards
that were specific for different kinds of knowledge available to
attacker.
3) Obfuscation: Duckham et al. [33] proposed to protect a

user’s location privacy by deliberately degrading the accuracy
of his/her spatial-temporal information. Obfuscation is a class
of the important approaches in location privacy. Much of the
work that belong to it can be enforced through perturbation [12]
or generalization [34].
4) Mix-Zones: Pseudonym [35] is used to break the linkage

between a user’s identity and his/her events. The process of
its change is usually performed in some pre-determined areas
called mix-zones [13], [14] and the idea of building mix-zones
at road intersections has been proposed in [15], [16]. The prob-
lems of optimal placement of mix-zones are studied in [36],
[37], where rectangular or circular shaped zones that commonly
used by these mix-zones techniques. To best of our knowledge,
only [15], [16] take into account the effect of timing attack in
the construction process. However, they may not be applicable
in participatory sensing for the constraints at road intersections.
In this paper, we take the time interval into consideration and
improve the theoretical mix-zones model from the perspective
of graph theory to protect the data collectors’ trajectories pri-
vacy in participatory sensing.
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B. Trajectory Privacy Protection

We realize that once a user’s trajectory is identified, the user’s
locations are exposed. Some works [21], [38] have summa-
rized the trajectory privacy protection techniques, where the
most immediate and simple ways are dummy trajectories and
suppression technique. For example, You et al. [39] proposed
to produce a user’s dummy trajectories through random pat-
tern and rotation pattern. To be specific, the former generated a
dummy trajectory randomly from the staring point towards the
destination and the later did it by rotating the user’s trajectory.
However, the trajectory similarity may affect the anonymity
quality. Thus, how to generate dummy trajectories that look like
a normal user’s trajectory is one of the main challenges of this
kind of work. To prevent adversary from inferring a user’s un-
known locations by using his/her partial trajectory knowledge,
Terrovitis et al. [40] proposed a location suppression technique
to convert a database of trajectories, which can prevent the dis-
closure of the user’s whole trajectory with high probability.
However, those trajectory segments that are suppressed would
cause the collected data lost.
Trajectory k-anonymity that extends from location

k-anonymity is widely used in trajectory privacy protec-
tion. For convenience, we only address some typical and recent
studies. Nergiz et al. [41] proposed to group the trajectories
based on log cost metric and then enforce k-anonymity on each
sample location. Finally, a random reconstruction method was
presented to enhance anonymized trajectory privacy further.
Motivated by the inherent uncertainty of localization, Abul et
al. [42] proposed the concept of -anonymity for mobile
object databases, where represented the possible location
imprecision. Then, they proposed Never Walk Alone (NWA) to
achieve -anonymity through clustering and space trans-
lation. Specifically, when , it had degenerated into the
traditional micro-aggregation that replaced trajectories by the
trajectories clustering center over the same time interval. To
anonymize mobile objects with dynamic sensitive attributes,
Yarovoy et al. [43] presented to achieve the new notion
of -anonymity they proposed for mobile objects through
extreme-union and symmetric anonymization. Xu et al. [44] ex-
ploited historical locations to construct trajectory k-anonymity
and then presented algorithms for spatial cloaking. In a recent
study, Huo et al. [38] investigated the selection of trajectory
-anonymity sets based on graph partition. In the follow-up
work, they proposed a method called You Can Walk Alone
(YCWA) [45] to improve NWA by anonymizing the stay points
that were extracted efficiently on people’s trajectories. They
generated k-anonymity zone based on two algorithms called
grid-based approach and clustering-based approach.
As mentioned above, we can see that dummy trajectories and

almost all the trajectory anonymity techniques deal with the
whole trajectory, which result in the increase of costs such as
computation, storage and query with a certain privacy level.
Sensitive location suppression technique may reduce the over-
head costs with a same privacy level. However, if the sensi-
tive locations on trajectories are suppressed too much, it might
cause lots of information loss. We observe that not all the loca-
tions on the trajectory are sensitive. There have been some work
[45]–[48] to analyze the sensitive locations on or nearby the

published trajectory. For example, Zheng et al. [48] proposed
a method to find interesting locations and frequent travel se-
quences in a given geographic region. Palma et al. [46] proposed
a method of clustering-based stops and moves of trajectories to
compute important places based on the change of the speed of
the trajectory. However, privacy is rarely considered in these
work. Monreale et al. [47] distinguished the semantics of the
visited place between sensitive and quasi-identifier places and
proposed a algorithm for generalizing the visited place based
on taxonomy. Huo et al. [45] improved the stay point extrac-
tion strategies proposed in [48], and proposed duration-based
strategy and density-based strategy to extract the sensitive stay
point. To overcome the defects above, we propose a preferable
trajectory privacy protection method to reduce the costs and in-
formation loss; meanwhile the privacy level will not decrease.

III. OVERVIEW OF TRPF SYSTEM

In this section, we firstly depict the trajectory privacy-pre-
serving framework TrPF for participatory sensing, and then em-
phasize the privacy problem with the disclosure of users’ trajec-
tories. Finally, we define some basic notions.

A. The Architecture of TrPF for Participatory Sensing

Mix Network functions as an anonymizing intermediary be-
tween Mobile Nodes and the Report Server that is widely used
in [9], [17], [49]. Take [49] for example, it routes reports via
multi-hop transmission, adding delays and mixing with the data
from other sources to other destinations. Such process makes
adversary can neither link a mobile node’s reports together nor
identify which mobile node sent the report, or learn when and
where the reports were reported. Based on [49], we propose a
trajectory privacy-preserving framework TrPF for participatory
sensing system depicted as Fig. 1. Compared with the previous
architecture, we consider the factor of participators’ privacy and
substitute the mix network in [49] with a Trusted Third Party
Server component. Due to the removal of mix network, it will
optimize the data reports transmission. The addition of Trusted
Third Party Server can function as a privacy-preserving agent,
which can trade off the efficiency of data transmission and pri-
vacy protection. It can reduce the network hops of data reports
transmission route via wireless network. According to the dif-
ferent roles of function characteristics, the main components of
TrPF are made up of the following entities.
1) Data Collectors: Mobile Nodes are devices with the

capabilities of sensing, computation, memory and wireless
communication, which act as data collectors in participatory
sensing system. They can be used for context-aware data
capture and carried along with each participator. Note that
the involvement of data collectors in this sensing campaign is
voluntary. Any participator who wants to provide application
server with shared data needs to obtain a certificate from Trusted
Third Party Server. To prevent adversary from disguising as a
legitimate participator to upload malicious data, only the one
who has been validated can access the participatory sensing
system and upload his/her collected data reports.
We formalize the data reports collected by participator as:

, where represents
the identity of , Location and Time are the spatial-temporal
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Fig. 1. Architecture of TrPF for participatory sensing.

information tagged with the collected data that compose trajec-
tories of data collectors.
2) Trusted Third Party Server (TTPs): To ensure system

security and participators’ privacy, TTPs stores participators’
relevant information such as certificates and pseudonyms in-
formation. Certificates are used for verifying participators’ va-
lidity so as to exclude malicious attacker. The disclosure of
the spatial-temporal information may also threaten the partic-
ipators’ privacy. We remove the linkage between the participa-
tors’ spatial-temporal information and their identities based on
pseudonym technique. It will be discussed in Section IV.
3) Report Server: Report Server is responsible for dealing

with two aspects: (a) Interact with TTPs to verify the validity
of the participators’ identities by the certificates contained in
the data reports; (b) Simplify the uploaded data reports such as
data aggregation, and then send the data reports to Application
Server.
4) Application Server: Application Server acts as a data

center. It can provide kinds of data services for end users and
play the following roles: (a) Data Storage: store the processed
data reports received from data report server; (b) Data Sharing:
any legitimate end user can access the available data services;
(c) Data Publish: publish the data reports for the end users to
query.
However, in our system architecture, Application Server may

be untrustworthy. It may leak participators’ sensitive informa-
tion to adversary. For example, the disclosure of participators’
trajectories may indicate where the data reports are collected.
Maybe some of the locations such as home address are sensi-
tive. Adversary can use the published trajectories to link par-
ticipators’ data reports with sensitive locations. As a result, the
participators are aware that their privacy might be invaded se-

riously so that they may not want to share their collected data
reports with end users.
5) Queriers: Queriers are end users that request sensor re-

ports in a given participatory sensing application, which can be
personal users or community users. They access and consult the
data gathered by the data collectors according to their require-
ments. The queriers include, for example, data collectors are in-
tending to consult their own collected data, doctors checking
their patients’ records, environmentalists querying the climate
data of a certain area or the general public for other purposes.
Note that only the registered end users can access the shared
data reports. End users send certificate authentication requests
to TTPs. Anyone who has registered before can get the access
authorization and only the valid end users can access the shared
data reports that are provided by data collectors.

B. Problem Statement

In participatory sensing system, data reports collected by par-
ticipators are tagged with spatial-temporal information. Since
the location information that attached to the collected data re-
ports are commonly shared, a prominent attack is thus the Tra-
jectory Inference. For example, suppose an adversary learns
through background knowledge that a data collector has vis-
ited a specific location at a certain time , while the location
happens to be the only sample on ’s trajectory at time in
the data reports. The adversary would synthesize this informa-
tion to infer the whole trajectory of , which may relate to a
certain sensitive attribute. Additionally, the analysis of trajec-
tories over several data reports may help adversary to exploit
the frequently visited locations and reveal participators’ identi-
ties, e.g., a data collector usually spends the same time on ar-
riving at a specific location from a fixed location everyday in the
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morning. Adversary can use the frequent information to deduce
the starting location in the morning may be his/her home and
the location reached after the time may be the work place. Con-
sequently, the participators’ privacy would suffer a huge threat
with the disclosure of sensitive locations.
To prevent from linking participators’ identities with their up-

loaded data reports, we propose a method to protect participa-
tors’ identities and trajectories privacy from the perspective of
graph theory based on mix-zones model and pseudonym tech-
nique. In fact, only part of the locations on or nearby their tra-
jectories are sensitive mentioned in Section II. On this basis, we
only need to protect the sensitive parts of participators’ trajec-
tories in their collected data reports.

C. Basic Notion

In the following, we first formalize trajectory presentation
and then define sensitive area and sensitive trajectory segment.
Definition 3.1 (Trajectory Presentation): A par-

ticipator , whose trajectory can be consid-
ered as a set of discrete locations at sampling
time in three-dimensional space, represented as:

, where represents the trajectory identity
of participator represents participator ’s
sample location at time on or nearby the trajectory.
Definition 3.2 (Sensitive Area): Suppose the sensitive loca-

tion is on or nearby a participator ’s trajectory,
we define the sensitive area is a horizontal disk with center at
, radius , which is formalized as

.
Definition 3.3 (Sensitive Trajectory Segment): A piece

of trajectory segment of ’s trajectory is called sensitive
trajectory segment when it gets through the sensitive area.
Suppose the sensitive area includes the sensitive loca-
tion , we define the sensitive trajectory segment
as

. is the set of all sensitive trajectory
segments depicted as . Specially,
when , that is , it means there is no sensitive
trajectory segment; while means the whole trajectory is
sensitive.
To illustrate the concepts above intuitively, we describe them

as Fig. 2. The whole space is composed by three-dimensional
coordinate, where represents the trajectory geographic
information and represents the time information. As we can
see, the red circle represents the sensitive location, the cylinder
represents sensitive area. The trajectory segments are sensitive
when they get through the sensitive area. For example, in road
traffic condition, dangerous areas are set up essential warning
sign to warn the vehicles that get through these areas carefully.
The dangerous areas can be considered as sensitive area and the
traffic routes of the vehicles in the area can be seemed as sensi-
tive trajectory segments. In participatory sensing, we consider
all the trajectories of data collectors that get through the sen-
sitive area are sensitive. To ensure the sensitive trajectory pri-
vacy, we construct the sensitive area defined by Definition 3.2

Fig. 2. Sensitive area and trajectory segment.

Fig. 3. Trajectory mix-zones graph model. (a) Trajectory mix-zones;
(b) directed graph model.

and then divide the whole trajectory into the sensitive trajectory
segments and nonsensitive trajectory segments.

IV. TRAJECTORY MIX-ZONES GRAPH MODEL

In this section, we propose to anonymize the sensitive trajec-
tory segment from the perspective of graph theory. To reduce
information loss and costs at a certain privacy-preserving level,
we divide the whole area into several parts. According to the
sensitive locations on or nearby the trajectories, we divide the
whole trajectories into sensitive trajectory segments and non-
sensitive trajectory segments. We only protect sensitive trajec-
tory segments based on mix-zones model and pseudonym tech-
nique. Fig. 3 presents the Trajectory Mix-zones Graph Model.
The trajectory mix-zones are described as Fig. 3(a). We abstract
it into Directed Graph Model depicted by Fig. 3(b). The process
will be discussed in Section IV-A in detail.
Any data collector who enters the Sensitive Area should

select a pseudonym provided by TTPs to anonymize the
linkability between his identity and his collected data re-
ports. Meanwhile, they record their ingress and egress
time. A participator’s information we describe as a tuple:

, where repre-
sents the participator ’s pseudonym provided by TTPs,
is the mapping from participator’s identity to his pseudonym,
is the sensitive area the participator passes by,

presents the set of participators’ enter time and is the
participator’s egress time interval.
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A. Trajectory Graph Construction

We propose to model the Trajectory Mix-zones as Directed
Weighted Graph (DWG), which is formalized as .
is the set of vertexes which are constructed by the pseudonyms
provided by TTPs. A participator enters the sensitive area with a
pseudonym and leaves it with another pseudonym. It can be de-
picted as . is
the set of edges that represent the participators’ trajectory map-
ping from the ingress to the egress in the sensitive area. In Fig. 3,
as a result of pseudonym technique, there may be some difficul-
ties for adversary to link the ingress and egress participator with
the same identity.
In fact, DWG is a complete bipartite graph with different

weights on each edge. The time of participators stays in mix-
zones can either be constant or vary. Palanisamy et al. [16] ana-
lyzed the two different cases in road network. They pointed out
that if the residence time was constant, it would encounter First
In First Out (FIFO) attack. That is to say, the first exit partici-
pator corresponds to the first one that enters the mix-zones and
the pseudonym technique takes no effect. In this paper, we as-
sume that the arrivals of participators at the trajectory mix-zones
follow a Poisson process. Given a time interval participa-
tors enter the trajectory mix-zones with mean arrival rate to
achieve k-anonymity. Note that the time interval and the arrival
rate decide the number of participators that enters the trajectory
mix-zones. Additionally, the participators’ arrival time should
not differ by a large value, or adversary could infer the first exit
might correspond to the first enter.
The time of data collectors that spend inmix-zones is random.

However, in [16], due to the constraints of road network mix-
zones at road intersection, they cannot construct an effective
mix-zone for the limited randomness on the time of participators
that spent in it. In this paper, we argue that the data collection
time of each participator follows normal distribution depicted
by . Take the process of road traffic informa-
tion collection for example, in the rush hours, the traffic roads
are very congested, the data collection time will be more; oth-
erwise, in other time, the data collection time may be less for
its good road conditions. Thus, the data collection time is de-
pendent on the conditions of road congestion. Since the time in-
terval of data collection in sensitive area is random, even though
adversary obtains the related information such as ingress and
egress order and time, it cannot link the ingress pseudonym to
egress pseudonym.
According to our discussions above, in this paper, participa-

tors enter and stay in sensitive area with random time interval.
Even if adversary observes the time information, they cannot
identify the pseudonyms mapping. Each edge weight represents
the mapping probability between an ingress pseudonym and
egress pseudonym. The construction process will be discussed
in Section IV-B in detail.
To achieve k-anonymity, the graph vertexes are constructed

by the participators’ pseudonyms set of size at least for
each ingress and egress participator. The egress pseudonym
should be different from the ingress pseudonym of the same
participator to prevent adversary from identifying the trajec-
tory linkage in the sensitive area for data collection. We call
the WeightConstruct function to compute the weight of each

edge. The process of the trajectory graph construction can be
described by Algorithm 1 in detail.

Algorithm 1 GraphConstruct

Input: Trajectory and Pseudonym set

Output: Directed Weighted Graph (DWG)
1: Procedure
2: Sensitive trajectory segments set ;
3: for each do
4: Construct a sensitive area ;
5: Select pseudonyms as vertexes to achieve

k-anonymity;
6: for each do
7: Random select ingress pseudonym ;
8: ;
9: Random select egress pseudonym ;
10: if then
11: ;
12: else
13: Select another different ;
14: end if
15: ;
16: ;
17: end for
18: end for
19: Return ;

B. Weight Construction Algorithm

A participator enters the mix-zones at time
and exits the mix-zones in a time interval from to .
Let present the probability of participator exits the
mix-zones in above-mentioned time interval .
numerically equals to the probability that participator takes
data collection time in mix-zones from to

. As our assumption above, the data col-
lection time in mix-zones follows normal distributions

. Therefore, we have

(1)

where is the probability density function (PDF) of data
collection time in mix-zones.
Similarly, the other participators exit in the time interval

can be computed as above. Thus, the probability of all
participators exit in the interval time can be computed
by (2).

(2)

However, only one of them is the real participator. There-
fore, the probability that participator exits in is ,
denoted as is given by the following conditional
probability (3).

(3)
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The computation of edge weight is described by Algorithm 2.
As we mentioned above, we use adjacency matrix to represent
the constructive graph model. It can be described as follows:

...
...

...
. . .

...

Graph G can be represented as matrix. The elements
in Graph G represent the possibilities that are computed by (3)
between the ingress pseudonyms and the egress pseudonyms. It
meets the conditions (4).

(4)

Each participator enters with one of the pseudonyms and
exits the sensitive area with a different one after he/she finishes
the data collection. The uncertainty and privacy level are depen-
dent on the distribution of edge’s weight. It will be discussed in
Section V.

Algorithm 2 WeightConstruct

Input: and and

Output: Edge Weight
1: Procedure
2: for to do
3: for to do
4: ;
5: ;
6: ;
7: end for
8: end for
9: for to do
10: for to do
11:

;
12: end for
13: end for
14: Return

;

V. METRIC

In this section, we introduce privacy level metric and privacy
loss metric to evaluate the effectiveness of our proposal, and
then define the information loss to compare the performance of
our proposal with previous proposals.

A. Privacy Level Metric

We evaluate the privacy level that our proposal can achieve
based on Information Entropy. The concept of information en-
tropy defined by Shannon [50] is a quantitativemeasure of infor-
mation content and uncertainty over a probability distribution.
In this paper, the probability distribution represents the chance
that adversary can identify each participator. The more uniform

the probability distribution is, the higher the information en-
tropy is and the more difficult the real participator can be identi-
fied. Otherwise, if there is a significant difference in the proba-
bility distribution, it will be easy to confirm the real participator
for the low information entropy. Thus, it is feasible to measure
the trajectory privacy level that our proposal can achieve using
information entropy.
We represent the ingress pseudonym set as

and egress pseudonym set as
. The information en-

tropy of sensitive trajectory segment represents the degree
of uncertainty in the set of possible mapping, which can be
measured by (5).

(5)

where represents the th sensitive trajectory segment and
represents the mapping possibility from to . In

the graph matrix model, the mapping possibilities are presented
by the weights that .
To evaluate trajectory privacy-preserving level, it is also

useful to find the maximum entropy of the mapping in the
trajectory mix-zones graph model. If adversary has no back-
ground knowledge about participators, the possibilities of the
mapping are the same with . In this case, the
information entropy of sensitive trajectory segment reaches the
maximum value depicted by (6).

(6)

The trajectory privacy-preserving level is defined as the
ratio of the entropy of each sensitive trajectory segment to
the maximum entropy. The th sensitive trajectory segment
privacy-preserving level, denoted as , can be computed by
(7) quantitatively.

% % (7)

We can see that a higher value of indicates a higher tra-
jectory privacy-preserving level. Conversely, the privacy leak is
lower. It gives a hint of how far the trajectory privacy is from
the theoretical privacy upper bound.

B. Privacy Loss Metric

To quantify the privacy further more, we define the privacy
loss based on the model proposed in [51]. In this paper, pri-
vacy loss is defined as the probability that an adversary will be
able to gain sensitive trajectory segment about a participator. It
could be calculated by combining the identity leakage and the
pseudonym mapping index.
The number of participators generated in the ingress

time interval constitutes the anonymity set, which meets
k-anonymity. Thus, adversary can identify the target with the
same probability. Finally, for each target, the identity leakage,
denoted as IDL, is the inverse of the size of anonymity set and
can be computed as: , where represents the size
of the anonymity set.
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The locations of participators cannot be tracked inside the
mix-zones, adversary can observe the time and locations of all
these ingress and egress participators. The trajectory of target
participator can be identified by linking the ingress pseudonym
with egress pseudonym. Since the time intervals in the mix-
zones of different participators are different, the mapping prob-
ability of the target can be computed by (3). That is, the mapping
index for each th target can be calculated as follows:

(8)

where and could be computed by (1) and (2),
respectively.
Hence, the total privacy loss of the th target participator,

denoted as , can be calculated as a product of the identity
leakage and the mapping index . That is,

(9)

In face, the privacy level measures how much the privacy loss
of our model is. Thus, the more privacy loss is, the lower the
privacy level is. In the worse case, the privacy loss of target
participatory is equal to 1, that’s mean the privacy of the target
is exposed completely, the privacy level of the target may tend
to be zero.

C. Information Loss Metric

The information loss is defined as the reduction in the proba-
bility with which people can accurately determine the position
of an object in [43], [45]. In this paper, similar to [38], [42], we
use the sum of area size of anonymity regions to measure the
information loss. It can be computed by (10).

(10)

where represents the information loss with different number
of trajectories, represents the area size of the
generalized regions of at time is the number of trajec-
tories and is the number of timestamps in anonymity regions.
Based on the definition of information loss, we theoretically an-
alyze some previous proposals such as dummy trajectories [39],
suppression technique [40], and trajectory k-anonymity [42] and
our proposal as follows.
Suppression technique proposed in [40] is used to reduce the

probability of disclosing the whole trajectories. The informa-
tion loss can be considered as the ratio of suppressed trajectory
segments to the whole trajectory. If a certain data collection lo-
cation is suppressed, the data reports collected at this location
are lost. In [39], [42], they anonymize the whole trajectory in-
formation. The information loss can be calculated by (10). In
this paper, we propose to anonymize only those sensitive trajec-
tory segments. The information loss among these proposals will
be further analyzed in Section VII.

VI. THREAT MODELS

Follow by our analysis in Section III-B, the main goal of ad-
versary is to identify the participator’s complete trajectory as-
sociated with the true identity. Adversary’s knowledge is an im-

portant factor in evaluating the privacy of our model. It is a vari-
able and has different values for different abilities and scenarios.
In this section, we consider both the weak and strong adversary
attack model the same as in [15]. The uncertainty of trajectory
mapping index under the two types of attack models is different,
which is analyzed as follows.

A. Weak Adversary Attack Model

The weak adversary has little knowledge about the participa-
tors. It is only aware of the set of participators moving in and out
of the mix-zones but not of their time intervals and trajectories.
In this case, the type of probability distribution function sug-
gests the same uniform probability for all the trajectory mapping
indexes. Hence, the upper bound on the achievable uncertainty
of trajectory mapping index can be computed by (6). That is, the
actually achievable uncertainty of our proposal is less than the
upper bound. We can see that the maximum uncertainty of tra-
jectory mapping index depends exclusively on the number of
pseudonyms that used in the mix-zones. Thus, since the first exit
participator does not corresponding to the first enter one for its
random time interval, the weak adversary with little knowledge
about the participators has no ability in distinguishing related
participators to specific trajectories. It provides an upper bound
to the achievable uncertainty of the trajectory mapping index.

B. Strong Adversary Attack Model

The strong adversary can launch the time attack such as FIFO
by gathering entering time and exiting time intervals. Hence,
besides the number of participators, the effectiveness of the
mix-zones also relies on the time intervals. As we discussed, in
a time interval participators arrive at the mix-zones, where
is determined by the mean arrival rate . Additionally, we

argue that the data collection time of each participator spends
in the mix-zones follows normal distribution. In this case, the
strong adversary can record the arrival time and leave time inter-
vals. When adversary observes a participator exiting, he tries to
map the exit participator to the related pseudonym identity. Ac-
cording to the distribution of time intervals, the mapping prob-
abilities showed by the weight of graph matrix in Section IV
are computed by (1). But only one of them is the real one with
the probability that can be computed through inference based
on the likelihoods of the others to exit at this time interval, de-
noted by (3). Once the mapping probabilities are computed, the
uncertainty of each trajectory can be determined by (5). Thus,
it presents a lower bound to the achievable uncertainty of the
trajectory mapping index.

VII. EVALUATION

In this section, we study the experimental evaluation of our
trajectory mix-zones graph model through two components:
1) the effectiveness of our proposal against threat models in
terms of privacy level and privacy loss; 2) the performance
analysis in terms of information loss and costs compared
with previous trajectory privacy-preserving proposals such as
suppression technique [40] and trajectory k-anonymity [42].
Before reporting our experimental results, we first describe
the experimental setup, including device configuration and
parameters setting.
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Fig. 4. Simulation results of the first group of statistical parameters. (a) Arrival time. (b) PDF. (c) Weight of edge. (d) Entropy. (e) Privacy level. (f) Privacy loss.

TABLE I
TWO GROUPS OF STATISTICAL PARAMETERS

A. Experiment Settings

The simulation experiments are run on MATLAB platform.
The machine equips with an Intel Core 4 core, Quad 2.83 GHz,
Windows XP system equipped with 4 GB main memory.
We model trajectory mix-zones by the following parameters:
1) Pseudonyms information; 2) Participators ingress time
interval and egress time intervals ;
3) Participator arrival rate and random time interval parame-
ters .
The vertexes of graph model are constructed by participators’

pseudonyms provided by TTPs. Participators’ arrival process
follows Poisson distribution with the arrival rate . The number
of participators should satisfy the requirement of k-anonymity
within the ingress time interval . The time interval of partici-
pators that stays in mix-zones is modeled by normal distribution
with parameters . Participators’ egress time intervals are
represented as . In our experiments,
the first exit time is set to 3 and size of participators’ exit time
intervals is set to 0.1.
We generate a series of random values with two groups of

statistical parameters showed in Table I to analyze the effec-
tiveness of our proposal against the different attack models in
Section VI. The ingress time interval and the arrival rate

decide the number of participators that enters the mix-zones.
It must satisfy the requirement of k-anonymity.

B. Effectiveness Analysis

We run two groups of experiments with different statistical
parameters in Table I. As a result of participators’ different
arrival rates depicted by Figs. 4(a) and 5(a),
the number of participators that enters the mix-zones is dif-
ferent. Specifically, to ensure k-anonymity, we consider the
number of participators with , which is showed in Table I
during ingress time interval . The arrival time
should not differ at a large value so as to prevent from time
attack in Section VI. Figs. 4(b) and 5(b) present the prob-
ability density function of time interval in mix-zones with

. The egress time intervals of
participators are . The graph is

constructed by Algorithm 1 and the weight of edge can be
calculated by Algorithm 2. Figs. 4(c) and 5(c) present the
weight of edge, which means each probability mapping from
the ingress pseudonym to the egress pseudonym.
As we mentioned, the uncertainty of mapping among pseud-

onyms can be evaluated by (5). According to the discussion
above, the maximum entropy achieves if and only if the map-
ping probabilities are equal. In this paper, we improve the the-
oretical mix-zones model with considering the time factor. As
illustrated by Figs. 4(d) and 5(d), the maximum entropy and ac-
tual entropy can be computed according to the probability distri-
butions depicted by Figs. 4(c) and 5(c) respectively. The proba-
bility distributions represent the probabilities of participators
that exit trajectory mix-zones at each egress time interval. As
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Fig. 5. Simulation results of the second group of statistical parameters. (a) Arrival time. (b) PDF. (c) Weight of edge. (d) Entropy. (e) Privacy level. (f) Privacy
loss.

Fig. 6. Comparison of average entropy. (a) Number of participators. (b) Collection time . (c) Collection time .

we can see from these figures, the more uniform of the map-
ping probability distributions are, the higher the actual entropy
is. When the mapping probabilities are equal, the maximum en-
tropy achieves.
According to (7), privacy level can be calculated depicted by

Figs. 4(e) and 5(e). It evaluates the privacy-preserving level of
our proposal. The higher privacy level is, the stronger the trajec-
tory privacy-preserving proposal is. Consequently, the privacy
leak is lower. Moreover, when we define the privacy level, it
is important to measure the privacy loss. Considering a given
participator such as , Figs. 4(f) and 5(f) demonstrate the
privacy loss of our model compared with the theoretical mix-
zones model according to the computational model proposed
in Section V-B. As illustrated by the results, in the theoretical
mix-zones, the mapping probabilities of from the ingress
pseudonym to the egress pseudonym

are the same. Thus, the privacy loss are the same whatever the
target pseudonym the ingress pseudonym is mapping to. How-
ever, when taking the other factors such as time interval in the
mix-zones into consideration, the privacy loss is different for
the different probabilities of mapping index. Additionally, com-
pared Fig. 4(f) with Fig. 5(f), the privacy loss decreases with the
number of participators in the mix-zones increases.
Furthermore, based on our discussion above, the number of

participators that enters the mix-zones changes with the ar-
rival rate and ingress time interval varying, as showed in
Fig. 6(a). Clearly, the number of participators increases along
with the increase of arrival rate and time interval. We com-
pare the average entropy with various values of arrival rate
and ingress time interval in Fig. 6(b) and (c) under the same
experimental setting in Table I. The figures show that the av-
erage entropy of the mix-zones increases with the increasing of
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Fig. 7. Adversary success probability. (a) Comparison of the two group parameters. (b) Collection time . (c) Collection time .

the number of participators. That is because a large number of
participators raises the uncertainty of the mix-zones. We con-
sider the maximum mapping probability as the adversary suc-
cess probability. As for a certain data collector such as ,
Fig. 7(a) presents the success probability of an adversary in
guessing and tracking under the two groups of parame-
ters. Obviously, the first group makes easier for the adversary
to guess and track than the second one based on their time in-
tervals. That is because there are less data collectors for a lower
entropy of the first group than that of the second one in the same
time interval. Additionally, we analyze the effects of arrival rate
to adversary success probability under the same collection

time in Fig. 7(b) and (c). Since a larger arrival rate may increase
the number of data collectors in the mix zones, the adversary
success probability in guessing and tracking decreases.

C. Comparison

The comparisons between our proposal and previous work
can be evaluated from the following two aspects: efficacy of
anonymous quality measured by information loss and efficiency
of anonymity measured by the costs of storage.
1) Efficacy: As we mentioned in Section V-C, suppression

technique [40] is used to suppress the sensitive locations of
data collection. The data information may almost all lost in case
the sensitive location is suppressed. The more the locations are
suppressed, the higher information loss is generated. Trajectory
k-anonymity such as -anonymity [42] uses space trajec-
tory clustering to transform those trajectories in each cluster
into a -anonymity set, where represents the radius of
anonymity set. Dummies protect trajectory privacy by adding
dummy trajectories to confuse adversary [39]. They all deal
with the whole trajectory and the information loss can be com-
puted by (10). In this paper, we only anonymize those sensi-
tive locations on or nearby participator’s trajectory by trajec-
tory mix-zones graph model. According to the computational
method of information loss, we compare our proposal with tra-
jectory k-anonymity under the two groups of statistical parame-
ters in Table I.
Suppose the trajectories are divided into segments, and

there are sensitive segments. Obviously, . For sim-
plicity, we set and respectively. The basic size
of anonymized area of trajectory k-anonymity and our proposal

is the same, such as -anonymity. Given the value of , the
anonymized area is fixed to , where is related to the
number of trajectories. In [42], the value of ranges from 1000
to 4000, step by 1000. In this paper, we consider as
the maximum distance between any two trajectories. Because
our proposal only deals with the sensitive trajectory segments
instead of the whole trajectory, it can reduce the information
loss which is illustrated by Fig. 8. In the worse case, the whole
trajectory is sensitive, hence, the information loss of our pro-
posal tends to be that of trajectory k-anonymity.
Fig. 8 describes the information loss with different numbers

of trajectories. The x-axis represents the number of trajectories
and the y-axis shows the information loss. As we expected,
small values of yield a low information loss, that increases
monotonically as grows. That is because a large increases
the area size of anonymity regions. Compare the results of
different proposals in Fig. 8, we can see that our proposal
is superior to trajectory k-anonymity for only anonymizing
the sensitive trajectory segments. The information loss of our
proposal is mainly caused by trajectory mix-zones. Moreover,
since suppression technique deletes the sensitive trajectory
segments from the whole trajectory, the data information on or
nearby the sensitive trajectory segments may almost all be lost.
2) Efficiency: The efficiency of different trajectory-pre-

serving proposals can be measured by qualitative analysis.
Dummy trajectories [39] and trajectory k-anonymity [42] pri-
vacy protections must store all the trajectories. The efficiency
of our proposal mainly depends on the number of pseudonyms.
Given trajectories and each trajectory contains segments.
The proposals of dummy trajectories [39] and trajectory
k-anonymity [42] need storage memory with to store
the total trajectories. Nevertheless, not all of the trajectory
segments are sensitive, our proposal only anonymizes the
sensitive segments with mix-zones. The use of different pseud-
onyms can help to prevent the adversary from identifying the
participators’ actual trajectories. Since these pseudonyms can
be used in different trajectory segments, the storage memory
of pseudonyms is about . With the rapid increase in
the number of trajectories, the storage memory of dummy
trajectories and trajectory k-anonymity will also increase fast
for storing more trajectories. In our proposal, we only need
to store the pseudonyms mapping by TTPs. The increase of
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Fig. 8. Information loss. (a) First group. (b) Second group.

trajectories may not affect the number of pseudonyms too
much. By comparison, our proposal has lesser storage memory
than that of the other proposals.

VIII. CONCLUSIONS AND FUTURE WORK

The disclosure of data collectors’ trajectories poses serious
threats to participators’ personal privacy. It may prevent par-
ticipators from data sharing. In this paper, we first propose a
trajectory privacy-preserving framework TrPF for participatory
sensing. Then, we propose a trajectory mix-zones graph model
to protect participators’ trajectories from the perspective of
graph theory. We take the time factor into consideration to im-
prove the mix-zones model. It may be more realistic in practice.
Thirdly, we define the privacy metric in terms of the privacy
level and privacy loss and information loss metric, and then an-
alyze the threat models with different background knowledge.
Finally, we evaluate the effectiveness and performance of our
trajectory mix-zones graph model using the metric above with
different parameter sets. The simulation results prove that the
trajectory mix-zones graph model can protect participators’
trajectories privacy effectively and reduce the information
loss and costs in contrast to the other proposals. In the future,
we will work on the semantic trajectory privacy problems of
multiple mix-zones in detail.
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