
31

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced
Collaborative Filtering

YAN HU, University of Chinese Academy of Sciences and Wayne State University
WEISONG SHI, Wayne State University
HONG LI, Institute of Information Engineering, Chinese Academy of Sciences
XIAOHUI HU, Institute of Software, Chinese Academy of Sciences

The data sparsity problem has attracted significant attention in collaborative filtering-based recommender
systems. To alleviate data sparsity, several previous efforts employed hybrid approaches that incorporate
auxiliary data sources into recommendation techniques, like content, context, or social relationships. How-
ever, due to privacy and security concerns, it is generally difficult to collect such auxiliary information. In
this article, we focus on the pure collaborative filtering methods without relying on any auxiliary data source.
We propose an improved memory-based collaborative filtering approach enhanced by a novel similarity rein-
forcement mechanism. It can discover potential similarity relationships between users or items by making
better use of known but limited user-item interactions, thus to extract plentiful historical rating information
from similar neighbors to make more reliable and accurate rating predictions. This approach integrates user
similarity reinforcement and item similarity reinforcement into a comprehensive framework and lets them
enhance each other. Comprehensive experiments conducted on several public datasets demonstrate that,
in the face of data sparsity, our approach achieves a significant improvement in prediction accuracy when
compared with the state-of-the-art memory-based and model-based collaborative filtering algorithms.

CCS Concepts: � Information systems → Collaborative filtering; Nearest-neighbor search; Social
recommendation;

Additional Key Words and Phrases: Recommender system, rating prediction, personalization, data sparsity,
similarity reinforcement

ACM Reference Format:
Yan Hu, Weisong Shi, Hong Li, and Xiaohui Hu. 2017. Mitigating data sparsity using similarity
reinforcement-enhanced collaborative filtering. ACM Trans. Internet Technol. 17, 3, Article 31 (June 2017),
20 pages.
DOI: http://dx.doi.org/10.1145/3062179

1. INTRODUCTION

Modern customers are faced with a variety of choices. Content providers and online
retailers provide a huge selection of information and products, with unprecedented

This research is partially supported by the National Natural Science Foundation of China, under Grants
U1435220 and 61503365.
Authors’ addresses: Y. Hu, Institute of Software, Chinese Academy of Sciences, No.4, South Fourth Street,
Zhongguancun, Haidian District, Beijing, China, and the Department of Computer Science, Wayne State
University, 5057 Woodward Ave., Suite 14102.2, Detroit, MI; email: huyanlh@126.com; W. Shi, the Depart-
ment of Computer Science, Wayne State University, 5057 Woodward Ave., Suite 14102.2, Detroit, MI; email:
weisong@wayne.edu; H. Li (corresponding author), Institute of Information Engineering, Chinese Academy
of Sciences, No.89, Minzhuang Road, Haidian District, Beijing, China; email: lihong@iie.ac.cn; X. Hu, Insti-
tute of Software, Chinese Academy of Sciences, No.4, South Fourth Street, Zhongguancun, Haidian District,
Beijing, China; email: hxh@iscas.ac.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1533-5399/2017/06-ART31 $15.00
DOI: http://dx.doi.org/10.1145/3062179

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

http://dx.doi.org/10.1145/3062179
http://dx.doi.org/10.1145/3062179

31:2 Y. Hu et al.

opportunities to satisfy all kinds of tastes and needs. Recommender systems [36, 37]
provide an excellent solution for solving the problem of information overloading. They
aim to study the relationships between users and items, reveal users’ preferences on
items, and recommend the most suitable items to users. Commercial applications of
recommender systems include e-commerce (e.g., Amazon, eBay) [40], fashion [13, 44],
food and restaurants [34], social events [31], and art (e.g., movies, music, books) [5, 26,
45]. In these areas, recommender systems providing excellent personalized suggestions
significantly increase the likelihood that a consumer purchases a product or selects an
item compared with unpersonalized suggestions.

Collaborative Filtering (CF) [15] is one of the most commonly used technologies in
recommender systems. The intuition behind CF is that similar users share similar
interests and preferences (user-based) and similar items have similar characteristics
(item-based). User-based methods find similar neighbors for an active user by studying
the similarities between users’ preferences. After that, recommender systems predict
the unknown preferences of the active user on a set of candidate items and generate
a ranking list of items, that the active user will like the most. Item-based methods
reveal relationships between items and use historical information from similar items
to make preference predictions. The biggest advantage of CF is that it does not rely on
the content and form of items and can be applied to items without textual description.

Generally speaking, there are two types of CF algorithms: memory-based [8, 38, 48,
49, 57] and model-based [2, 6, 17, 43]. Memory-based algorithms construct a user-item
rating matrix based on collected rating data. Each element of the matrix represents
a user’s rating on an item. The algorithms attempt to discover relationships between
users or items by calculating similarities between users or items. After that, they pre-
dict the unknown preference of an active user based on the past information provided
by similar users and items. Model-based algorithms either explore a “latent space” or
build a model to capture the user-item relationships. They use existing data to train
the pre-defined model and make preference predictions based on the trained model.
Regression [46], matrix factorization [28], and Bayesian methods [16] are popular ap-
proaches that fall into this category. They have a good theoretical basis, but are not so
intuitive in terms of interpreting prediction results as memory-based algorithms are
[49]. This article focuses on memory-based CF algorithms.

It has been demonstrated that memory-based CF algorithms have achieved consid-
erable success in recommender systems. However, they suffer from the data sparsity
problem [10]. In real-world applications, most users only rate a small number of items
and most items are only rated by a small number of users, so the rating matrix is
quite sparse. In this case, it has been proved that traditional similarity measures, such
as Pearson Correlation Coefficient (PCC) and Cosine-based similarity, cannot function
well [29]. Therefore, the data sparsity problem leads to great difficulties in finding
similar neighbors, and prevents memory-based CF algorithms from making accurate
preference predictions. This problem was partially solved by incorporating auxiliary
data sources, which are relatively dense, such as the content of items [50], users’ loca-
tions [53], and users’ friendship or social trust information [14, 18–20, 30]. However,
the introduction of auxiliary information complicates system implementation. Addi-
tionally, due to privacy and security concerns, users may not be willing to provide
their personal information, such as their locations or social relationships. In this ar-
ticle, we focus on a pure memory-based CF approach and propose a novel similarity
reinforcement mechanism to mitigate the data sparsity problem. Our approach does
not require any auxiliary information. It only relies on known user-item interactions
and yet achieves significant improvement on prediction accuracy compared with the
state-of-the-art CF algorithms. The key contributions of this work are summarized as
follows:

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:3

—A novel similarity reinforcement mechanism is proposed to enhance the memory-
based CF algorithm so that more potential similarity relationships can be discovered
between users or items, and more historical information can be extracted from similar
neighbors to lessen data sparsity.

—A comprehensive algorithm is designed to integrate user similarity reinforcement
and item similarity reinforcement and let the two procedures enhance each other.

—The effectiveness of the proposed approach to handle data sparsity has been validated
by the experiments conducted on three publicly available datasets: MovieLens 1M1,
Netflix2, and Yahoo! Music3.

The rest of the article is organized as follows. Section 2 introduces some related work.
In Section 3, we present the basic notations used throughout the article and the formal
problem definition. In Section 4, a memory-based CF approach enhanced by the novel
similarity reinforcement mechanism is proposed to alleviate the data sparsity problem
in recommender systems. Section 5 conducts comprehensive experiments to validate
the effectiveness of our approach. Section 6 discusses the computational complexity of
the proposed approach. Finally, conclusions are drawn in Section 7.

2. RELATED WORK

CF technology has been developed since the early 1990s. It was employed in the
Tapestry system [9] to filter mails from several mailing lists by analyzing the reac-
tions (annotations) given by collaborative users to documents they read. Since then,
many CF algorithms have been proposed. They are generally categorized into two
classes: memory-based and model-based. Memory-based approaches utilize historical
user-item rating data to estimate the similarities between users or items. Based on
that, historical rating information from similar neighbors are collected to predict the
preferences of an active user on a set of candidate items. The most popular memory-
based CF approaches include user-based [3, 21], item-based [7, 38], and hybrid [56, 57]
algorithms. User-based algorithms use the historical rating data from similar users for
preference prediction, while item-based methods extract data from similar items for
prediction. The hybrid CF approach integrates the two former methods, and achieves a
better prediction performance. Model-based CF algorithms construct appropriate mod-
els (e.g., matrix factorization models [25, 41], clustering models [43], and latent factor
models [4]) for user-item relationships. Model training is generally performed offline
to determine the optimal values of model parameters. Finally, the trained models are
used for preference prediction.

In recent years, based on traditional CF approaches, some new methods like fea-
ture engineering and multi-layered neural networks were proposed for recommender
systems. Rendle et al. [35] argued that applying factorization approaches to a new pre-
diction problem is a nontrivial task and requires a lot of expert knowledge. Therefore,
they proposed factorization machines (FM), a generic and easy-to-use approach. Fac-
torization machines can mimic most factorization models by feature engineering and
combine the generality and flexibility of feature engineering with the high prediction
accuracy of factorization models. Wu et al. [51] used a three-layer neural network to
reconstruct the full user-item preferences by learning the latent representations of the
partially observed user-item rating data. They also proved that the proposed model
is a generalization of several well-known collaborative filtering models, like latent

1http://grouplens.org.
2http://www.netflixprize.com.
3http://webscope.sandbox.yahoo.com/#datasets.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

http://www.netflixprize.com
http://webscope.sandbox.yahoo.com/#datasets

31:4 Y. Hu et al.

factor model, similarity model, and factorized similarity model, but with more flexible
components.

Although CF has achieved significant success in recommender systems, it still has the
problems of scalability and data sparsity when applied in the real world. Wu et al. [52]
tried to deal with the problem of scalability by clustering users and items into several
subgroups. Each subgroup includes a set of like-minded users and their liked items.
Traditional CF methods are applied to each subgroup, and the recommendation results
from all subgroups can be easily aggregated. Zhang et al. [55] presented a Localized
Matrix Factorization (LMF) framework. They attempted to overcome the challenges of
scalability and sparsity by transforming a large sparse matrix into Recursive Bordered
Block Diagonal Form (RBBDF) and extracting smaller and dense submatrices from
RBBDF. This approach has the potential to improve prediction accuracy by factorizing
these submatrices independently. This framework is also suitable for parallelization
and thus improves system scalability. Jing et al. [22] proposed a sparse probabilistic
matrix factorization (SPMF) method by using the Laplacian distribution to model the
user/item factor vector. The Laplacian distribution has the ability to generate sparse
coding. Additionally, the heavy tails in the Laplacian distribution help to identify the
tail items and partially solve the long tail problem.

Other studies have used auxiliary information to deal with the data sparsity prob-
lem, including item semantics and content information, or users’ social relationships
(e.g., friendship or trust). Moshfeghi et al. [32] imported emotion and semantic fea-
tures related to items into recommender systems. They extracted two emotion spaces
from movie plot summaries and review data, and considered three semantic spaces:
actor, director, and genre. Additionally, they employed a framework which relies on
an extended Latent Dirichlet Allocation (LDA) model for prediction. They concluded
that actor and movie spaces are the least and most sensitive spaces to dataset size
and data sparsity, and the model that incorporates all spaces performs the best at
remedying data sparsity compared with state-of-the-art CF systems. Wang et al. [47]
proposed a hierarchical Bayesian model called Collaborative Deep Learning (CDL),
which jointly performs deep representation learning for item content and collabora-
tive filtering for the rating matrix. By performing deep learning collaboratively, CDL
can simultaneously extract an effective deep feature representation from content and
capture similarities and implicit relationships between items or users. Pan et al. [33]
attempted to handle the issue of data sparsity in a target domain by transferring
knowledge about both users and items from other related auxiliary data sources that
are relatively dense. They used a matrix-based transfer learning technology, which is
capable of dealing with the data heterogeneity in different domains.

Kaya and Alpaslan [23] extracted like-minded ideas from social networks to mitigate
the problem of data sparsity. Furthermore, their study verified that social networks
correlated with a specific domain carry better information and knowledge required to
make recommendations in that specific domain. Konstas et al. [24] considered for music
track recommendation both the social annotations (tags) and friendship relations in
a social graph constructed among users, items, and tags. Because of the vagueness of
friendship, friends may show different opinions on items. However, users participating
in the same actual or virtual communities are more inclined to share similar interests
[54]. Therefore, the data extracted from both friendship and membership are leveraged
and fused for more accurate preference prediction.

Compared with membership and friendship, trust information is less vague and can
better facilitate the discovery of similarity relationships. In research literature, trust
information has been adopted in many recommendation approaches. Haydar et al. [14]
combined opinion similarity and trust similarity to increase the connectivity between
users, and reduced the impact of data sparsity. Guo et al. [11, 12] utilized the merged

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:5

Fig. 1. Rating matrix.

ratings from trusted neighbors to compensate for the incomplete preference of an active
user. Jamali and Ester [18] designed a random walk mechanism to combine the trust-
based and item-based CF approaches for recommendation. Additionally, they applied
the trust propagation technique to the matrix factorization models in a subsequent
study [19]. Ma et al. [30] designed a novel probabilistic factor analysis model, in which
user favors and the preferences of their trusted friends are well merged together.

One drawback of the approaches based on auxiliary sources is the high dependency
on auxiliary information. It increases the storage cost and complicates the implemen-
tation of recommender systems. Furthermore, due to privacy and security concerns,
it is generally difficult to collect users’ trust, friendship, or membership information.
Hence, it is important to design effective algorithms only based on the rating infor-
mation for higher-quality recommendation. Liu et al. [27] focused on memory-based
CF and proposed an improved heuristic similarity measure only based on users’ rating
data. The model provides a more accurate similarity measure by taking into account
several factors of similarity, namely Proximity, Impact, Popularity, and users’ rating
preferences. However, it still relies on the co-rated items between users. If two users
have no items rated in common, their similarities still cannot be estimated. In this ar-
ticle, we focus on a pure memory-based CF algorithm without using any auxiliary data
source. We designed a novel similarity reinforcement mechanism, that can reveal im-
plicit similarities between users or items. Compared with traditional CF methods, our
method improves the prediction accuracy significantly and alleviates the data sparsity
problem effectively.

3. NOTATION AND PROBLEM DEFINITION

Before presenting the proposed approach, we first introduce the basic notations and
concepts used throughout the article and then formally describe the problem to be
solved in recommender systems.

We use [N] to denote a set of consecutive positive integers {1, 2, . . . , N}. Scalars
are denoted by lowercase letters such as a. Vectors are denoted by boldface lowercase
letters such as u. Moreover, we use boldface uppercase letters such as M to denote
matrices. The Frobenius norm of a matrix M ∈ R

m×n is denoted by ‖M‖F, i.e, ‖M‖F =√∑m
i=1

∑n
j=1 |Mi j |2.

In a recommender system, there is a set of M users U = {u1, u2, . . . , uM} and a set of N
items I = {i1, i2, . . . , iN}. The interactions between users and items are summarized in
a M × N rating matrix R, as depicted in Figure 1. Each row of the matrix corresponds

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:6 Y. Hu et al.

to a user and each column corresponds to an item. The (p, q) entry rpq (p ∈ [M], q ∈ [N])
in the matrix denotes the rating value given by user up to item iq. If a user did not rate
an item, the corresponding entry is called a missing value.

Traditional memory-based CF algorithms utilize the observed values in the rating
matrix to predict missing values. When a missing rating value is predicted for user
up on item iq, up and iq are called an active user and a candidate item, respectively. A
typical memory-based CF recommendation problem involves three main steps. In the
first step, the similarities between users or items are estimated using some similarity
measures, such as PCC and Cosine-based similarities. In the second step, the algorithm
finds a set of similar users for the active user and a set of similar items for the candidate
item, where similar users/items are those with positive similarities. In the third step,
the preferences of similar users on the candidate item and the preferences of the active
user on similar items are combined to predict the missing rating value for the active
user on the candidate item. In the rest of the article, we interchangeably use the terms
“similar users/items” and “users/items with positive similarities.”

However, we note that the rating matrix is only partially filled with observed values.
The percentage of missing values in a matrix is called the sparsity level of the matrix.
The sparsity level of the user-item rating matrix in real-world recommender systems
usually exceeds 90%. This brings great challenges to similarity calculation and rating
prediction within memory-based CF algorithms. In the following section, we propose
a novel similarity reinforcement approach to reduce the impact of data sparsity on
recommender systems.

4. SIMILARITY REINFORCEMENT-ENHANCED COLLABORATIVE FILTERING

In this section, we first explain the underlying motivations and assumptions of our
approach and then present the proposed approach, named Similarity Reinforcement-
Enhanced Collaborative Filtering (SRCF).

4.1. Similarity Computation

As mentioned previously, the similarity computing between users or items is a core
issue in memory-based CF algorithms. Well-known similarity measures include PCC,
constrained PCC, Cosine-based similarity, adjusted Cosine-based similarity, and other
improved versions [1]. To introduce our approach, we use the PCC similarity as an
example and our techniques can be applied to other similarity measures in a similar
way. In user-based CF methods, the PCC similarity between two users ua and ub is
calculated by the following equation:

sim′(ua, ub) =
∑

ik∈Iab
(rak − r̄a)(rbk − r̄b)√∑

ik∈Iab
(rak − r̄a)2

√∑
ik∈Iab

(rbk − r̄b)2
, (1)

where Iab = Ia ∩ Ib is the subset of items rated by both ua and ub, and r̄a and r̄b are
the average ratings given by ua and ub, respectively. With this definition, the similarity
between two users is in the interval [−1,1], with a larger PCC value indicating a higher
similarity value. Likewise, in item-based CF methods, the PCC similarity between two
items ik and il is computed by:

sim′(ik, il) =
∑

ua∈Ukl
(rak − r̄k)(ral − r̄l)√∑

ua∈Ukl
(rak − r̄k)2

√∑
ua∈Ukl

(ral − r̄l)2
, (2)

where Ukl = Uk ∩ Ul is the subset of users who rated both ik and il, and r̄k and r̄l are the
average ratings of items ik and il, respectively.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:7

Fig. 2. An example for similarity reinforcement.

Equation (1) often overestimates the similarities between two users who are not
similar actually but happen to give similar ratings to a small number of co-rated items.
To deal with this problem, a similarity weight [56, 57] is utilized to reduce the impact
of a small number of co-rated items:

sim(ua, ub) = 2|Iab|
|Ia| + |Ib| · sim′(ua, ub), (3)

where |Iab| = |Ia ∩Ib| is the number of items that ua and ub both rated, |Ia| and |Ib| are
the numbers of items rated by ua and ub, respectively. Similarly, item similarity is also
revised to reduce the impact of a small number of common users:

sim(ik, il) = 2|Ukl|
|Uk| + |Ul| · sim′(ik, il), (4)

where |Ukl| = |Uk ∩ Ul| is the number of users who rated both ik and il, |Uk| and |Ul| are
the numbers of users who rated ik and il, respectively.

4.2. Similarity Reinforcement

4.2.1. Motivations. As indicated by Equations (1) to (4), if two users/items have no
item/user intersection, namely Iab = null or Ukl = null, their similarity cannot be cal-
culated. Unfortunately, due to the huge number of users and items in a recommender
system, even very active users may rate only a few items and even very popular items
may be rated by only a few users, so the rating matrix R is quite sparse. Therefore, the
traditional similarity measures cannot identify enough similar neighbors for active
users or candidate items, which dramatically degrades the performance of CF algo-
rithms. To address the problem, we designed a novel similarity reinforcement mecha-
nism to compensate for the deficiency of traditional memory-based CF approaches. Our
method aims to reveal implicit similarity relationships between users or items with-
out any auxiliary information. Implicit similarity relationships can help to get more
historical data from similar neighbors and achieve higher prediction accuracy.

The similarity reinforcement mechanism is mainly based on PCC similarities and
observed user-item ratings. A toy example is shown in Figure 2. In Figure 2(a), there
are two users u1 and u2 and four items i1 to i4. u1 and u2 both rated i2 and i3, while i1
was only rated by u1 and i4 was only rated by u2. According to traditional similarity

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:8 Y. Hu et al.

Fig. 3. Similarity propagation.

measures, the similarity between i1 and i4 cannot be calculated, since the two items are
not rated by any common user. However, we observe that i1 is rated by u1, and i4 is rated
by u2, and u1 and u2 have a PCC similarity since they have two items i2 and i3 rated in
common. Therefore, i1 and i4 can establish an implicit similarity relationship through
the affinity between u1 and u2. Likewise, as shown in Figure 2(b), u1 and u4, who
have no item rated in common, can build an implicit similarity relationship through
the affinity between i1 and i2. Therefore, our similarity reinforcement mechanism is
premised on the following three assumptions:

—Users with no direct PCC similarities can build implicit similarities through the
affinity between their items.

—Items with no direct PCC similarities can build implicit similarities through the
affinity between their users.

—User similarity reinforcement and item similarity reinforcement can enhance each
other.

The next problem is how similarities propagate between users or items without
direct PCC similarities. We use two examples in Figure 3 to illustrate our basic idea.
We assume that users’ ratings range from 1 to 5, where 1 means “dislike very much”
and 5 means “like very much.” In Figure 3(a), u1 and u2 give a similar rating of 5 to
their co-rated items i1 and i2. As a result, u1 and u2 have a positive similarity, as do i1
and i2. On the other hand, u1 rates i3 as 5 and u2 rates i4 as 5. Although i3 and i4 have
no common user, it is reasonable to establish an implicit positive similarity between i3
and i4, since they receive similar ratings from two similar users, respectively. As for i3
and i5, they receive totally different ratings from u1 and u2, respectively, so a negative
similarity should be built between i3 and i5. In Figure 3(b), u1 rates i1 and i2 as 1 and
5, while u2 rates i1 and i2 as 5 and 1. As a result, u1 and u2 have a negative PCC
similarity, as do i1 and i2. As for the item pair i3 and i4, they have no common user,
and u1 rates i3 as 5 and u2 rates i4 as 5. We can infer that i3 is similar to i1 because the
same user u1 rates both of them as 5, and i4 is similar to i2 because the same user u2
rates both of them as 5. However, i1 is dissimilar to i2, so we can infer that i3 and i4
are also dissimilar. As for i3 and i5, i5 receives a rating of 1 from u2, so i5 is similar to
i1 since they both receive a rating of 1 from the same user u2, and we can further infer
that i5 is similar to i3 because they are both similar to i1.

Based on the above analysis, we summarize four ways of similarity propagation be-
tween items without user intersection: (i) if two users with a positive similarity give
similar ratings to two items, the items have a positive similarity; (ii) if two users
with a positive similarity give dissimilar ratings to two items, the items have a neg-
ative similarity; (iii) if two users with a negative similarity give similar ratings to
two items, the items have a negative similarity; (iv) if two users with a negative
similarity give dissimilar ratings to two items, the items have a positive similarity.
The similarity propagation mechanism between users without item intersection is
analogous.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:9

4.2.2. Similarity Reinforcement Algorithm. Suppose ua and ub are two users. The item set
rated by ua is denoted by Ia = {ia

1 , ia
2 , . . . , ia

P} (Ia ⊂ I), and the item set rated by ub is
denoted by Ib = {ib

1, ib
2, . . . , ib

Q} (Ib ⊂ I). We define two sets PIab = {(ia
p, ib

q) | (ia
p, ib

q) ∈ Ia ×
Ib, sim(ia

p, ib
q) > 0}, which includes the item pairs from Ia ×Ib with positive similarities,

and NIab = {(ia
p, ib

q) | (ia
p, ib

q) ∈ Ia × Ib, sim(ia
p, ib

q) < 0}, which consists of the item
pairs from Ia × Ib with negative similarities. Accordingly, the similarity reinforcement
between ua and ub can be achieved based on the affinity between each pair of items
(ia

p, ib
q) from PIab or NIab:

sim(ua, ub) = (1 − α) · sim(ua, ub) + α ·
∑

(ia
p,ib

q)∈PIab∪NIab
wpq · sim(ia

p, ib
q)

∑
(ia

p,ib
q)∈PIab∪NIab

|wpq| , (5)

where α (0 ≤ α ≤ 1) is a damping factor controlling the degree that the reinforced
user similarity relies on its previous value or the contributions of item similarities.
At the beginning, the user pair (ua, ub) may or may not have direct PCC similarity.
If not, sim(ua, ub) should only depend on the contributions of item similarities at the
first step, i.e., α = 1. After that, α should be set to its original value, a damping factor
which is bigger than 0 and smaller than 1. Additionally, the parameter wpq (p ∈ [P],
q ∈ [Q]) weighs the contribution of the item pair (ia

p, ib
q). wpq is regarded as the similarity

between two ratings and defined as a linear function of the absolute rating difference
d(raia

p
, rbib

q
):

wpq = 1 − 2d(raia
p
, rbib

q
) = 1 − 2|raia

p
− rbib

q
|, (6)

where raia
p

is the rating value given by user ua to item ia
p, and rbib

q
is the rating value

given by user ub to item ib
q . All ratings should be first normalized by the following

equation:

rnor = r−rmin

rmax − rmin
, (7)

where rmax and rmin are the maximum and minimum rating values before normalization.
After normalization, the absolute rating difference |raia

p
− rbib

q
| falls within the interval

[0,1]. We split this interval [0,1] into two subintervals, [0,0.5] and (0.5,1]. If |raia
p
− rbib

q
|

ranges from 0 to 0.5, the two ratings raia
p

and rbib
q

are considered similar (0 ≤ wpq ≤ 1),
with a smaller value of |raia

p
− rbib

q
| indicating a larger value of wpq. Given wpq ≥ 0,

if the item pair (ia
p, ib

q) comes from PIab, we derive wpq · sim(ia
p, ib

q) ≥ 0. It means
that similar ratings given to similar items contribute positively to the user similarity
reinforcement. Otherwise, if (ia

p, ib
q) comes from NIab, we derive wpq · sim(ia

p, ib
q) ≤ 0,

which means that similar ratings given to dissimilar items contribute negatively to the
user similarity reinforcement. On the other hand, if |raia

p
− rbib

q
| ranges from 0.5 to 1,

the two ratings are regarded as dissimilar (−1 ≤ wpq < 0). In this case, if the item pair
(ia

p, ib
q) comes from PIab, we derive wpq · sim(ia

p, ib
q) < 0. It means that dissimilar ratings

given to similar items also contribute negatively to the user similarity reinforcement.
Otherwise, if (ia

p, ib
q) comes from NIab, we derive wpq · sim(ia

p, ib
q) > 0, which indicates

that dissimilar ratings given to dissimilar items also contribute positively to the user
similarity reinforcement.

Likewise, for two items ik and il, the users who rated ik and il are denoted by the
two sets Uk = {uk

1, uk
2, . . . , uk

C} (Uk ⊂ U) and Ul = {ul
1, ul

2, . . . , ul
D} (Ul ⊂ U), respectively.

Taking into account the contributions of users with positive or negative similarities, we
define two sets, PUkl = {(uk

c, ul
d) | (uk

c, ul
d) ∈ Uk × Ul, sim(uk

c, ul
d) > 0}, which includes all

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:10 Y. Hu et al.

user pairs from Uk × Ul with positive similarities, and NUkl = {(uk
c, ul

d) | (uk
c, ul

d) ∈ Uk ×
Ul, sim(uk

c, ul
d) < 0}, which consists of user pairs from Uk ×Ul with negative similarities.

Consequently, the similarity between ik and il can be reinforced as:

sim(ik, il) = (1 − α) · sim(ik, il) + α ·
∑

(uk
c ,u

l
d)∈PUkl∪NUkl

wcd · sim(uk
c, ul

d)∑
(uk

c ,u
l
d)∈PUkl∪NUkl

|wcd| , (8)

where wcd (c ∈ [C], d ∈ [D]) is the weight related to the user pair (uk
c, uk

d), which is used
to weigh the contribution of the similarity between uk

c and ul
d. Formally, wcd is defined

by:

wcd = 1 − 2d(ruk
ck, rul

dl) = 1 − 2|ruk
ck − rul

dl|, (9)

where ruk
ck is the normalized rating value given by user uk

c to item ik, and rul
dl is that

given by user ul
d to item il.

4.2.3. Mutually Enhancing Similarity Reinforcement Algorithm for Both Users and Items. The
similarity reinforcements for users and items are not isolated from each other. They
can enhance each other. As shown in Equations (5) and (8), the user similarity rein-
forcement depends on item similarities, and vice versa. Therefore, we designed a com-
prehensive algorithm to incorporate the two processes into one and let them enhance
each other. The entire procedure of the Comprehensive Similarity Reinforcement algo-
rithm, or “CSR” for short, is summarized in Algorithm 1. In this algorithm, Ure sim and
Ire sim denote the reinforced user and item similarity matrices. Ure sim last and Ire sim last
record the values of Ure sim and Ire sim from the last iteration step. Line 1 calculates
the traditional PCC-based user and item similarities. Lines 2 and 3 perform initial-
ization. The iteration procedure is shown in lines 4 through 24. Within the iteration,
lines 5 and 6 record the reinforced similarity matrices from the last step, and the user
similarity reinforcement is performed by lines 7 through 12, and the item similarity
reinforcement by lines 13 through 18. The iteration ends when the maximal number
of iterations is reached (line 4) or the variations of the user similarity matrix and the
item similarity matrix drop below a predefined threshold ε (lines 19 through 23). Since
similarity matrices are symmetric, we only need to perform one computation for each
pair of symmetric elements in a similarity matrix, as shown in lines 10 and 16. The
last line returns the reinforced user and item similarity matrices. In this algorithm,
we store the similarity matrices on secondary storage. While performing similarity
reinforcement for every pair of users and every pair of items, only the data involved in
the present computation are loaded into memory. The computational complexity of the
algorithm will be discussed later in Section 6.

4.3. Rating Prediction

In this section, we describe how we use the historical ratings from similar users and
items, namely users and items with positive similarities, to make rating predictions.
Suppose that ua is an active user and ik is a candidate item. ub and il are the similar
neighbors of ua and ik, respectively. The user-based and item-based rating prediction
results for the active user ua on the candidate item ik are presented by the following
two equations:

r̂u
ak = r̄a +

∑
ub∈Nua

Ure sim(a, b) · (rbk − r̄b)∑
ub∈Nua

Ure sim(a, b)
, (10)

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:11

ALGORITHM 1: CSR Algorithm
Input: user-item rating matrix R, damping factor α, the maximum number of iteration

iter max, threshold ε.
Output: reinforced user similarity matrix Ure sim, reinforced item similarity matrix Ire sim.

1 compute user similarity matrix U sim and item similarity matrix Isim based on PCC;
2 Ure sim ← U sim;
3 Ire sim ← Isim;
4 for iter cur ← 1 to iter max do
5 Ure sim last ← Ure sim;
6 Ire sim last ← Ire sim;
7 for a ← 1 to M do
8 for b ← a + 1 to M do
9 Update Ure sim(a, b) according to Equation (5);

10 Ure sim(b, a) ← Ure sim(a, b);
11 end
12 end
13 for k ← 1 to N do
14 for l ← k + 1 to N do
15 Update Ire sim(k, l) according to Equation (8);
16 Ire sim(l, k) ← Ire sim(k, l);
17 end
18 end
19 dU = ‖Ure sim − Ure sim last‖F;
20 dI = ‖Ire sim − Ire sim last‖F;
21 if dU < ε and dI < ε then
22 break;
23 end
24 end
25 return Ure sim and Ire sim;

and

r̂i
ak = r̄k +

∑
il∈Nik

Ire sim(k, l) · (ral − r̄l)∑
il∈Nik

Ire sim(k, l)
, (11)

where Nua = {ub | Ure sim(a, b) > 0, a �= b} and Nik = {il | Ire sim(k, l) > 0, k �= l} are the
sets of similar neighbors of ua and ik, respectively.

In order to merge the user-based and item-based predictions into a synthesized
result, we employ two confidence weights conu and coni [56, 57] to balance the two
prediction results. The confidence weights are defined by:

conu =
∑

ub∈Nua

Ure sim(a, b)∑
ub∈Nua

Ure sim(a, b)
· Ure sim(a, b), (12)

and

coni =
∑

il∈Nik

Ire sim(k, l)∑
il∈Nik

Ire sim(k, l)
· Ire sim(k, l). (13)

Finally, the missing rating value is predicted by:

r̂ak = hu · r̂u
ak + hi · r̂i

ak, (14)

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:12 Y. Hu et al.

where hu and hi [56, 57] are the weights of user-based and item-based prediction results
and defined by:

hu = λ · conu

λ · conu + (1 − λ) · coni
, (15)

and

hi = (1 − λ) · coni

λ · conu + (1 − λ) · coni
, (16)

where λ (0 ≤ λ ≤ 1) is a parameter employed to determine how much the final predic-
tion result depends on the user-based and item-based prediction results.

5. EVALUATION

In this section, we conduct comprehensive experiments on three publicly available
datasets to evaluate the effectiveness of the proposed approach to alleviate data
sparsity.

5.1. Dataset

The three publicly available datasets used in our experiments are MovieLens 1M,
Netflix and Yahoo! Music. All the three datasets contain ratings in a 1 to 5 scale.
MovieLens 1M contains 1,000,209 ratings by 6,040 users of total 3,900 movies. Netflix
contains more than 100 million ratings by 480,189 customers of 17,770 movies. Yahoo!
Music contains 311,704 ratings by 15,400 users of 1,000 songs. The sparsity levels of
the three datasets are 95.8%, 98.8%, and 98%, respectively.

5.2. Evaluation Metric

We adopt two widely used metrics, Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), to measure the prediction accuracy of CF algorithms. The two metrics
are particularly useful in the context of evaluating prediction accuracy in off-line tests.
The first measure (MAE) treats every error equally, while the second one (RMSE)
emphasizes larger errors. Let T denote the set of ratings to be predicted, i.e., T =
{(p, q) | p ∈ [M], q ∈ [N], rpq to be predicted}. Then, the MAE and RMSE metrics are
defined by:

MAE = 1
|T | ·

∑
(p,q)∈T

|r̂pq − rpq|, (17)

and

RMSE =
√√√√ 1

|T | ·
∑

(p,q)∈T
(r̂pq − rpq)2, (18)

where rpq and r̂pq are the actual and predicted rating values, respectively. A smaller
value of MAE or RMSE indicates higher prediction accuracy.

5.3. Performance Comparison

In the experiments, we studied the prediction accuracy of our approach under different
data sparsity levels and compared our approach with five well-known CF methods. They
are the User-based CF using PCC (UPCC) [3], the Item-based CF using PCC (IPCC)
[38], the hybrid CF using PCC [57], the Regularized Matrix Factorization (RMF) [25]
and the Regularized Matrix Factorization with Biases (BRMF) [41]. These methods
have been widely used as baseline methods in the study of recommender systems [39,
42, 49].

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:13

Fig. 4. MAE and RMSE comparison between our approach and traditional CF algorithms.

In the three experimental datasets, users and items without any rating information
were filtered out. After that, about 70% of the data of each dataset were selected as
training data, and the remaining 30% were used as test data. Given a training set, in
order to simulate different sparsity levels, we randomly removed some of its entries
to make the training data density vary from 10% to 90%, with a step value of 10%.
Finally, we applied different methods to the prepared training sets, and evaluated
the prediction accuracy of different methods on the corresponding test datasets. The
parameter α is set to 0.5, 0.5, and 0.3 and λ is set to 0.6, 0.5, and 0.7 for the three
datasets, respectively, because these values yield the optimal performance. We will
investigate the impacts of the two parameters in Sections 5.4 and 5.5.

The comparison of prediction accuracy between different methods is illustrated in
Figure 4. Figures 4(a) to (c) report the MAE comparison of different methods on Movie-
Lens 1M, Netflix, and Yahoo! Music datasets, respectively. Figures 4(d) to (f) show
the RMSE comparison of different methods on the three datasets. We can see that
the proposed similarity reinforcement technique improves the rating prediction accu-
racy significantly compared with the traditional CF algorithms, especially when the
training data become sparser. That testifies the excellent capability of our approach to
handle data sparsity.

The boxplots in Figure 5 show another observation that the variation of prediction
errors yielded by the proposed approach is significantly lower than those by other
methods. For example, on the MovieLens 1M dataset, 50% of the absolute prediction
errors are within (0.31, 1.12) with a range = 0.81 for the proposed approach, within
(0.36, 1.43) with a range = 1.07 for RMF, within (0.32, 1.18) with a range = 0.86 for
BRMF, within (0.36, 1.40) with a range = 1.04 for the hybrid CF, within (0.37, 1.48)
with a range = 1.11 for UPCC, and within (0.37, 1.49) with a range = 1.12 for IPCC. It
is similar on the other two datasets. The results indicate that the prediction accuracy
of the proposed approach is more stable than that of traditional CF algorithms across
different datasets.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:14 Y. Hu et al.

Fig. 5. Boxplots of absolute prediction errors of different methods.

Fig. 6. Average number of related users and items.

Furthermore, we recorded the average numbers of related users and related items
discovered by different approaches under different training data densities and report
the results in Figure 6 (Given an active user and a candidate item, the similar neighbors
of the active user who also rated the candidate item are called related users. The similar
neighbors of the candidate item that were also rated by the active user are called related
items.) We can see that our approach can discover more related users and items than
the hybrid CF can. Since UPCC and IPCC detected the same number of related users
and related items, respectively, as the hybrid CF did, we do not present the results of the
two methods. In conclusion, our approach can find more related users and items using
the comprehensive similarity reinforcement mechanism, meaning that our approach
can extract more historical information from related neighbors, which helps to achieve
higher prediction accuracy.

5.4. Impact of α

The damping factor α is used to control the degree that the reinforced similarity relies
on its previous value or the contribution of the reinforcement procedure. In this section,

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:15

Fig. 7. Impact of α.

in order to investigate the impact of different values of α, we set another adjustable
parameter λ = 0.5 and varied α from 0 to 1 with a step value of 0.1 and investigated how
MAE and RMSE change with α under three different training data densities, 0.3, 0.6,
and 0.9. Figures 7(a) to (c) illustrate the relationship between the average MAE under
three densities and α. Figures 7(d) to (f) show the relationship between the average
RMSE and α. We can see from Figure 7 that the α value has impacts on the prediction
accuracy. The optimal values of α on the three datasets are 0.5, 0.5, and 0.3.

5.5. Impact of λ

The parameter λ provides our prediction with the flexibility to vary the dependence on
the user-based and item-based prediction results. If λ = 1, we only consider information
from similar users; if λ = 0, we only consider historical information from similar items;
if 0 < λ < 1, we fuse information from both similar users and similar items to predict
missing ratings for active users.

To study the impact of the parameter λ on the performance of our CF method, we
set another adjustable parameter α equal to 0.5, 0.5, and 0.3 on the three datasets,
respectively, and varied λ from 0 to 1 with a step value of 0.1 and investigated the
prediction accuracy of our algorithm under three different training data densities, 0.3,
0.6, and 0.9. Figures 8(a) to (c) show the relationship between the average MAE under
three densities and λ, and Figures 8(d) to (f) show the relationship between the average
RMSE and λ.

In Figure 8, we observe that the value of λ impacts the recommendation results,
which calls for a suitable λ value for higher prediction accuracy. The optimal λ values
are 0.6, 0.5, and 0.7 on the three datasets, respectively.

6. COMPUTATIONAL COMPLEXITY DISCUSSION

In this section, we compare the computational complexity of our approach with that of
MF approaches.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:16 Y. Hu et al.

Fig. 8. Impact of λ.

Computational Complexity of SRCF. There are three main procedures in our
SRCF approach, the PCC similarity computing, the similarity reinforcement, and the
rating prediction. We analyze the computational complexities of the three procedures:

PCC similarity computing. Suppose that | Īu| (| Īu| N) is the average number of
items that each user has rated and |Ūi| (|Ūi| M) is the average number of users that
each item has interacted with. The time complexity of user similarity computation
based on Equations (1) and (3) is O(| Īu|), since there are at most | Īu| co-rated items
between two users. Similarly, the time complexity of item similarity computation based
on Equations (2) and (4) is O(|Ūi|), since there are at most O(|Ūi|) common users
between two items. Based on that, the time complexity of the similarity computation
for a total of M2 pairs of users is O(M2| Īu|). Similarly, the time complexity of the
similarity computation for a total of N2 pairs of items is O(N2|Ūi|).

Similarity reinforcement. After similarity computing, user and item similarity
reinforcements are performed using Equations (5) and (8). When performing similarity
reinforcement between each pair of users, the similarities between a total of | Īu|2 pairs
of items should be examined. Suppose that the maximum number of iterations is T .
The time complexity for user similarity reinforcement is O(TM2| Īu|2). Similarly, the
time complexity for item similarity reinforcement is O(TN2|Ūi|2).

Rating prediction. The time complexity of the user-based prediction for a missing
rating value is O(M), since at most M similar users are used for prediction. Similarly,
the time complexity of the item-based prediction for a missing rating value is O(N),
since at most N similar items are used for prediction. The hybrid prediction is a linear
combination of the user-based and item-based predictions, so its time complexity is
O(M + N).

Computational Complexity of MF. In comparison, MF approaches map both users
and items to a joint latent factor space of dimensionality f (f M, N), and user-item
interactions are modeled as inner products in that space. Accordingly, each user u is
associated with a vector pu ∈ R

f and each item i is associated with a vector qi ∈ R
f .

MF approaches mainly include two procedures: model training and rating prediction.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:17

Model training. In the model training procedure, stochastic gradient descent is a
popular method. Given a training case (userId, itemId, rating), the algorithm predicts
the rating value, computes the prediction error, and updates the corresponding user
vector and item vector in the opposite direction of the gradient. Suppose that the max-
imum number of iteration is T1. The time complexity of the model training procedure
is O(2T1Kf), where K is the number of training cases, which is approximately equal
to M| Īu| or N|Ūi|.

Rating prediction. The rating prediction procedure uses the dot product of a user
vector and an item vector to denote the user’s overall interest in this item. Therefore,
the time complexity of predicting a rating value for an active user on a candidate item
is O(f), where f is the dimensionality of the latent factor space.

Based on the above analysis, the time complexity of the similarity computation
and reinforcement of our SRCF approach is O(M2| Īu| + N2|Ūi| + TM2| Īu|2 + TN2|Ūi|2).
Because f is much smaller than M and N, and K is approximately equal to M| Īu| or
N|Ūi|, the time complexity of the similarity computing and reinforcement of SRCF is
higher than the time complexity (O(2T1Kf)) of the model training of MF approaches,
even though the iteration number T in our approach is usually smaller than T1 in MF
approaches. Additionally, the time complexity of the rating prediction of our approach
is O(M + N), which is also higher than that of MF approaches (O(f)). Moreover, our
algorithm needs to store an M× M user similarity matrix and an N× N item similarity
matrix, while MF approaches only need to store M f -dimensional user vectors and N
f -dimensional item vectors (f M, N), so the storage requirement of our approach is
higher than that of MF. Both the execution time and storage requirements of the two
kinds of approaches are determined by their algorithm mechanisms. In the future, we
will optimize our algorithm as well as explore the possibility to accelerate it by means
of parallel computing.

7. CONCLUSIONS

In this article, we proposed a novel similarity reinforcement mechanism to augment
traditional memory-based CF approaches for tackling the data sparsity problem. The
main advantage of our approach is that it does not rely on any auxiliary data source.
It makes better use of known but limited user-item rating information to reveal more
implicit similarity relationships between users or items. The more similar neighbors
discovered by our algorithm, the more abundant historical data are provided, and the
more reliable and accurate missing rating predictions can be made. Additionally, our
approach provides an integrated framework for the user and item similarity reinforce-
ments that allows them to enhance each other. Experimental results show that our
approach can achieve higher prediction accuracy than traditional memory-based and
model-based CF methods. However, the work presented in this article still has some
limitations. Our approach cannot handle cold-start users or items that do not have
any rating information. Meanwhile, how to guarantee good performance in terms of
execution time and storage when applying our algorithm to very large datasets is still a
problem. In the future, we will optimize the algorithm as well as explore the possibility
to accelerate it by means of parallel computing.

REFERENCES

[1] Hyung Jun Ahn. 2008. A new similarity mmeasure for collaborative filtering to alleviate the new user
cold-starting problem. Information Sciences 178, 1 (2008), 37–51.

[2] Yoav Bergner, Stefan Droschler, Gerd Kortemeyer, Saif Rayyan, Daniel Seaton, and David E. Pritchard.
2012. Model-based collaborative filtering analysis of student response data: Machine-learning item
response theory. In Proceedings of the 5th International Conference on Educational Data Mining. 95–
102.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:18 Y. Hu et al.

[3] John S Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, 43–52.

[4] John Canny. 2002. Collaborative filtering with privacy via factor analysis. In Proceedings of the 25th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
238–245.

[5] Oscar Celma. 2010. Music Recommendation. Springer.
[6] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. 2015. A fast parallel stochastic

gradient method for matrix factorization in shared memory systems. ACM Transactions on Intelligent
Systems and Technology (TIST) 6, 1 (2015), 2.

[7] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS) 22, 1 (2004), 143–177.

[8] Sarik Ghazarian and Mohammad Ali Nematbakhsh. 2015. Enhancing memory-based collaborative
filtering for group recommender systems. Expert Systems with Applications 42, 7 (2015), 3801–
3812.

[9] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. 1992. Using collaborative filtering to
weave an information tapestry. Communications of the ACM 35, 12 (1992), 61–70.

[10] Miha Grčar, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik. 2005. Data Sparsity Issues in the
Collaborative Filtering Framework. Springer.

[11] Guibing Guo, Jie Zhang, and Daniel Thalmann. 2012. A simple but effective method to incorpo-
rate trusted neighbors in recommender systems. In User Modeling, Adaptation, and Personalization.
Springer, 114–125.

[12] Guibing Guo, Jie Zhang, and Daniel Thalmann. 2014. Merging trust in collaborative filtering to alleviate
data sparsity and cold start. Knowledge-Based Systems 57 (2014), 57–68.

[13] KANG Hanhoon and Seong Joon Yoo. 2007. SVM and collaborative filtering-based prediction of user
preference for digital fashion recommendation systems. IEICE Transactions on Information and Sys-
tems 90, 12 (2007), 2100–2103.

[14] Charif Haydar, Anne Boyer, and Azim Roussanaly. 2012. Hybridising collaborative filtering and trust-
aware recommender systems. In Proceedings of the 8th International Conference on Web Information
Systems and Technologies.

[15] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. Evaluating
collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22, 1
(2004), 5–53.

[16] Antonio Hernando, Jesús Bobadilla, and Fernando Ortega. 2016. A non negative matrix factorization
for collaborative filtering recommender systems based on a Bayesian probabilistic model. Knowledge-
Based Systems 97 (2016), 188–202.

[17] Thomas Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Transactions on
Information Systems (TOIS) 22, 1 (2004), 89–115.

[18] Mohsen Jamali and Martin Ester. 2009. Trustwalker: A random walk model for combining trust-based
and item-based recommendation. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 397–406.

[19] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with trust propagation for rec-
ommendation in social networks. In Proceedings of the 4th ACM Conference on Recommender Systems.
ACM, 135–142.

[20] Wenjun Jiang, Jie Wu, and Guojun Wang. 2015. On selecting recommenders for trust evaluation in
online social networks. ACM Transactions on Internet Technology (TOIT) 15, 4 (2015), 14.

[21] Rong Jin, Joyce Y Chai, and Luo Si. 2004. An automatic weighting scheme for collaborative filtering.
In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. 337–344.

[22] Liping Jing, Peng Wang, and Liu Yang. 2015. Sparse probabilistic matrix factorization by laplace
distribution for collaborative filtering. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15). 25–31.

[23] Hamza Kaya and Ferda Nur Alpaslan. 2010. Using social networks to solve data sparsity problem
in one-class collaborative filtering. In Proceedings of the 7th International Conference on Information
Technology: New Generations (ITNG). IEEE, 249–252.

[24] Ioannis Konstas, Vassilios Stathopoulos, and Joemon M. Jose. 2009. On social networks and collabo-
rative recommendation. In Proceedings of the 32nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, 195–202.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

Mitigating Data Sparsity Using Similarity Reinforcement-Enhanced Collaborative Filtering 31:19

[25] Yehuda Koren, Robert Bell, Chris Volinsky, and others. 2009. Matrix factorization techniques for rec-
ommender systems. Computer 42, 8 (2009), 30–37.

[26] George Lekakos and Petros Caravelas. 2008. A hybrid approach for movie recommendation. Multimedia
Tools and Applications 36, 1–2 (2008), 55–70.

[27] Haifeng Liu, Zheng Hu, Ahmad Mian, Hui Tian, and Xuzhen Zhu. 2014. A New User Similarity Model
to Improve the Accuracy of Collaborative Filtering. Knowledge-Based Systems 56, 12 (2014), 156–
166.

[28] Xin Luo, Yunni Xia, and Qingsheng Zhu. 2012. Incremental collaborative filtering recommender based
on regularized matrix factorization. Knowledge-Based Systems 27 (2012), 271–280.

[29] Hao Ma, Irwin King, and Michael R. Lyu. 2007. Effective missing data prediction for collaborative
filtering. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 39–46.

[30] Hao Ma, Irwin King, and Michael R. Lyu. 2009. Learning to Recommend with Social Trust Ensemble.
In Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 203–210.

[31] Augusto Q. Macedo, Leandro B. Marinho, and Rodrygo L. T. Santos. 2015. Context-aware event recom-
mendation in event-based social networks. In Proceedings of the 9th ACM Conference on Recommender
Systems. ACM, 123–130.

[32] Yashar Moshfeghi, Benjamin Piwowarski, and Joemon M. Jose. 2011. Handling data sparsity in collab-
orative filtering using emotion and semantic based features. In Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 625–634.

[33] Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. 2010. Transfer Learning in Col-
laborative Filtering for Sparsity Reduction. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence, Vol. 10. 230–235.

[34] Xochilt Ramirez-Garcia and Mario Garcı́a-Valdez. 2014. Post-filtering for a restaurant context-aware
recommender system. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems.
Springer, 695–707.

[35] Steffen Rendle. 2012. Factorization machines with libFM. ACM Transactions on Intelligent Systems
and Technology (TIST) 3, 3 (2012), 57.

[36] Paul Resnick and Hal R. Varian. 1997. Recommender systems. Commun. ACM 40, 3 (1997), 56–58.
[37] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Recommender Systems Hand-

book. Springer.
[38] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative fil-

tering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide
Web. ACM, 285–295.

[39] Marin Silic, Goran Delac, and Sinisa Srbljic. 2015. Prediction of atomic web services reliability for
Qos-aware recommendation. IEEE Transactions on Services Computing 8, 3 (2015), 425–438.

[40] Sanjeevan Sivapalan, Alireza Sadeghian, Hossein Rahnama, and Asad M. Madni. 2014. Recommender
systems in e-commerce. In Proceedings of the 2014 World Automation Congress (WAC). IEEE, 179–
184.

[41] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2009. Scalable collaborative filter-
ing approaches for large recommender systems. Journal of Machine Learning Research 10, Mar (2009),
623–656.

[42] Mingdong Tang, Wei Liang, Buqing Cao, and Xiangyun Lin. 2015. Predicting quality of cloud services
for selection. International Journal of Grid and Distributed Computing 8, 4 (2015), 257–268.

[43] Chih-Fong Tsai and Chihli Hung. 2012. Cluster ensembles in collaborative filtering recommendation.
Applied Soft Computing 12, 4 (2012), 1417–1425.

[44] Qingqing Tu and Le Dong. 2010. An intelligent personalized fashion recommendation system. In Pro-
ceedings of the 2010 International Conference on Communications, Circuits and Systems (ICCCAS).
IEEE, 479–485.

[45] Paula Cristina Vaz, David Martins de Matos, Bruno Martins, and Pavel Calado. 2012. Improving
a hybrid literary book recommendation system through author ranking. In Proceedings of the 12th
ACM/IEEE-CS Joint Conference on Digital Libraries. ACM, 387–388.

[46] Slobodan Vucetic and Zoran Obradovic. 2005. Collaborative filtering using a regression-based approach.
Knowledge and Information Systems 7, 1 (2005), 1–22.

[47] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning for Recommender
Systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 1235–1244.

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

31:20 Y. Hu et al.

[48] Jun Wang, Arjen P. De Vries, and Marcel J. T. Reinders. 2006. Unifying user-based and item-based
collaborative filtering approaches by similarity fusion. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 501–508.

[49] Jian Wu, Liang Chen, Yipeng Feng, Zibin Zheng, Meng Chu Zhou, and Zhaohui Wu. 2013. Predicting
quality of service for selection by neighborhood-based collaborative filtering. IEEE Transactions on
Systems, Man, and Cybernetics 43, 2 (2013), 428–439.

[50] Meng-Lun Wu, Chia-Hui Chang, and Rui-Zhe Liu. 2014. Integrating content-based filtering with col-
laborative filtering using co-clustering with augmented matrices. Expert Systems with Applications 41,
6 (2014), 2754–2761.

[51] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016a. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the 9th ACM International Conference on
Web Search and Data Mining. ACM, 153–162.

[52] Yao Wu, Xudong Liu, Min Xie, Martin Ester, and Qing Yang. 2016b. CCCF: Improving collaborative
filtering via scalable user-item co-clustering. In Proceedings of the 9th ACM International Conference
on Web Search and Data Mining. ACM, 73–82.

[53] Hongzhi Yin, Yizhou Sun, Bin Cui, Zhiting Hu, and Ling Chen. 2013. LCARS: A location-content-aware
recommender system. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 221–229.

[54] Quan Yuan, Shiwan Zhao, Li Chen, Yan Liu, Shengchao Ding, Xiatian Zhang, and Wentao Zheng. 2009.
Augmenting collaborative recommender by fusing explicit social relationships. In Proceedings of the
Workshop on Recommender Systems and the Social Web (Recsys’09).

[55] Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma, and Shi Feng. 2013. Localized matrix factoriza-
tion for recommendation based on matrix block diagonal forms. In Proceedings of the 22nd International
Conference on World Wide Web. ACM, 1511–1520.

[56] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King. 2009. WSREC: A collaborative filtering based
Web service recommender system. In Proceedings of the IEEE 7th International Conference on Web
Services. 437–444.

[57] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King. 2011. QoS-aware Web service recommendation
by collaborative filtering. IEEE Transactions on Services Computing 4, 2 (2011), 140–152.

Received April 2016; revised February 2017; accepted March 2017

ACM Transactions on Internet Technology, Vol. 17, No. 3, Article 31, Publication date: June 2017.

