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Abstract—With the advent of cloud computing and online
services, large enterprises rely heavily on their data centers
to serve end users. Among different server components, hard
disk drives are known to contribute significantly to server
failures. Disk failures as well as their impact on the perfor-
mance of storage systems and operating costs are becoming
an increasingly important concern for data center designers
and operators. However, there is very little understanding on
the characteristics of disk failures in data centers. Effective
disk failure management and data recovery also requires a
deep understanding of the nature of disk failures. In this
paper, we present a systematic approach to provide a holistic
and insightful view of disk failures. We study a large-scale
storage system from a production data center. We categorize
disk failures based on their distinctive manifestations and
properties. Then we characterize the degradation of disk errors
to failures by deriving the degradation signatures for each
failure category. The influence of disk health attributes on
failure degradation is also quantified. We discuss leveraging the
derived degradation signatures to forecast disk failures even in
their early stages. To the best of our knowledge, this is the first
work that shows how to discover the categories of disk failures
and characterize their degradation processes on a production
data center.

Keywords-Disk failure characterization; failure categoriza-
tion; disk degradation; resilience modeling; data centers.

I. INTRODUCTION

Storage systems become increasingly larger with the
booming of cloud computing and online services. Although
hard drives are reliable in general, they are believed to be the
most commonly replaced hardware components [25], [23]. It
is reported that 78% of all hardware replacements were for
hard drives in the data centers of Microsoft [25]. Moreover,
with the increased capacity of single drives and an entire
system, block and sector level failures, such as latent sector
errors [4] and silent data corruption [3], cannot be ignored
anymore. For instance, in RAID-5 systems, one drive failure
with any other sector error will result in data loss, which
leads to tremendous financial and economic costs to both
service providers and end users. It is urgently required to
develop new technologies for disk failure management and
data protection, which requires a deep understanding of the
characteristics of disk failures.

Disk drive is a complex system composed of a large num-
ber of magnetic, mechanical, and electronic components.
Each of these components can fail and their failures show
various manifestations with different extents of severeness.
Disk failures can be physical (e.g., head crash and motor
failure) or logical (e.g., corrupted file and human error);
immediate and total (e.g., broken head and stiction) or pro-
gressive (e.g., bad sectors and wearing failure). For example,
media defects and handling damage can cause a failure
due to excessive bad sectors. Head crash or broken heads
can lead to a large number of read/write errors. Motor or
bearing failures are potentially caused by handling damages.
Bad servo positioning can also lead to failures. In addition,
corrupted files and human errors can cause damages to disk’s
file structure or software leading to logical failures.

As a result, data on disk drives may be totally destroyed,
or partially or totally recoverable. Therefore, it is imper-
ative to identify different categories of disk failures and
their unique properties, which will allow IT operators to
apply appropriate handling and protection mechanisms to
effectively rescue data and even hard drive itself. Moreover,
disk failures in a data center environment usually follow
a gradual degradation as abrupt failures, which are caused
by hard drive shocks or power outages, seldom occur.
Modeling the degradation process of disk failures will enable
us to track the evolvement of disk errors to failures and
accurately estimate the available time for data rescue. Thus,
understanding categories and characteristics of disk failures
is essential for improving the reliability and availability of
storage systems.

In this paper, we aim to characterize the behavior of disk
failures in today’s data centers and obtain a deeper under-
standing of the occurrences of disk failures. Specifically,
we seek to answer three important questions: “What are
the distinctions between disk failures and what are their
types?”, “How do disk failures occur and what is the failure
degradation process?”, and “What is the influence of disk
health attributes on failure degradation?”. To address them,
we analyze manifestations of disk failures in a production
data center and explore data mining techniques combined
with statistical analysis methods to discover different cate-



gories of disk failures and their distinctive properties. We use
similarity measures to quantify the degradation process of
each failure category and derive the degradation signatures.
We further analyze the influence of disk health attributes on
failure degradation and reveal that the environmental factors
do not significantly intensify disk degradation. We then
leverage the derived degradation signatures to forecast disk
failures even in their early stages. Our systematic analysis
provides a holistic and insightful view of the nature of disk
failures.

The main contributions of this paper are:
• A systematic approach is proposed to allow data center

operators to automate the analysis of disk health data
and categorize disk failures based on their distinctive
manifestations and further determine their types.

• The proposed approach is also capable of finding disk
degradation signatures for each failure type, which en-
ables data center operators and disk drive manufacturers
to understand and track the occurrence of disk failures.

• The generated failure categories and degradation sig-
natures are important for directing the failure handling
and data rescue efforts and predicting disk failures of
different types and at various deterioration stages.

• Our analysis on a production storage system reveals that
logical failures account for 59.6% of disk failures and
they have a short degradation process. We also find that
high temperature is the most important factor for the
appearance of those logical failures. These suggest we
explore thermal-aware technologies in order to improve
the reliability of the storage system dramatically.

Although the specific analysis is performed on the disk
dataset from a production data center, our proposed approach
is generic and applicable to other storage systems.

The rest of this paper is organized as follows. We first
provide background on disk failures and present the related
research in Section II. The disk dataset collected from a
production data center is described in Section III. Section IV
presents our study on the characteristics of disk failures,
including failure distributions in Section IV-A, failure cat-
egorization in Section IV-B, degradation signatures in Sec-
tion IV-C and influences of health attributes in Section IV-D.
We discuss the exploration of the degradation signatures for
disk failure handling and prediction in Section V. Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Disk Failures

Disk drives do not fail in a simple fail-stop way. The
production data center that we study defines a disk failure
in three cases: the system loses connection to the disk,
an operation exceeds the timeout threshold, or a write
operation fails. Those drives that cannot function properly
are replaced.

Operations to disks can be initiated by file system’s
read() and write() calls as well as by an internal disk scan
process, which checks sector reliability and accessibility in
the background. There are several types of disk errors. Read
or media error: this error occurs when a particular disk
sector cannot be read, whether during a normal read or a
background disk scan. Any data previously stored in the
sector is lost. The disk interface reports the status code upon
detecting a sector error, specifying the reason why the read
fails. Reallocated sector: after a number of unsuccessful
retries, a drive re-maps a failed write to a spare sector.
Disk drives usually reserve several thousand spare sectors.
Reallocation only occurs on detected write errors. Pending
sector and uncorrectable error: unstable sectors detected in
the disk scan process will be marked as pending sectors.
Disk drives can try solving these errors through the build-in
Error Correcting Codes. Any sectors that are not successfully
recovered cause uncorrectable errors. Seek errors: this error
occurs when a disk drive fails to properly track a sector and
needs to wait for another revolution to read or write from
or to a sector.

B. Disk Failure Characterization

A number of existing research seeks to characterize the
distribution of disk failures and discover indicators of im-
pending failures. Gray et al. [10] observed failure rates rang-
ing from 3.3-6% in two large web properties at Microsoft.
Schwartz et al. [24] reported failure rate of 2-6% in the
drive population at the Internet Archive. Elerath and Shah [9]
reported that end-user failure rates can be as much as ten
times higher than what the drive manufacturer might expect
in their study on server class disk drives. Schroeder and
Gibson [23] found that in the field, annual disk replacement
rate typically exceeded 1%, with 2-4% common and up to
13% observed on some systems. They presented the per-
component failure percentages for three different types of
systems and reported a significant overestimation of mean
time to failure (MTTF) by manufacturers. Bairavasundaram
et al. [4] revealed the potential risk of latent sector errors
during RAID reconstruction, which was not predicted in the
early RAID reliability model. Xin et al. [27] analyzed the
effect of infant mortality on long-term disk failure rates and
used hidden Markov models to describe the effect. Pinheiro
et al. [19] studied failures of consumer-grade disk drives
used in Google’s services. They found that most SMART
attributes strongly suggested an impending failure. Ma et
al. [16] analyzed disk failures in EMC data backup systems
and found that the count of reallocated sectors correlated
strongly with failures. Their findings comply with our results
from one of the three failure categories.

However, little prior work analyzes the degradation pro-
cess of disk failures. Moreover, as the information of failure
categories is not available, all failure instances are con-
sidered together in the preceding works. In this paper, we



aim to discover insightful characteristics of disk failures in
terms of their degradation and manifestations of different
failure types. We find that some disk failures have a short
degradation process and their health attributes have similar
values as those of good drives. By taking a holistic view
using multiple attributes, we can accurately derive their
degradation signatures.

C. Disk Failure Prediction

Disk drive manufacturers estimate that the threshold-based
algorithm implemented in drives can only obtain a failure
detection rate (FDR) of 3-10% with a low false alarm rate
(FAR) on the order of 0.1% [18]. The reason is that, to avoid
the high cost for false alarms, the drive manufacturers set
the thresholds conservatively to keep the FAR to a minimum
at the expense of FDR.

A number of techniques have been proposed to improve
the failure detection rate based on SMART attributes. For
example, Hamerly and Elkan [13] employed two Bayesian
approaches to predict disk failures on a dataset from Quan-
tum Inc. consisting of 1,927 good drives and 9 failed drives.
They achieved a prediction accuracy of 35-55% with about
1% FAR. Hughes et al. [14] applied multivariate rank-sum
test and OR-ed single variate test to 3,744 drives in which
only 36 drives were failed. They achieved 60% FDR and
0.5% FAR. Murry et al. [17] compared the performance
of SVM, unsupervised clustering, and two non-parametric
statistical tests (rank-sum and reverse arrangements tests).
The dataset was collected from 369 hard drives with about
the equal number of good and failed drives. They found
that the rank-sum method achieved the best performance,
i.e., 33.2% FDR and 0.5% FAR. In addition, Markov Mod-
els [29], [8], classification and regression trees [15], and
Mahalanobis distance [26] have been proposed to predict
disk failures.

These existing works treat all disk failures equally without
considering the distinctive characteristics of failures from
different categories. Our proposed approach can distinguish
disk failures of different types based on the drives’ SMART
health profiles, which will enable data center operators to
predict the degradation and occurrences of different types of
disk failures and apply appropriate actions to tackle them.

III. DISK DATASET

Our dataset has been collected from a real-world data
center. There are 23,395 enterprise-class disk drives profiled
in our dataset and all of them are with the same drive model.
During a period of eight weeks, each working drive was
sampled every hour.

For each drive, we can retrieve 23 meaningful attributes
from a SMART (Self-Monitoring, Analysis and Reporting
Technology [2]) record. For some attributes, their values are
the same for all drives or do not change during operation.
They are not helpful for characterizing disk failures. Thus,

Table I
DISK HEALTH ATTRIBUTES SELECTED FOR DISK FAILURE

CHARACTERIZATION.

Symbol Attribute Name Type
RRER Raw Read Error Rate R/W, Health value
RSC Reallocated Sectors Count R/W, Health value
SER Seek Error Rate R/W, Health value
RUE Reported Uncorrectable Errors R/W, Health value
HFW High Fly Writes R/W, Health value
HER Hardware ECC Recovered R/W, Health value
CPSC Current Pending Sector Count R/W, Health value
SUT Spin Up Time R/W, Health value
R-RSC Reallocated Sectors Count R/W, Raw data
R-CPSC Current Pending Sector Count R/W, Raw data
POH Power On Hours Env., Health value
TC Temperature Celsius Env., Health value

they are filtered out. Then 10 attributes are left and used in
our analysis. Each SMART attribute contains a raw data (i.e.,
a six-byte measured value provided by a sensor or a counter)
and a health value (i.e., a one-byte integer representing the
current relative health of the attribute). Since the formats
of the attribute values are vendor-dependent, we normalize
them for ease of comparison. Because some normalized
values lose accuracy and their corresponding raw values are
more sensitive to the health condition of drives, we select
two raw data besides the 10 normalized values for disk
failure characterization. Table I lists these attributes and their
symbols used in our discussion. The first 10 attributes are
directly related to disk read and write operations and the last
two are environmental attributes.

Drives that have been replaced due to failures are labeled
as failed drives, while the rest experiencing no failure are
called good drives. In total, 433 failed drives and 22,962
good drives are recorded in the dataset. For each failed
drive, samples in a period of 20 days prior to the actual
failure were recorded. For each good drive, up to seven-
day health records were provided. Some failed drives might
lose a number of samples if they did not survive 20 days of
operation since the data collection began. In total, there are
156,312 health records of failed drives and 3,850,141 health
records of good drives.

Data normalization facilitates a fair comparison between
values of different attributes. The equation of data normal-
ization that we use is given below:

xnorm = 2
x− xmin

xmax − xmin
− 1, (1)

where x is the original value of an attribute, xmax and xmin
are the maximum and minimum values of the attribute in the
dataset, respectively.

IV. CHARACTERIZATION OF DISK FAILURES AND
DEGRADATION SIGNATURES

We aim to achieve a better understanding of disk failures,
in particular characterizing the degradation processes of
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Figure 1. Histogram of the duration of health profiles for failed drives.
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Figure 2. Distributions of disk health attributes from the 433 disk failure
records.
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Figure 3. Comparison of different numbers of
failure groups. Three groups produce the best
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Figure 5. Failure records of the centers of three
groups: Drive #57 in Group 1, Drive #369 in Group
2, and Drive #136 in Group 3.

different categories of disk failures. Therefore, we focus on
analyzing the failed drives. This section presents our analysis
results based on the large-population disk dataset from the
production data center.

It is worth noting that our approaches are generic and
applicable to other disk datasets and storage systems.

A. Distributions of Disk Failures and Health Attributes
In total, 433 failed drives out of 23,395 disk drives

(i.e., 1.85%) were replaced during the period of our data
collection. 156,312 health samples were recorded in our
dataset for those failed drives. Thus each failed drive on
average has 361 health samples, that is a 361-hour (about
15 days) health profile is available for a failed drive. Figure 1
shows a histogram of the period of time that the 433 failed
drives are monitored and their health records are provided.
78.5% of the failed drives have their health profiles longer
than 10 days and the percent of failed drives having a 20-day
health profile reaches 51.3%. Therefore, the dataset provides
disk health profiles long enough to characterize the failure
dynamics.

In Table I, 12 health attributes are selected for our
analysis. These attributes may not be equally important for
modeling disk failures. From the disk dataset, we observe
that the values of some attributes do not change much
among failure records, while others display large variations.

Figure 2 plots the box charts of the 12 attributes from the
433 failure records. Attributes, such as CPSC, R-CPSC,
RUE, SER HFW and HER, show a small variation
among most (i.e., 90%) of their values, indicating their
values are very close in all failure records. We can consider
these attributes with their values as a common property for
all disk failures. From the figure, we also notice that the
remaining 10% of the values of RUE and HFW span
over a wide range. This implies that the corresponding
disk failures may have different properties from the rest.
In contrast, RRER, TC, SUT , POH RSC and R-RSC
display medium to large variations (Some of them have
values covering the entire range, e.g., RSC, R-RSC and
POH). The large variations of these attributes imply that
disk failures have very different manifestations, which raises
the question “Are there multiple categories or types of
disk failures, causing these various manifestations?”. If the
answer is affirmative, then how can we distinguish them?
We address these two questions in Section IV-B.

B. Categorization of Disk Failures

Accurate discovery of disk failure types in a large-scale
storage system is challenging due to the lack of diagnosis
information which is only available from disk manufactures
when failed disks are returned in their warranty.
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Figure 6. Disk read/write attributes displaying the most distinctive manifestations between good and failure records.

To address this issue, we explore data mining techniques
combined with statistical analysis methods to identify groups
of disk failures and their distinctive properties, based on
which the failure types can be derived. Specifically, for every
failed drive, its failure record, i.e., the last recorded health
state, is extracted. We use those attributes that are directly
related to disk read and write actions (that is attributes with
a type of “R/W” in Table I) in failure categorization. For
each attribute, we add two statistics, i.e., standard deviation
of the values in the last 24 hours and change rate of the
values. Thus, we create a set of 433 failure records with 30
features each. We cluster these failure records into groups in
order to find their distinctive manifestations. We employed
both K-means and Support Vector Clustering (SVC), which
generate the same results. We measure the average distance
of failure records to their center points (called centroids) for
different numbers of clusters (Figure 3) and choose three as
the best number. The three clusters as shown in Figure 4
contain 258 (59.6%), 33 (7.6%) and 142 (32.8%) failure
records, respectively. We denote them as Groups 1, 2 and 3.

The followup question is “What is the difference between
these failure groups and what are their types?”. To answer
it, we compare failure records of the centroids in the three
groups, i.e., Drives 57, 369 and 136 in Groups 1, 2 and
3 respectively. Figure 5 shows that the values of their
attributes display noticeable variations. As RSC is a linear
transformation of R-RSC, it is not included in the figure.
It is easy to see from Figure 5 that Drive 369 (Group 2)
detects a large number of uncorrectable errors which cannot
be recovered by ECC in internal scans and Drive 136 (Group
3) has the largest number of reallocated sectors resulted from
write errors, while Drive 57 (Group 1) looks normal without
obvious problems.

In order to obtain a holistic view of all disk failures
in each group and their difference from the health records
of good drives, we summarize each attribute in a category
using deciles of the cumulative distribution, that is we divide
the sorted data set into ten equal-sized subsets and display
the first nine deciles to avoid the skew of outliers. Such
quantiles are more robust than other statistical methods, e.g.,

Table II
PROPERTIES AND CATEGORIES OF DISK FAILURES.

Failure
Group Population Distinctive Properties Failure

Type
Group 1 59.6% Similar to good states: a

small number of write er-
rors and internal scan er-
rors, medium read errors.

Logical
failures

Group 2 7.6% Highest number of un-
correctable errors, more
media errors and varying
write errors.

Bad sector
failures

Group 3 32.8% Highest number of write
errors, larger high fly
writes, longer power-on
hours, low media errors
and internal scan errors.

Read/Write
head
failures

cumulative distribution function, to outliers and noise in
depicting the value distribution [5]. Figure 6 compares the
deciles of three most significant read/write-related attributes
in good (i.e., good drives) records and each failure group.
From the figures, we can distinguish the three failure groups
by the following properties. Disk failures in Group 2 have
the lowest RUE (sector errors, 90% failures having RUE
less than -0.46), low RRER (media errors, 70% RRERs
below zero) and diverse R-RSC (write errors). In contrast,
Group 3 has the highest R-RSC (all above 0.94) and close-
to-good RRER and RUE. However, most of the read/write
attributes of Group 1 have values very close to those of good
states. In addition to read/write attributes, we analyze the
distributions of environmental factors, i.e., power-on hours
(POH) and temperature (TC), among failure groups. Due to
space limit, the figures of their decile values are not included
in this paper.

Table II characterizes the three failure groups according
to their manifestations. We derive the types of disk failures
based on their properties, i.e., logical failures in Group 1,
bad sector failures in Group 2 and read/write head failures in
Group 3. Compared with dedicated backup storage systems
where bad sector failures dominate [16], the storage system



0.1

0.15

0.2

0.25

0.3

0.35

e
 (

d
is

si
m

il
a
ri

ty
) 

to
 f

a
il

u
re Disk health record

0

0.05

1
1

9
3

7
5

5
7

3
9

1
1

0
9

1
2

7
1

4
5

1
6

3
1

8
1

1
9

9
2

1
7

2
3

5
2

5
3

2
7

1
2

8
9

3
0

7
3

2
5

3
4

3
3

6
1

3
7

9
3

9
7

4
1

5
4

3
3

4
5

1
4

6
9

D
is

ta
n

c
e

Index of health records

(a) Group 1

1

1.25

1.5

1.75

2

2.25

2.5

e 
(d

is
si

m
il

ar
it

y)
 t

o 
fa

il
ur

e Disk health record

0

0.25

0.5

0.75

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

D
is

ta
nc

e

Index of health records

(b) Group 2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

e
 (

d
is

si
m

il
a
ri

ty
) 

to
 f

a
il

u
re

Disk health record

0

0.05

0.1

1

2
0

3
9

5
8

7
7

9
6

1
1
5

1
3
4

1
5
3

1
7
2

1
9
1

2
1
0

2
2
9

2
4
8

2
6
7

2
8
6

3
0
5

3
2
4

3
4
3

3
6
2

3
8
1

4
0
0

4
1
9

4
3
8

4
5
7

4
7
6

D
is

ta
n

c
e

Index of health records

(c) Group 3

Figure 7. Distance (Dissimilarity) of health records to disk failures for the centroid drives in the three failure groups. The last point in each figure
corresponds to a disk failure.
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Figure 8. Failure degradation of the centroid drives in the three failure groups.

that we study experiences diverse workloads and its disk
failures display different manifestations, and thus is more
general. Our proposed approach can categorize disk failures,
which has great importance. It enables us to characterize and
understand behaviors of different types of failures, i.e., the
degradation signatures presented in Section IV-C, and also
allows us to select suitable techniques to predict and handle
disk failures.

C. Disk Degradation Signatures

The second question we address is “How do disk failures
occur and what is the failure degradation process?”. To find
the degradation of a disk failure, we compare the similarity
of every health record with the failure record belonging to
the same failed drive. We test Euclidean distance and Ma-
halanobis distance [26] to compute the similarity. Euclidean
distance provides us a better characterization of the changes
of lower distances, while the lower Mahalanobis distances
are all the same. Figure 7 presents the Euclidean distances
for the centroid drives of the three failure groups. For Groups
1 and 3, Figures 7(a) and 7(c) show that the dissimilarity
fluctuates with repeated increase followed by decrease until
reaching zero (i.e., the failure event). However, for Group
2, the dissimilarity keeps decreasing to zero as shown in
Figure 7(b).

In Figure 7(a), the last (rightmost) decreasing curve with
four health records (i.e., a degradation window) is extracted

and the distance is normalized to the range of [-1, 0] with “-
1” denoting the distance of zero (i.e., the failure event itself)
and “0” for the largest distance. The resulting degradation
process is illustrated in Figure 8(a). We use polynomial
regression models of order 1 to 3 to fit the degradation curve.
The R-squared value, a measure of goodness-of-fit, is listed
for each model in the figure. Although the third-order model
provides the best fit, the modeling complexity is high as four
coefficients with unclear patterns need to be determined. Be-
tween the first and second order models, the latter achieves
a better fit with a moderate modeling complexity. As shown
in Figure 8(a), the degradation window has a size of di = 3.
Thus the failure degradation signature, s1,i, modeled by the
second-order polynomial regression, can be presented as

s1,i(t) =
1

d2i
t2 − 1

3di
t− 1, (2)

where i is the drive index and t is the time (in hours) away
from the failure event. When t = 0, si(0) = −1, i.e., the
worst degradation referring to the failure event. A problem
with Equation (2) is that si(di) = −1/3 instead of zero
as shown in Figure 8(a). The preceding model characterizes
the degradation process well when t is small. However, as t
increases, its goodness-of-fit becomes worse. This is mainly
caused by the existence of the second term (i.e., the first-
order term) in the equation. To address this problem, we
compare the performance of three signature models, i.e.,
Equation (2), a first-order polynomial s1,i(t) = 1/dit − 1
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Figure 9. Correlation of disk read/write attributes with failure
degradation.

Group 1 and Group 3 
Environmen- 
tal Attributes  

In Degradation Window In 24-Hour Window In 20-Day Window 
RRER HER RRER HER RRER HER 

POH -0.94 -0.91 -0.19 -0.14 0.10 -0.25 
TC -0.10 -0.02 0.04 0.12 0.02 0.01 

       
                                                             Group 2 
Environmen- 
tal Attributes 

In 16-Day Window 
RRER HER RUE R-RSC 

POH 0.43 0.10 0.95 -0.90 
TC 0.08 0.03 -0.08 0.18 

 
Figure 10. Correlation of environmental attributes with failure degradation.

and a revised second-order polynomial s1,i(t) = 1/d2i t
2−1.

Their goodness-of-fit measured by the root mean squared
error (RMSE) are 0.24, 0.14 and 0.06, respectively. We
can see the revised second-order polynomial solves the
problem of Equation (2) and achieves the lowest RMSE. We
analyze failures of other drives in Group 1. Their degradation
signatures are similar with the centroid and the sizes of the
degradation windows di are relatively small, i.e., no greater
than 12. Therefore, we can model the degradation signature
of disk failures in Group 1 as

s1,i(t) =
1

d2i
t2 − 1. (3)

For Group-2 failures (Figure 7(b)), Figure 8(b) shows
the failure degradation of the centroid, Drive 369. Com-
pared with Group 1, Group 2 has a monotonic degradation
over a long period of time, e.g., di = 377 that is 15.7
days for the centroid. This complies with the observation
in [16] that the continuous accumulation of sector errors
contributes to whole-disk failures. Figure 8(b) also shows
that the first-order polynomial regression model achieves a
high goodness-of-fit. With a large degradation window, the
degradation signature of disk failures in Group 2 is

s2,i(t) =
1

di
t− 1. (4)

Following the same way, we model failure degradation
of Group 3 (Figure 7(c)), as depicted in Figure 8(c). The
second-order polynomial is

s3,i(t) =
1

d2i
t2 − 1

aidi
t− 1. (5)

For the centroid failure from Drive 136, di = 12 and ai =
1. Equation (5) suffers from the same problem as that of
Group 1. We evaluate four models: Equation (5), a first-
order polynomial s3,i(t) = 1/dit−1, a revised second-order
polynomial s3,i(t) = 1/d2i t

2 − 1, and a simplified third-
order polynomial s3,i(t) = 1/d3i t

3 − 1 (because third-order
polynomial shows the best fit in Figure 8(c)). Their RMSEs
are 0.45, 0.35, 0.22 and 0.16, respectively. The simplified
third-order polynomial achieves the lowest RMSE and solves

the problem of Equation (5). For other failed drives in Group
3, their di ranges from 10 to 24. The failure degradation
signature of Group 3 follows

s3,i(t) =
1

d3i
t3 − 1. (6)

To automate the deriving of disk degradation signatures,
we have developed a software tool that processes health
records of each failed drive, starting from the failure record
backward to extract the degradation record set where dis-
tance to the failure record changes monotonically. The value
of di is determined by the size of the degradation record set.
Then our tool tests a set of polynomial regression models
up to order n which is configurable, compares their RMSEs
and selects the one with the smallest RMSE as the failure
degradation signature.

D. Contributing Attributes to Disk Failure Degradation

We are interested in finding attributes that have significant
influence on disk failure degradation. It will enable us to
not only identify the start of a degradation process, but also
develop techniques to alleviate the degradation.

We present our analysis results of the centroid in each
failure group. The findings are also applicable to other
drives in the same group. Figure 9 shows the correlation of
non-constant, disk read/write related attributes with failure
degradation. From the figure, we can see the contribution
of attributes to the degradation process varies among failure
groups. RRER strongly correlates with the failure degrada-
tion in both Groups 1 and 3, while R-RSC and RUE are
the top two attributes for Group 2.

Existing research indicates that temperature and total
operating time affect disk health [22], [7]. Since they are
environmental factors which do not cause disk failures di-
rectly, we analyze their influence on the read/write attributes
that are highly correlated with failure degradation. The two
tables in Figure 10 present the results. In the dataset, POH
of a drive decreases a little abruptly after a long period of
time (The value is reduced by one for every 876 hours).
To reflect the one-hour interval between two consecutive
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Figure 11. Comparison of temporal z-scores of the attribute TC among
the three failure groups. Time 0 corresponds to the time points of disk
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prior to failures. The failed drives in Group 1 display the most significant
difference from good drives in terms of the drives’ temperature.

samples, POH is updated by adding a very small constant
to its values between consecutive samples.

For Groups 1 and 3, POH shows a strong correlation
with both RRER and HER in the degradation windows
which are relatively small. This is reasonable because disk
health deteriorates in the degradation window and POH
decreases monotonically as well. However, when we extend
the analysis to 24 hours and even to include all health records
of the failed drives, the influence of POH diminishes.
For Group 2, the degradation window is relatively large,
the influence of POH on RUE and R-RSC is obvious
following the same reason. In all cases, TC has little
correlation with the read/write attributes. Therefore, POH
and TC are not critical factors that intensify the degradation
of disk failures, but this does not exclude their contribution
to starting or triggering the degradation process as shown in
Section V.

V. IMPLICATIONS AND DISCUSSIONS

The focus of this paper is on the characterization of degra-
dation signatures for different categories of disk failures.
Our proposed approach can discover disk failure types and
model degradation processes based on disk SMART data.
They are generic and can be applied to other storage systems.
The degradation signatures produced by our approach for a
storage system provide insights on the development of disk
failures, which is useful for failure handling and prediction
on that system. In this section, we discuss some applications
of the findings revealed by our approach.

A. Diagnosis and Possible Prevention of Disk Failures

Disk drives in a large-scale storage system may fail
for different reasons. Our proposed failure categorization
approach can identify the types of disk failures, which allow
us to find the breakdowns of different failure types and
develop techniques to prevent or handle them.
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Figure 12. Comparison of temporal z-scores of the attribute POH among
the three failure groups. The failed drives in Group 3 display the most
significant difference from good drives in terms of the total time that drives
are powered on.

Take the data center that we study in this paper as an
example. The majority (59.6%) of disk failures falls into
one category, i.e., Group 1, as listed in Table II. Based on
the properties of those disk failures, our approach identifies
their type as logical failures. This finding enables us to
focus on addressing logical failures so that the reliability of
our storage system can be dramatically enhanced. Logical
failures may be caused by corrupted files and human errors,
which damage disk’s file structure or software. To effectively
address them, we need to diagnose those failures and find
the actual cause(s).

However, disk drives are sealed devices and usually their
diagnosis cannot be done until the failed drives are returned
to the disk manufacturers and gone through a complicated
process. Thus, the diagnosis results are not available at all
or in a timely fashion. We, instead, explore the same disk
SMART dataset as used in our previous analysis to pinpoint
the cause of those logical failures. Specifically, for each disk
health attribute a in the dataset, we analyze the difference
between the values of a among the failed drives in Group 1
and those from the good drives. We quantify this difference
by using z-score [18], which is calculated as

za =
ma,f −ma,g√
σ2
a,f

nf
+

σ2
a,g

ng

, (7)

where ma,f and σa,f are the mean and variance of the
attribute a for failed drives, ma,g and σa,g are the mean and
variance for good drives, nf and ng are the total number of
health samples of failed and good drives respectively. We
extend the calculation of z-score to the 20-day period, that
is starting from the failure records, at each number of hours
before failures, a z-score is computed based on the health
records of drives in a failure group at that time point and
all records of good drives. We have calculated z-cores of
all 12 attributes. Among them, we find that TC is the only
attribute that can distinguish Group 1 from the other two
groups.
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Figure 13. The regression tree model for disk degradation prediction of
Failure Group 1.

Figure 11 shows the temporal z-scores of TC for the three
failure groups. From the figure, we can see that all of the
groups have a negative difference from good drives in TC,
which means the temperature of failed drives is higher than
that of good drives. Moreover, the figure tells us that the
temperature of drives in Group 1 is the highest compared
with the other two groups and this persists throughout the
20-day period (The extend of the difference reduces as time
goes to 480 hours prior to failures). This result implies that
disk temperature is the most important factor causing logical
failure in the data center under study. Therefore, technolo-
gies that can cool down disk drives, such as SuperCaddy [1]
for hard drive cooling, temperature control knobs [22] for
racks and thermal-aware scheduling [6], can be explored to
reduce the number of logical failures, which will in turn
improve the storage system’s reliability.

The temporal z-scores of POH , as shown in Figure 12,
indicate that more backup operations should be performed
for disk drives that are either new or old in order to reduce
the possibility of data loss caused by disk failures in Group
2 and Group 3.

B. Degradation Prediction of Disk Failures

Another important application of the findings from our
study is to predict disk failures. Existing failure prediction
techniques, presented in Section II-C, can only predict
possible occurrence of disk failures of all types.

With the disk degradation signatures produced by our
degradation characterization approach, we can predict not
only disk failures of each type, but also their degradation at
different stages.

We use Regression Tree as an illustrating method for
disk degradation prediction due to its cost-effectiveness and
ease of interpretation. Other prediction methods can also be
applied. Regression tree produces a nonlinear input/output
mapping. In a regression tree model, each test has a quan-
titative target value describing the drive’s degradation status
rather than a class label indicating good or failed. The

Table III
ROOT-MEAN-SQUARE ERRORS OF DISK DEGRADATION PREDICTION

FOR THE THREE FAILURE GROUPS.

Group 1 Group 2 Group 3
RMSE 0.216 0.114 0.129

Error rate 10.8% 5.7% 6.4%

training algorithm splits disk health samples based on one or
multiple health attributes at each node in the tree. In order to
find the best split, the algorithm checks all possible splitting
attributes, as well as all possible values of the attributes
used to split the node. The measure of the best split is the
minimum of the squared error. For each possible split, the
sum of the squared errors with regard to the mean value of
child nodes for the target variable is calculated. We choose
the best split that yields the smallest sum of squared errors
within the child nodes. For a disk health attribute a, the sum
of squared errors within a node is calculated as

Ea =

n∑
i=1

(ya,i −ma)
2, (8)

where n is the number of disk health samples at the node,
ya,i is the value of a in the ith sample, and ma is the mean.

We set the target values of health samples from good
drives to 1, representing the good health status of those
drives. For each health sample from a failed drive, its target
value a real value calculated by Equation (3), (4) or (6)
depending on the type of that disk failure. The size of the
degradation window di is set to 12, 380 and 24 for Groups
1-3 respectively. For each failure type, we mix the health
samples from the failed drives with 10 times number of
samples from good drives, and then randomly place a sample
from the new dataset to either a training set (70% sample
population) or a test set (30% population).

Figure 13 shows the regression tree model created from
the training set for the first failure type. Due to space limit,
the models for the other two failure groups are presented
here. Based on the regression tree models, we find that the
degradation of Group-3 failures can be easily described by
using only one health attribute, i.e., R-RSC, which complies
with our findings in failure categorization that those drives
suffer from read/write head failures and have a large number
of reallocated sectors due to write errors. For Group-1 and
Group-2 failures, POH , TC and RUE are the critical
attributes (with different extents of importance for the two
groups) to characterize disk degradations. These regression
tree models are then used for degradation prediction on
the three test sets respectively. The root-mean-spare errors
(RMSE) are calculated for these predictions. By considering
the range of the target values, we calculate the error rates.
Table III shows the prediction performance. From the table,
we can see the accuracy of degradation prediction is high,
as the error rate is no more than 6.4% for Groups 2 and 3



and a little above 10% for Group 1. Since the focus of this
paper is not on failure prediction, we do not evaluate the
performance of other prediction methods.

VI. CONCLUSIONS AND FUTURE WORK

Previous works on disk drive failures cannot differentiate
prediction or handling of disk failures with different man-
ifestations, due to the fact that the information of failure
types is not available. In this paper, we address these issues
and analyze disk health data collected from a production
data center. We propose novel approaches to categorize
disk failures based on their distinctive manifestations and
properties, and characterize the degradation of disk errors
to failures by deriving the degradation signatures for each
failure category.

While we expect that the techniques presented here apply
to all storage systems, the specific analysis were performed
on a disk dataset collected from a production data center. As
a future work, we plan to extend the analysis and evaluate the
proposed techniques on other storage systems and datasets
and consumer-grade disk drives. We will test more prediction
methods and evaluate their performance for disk degradation
prediction. We also plan to leverage the models of data
center workloads [21] and cloud file systems [20] and the
techniques of proactive failure management [11], [28], [12]
that we have developed to build a middleware software that
will enhance storage reliability. We will open source the tool
developed in this work.
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