
Understanding and Analyzing Interconnect Errors

and Network Congestion on a Large Scale HPC

System

Mohit Kumar♮, Saurabh Gupta†, Tirthak Patel♦, Michael Wilder◦

Weisong Shi♮, Song Fu§, Christian Engelmann‡, and Devesh Tiwari♦

♮Wayne State University †Intel Labs ◦UT Knoxville
§University of North Texas ‡Oak Ridge National Laboratory ♦Northeastern University

Abstract—Today’s High Performance Computing (HPC) sys-
tems are capable of delivering performance in the order of
petaflops due to the fast computing devices, network intercon-
nect, and back-end storage systems. In particular, interconnect
resilience and congestion resolution methods have a major impact
on the overall interconnect and application performance. This
is especially true for scientific applications running multiple
processes on different compute nodes as they rely on fast
network messages to communicate and synchronize frequently.
Unfortunately, the HPC community lacks state-of-practice expe-
rience reports that detail how different interconnect errors and
congestion events occur on large-scale HPC systems. Therefore,
in this paper, we process and analyze interconnect data of the
Titan supercomputer to develop a thorough understanding of
interconnects faults, errors and congestion events. We also study
the interaction between interconnect, errors, network congestion
and application characteristics.

Index Terms—Cray, Gemini, Interconnect, Titan, Errors

I. INTRODUCTION

Fast computing devices, network interconnect, and back-

end storage systems enable modern High Performance Com-

puting (HPC) facilities to deliver performance in the order

of petaflops. HPC systems consist of tens of thousands of

processors which require an advanced interconnect network

to minimize system latency and maximize throughput and

scalability for tightly-coupled parallel scientific applications.

Performance of the interconnect depends on network topol-

ogy, routing methods, flow-control algorithm, resilience mech-

anism, congestion reaction mechanism, and communication

pattern of applications. Current scientific applications run

multiple processes on different compute nodes, and thus,

rely heavily on fast network messages to communicate and

synchronize frequently. Subsequently, interconnect resilience

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

and congestion resolution mechanisms have a major impact

on the overall interconnect and application performance.

Unfortunately, the HPC community lacks state-of-practice

experience reports that detail how different interconnect errors

and congestion events occur on a large-scale HPC system.

Therefore, in this paper, we study the interconnect resilience

and congestion events on Titan, the fastest open-science

supercomputer in the world. We used daemon services on

Titan to collect useful interconnect resilience and congestion

events data for over a year. We process and examine this data

to develop a thorough understanding of interconnect faults,

errors, and congestion events. We also investigate how these

errors affect network congestion at different granularity. Our

analysis addresses the following concerns:

• What are the major interconnect faults and errors?

• What are the key characteristics of different interconnect

errors and network congestion events?

• What is the interaction between interconnect errors, net-

work congestion, and application characteristics?

This study exploits various daemons, such as netwatch and

nlrd that use Memory Mode Register (MMR), for collecting

and logging interconnect related events. However, analysis

of this data presents several challenges. First, the collected

data is highly noisy and hence, needs to be filtered discreetly

for accurate analysis. Second, the log patterns differ for the

same type of events across different logging mechanisms. This

requires the development of unified format types for different

events. Finally, as data is distributed across several nodes and

storage locations, it requires performing multi-source analytics

to ensure consistency and accuracy. The following are the

highlights of our analysis:

• Interconnect Errors: The magnitude of interconnect

errors is very high. These errors are distributed unevenly

across different types of links within and across cabinets.

• Spatial Correlation: Some interconnect errors have a

strong spatial correlation among them. On the other hand,

some errors show counter-intuitive patterns.

• Congestion Events: Network congestion events are

highly frequent and bursty. These events are not homo-

geneously distributed across blades.

• Application Characteristics: Applications and users

causing network congestion and high communication

intensity have unique job characteristics.

In the following sections, we provide an analysis of the

interconnect data and explore the above insights in detail.

Given the lack of field data and analysis on interconnects,

we believe our study addresses an important topic and would

be useful for current and future HPC systems.

II. BACKGROUND

This study primarily studies data from the Titan supercom-

puter; however, it’s insights are applicable to other super-

computers as well. Titan is a 27.1 petaflop supercomputer

consisting of 18,688 compute nodes, each with a 16-Core

AMD Opteron CPU and an NVIDIA Tesla K20x GPU. It has a

total system memory of 710 TB. The supercomputer is divided

into 200 cabinets in 25 rows and 8 columns. Each cabinet

consists of three cages and each cage has eight blades. Each

blade consists of two application specific integrated circuits

(ASICs). Each ASIC has two network interface controllers

(NICs) and a 48-port router. Each NIC within an ASIC is

attached to one node using a HyperTransportTM 3 link [1].

A. Titan Network Architecture

Titan follows a 3D torus topology using the Cray Gemini

Interconnect in which each ASIC is connected to six of its

nearest neighbors in X+, X-, Y+, Y-, Z+, and Z- dimensions.

The X, Y, and Z dimensions track the rows, columns, and

blades, respectively [2]. Nodes that are close physically may

not be close topologically as Cray follows a ”folded torus”

architecture to minimize the maximum cable length. In the X

and Y directions, every other cabinet is directly connected

together with ”loopback” cables. In the Z dimension, the

uppermost chassis is connected to the lowermost chassis.

In a 3D torus design, each ASIC is connected to the network

using 10 torus connections, two each in X+, X-, Z+, Z-, and

one each in Y+ and Y- [1]. Each torus connection has four

links where each link is composed of 3 lanes. Therefore, each

connection consists of 12 lanes, providing 24 lanes in the X

and Z dimensions, and 12 lanes in the Y dimension. A lane

provides bi-directional communication between two ports.

B. Interconnect Resilience

The Gemini Interconnect is tolerant to various types of

failures and errors. It supports 16-bit packet Cycle Redun-

dancy Checks (CDCs) to protect packets at each ASIC it

passes through before reaching the final ASIC, packets on the

receiving ASIC and packets transitioning from the router to

the NIC. Link control Blocks (LCBs) on ASICs implement

a sliding window protocol to provide reliable delivery of

packets. Memory on each ASIC is protected using Error-

Correcting Codes (ECCs). ASICs can withstand lane failures

as long as there is at least one functional lane in a link.

Whenever a lane fails, it is deactivated and the traffic is

balanced over the remaining lanes. In such situations, the

TABLE I: Summary of Netwatch events

Events Count Percent

All 9367031.0 100.0

Mode Exchanges 5065536.0 54.08

RX 2146693.0 22.91

TX 2144221.0 22.89

Link Inactive 7280.0 0.08

Bad Send EOP Error 2548.0 0.03

Send Packet Length Error 366.0 0.004

Routing Table Corruption Error 200.0 0.002

HSN ASIC LCB lane(s) reinit failed Error 187.0 0.002

network operates in a degraded mode. The interconnect tries

to reinstate the failed lane to restore the full bandwidth within

a user-specified time limit.

The lanemask value determines the current state of the lanes

in a link. It is a three-bit number corresponding to the three

lanes in a link. When all three lanes in a link fail and the

lanes are not recovered in the configured number of attempts,

the link is marked as inactive and the link failover protocol

is triggered. When an entire link fails, the Cray Network

Link Recovery Daemon (nlrd) on the System Management

Workstation (SMW) quiesces the network traffic, computes

new routing tables, and assigns them to each ASIC.

C. Network Congestion

A network becomes congested when there is more data

in the network than it can accommodate for. The Hardware

Supervisory System (HSS) software manages the network con-

gestion into the network whenever necessary. Two daemons:

one on the SMW (xtnlrd), and one on the blade controller

(bcbwtd), can handle network congestion by limiting the

aggregate injection bandwidth across all compute nodes to less

than the ejection bandwidth of a single node (also known as

throttling).

D. Dataset

The collected dataset consists of the network logs from

January 2014 to January 2015. The interconnect metadata

is collected by two daemons: xtnetwatch and xtnlrd. The

xtnetwatch daemon logs the system High-Speed Network

(HSN) faults for LCBs and router errors. These logs include

details about the transmitting packets, receiving packets, mode

exchanges, lane mask, link inactive and different interconnect

failures data for particular nodes, along with a timestamp. The

xtnetwatch data is summarized in Table I.

When the percentage of time that traffic tries to enter the

network is stalled more than a high water mark threshold,

the xtnlrd daemon produces log files that include various

collection information. It also collects a list of the top 10 appli-

cations sorted by the aggregate ejection bandwidth whenever

a congestion protection event occurs. Moreover, it estimates

the top 10 most congested nodes sorted by ejection flit counts

whenever a congestion protection event occurs. In both cases,

it includes the job characteristics of the applications running

2

F
ra

c
ti
o
n
 o

f
to

ta
l

 l
a
n
e
 d

e
g
ra

d
e
s

0%

20%

40%

60%

80%

100%

1
la
ne

2
la
ne

s

3
la
ne

s

Number of lanes degraded

F
ra

c
ti
o
n
 o

f
to

ta
l

 l
a
n
e
 d

e
g
ra

d
e
s

0%

10%

20%

30%

40%

50%

60%

00
0
00

1
01

0
01

1
10

0
10

1
11

0
11

1

3−bit Lanemask value

Fig. 1: Frequency distribution of lane degrade events.

on those nodes, including APID, number of nodes, the user

ID, and the application name.

III. ANALYSIS OF INTERCONNECT ERRORS

In this Section, we characterize and analyze different types

of interconnect faults and errors. First, we quantify and char-

acterize lane degrade events. A lane degrade event is triggered

when any one of the three lanes in a link goes down. This has a

negative impact on the application performance and may cause

network congestion. Unfortunately, these events occur with a

very high frequency. We observed that lane degrade events

take place at a high rate of one event per minute. Despite

the high frequency and negative consequences of these events,

the characterization of these events in an HPC system is not

available to researchers, users, and system operators.

Fig. 1 (left) shows the frequency of different types of lane

degrades. We observe that in more than 90% cases only one

lane in a link is degraded. Two lanes are degraded in less

than 10% of the cases. Three lanes are degraded relatively

less frequently (<1%). When all three lanes are in a degraded

state, the link is declared inactive (or failed), and an alternate

route is computed for packets. While link inactive or failed

events happen relatively less frequently, they do occur about

28 times per day on average, and cause more disruption than

single or double lane degrades.

Fig. 1 (right) shows the frequency of lanemask values

for every instance of lane degrade events. We note that a

lanemask bit value of 0 indicates that the corresponding lane

is degraded. For example, a lanemask value of 5 (binary

value 101) indicates that the middle lane is degraded. We

observe that the frequency of lanemask values indicates that

even single lane failures vary significantly. Lanemask value

110 is two times more frequent than lanemask values 101

and 011. Interestingly, for two lane failures, the corner lanes

failing together (010) is more likely than adjacent lanes failing

together (001 and 100).

In the absence of per-lane and per-link based utilization

data, we hypothesize that lane failure location indicates the

utilization and load pattern on links. Given this, our results

indicate that the load among lanes within a link may vary

significantly. This finding should encourage designers to bal-

ance the load more homogeneously and not overload the

rightmost lane. This insight could also be exploited for power

optimization in interconnect links where rightmost lanes need

not to be switched-on at all times.

Next, we plot the relative frequency distribution of lane

degrades over time in Fig. 2. We make two important obser-

vations. First, lane degrades are not limited to a specific time

0%

0.3%

0.6%

0.9%

1.2%

1.5%

2014−01 2014−03 2014−05 2014−07 2014−09 2014−11 2015−01

1 lane

0%

0.3%

0.6%

0.9%

1.2%

1.5%

2014−01 2014−03 2014−05 2014−07 2014−09 2014−11 2015−01

2 lanes

0%

10%

20%

30%

40%

50%

2014−01 2014−03 2014−05 2014−07 2014−09 2014−11 2015−01

link failed/inactive

Fig. 2: Frequency of different types of lane degrades over time.

M
o
d
e
 F

re
q
u
e
n
c
y

2014−01 2014−07 2015−01
Time

0%

0.2%

0.4%

0.6%

0.8%

1%

1 3 5 7 9

F
re

q
u
e
n
c
y

0%

20%

40%

60%

80%

Number of mode exchange
attempts

Fig. 3: Daily frequency of mode exchanges to repair lane

degrades (left) and number of mode exchange attempts before

successful recovery of the lane (right).

period, instead they happen continuously over time. Second,

one may expect that the high single-lane degrade events will

lead to an increase in the count of two-lane degrades and link

failures. However, our field data suggests that this hypothesis is

not necessarily true. For example, peaks in two-lane degrades

are not necessarily during the high intensity of one-lane

degrades. Later, we also investigate deeper to understand the

correlation between network congestion and the period of high

intensity of lane degrades.

When a lane goes down, the network resiliency mechanism

attempts to bring the lane back up via multiple repair events,

called mode exchanges. Fig. 3 shows the frequency of mode

exchange events over time and the number of mode exchange

attempts before a lane is brought up successfully. As expected,

the frequency of mode exchange events over time is similar

to that of lane degrades. System operators of Titan have set

the threshold for the number of attempts allowed to restart

a lane to 256. Interestingly, our result shows that more than

85% of the lanes can be restored in three or fewer attempts.

Furthermore, more than 99% of the lanes can be restored

within 10 attempts.

Next, we attempt to understand how lane degrade and

link inactive/failed events are distributed across the system

spatially. Fig. 4 shows the lane degrade events for links in

and across cabinets. First, we observe that several hot spots

exist for lane degrade events in the system. We conduct

3

 Per−cabinet distribution of lane degrade events count

Cabinets Rows

C
a
b
in

e
ts

 C
o
lu

m
n
s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

10000

20000

30000

40000

50000

0 5 10 15 20

Cabinets Rows

0
1
2
3
4
5
6
7

C
a
b
in

e
ts

 C
o
lu

m
n
s

Across-cabinet distribution of lane degrade events count

40000

80000

120000

160000

200000

240000

Fig. 4: Spatial distribution of lane degrades inside and across

cabinets. Due to the folded 3D-torus design, cross-cabinet

links connect to alternate cabinets.

 Per−cabinet distribution of link inactive errors count

Cabinets Rows

C
a
b
in

e
ts

 C
o
lu

m
n
s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

10

20

30

40

50

60

70

0 5 10 15 20

Cabinets Rows

0
1
2
3
4
5
6
7

C
a
b
in

e
ts

 C
o
lu

m
n
s

Across-cabinet distribution of link inactive errors count

50

100

150

200

250

300

350

Fig. 5: Spatial distribution of link inactive errors inside and

across cabinets. Due to the folded 3D-torus design, cross-

cabinet links connect to alternate cabinets.

the Kolmogorov-Smirnov test (K-S test) to test whether our

sample of spatial distribution of lane degrades per cabinet has

a uniform distribution. The test results show D-statistic = 1,

p-value = 2.2e-16. For our sample size of 200 cabinets, the

critical D-value for a 0.05 level of significance is 0.0960, and

therefore the null hypothesis (i.e., the sample is taken from

a uniform distribution) can be rejected. This shows that the

spatial distribution of lane degrades per cabinet is significantly

different than uniform. This behavior can be a combination of

factors, although accurate root-cause analysis is not possible.

External transient effects, overloading of links, uneven usage,

and complex interaction between applications and interconnect

network contribute toward such a behavior.

Interestingly, we note that the hot spots for links contained

within the cabinet are not the same as the hot spots for links

crossing cabinet boundaries. Second, when we compare lane

degrade hot spots with the hot spots of link inactive errors

(Fig. 4 vs. Fig. 5), we find that they do not necessarily

match. This also explains why their high intensity periods do

not match (Fig. 2). This indicates that it is not possible to

determine the location of link inactive/failed errors by only

observing the time and location of lane degrade events.

Next, we investigate other interconnect errors: Bad Send

EOP error, Send Packet Length error, Routing Table Corrup-

tion error, and HSN ASIC LCB lane reinit failed error.

Bad Send EOP error: Each packet in Gemini Interconnect

has a single phit end-of-packet that contains the last phit of a

packet, and the status bits for error handling [1]. If a packet

is corrupted, the end-of-packet is marked as bad and will be

discarded at its destination.

Send Packet Length error: Send Packet Length error

occurs when the length of a packet does not match with the

expected length value at destination.

Routing Table Corruption error: A routing table is a data

table stored in a router that contains the information necessary

to forward a packet along the best path toward its destination.

When a packet is received, a network device examines the

packet and matches it to the routing table entry providing the

match for its destination. The table then helps in guiding the

packet to the next hop on its route across the network. A

routing table corruption results in link failure and eventually

causes network congestion.

HSN ASIC LCB lanes reinit failed error: This error

occurs when all the 256 attempts to bring up a downgraded

lane are exhausted.

All these errors also show hot spots in and across cabinets,

although we found that the magnitude of these errors is

relatively small. For example, Routing Table Corruption error

occurs only 200 times while HSN ASIC LCB lane(s) reinit

failed error happens only 187 times throughout the entire ob-

servation period. On deeper investigation, we found that most

of these errors are highly correlated with link inactive/failed

errors. Table II shows the correlation of these interconnect

errors with link inactive errors. This indicates that link inactive

errors can be used to predict other interconnect errors. We also

found that more than 80% of link failed errors lead to Bad

Send EOP, Send Packet Length, and Routing Table Corruption

errors. We also found that HSN ASIC LCB lane(s) reinit failed

error has a weak correlation with link failed errors. This can

be explained by our previous findings where it showed that

lane degrades and link failed errors are not correlated and

ASIC errors are an outcome of failed repair attempts of lane

degrades.

IV. ANALYSIS OF NETWORK CONGESTION

Understanding network congestion in conjunction with in-

terconnect errors is important since it is likely that one may

cause the other. A daemon on the compute cluster monitors

the percentage of time that network tiles are stalled due to

increased traffic or other reasons. When these values cross a

4

TABLE II: Correlation factor between link inactive and other

interconnect errors.

Errors Link Inactive

Bad Send EOP Error 0.99

Send Packet Length Error 0.96

Routing Table Corruption Error 0.84

ASIC Error 0.04

C
o
u
n
t

0
6
0
0

1
2
0
0

2014−01 2014−07 2015−01
Time

Throttle events

F
ra

c
ti
o
n

0
 %

8
 %

1
6
 %

2014−01 2014−07 2015−01
Time

Throttle events

Fig. 6: Count of network throttle events over time (left), and

relative frequency of throttle events over time (right).

set threshold, the daemon communicates this data to the xtnlrd

daemon running on the SMW. After the congestion subsides,

the daemon again passes this information to the SMW.

In this section, we first attempt to understand the character-

istics of network throttle events. Fig. 6 (left) plots the network

throttle events over time. We note that a large fraction of

throttle events occur in a short period of time. We also note

that each throttle event is typically 20-30 seconds, but it can

also last up to a few minutes depending on the magnitude of

the congestion observed. As shown in Fig. 6 (right), network

throttle events can be quite bursty. An application that is caus-

ing network congestion can induce multiple throttles in a very

short amount of time (< 20 mins). Fig. 7 shows the network

throttle events over time, counting only one event at maximum

per hour. We experimented with multiple time windows and

found that a 1-hour time window removes the skewness.

However, this type of time window filtering cannot completely

remove the skewness since a long-running communication-

intensive application may cause multiple throttle events over

multiple hours. For example, Fig. 8 shows that without 1-

hour filtering the mean time between throttle events is less

then 1 minute, with 90% of the events occurring within the

first hour of the preceding throttle event. Even when we

apply 1-hour filtering, the meantime between throttle events

is approximately 22 hours. Therefore, to better understand

the characteristics of network throttle events we analyze our

subsequent results without any time window based filtering

and with 1-hour time window based filtering.

Naturally, one may hypothesize that the lane de-

grades/failures may induce the network throttle events or vice

versa. Therefore, we investigate the possibility of temporal cor-

relation between the time series of throttle events and intercon-

nect errors, in particular lane degrades and link failed events.

We found the Spearman correlation coefficient to be very weak

(0.03). This result indicates that lane degrades/failures alone

cannot be used to predict throttling events.

Next, we plot the heatmap of compute blades that were

throttled due to these network throttle events. Fig. 9 shows

C
ou

nt
0

10
20

2014-01 2014-07 2015-01
Time

Throttle events
 filter one hour

Fr
ac

tio
n

0
%

2
%

4
%

6
%

2014-01 2014-07 2015-01
Time

Throttle events
 filter one hour

Fig. 7: Network throttle events with 1-hour filtering (left), and

relative frequency of throttle events with 1-hour filter (right).

F
ra

c
ti
o
n

0%

20%

40%

60%

80%

100%

0 7 14 21 28
MTB throttle events in hours

0.00033

F
ra

c
ti
o
n

0%

10%

20%

30%

40%

50%

60%

0 7 14 21 28
MTB throttle events in hours

21.924

Fig. 8: Mean time between network throttling events without

filter (left) and with 1-hr filter (right).

Cabinet distribution of blades throttled events count

Cabinets Rows

C
a
b
in

e
ts

 C
o
lu

m
n
s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1200

1300

1400

1500

1600

1700

1800

Fig. 9: Spatial distribution of throttled blades without filter.

the heatmap without any filtering and Fig. 10 shows the

same heatmap with 1-hour filtering. As expected, we observe

that not all blades are throttled equally over the period of

observation. Interestingly, hot spots remain similar even after

applying filter. We again conduct the K-S test to test whether

our sample of the spatial distribution of blades throttle events

per cabinet without and with one hour filter has a uniform

distribution. The test results show D-statistic = 1, p-value =

2.2e-16 in both cases. For our sample size of 200 cabinets,

the critical D-value for a 0.05 level of significance is 0.0960,

and therefore the null hypothesis (i.e., the sample is taken

from a uniform distribution) can be rejected. This shows that

the spatial distribution of blade throttled events per cabinet

is significantly different than uniform. As a next step in

our analysis, we want to investigate the role that congestion

information at the node and application levels can play in

improving our understanding of congestion behavior at the

 Cabinet distribution of blades throttled events count − filter one hour

Cabinets Rows

C
a
b
in

e
ts

 C
o
lu

m
n
s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1200

1300

1400

1500

1600

1700

Fig. 10: Spatial distribution of throttled blades with 1-hr filter.

5

Cabinet distribution of top 10 congested nodes count

Cabinets Rows

C
a

b
in

e
ts

 C
o

lu
m

n
s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1000

2000

3000

4000

5000

6000

Fig. 11: Spatial distribution of congested nodes without filter.

Note that the top 10 congested nodes are calculated for each

throttle event. This plot is aggregated over all throttle events.

Cabinet distribution of top 10 congested nodes count − filter one hour

Cabinets Rows

C
a

b
in

e
ts

 C
o

lu
m

n
s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

2

4

6

8

10

12

Fig. 12: Spatial distribution of congested nodes with 1-hr filter.

blade-level.

Node-level congestion data provides information about the

nodes which are heavily congested at the time of throttling.

Fig. 11 and 12 show the spatial distribution of congested nodes

in the Titan supercomputer for the no filter and 1-hour filter

cases, respectively. We make two observations. First, some

nodes are much more congested than others as shown by

the uneven distribution of congested nodes. This is because

the applications creating significant network traffic may be

repeatedly getting scheduled on the same nodes. Second,

applying 1-hour filtering shows that the spatial distribution

evens out compared to Fig. 11. However, interestingly it

continues to show uneven distribution; skewed toward the left

part of the supercomputer. This indicates that communication-

intensive applications are not scheduled evenly across the

cabinet. Applications scheduled on the left part are likely to

see more performance impact due to network congestion.

We also calculated the correlation coefficient between

the spatial distribution of congested nodes and lane de-

grades/failures. The Spearman correlation coefficient was close

to zero (0.01); the nodes with high ejection bandwidth are

not strongly correlated with the interconnect errors. This

result was expected since we found the correlation between

throttle events and interconnect errors were not high. However,

surprisingly, there is a low correlation between the heatmap

of congested nodes and throttled blades (Spearman correlation

0.01). This is because congested node information is collected

after the throttle command has been issued, so it may not

capture the nodes which actually caused the congestion and in-

duced throttling. This also indicates that the aggregate network

traffic at the blade can be potentially different than individual

node-level traffic. Future network performance tools should

focus on building more accurate and fine-grained tools that

can detect the root cause in real time.

Next, we analyze the characteristics of applications running

on these congested nodes. First, we plot the frequency of

C
D

F

60%

70%

80%

90%

100%

0 100 200
Number of unique applications

C
D

F

40%

60%

80%

100%

0 40 80
Number of unique applications

Fig. 13: Distribution of unique applications over congested

node events without filter (left), and with 1-hr filter (right).

A 54.48%

B 6.67%

C 5.03%

D 2.15%

E 2.05%

Others 29.63%

A 27.34%

F 7.88%
B 5.91%

G 5.42%

H 2.96%

Others 50.49%

Fig. 14: Fraction of top 5 congestion-causing and other appli-

cations without filter (left), and with 1-hour filter (right).

4000 512 Other

App : A

0%

25%

50%

75%

100%

2 16 Other

App : B

0%

25%

50%

75%

100%

45 1200 Other

App : C

0%

25%

50%

75%

100%

1024 Other

App : D

0%

25%

50%

75%

100%

216 4096 Other

App : E

0%

25%

50%

75%

100%

128 Other

App : F

0%

25%

50%

75%

100%

400 320 Other

App : G

0%

25%

50%

75%

100%

5120 1 Other

App : H

0%

25%

50%

75%

100%

64 Other

App : I

0%

25%

50%

75%

100%

15 Other

App : J

0%

25%

50%

75%

100%

Fig. 15: Job size distribution of top 10 congestion-causing

applications.

unique applications that were running on congested nodes

when the throttling events occurred. Fig. 13 shows that only

a few applications tend to dominate. We refer to these appli-

cations as congestion-causing applications in our discussion;

however, we note that these applications may not be nec-

essarily responsible for increasing the congestion that even-

tually resulted in the network throttling event. For example,

5 applications alone appear in more than 70% of congested

node reporting events (Fig 14), while more than 250 unique

applications are logged in total across all congested node

reporting events. Interestingly, when 1-hour filtering is applied,

the number of unique applications decreases significantly. The

top 5 most frequently occurring applications appear only in

approx. 50% of congested node reporting events (Fig 14).

Total number of unique applications go down from 250 to

90. Reduction in the number of unique applications clearly

indicates that when multiple throttle events occur in the small

time period, they are not because of the same application. In

fact, it turns out that within a 1-hour time window, multiple

unique applications can cause nodes to be highly congested.

We also see the same results on a per-user basis with and

without filtering. These results confirm that applications and

users can work as proxies for each other.

Next, we analyze the job size of these applications. We limit

our discussion to the top 10 most frequent applications. As

application names can be business-sensitive, we identify them

with English letters. Fig. 15 shows the job size distribution of

top 10 applications that appear most frequently on congested

6

C
D

F

40%

60%

80%

100%

0 100 200
Number of unique applications

C
D

F

20%

40%

60%

80%

100%

0 20 40 60
Number of unique applications

Fig. 16: Distribution of unique applications over top

bandwidth-heavy application events without filter (left), and

with 1-hr filter (right).

nodes. We make several interesting observations. First, most

of the applications tend to run on the same number of nodes

every time they appear in the congested node reporting events.

For example, applications A, B, and C run on 400, 2, and 45

nodes, respectively, for more than 90% of the time that they

appear in the congested node reporting events.

Moreover, counter-intuitively, the job sizes of these appli-

cations are relatively small. For instance, 7 out of the 10

applications most frequently have a job size of less than

512 nodes. In fact, 5 applications have the most frequent

job size of less than 128 nodes. In such cases, the many-to-

few communication pattern can be responsible for congesting

the nodes (high ejection bandwidth). Therefore, only focusing

on large scale jobs for identifying culprit applications is an

ineffective strategy. Our results show that node congestion is

caused by small-scale applications in real-world scenarios.

Next, we want to extend our understanding of

communication-intensive applications and their job size

distributions. On every throttle event, the nlrd daemon

collects the bandwidth data of all applications running on the

system and lists the top 10 of these application sorted by

their network bandwidth consumption (total flits/s aggregated

over all nodes). Note that these bandwidth-heavy applications

are different than the ones running on the top 10 heavily

congested nodes.

Fig. 16 shows that a few applications tend to be heavy-

hitters. For example, 5 applications alone appear in approxi-

mately 57% of the top bandwidth application reporting events

(Fig. 17), while more than 200 unique applications show up

in total across all top bandwidth application reporting events.

Interestingly, when 1-hour filtering is applied, the number

of unique applications decreases significantly. However, the

top 5 most frequently occurring applications constitute 50%

of top bandwidth application reporting events (Fig. 17). The

total number of unique applications reduces dramatically to

60. These results indicate that focusing on the top 5-10

applications can cover 50% of the communication-intensive

applications space. We also observe the same results on a

per-user basis with and without filtering. These results again

confirm that application and user can work as a proxy for each

other, even for top bandwidth application reporting events.

Next, we want to answer two questions: (1) are these top

bandwidth applications the same as the top congestion-causing

applications running on congested nodes?, and (2) is the job

size distribution of the top bandwidth applications different

A 28.01%

B 8.99%C 8.25%

D 7.2%

E 4.77%

Others 42.79%

F 16.71%

A 10.57%B 7.37%

G 6.88%

H 6.63%

Others 51.84%

Fig. 17: Fraction of top 5 bandwidth-heavy and other applica-

tions without filter (left), and with 1-hr filter (right).

4000 512 Other

App : A

0%

25%

50%

75%

100%

32 128 Other

App : K

0%

25%

50%

75%

100%

4245 1200 Other

App : L

0%

25%

50%

75%

100%

1024 128 Other

App : B

0%

25%

50%

75%

100%

216 125 Other

App : M

0%

25%

50%

75%

100%

128 256 Other

App : N

0%

25%

50%

75%

100%

128 512 Other

App : D

0%

25%

50%

75%

100%

5120 2568 Other

App : O

0%

25%

50%

75%

100%

64 Other

App : P

0%

25%

50%

75%

100%

15 Other

App : Q

0%

25%

50%

75%

100%

Fig. 18: Job size distribution of top 10 bandwidth-heavy

applications.

than that of the top congestion-causing applications?

Fig. 18 shows the job size distribution and anonymized

application names of the top 10 bandwidth-heavy applications

that appear most frequently in the top bandwidth application

reporting events. We observe that most of the applications tend

to run on the same number of nodes every time they appear

in the top bandwidth application reporting events. However,

interestingly, these applications are not the same as the top

congestion-causing applications running on congested nodes.

Only three applications are common between these two sets

(Fig. 18 vs. Fig. 15). They are situated at positions 1, 4, and 7,

in the figures. This indicates that bandwidth-heavy applications

are not necessarily the ones that cause congestion or run

on congested nodes. These bandwidth-heavy applications are

producing a significant amount of traffic, and are likely to be

spread over a large number of nodes or have a many-to-many

communication pattern. We notice that only 3 applications

have a job size larger than 4000 nodes, indicating that even

bandwidth-heavy applications are not necessarily large in size.

The communication pattern seems to be playing a critical role.

As an example, App K which runs mostly on 32 and 128 nodes

appears second in the bandwidth-heavy applications list, but

does not appear in the congestion-heavy applications list. This

could be because this particular application does not inten-

sively exhibit a many-to-one communication pattern. Many-

to-few and many-to-one communication patterns can result in

high congestion due to the concentration of messages over

a few nodes. In summary, bandwidth-heavy applications’ job

sizes are similar to that of congestion-causing applications’,

but there is no significant overlap between these two sets and

they may differ in their communication patterns.

V. RELATED WORK

Various HPC interconnect networks are proposed for im-

proving HPC systems performance - QsNET [3], SeaStar [4],

Tofu [5], Blue Gene/Q [6], Aries [7], TH Express-2 [8] and

others - which use different types of topology like k-Ary n-

Cube, fat-tree/Clos, and dragonfly. Interconnect networks have

7

been a vital part of computer systems. Network resources

have been a major performance bottleneck in HPC systems

performance. Several studies are performed to understand [9],

[10], [11], [12], [13], [14], [15], [16], [17] and improve [18],

[19], [20], [21], [22], [23], [24] interconnect failures in HPC

systems.

Titan is the successor of Cray X-series which use the

XK7 system and 3D Gemini interconnect. The Gemini system

interconnect architecture is explained in [1] and evaluated in

[25], [2] using micro-benchmarks. Cray’s latest XC series

is implemented using the Aries interconnect which supports

better bandwidth, latency, message rate and scalability [26].

Our work differs from all these studies and evaluations as none

of these works evaluate how different interconnect errors and

congestion events occur on a large-scale HPC system. Our

field data and analysis is unique and provides useful insights

that can be used by users, system architects, and operators to

improve the overall efficiency of HPC systems.

VI. CONCLUSION

Overall, we discussed many interesting insights derived

from our analysis. Interconnect faults like lane degrades

are continuous and related to heterogeneous load imbalance

among lanes. Link inactive errors do not have a temporal or

a spatial correlation with lane degrades, while interconnect

errors have a high correlation with link inactive/failed errors.

We showed that these characteristics can be exploited for

different purposes. We also demonstrated that multiple

applications can cause multiple congestion events within a

short period of time. Moreover, these applications can be,

surprisingly, small in size, not scheduled evenly across the

cabinet and have a many-to-few communication pattern. Our

analysis can be used in identifying such applications and users

to minimize the performance impact on other applications.

Acknowledgment We thank reviewers and Elmootazbellah Elnozahy
for their constructive feedback. The work was supported by in part
through NSF Grants (#1563728, #1561216 and #1563750), North-
eastern University and by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, program
manager Lucy Nowell. This work also used in part the resources of
the Oak Ridge Leadership Computing Facility, located in the National
Center for Computational Sciences at ORNL, which is managed by
UT Battelle, LLC for the U.S. DOE under contract number DE-
AC05-00OR22725.

REFERENCES

[1] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th

Annual Symposium on. IEEE, 2010, pp. 83–87.
[2] M. Ezell, “Understanding the impact of interconnect failures on system

operation,” in Proceedings of Cray User Group Conference (CUG 2013),
2013.

[3] F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll, “Performance
evaluation of the quadrics interconnection network,” Cluster Computing,
vol. 6, no. 2, pp. 125–142, 2003.

[4] R. Brightwell, K. T. Pedretti, K. D. Underwood, and T. Hudson,
“Seastar interconnect: Balanced bandwidth for scalable performance,”
IEEE Micro, vol. 26, no. 3, pp. 41–57, 2006.

[5] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6d mesh/torus
interconnect for exascale computers,” Computer, vol. 42, no. 11, pp.
0036–41, 2009.

[6] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker, “The ibm blue gene/q interconnection network and mes-
sage unit,” in High Performance Computing, Networking, Storage and

Analysis (SC), 2011 International Conference for. IEEE, 2011, pp.
1–10.

[7] G. Faanes, A. Bataineh, D. Roweth, E. Froese, B. Alverson, T. Johnson,
J. Kopnick, M. Higgins, J. Reinhard et al., “Cray cascade: a scalable
hpc system based on a dragonfly network,” in Proceedings of the

International Conference on High Performance Computing, Networking,

Storage and Analysis. IEEE Computer Society Press, 2012, p. 103.
[8] Z. Pang, M. Xie, J. Zhang, Y. Zheng, G. Wang, D. Dong, and G. Suo,

“The th express high performance interconnect networks,” Frontiers of

Computer Science, vol. 8, no. 3, pp. 357–366, 2014.
[9] S. L. Scott et al., “The cray t3e network: adaptive routing in a high

performance 3d torus,” 1996.
[10] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Hei-

delberger, S. Singh, B. Steinmacher-Burow, T. Takken, and P. Vranas,
“Design and analysis of the bluegene/l torus interconnection network,”
IBM Research Report RC23025 (W0312-022), Tech. Rep., 2003.

[11] W. J. Dally and B. P. Towles, Principles and practices of interconnection

networks. Elsevier, 2004.
[12] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-

ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken
et al., “Blue gene/l torus interconnection network,” IBM Journal of

Research and Development, vol. 49, no. 2.3, pp. 265–276, 2005.
[13] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks: an

engineering approach. Morgan Kaufmann, 2003.
[14] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures

in data centers: measurement, analysis, and implications,” in ACM

SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350–361.

[15] D. Abts and B. Felderman, “A guided tour of data-center networking,”
Communications of the ACM, vol. 55, no. 6, pp. 44–51, 2012.

[16] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study of
5,000,000 hpc application runs,” in Dependable Systems and Networks

(DSN), 2015 45th Annual IEEE/IFIP International Conference on.
IEEE, 2015, pp. 25–36.

[17] S. Jha, V. Formicola, Z. Kalbarczyk, C. Di Martino, W. T. Kramer,
and R. K. Iyer, “Analysis of gemini interconnect recovery mechanisms:
Methods and observations,” Cray User Group, pp. 8–12, 2016.

[18] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” IEEE transactions on Computers, vol. 100, no. 10,
pp. 892–901, 1985.

[19] W. J. Dally, “Performance analysis of k-ary n-cube interconnection
networks,” IEEE transactions on Computers, vol. 39, no. 6, pp. 775–785,
1990.

[20] ——, “Express cubes: Improving the performance of k-ary n-cube
interconnection networks,” IEEE Transactions on Computers, vol. 40,
no. 9, pp. 1016–1023, 1991.

[21] D. W. Mackenthun, “Method and apparatus for automatically routing
around faults within an interconnect system,” Sep. 12 1995, uS Patent
5,450,578.

[22] Y. Inoguchi and S. Horiguchi, “Shifted recursive torus interconnection
for high performance computing,” in High Performance Computing on

the Information Superhighway, 1997. HPC Asia’97. IEEE, 1997, pp.
61–66.

[23] V. Puente, R. Beivide, J. A. Gregorio, J. Prellezo, J. Duato, and
C. Izu, “Adaptive bubble router: a design to improve performance
in torus networks,” in Parallel Processing, 1999. Proceedings. 1999

International Conference on. IEEE, 1999, pp. 58–67.
[24] J. Domke, T. Hoefler, and S. Matsuoka, “Fail-in-place network design:

interaction between topology, routing algorithm and failures,” in High

Performance Computing, Networking, Storage and Analysis, SC14:

International Conference for. IEEE, 2014, pp. 597–608.
[25] A. Vishnu, M. ten Bruggencate, and R. Olson, “Evaluating the potential

of cray gemini interconnect for pgas communication runtime systems,”
in High Performance Interconnects (HOTI), 2011 IEEE 19th Annual

Symposium on. IEEE, 2011, pp. 70–77.
[26] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series

network,” Cray Inc., White Paper WP-Aries01-1112, 2012.

8

