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a b s t r a c t

Today’s High Performance Computing (HPC) systems contain thousand of nodes which work together
to provide performance in the order of petaflops. The performance of these systems depends on
various components like processors, memory, and interconnect. Among all, interconnect plays a major
role as it glues together all the hardware components in an HPC system. A slow interconnect can
impact a scientific application running on multiple processes severely as they rely on fast network
messages to communicate and synchronize frequently. Unfortunately, the HPC community lacks a
study that explores different interconnect errors, congestion events and applications characteristics on
a large-scale HPC system. In our previous work, we process and analyze interconnect data of the Titan
supercomputer to develop a thorough understanding of interconnects faults, errors, and congestion
events. In this work, we first show how congestion events can impact application performance.
We then investigate application characteristics interaction with interconnect errors and network
congestion to predict applications encountering congestion with more than 90% accuracy.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

High Performance Computing (HPC) systems consist of tens
f thousand nodes that have multiple Central Processing Unit
CPU) and Graphical Processing Unit (GPU), shared or distributed
emory, and back-end storage. All these components utilize an
dvanced interconnect network to communicate with each other
or running scientific parallel applications at petaflops speed. An
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advanced interconnect supports minimum system latency and
maximum throughput and scalability.

A scientific parallel application runs on multiple processors
on different nodes that communicate continuously to share data
with each other. A slow speed interconnect can significantly
increase an application execution time as it can cause a pro-
cessor to sit idle and wait for data from other processors. A
low resilient interconnect can cause an application to crash due
to interconnect errors. Therefore, interconnect can play a major
role in application performance. Performance of an interconnect
depends on network topology, routing methods, flow-control al-
gorithm, resilience mechanism, congestion reaction mechanism,
and communication pattern of applications.

Unfortunately, the HPC community lacks a study that details
different interconnect errors, congestion events, and applications
characteristics on a large-scale HPC system. In previous work [31],
we study the interconnect resilience, congestion events and ap-
plication characteristics on Titan, one of the fastest open-science
supercomputers in the world. We used daemon services on Ti-
tan to collect useful interconnect resilience, congestion events
and applications characteristics data for over a year. We process
and examine this data to develop a thorough understanding of
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nterconnect faults, errors, congestion events, and application
haracteristics. In this work, we further explore the application
haracteristics and their interaction with interconnect errors and
etwork congestion events. Our analysis addresses the following
oncerns:

• How network congestion impacts application performance?
• What are the major interconnect faults and errors?
• What are the key characteristics of different interconnect

errors and net-work congestion events?
• What is the interaction between interconnect errors,

network congestion, and application characteristics?
• What are the application characteristics for congestion

causing and bandwidth-heavy applications?
• Can network and application characteristics predict the

applications encountering network congestion events?

This study exploits various daemons, such as netwatch and
etwork Link Recovery Daemon (nlrd) that use Memory Mode
egister (MMR), for collecting and logging interconnect related
vents. However, analysis of this data presents several challenges.
irst, the collected data is highly noisy and hence, needs to be
iltered discreetly for accurate analysis. The noise is in form of
edundant, missing, and disorder values. Second, the log patterns
iffer for the same type of events across different logging mech-
nisms as different daemons have different logging formats. This
equires the development of unified format types for different
vents. Finally, as data is distributed across several nodes and
torage locations, it requires performing multi-source analytics to
nsure consistency and accuracy. The following are the highlights
f our analysis:

• Application Performance: We compare multiple execu-
tions of applications with and without network congestion.
Network congestion results in high application execution
time.

• Interconnect Errors: The magnitude of interconnect errors
is very high. These errors are distributed unevenly across
different types of links within and across cabinets.

• Spatial Correlation: Some interconnect errors have a strong
spatial correlation among them. On the other hand, some
errors show counter-intuitive patterns.

• Congestion Events: Network congestion events are highly
frequent and bursty. These events are not homogeneously
distributed across blades.

• Application Characteristics: We analyze application char-
acteristics of the top five bandwidth applications. Same
application runs show different processes per node count,
CPUs count, execution time and user id.

• Throttle Prediction: We extract network and application
events which has a relation to network congestion or throt-
tling. Using these events, we predict whether an application
will encounter network congestion events with more than
90% accuracy.

In the following sections, we provide our previous and new
nalysis of the interconnect, network congestion and application
ata to explore the above and previous insights in detail. Given
he lack of field data and analysis on interconnects, we believe
ur study addresses an important topic and would be useful for
urrent and future HPC systems.

. Background

This study primarily studies data from the Titan supercom-
uter; however, its insights are applicable to other supercomput-
rs as well. Titan is a 27.1 petaflop supercomputer consisting of
30
Fig. 1. ASIC block diagram.

Fig. 2. Practical folded torus-implementation of 3D-torus network topology.

Fig. 3. Link connections in X, Y, and Z direction.

18,688 compute nodes, each with a 16-Core AMD Opteron CPU
and an NVIDIA Tesla K20x GPU. It has a total system memory
of 710 TB. The supercomputer is divided into 200 cabinets in 25
rows and 8 columns. Each cabinet consists of three cages and
each cage has eight blades. Each blade consists of two application
specific integrated circuits (ASICs). Each ASIC has two network
interface controllers (NICs) and a 48-port router. Each NIC within
an ASIC is attached to one node using a HyperTransportTM 3
link [6].

The block diagram of an ASIC is shown in Fig. 1. The Netlink
block connects the two NICs to the Router. The Netlink distributes
the traffic and handles changes in the bandwidth between the
two NICs and the Router [6]. The supervisor block connects ASIC
to an embedded control processor (L0) which is connected to
the System Management Workstation (SMW) through the Cray
Hardware Supervisory System (HSS) network.

2.1. Titan network architecture

Titan follows a 3D torus topology using the Cray Gemini In-
terconnect in which each ASIC is connected to six of its nearest
neighbors in X+, X-, Y+, Y-, Z+, and Z- dimensions. The X, Y,
and Z dimensions track the rows, columns, and blades, respec-
tively [19]. Nodes that are close physically may not be close
topologically as Cray follows a ‘‘folded torus" architecture to
minimize the maximum cable length (as shown in Fig. 2). In the
X and Y directions, every other cabinet is directly connected to-
gether with ‘‘loopback’’ cables. In the Z dimension, the uppermost
chassis is connected to the lowermost chassis (Fig. 3).

In a 3D torus design, each ASIC is connected to the network
using 10 torus connections, two each in X+, X-, Z+, Z-, and one
each in Y+ and Y- [6]. Each torus connection has four links where
each link is composed of 3 lanes. Therefore, each connection
consists of 12 lanes, providing 24 lanes in the X and Z dimensions,
and 12 lanes in the Y dimension. A lane provides bi-directional
communication between two ports.
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able 1
ummary of netwatch events.
Events Count Percent

All 9367031.0 100.0
Mode exchanges 5065536.0 54.08
RX 2146693.0 22.91
TX 2144221.0 22.89
Link inactive 7280.0 0.08
Bad Send EOP error 2548.0 0.03
Send Packet Length error 366.0 0.004
Routing Table Corruption error 200.0 0.002
HSN ASIC LCB lane(s) reinit failed error 187.0 0.002

2.2. Interconnect resilience

The Gemini Interconnect is tolerant to various types of fail-
res and errors [19]. It supports 16-bit packet Cycle Redundancy
hecks (CDCs) to protect packets at each ASIC it passes through
efore reaching the final ASIC, packets on the receiving ASIC and
ackets transitioning from the router to the NIC. Link control
locks (LCBs) on ASICs implement a sliding window protocol to
rovide reliable delivery of packets. Memory on each ASIC is
rotected using Error-Correcting Codes (ECCs). ASICs can with-
tand lane failures as long as there is at least one functional
ane in a link. Whenever a lane fails, it is deactivated and the
raffic is balanced over the remaining lanes. In such situations,
he network operates in a degraded mode. The interconnect tries
o reinstate the failed lane to restore the full bandwidth within a
ser-specified time limit.
The lanemask value determines the current state of the lanes

n a link. It is a three-bit number corresponding to the three lanes
n a link. A lanemask value of 7 means that all lanes are working.
lanemask value of 3, 5 and 6 means that one lane has failed.
lanemask value of 1, 2 or 4 means that two lanes have failed.
lanemask value of 0 means that all lanes have failed. When all

hree lanes in a link fail and the lanes are not recovered in the
onfigured number of attempts, the link is marked as inactive and
he link failover or warm swap protocol (Replace or remove faulty
omponents without turning the system off) is triggered [28].
hen these protocols are executed, the Cray nlrd on the SMW
uiesces the network traffic, computes new routing tables, and
ssigns them to each ASIC.

.3. Network congestion

A network becomes congested when there is more data in the
etwork than it can accommodate for. The HSS software manages
he network congestion into the network whenever necessary.
wo daemons: one on the SMW (xtnlrd), and one on the blade
ontroller (bcbwtd), can handle network congestion by limiting
he aggregate injection bandwidth across all compute nodes to
ess than the ejection bandwidth of a single node (also known as
hrottling).

.4. Dataset

The collected dataset consists of the network logs from Jan-
ary 2014 to January 2015. The interconnect metadata is collected
y two daemons: xtnetwatch and xtnlrd. The xtnetwatch daemon
ogs the system High-Speed Network (HSN) faults for LCBs and
outer errors. These logs include details about the transmitting
ackets, receiving packets, mode exchanges, lanemask, link inac-
ive and different interconnect failures data for particular nodes,
long with a timestamp. The xtnetwatch data is summarized in
able 1. Events detail are presented during analysis in the later

ections.

31
When the percentage of time that traffic tries to enter the
network is stalled more than a high water mark threshold, the
xtnlrd daemon produces log files that include various collection
information. It also collects a list of the top 10 applications
sorted by the aggregate ejection bandwidth whenever a conges-
tion protection event occurs. Moreover, it estimates the top 10
most congested nodes sorted by ejection flit counts whenever a
congestion protection event occurs. In both cases, it includes the
job characteristics of the applications running on those nodes,
including APID, number of nodes, the user ID, and the application
name.

We also gathered application data to extract different applica-
tion characteristics. This data include application start time, stop
time, application id, user id, node list, and number of CPUs.

3. Impact of network congestion

One can argue the impact of congestion events on application
execution time. We conduct a study to find out how congestion
events can impact application execution events. We start by
finding applications that were executed on the same nodes. For
each application running on specific nodes, we check the nodes
for congestion events for the execution time of the application.
We then filter out those applications that encounter congestion
events. Finally, we compare the execution time of the applications
which encounter and do not encounter congestion events in
Fig. 4. The x-axis denotes the different executions of the same
application. The y-axis denotes the scale-normalized execution
time of different executions in percentage. The application names
are denoted using numbers as they can be business-sensitive.
The red color shows the application execution time when the
applications encounter congestion events. The green color shows
the application execution time without any congestion events.
The application execution time for App 8 while encountering
congestion events was up to 99 times more than the normal
execution. This shows that the congestion events can have a
significant impact on an application execution time while running
on a large-scale HPC system. There is a possibility that other
factors can affect the execution time as congestion events can
be the result of hardware or software errors. A more in-depth
study considering other factors can provide more insights into
how congestion affects application execution time.

Takeaway 1: Congestion events have significant impact on
application execution time.

4. Analysis of interconnect errors

In this section, we characterize and analyze different types of
interconnect faults and errors. First, we quantify and characterize
lane degrade events. A lane degrade event is triggered when any
one of the three lanes in a link goes down. This has a negative
impact on the application performance and may cause network
congestion. Unfortunately, these events occur with a very high
frequency. We observed that one lane degrade event takes place
at a high rate of one event per minute. Despite the high frequency
and negative consequences of these events, the characterization
of these events in an HPC system is not available to researchers,
users, and system operators.

Fig. 5(a) shows the frequency of different types of lane de-
grades. We observe that in more than 90% cases only one lane
in a link is degraded. Two lanes are degraded in less than 10%
of the cases. Three lanes are degraded relatively less frequently
(<1%). When all three lanes are in a degraded state, the link is
eclared inactive (or failed), and an alternate route is computed
or packets. While link inactive or failed events happen relatively
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Fig. 4. Applications execution times while encountering and not encountering congestion events.
Fig. 5. Frequency distribution of lane degrade (a) and lanemask values (b) over
ne year.

ess frequently, they do occur about 28 times per day on average,
nd cause more disruption than single or double lane degrades.
Takeaway 2: Even when three lane degrades happened very

nfrequently as compared to one lane degrade, link inactive occurs
8 times per day on average.
Fig. 5(b) shows the frequency of lanemask values for every

nstance of lane degrade events. We note that a lanemask bit
alue of 0 indicates that the corresponding lane is degraded.
or example, a lanemask value of 5 (binary value 101) indicates
hat the middle lane is degraded. We observe that the frequency
f lanemask values indicates that even single lane failures vary
ignificantly. Lanemask value 110 is two times more frequent
han lanemask values 101 and 011. Interestingly, for two lane
ailures, the corner lanes failing together (010) are more likely
han adjacent lanes failing together (001 and 100).

In the absence of per-lane and per-link based utilization data,
e hypothesize that lane failure location indicates the utilization
nd load pattern on links. Given this, our results indicate that
he load among lanes within a link may vary significantly. This
inding should encourage designers to balance the load more
omogeneously and not overload the rightmost lane. This insight
ould also be exploited for power optimization in interconnect
inks where rightmost lanes need not be switched-on at all times.

Takeaway 3: Load among lanes within a link is not homoge-
eous.
Next, we plot the relative frequency distribution of lane de-

rades over time in Fig. 6. We make two important observations.
irst, lane degrades are not limited to a specific time period,
nstead they happen continuously over time. Second, one may
xpect that the high single-lane degrade events will lead to an
ncrease in the count of two-lane degrades and link failures.
owever, our field data suggests that this hypothesis is not
ecessarily true. For example, peaks in two-lane degrades are
ot necessary during the high intensity of one-lane degrades.
ater, we also investigate deeper to understand the correlation
etween network congestion and the period of high intensity of
ane degrades.

Takeaway 4: Lane degrades happened continuously and tempo-
rally where different lane degrades do not impact each other.
32
Fig. 6. Frequency of different types of lane degrades over one year.

Fig. 7. Daily frequency of mode exchanges to repair lane degrades (a) and
number of mode exchange attempts before successful recovery of the lane (b)
over one year.

When a lane goes down, the network resiliency mechanism
attempts to bring the lane back up via multiple repair events,
called mode exchanges. Fig. 7(a) shows the frequency of mode
exchange events over time and Fig. 7(b) shows the number of
mode exchange attempts before a lane is brought up successfully.
As expected, the frequency of mode exchange events over time is
similar to that of lane degrades. System operators of Titan have
set the threshold for the number of attempts allowed to restart a
lane to 256. Interestingly, our result shows that more than 85% of
the lanes can be restored in three or fewer attempts. Furthermore,
more than 99% of the lanes can be restored within 10 attempts.

Takeaway 5: Temporal frequency of mode exchanges is similar
to that of lane degrades.

Next, we attempt to understand how lane degrade and link
inactive/failed events are distributed across the system spatially.
Fig. 8 shows the lane degrade events count for links in and across
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Fig. 8. Spatial distribution of lane degrades count inside and across cabinets
over one year. Due to the folded 3D-torus design, cross-cabinet links connect to
alternate cabinets..

Fig. 9. Spatial distribution of link inactive errors count inside and across cabinets
over one year. Due to the folded 3D-torus design, cross-cabinet links connect to
alternate cabinets..

cabinets. First, we observe that several hot spots exist for lane de-
grade events in the system. We conduct the Kolmogorov–Smirnov
test (K–S test) to test whether our sample of spatial distribution
of lane degrades per cabinet has a uniform distribution [34]. The
test results show D-statistic = 1, p-value = 2.2e−16. For our
ample size of 200 cabinets, the critical D-value for a 0.05 level of
ignificance is 0.0960, and therefore the null hypothesis (i.e., the
ample is taken from a uniform distribution) can be rejected.
his shows that the spatial distribution of lane degrades per
abinet is significantly different than uniform. This behavior can
e a combination of factors like HW instance variation, external
ransient effects, overloading of links, uneven usage, and com-
lex interaction between applications and interconnect network,
lthough accurate root-cause analysis is not possible.
Takeaway 6: Spatial distribution of lane degrade events is not

niform.
Interestingly, we note that the hot spots for links contained

ithin the cabinet are not the same as the hot spots for links
rossing cabinet boundaries. Second, when we compare lane de-
rade hot spots with the hot spots of link inactive errors (Fig. 8
s. Fig. 9), we find that they do not necessarily match. This also
xplains why their high intensity periods do not match (Fig. 6).
33
Fig. 10. Spatial distribution of Bad Send EOP errors count inside and across
cabinets over one year.

This indicates that it is not possible to determine the location of
link inactive/failed errors by only observing the time and location
of lane degrade events.

Takeaway 7: Spatial and temporal distribution hot spots of link
inactive/failed and lane degrades events are not same.

Next, we investigate other interconnect errors: Bad Send EOP
error, Send Packet Length error, Routing Table Corruption error,
and HSN ASIC LCB lane reinit failed error.

Bad Send EOP error: Each packet in Gemini Interconnect has
a single phit end-of-packet that contains the status bits for error
handling [6]. If a packet is corrupted, the end-of-packet is marked
as bad and the packet will be discarded at its destination.

Send Packet Length error: Send Packet Length error occurs
when the length of a packet does not match with the expected
length value at destination.

Routing Table Corruption error: A routing table is a data
table stored in a router that contains the information necessary
to forward a packet along the best path toward its destination.
When a packet is received, a network device examines the packet
and matches it to the routing table entry providing the match
for its destination. The table then helps in guiding the packet
to the next hop on its route across the network. A routing table
corruption results in link failure and eventually causes network
congestion [28]. Each packet in Gemini Interconnect contains
information about the originating node and the destination node.
Each packet uses a 18-bit address to uniquely identify a node in
Titan. This 18-bit address has 16-bit ASIC identifier and 2-bit for
specifying NICs and node.

HSN ASIC LCB lanes reinit failed error: This error occurs
when all the 256 attempts to bring up a downgraded lane are
exhausted.

Figs. 10–13 show the frequency distribution of these errors in-
and across-cabinets. First, we observe that these errors also show
hot spots in- and across-cabinets, although we found that the
magnitude of these errors is relatively small. For example, Rout-
ing Table Corruption error occurs only 200 times while HSN ASIC
LCB lane(s) reinit failed error happens only 187 times throughout
the entire observation period.

On deeper investigation, we found that most of these errors
are highly correlated with link inactive/failed errors. Table 2
shows the correlation of these interconnect errors with link in-
active errors. This indicates that link inactive errors can be used
to predict other interconnect errors. We also found that more
than 80% of link failed errors lead to Bad Send EOP, Send Packet
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Fig. 11. Spatial distribution of Send Packet Length errors count inside and across
cabinets over one year.

Fig. 12. Spatial distribution of Routing Table Corruption errors count inside the
cabinets over one year.

Fig. 13. Spatial distribution of ASIC errors count inside the cabinets over one
ear.

Table 2
Correlation factor between link inactive and other intercon-
nect errors.
Errors Link inactive

Bad Send EOP error 0.99
Send Packet Length error 0.96
Routing Table Corruption error 0.84
ASIC error 0.04

Length, and Routing Table Corruption errors. We also found that
HSN ASIC LCB lane(s) reinit failed error has a weak correlation
with link failed errors. This can be explained by our previous
findings where it showed that lane degrades and link failed errors
are not correlated and ASIC errors are an outcome of failed repair
attempts of lane degrades.

Takeaway 8: Interconnect errors show a high correlation with
link inactive/failed events.
34
Fig. 14. Count of network throttle events (a), and relative frequency of throttle
events (b) over one year.

Fig. 15. Network throttle events with 1-hour filtering (a), and relative frequency
of throttle events with 1-hour filter (b) over one year.

5. Analysis of network congestion

Understanding network congestion in conjunction with in-
terconnect errors is important since it is likely that one may
cause the other. A daemon on the compute cluster monitors the
percentage of time that network tiles [19] are stalled due to
increased traffic or other reasons. When these values cross a set
threshold, the daemon communicates this data (network throttle
events) to the xtnlrd daemon running on the SMW. After the
congestion subsides, the daemon again passes this information
to the SMW.

In this section, we first attempt to understand the charac-
teristics of network throttle events. Fig. 14(a) plots the network
throttle events over time. We note that a large fraction of throttle
events occur in a short period of time. We also note that each
throttle event is typically 20–30 s, but it can also last up to
a few minutes depending on the magnitude of the congestion
observed. As shown in Fig. 14(b), network throttle events can be
quite bursty. An application that is causing network congestion
can induce multiple throttles in a very short amount of time (< 20
mins). Fig. 15 shows the network throttle events over time, count-
ing only one event at maximum per hour. We experimented with
multiple time windows and found that a 1-hour time window
removes the skewness. However, this type of time window filter-
ing cannot completely remove the skewness since a long-running
communication-intensive application may cause multiple throttle
events over multiple hours. For example, Fig. 16 shows that
without 1-hour filtering the mean time between throttle events is
less then 1 min, with 90% of the events occurring within the first
hour of the preceding throttle event. Even when we apply 1-hour
filtering, the meantime between throttle events is approximately
22 h. Therefore, to better understand the characteristics of net-
work throttle events we analyze our subsequent results without
any time window based filtering and with 1-hour time window
based filtering. We try to find out whether the number of jobs
running per day has any correlation to throttle events. However,
as we can see in Fig. 17, the throttle events relative frequency
Fig. 14(b) is not correlated to the number of jobs running per
day relative frequency. The Spearman correlation coefficient was
found to be very weak (−0.01). In the second half of the year, we
see bursts in the number of jobs which may be a result of users
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Fig. 16. Mean time between network throttling events without filter (a) and
with 1-h filter (b) over one year.

Fig. 17. Number of jobs running per day relative frequency over one year.

Fig. 18. Mean time between link recovery (a) and warm swap (b) over one year.

running the same applications multiple times to achieve the best
performance in ACM Gordon Bell prize [2].

Takeaway 9: Network throttle events are very bursty and are not
dependent on number of jobs running at a specific day.

From nlrd data, we calculated mean time between link re-
covery and warm swap (Fig. 18). It indicates that link recovery
and warm swap procedures take place at a high rate. Naturally,
one may hypothesize that the lane degrades/failures may induce
the network throttle events or vice versa. Therefore, we inves-
tigate the possibility of temporal correlation between the time
series of throttle events and interconnect errors, in particular lane
degrades and link failed events. We found the Spearman correla-
tion coefficient to be very weak (0.03). This result indicates that
lane degrades/failures alone cannot be used to predict throttling
events. While lane degrades/failures can cause the performance
degradation and variability, lane degrades/failures do not al-
ways immediately cause significantly high network congestion to
trigger network throttling.

Takeaway 10: Temporally, lane degrades and link failed events
show very low correlation with throttle events.

Next, we plot the heatmap of compute blades that were
throttled due to these network throttle events. Fig. 19 shows
the heatmap without any filtering and Fig. 20 shows the same
heatmap with 1-hour filtering. As expected, we observe that not
all blades are throttled equally over the period of observation.
Interestingly, hot spots remain similar even after applying filter.
We again conduct the K–S test to test whether our sample of the
spatial distribution of blades throttle events per cabinet without
and with one hour filter has a uniform distribution. The test
35
Fig. 19. Spatial distribution of throttled blades count without filter over one
year.

Fig. 20. Spatial distribution of throttled blades count with 1-h filter over one
year.

results show D-statistic = 1, p-value = 2.2e−16 in both cases.
or our sample size of 200 cabinets, the critical D-value for a 0.05
evel of significance is 0.0960, and therefore the null hypothesis
i.e., the sample is taken from a uniform distribution) can be re-
ected. This shows that the spatial distribution of blade throttled
vents per cabinet is significantly different than uniform. As the
ext step in our analysis, we want to investigate the role that
ongestion information at the node and application levels can
lay in improving our understanding of congestion behavior at
he blade-level.

Takeaway 11: Spatial distribution of blade throttle events per
abinet is not uniform.
Node-level congestion data provides information about the

odes which are heavily congested at the time of throttling.
t lists the top 10 heavily congested nodes based on ejection
andwidth rate for every throttle event. Along with node ID,
everal other information are included such as the application
unning on that node, user ID of the application, number of
odes allocated to the application, ejection bandwidth at the node
evel. Figs. 21 and 22 show the spatial distribution of congested
odes in the Titan supercomputer for the no filter and 1-hour
ilter cases, respectively. We make two observations. First, some
odes are much more congested than others as shown by the
neven distribution of congested nodes. This is because the ap-
lications creating significant network traffic may be repeatedly
etting scheduled on the same nodes. Second, applying 1-hour
iltering shows that the spatial distribution evens out compared
o Fig. 21. However, interestingly it continues to show uneven
istribution; skewed toward the left part of the supercomputer.
his indicates that communication-intensive applications are not
cheduled evenly across the cabinet. Applications scheduled on
he left part are likely to see more performance impact due to
etwork congestion. Therefore, applications whose performance
s sensitive to interconnect-latency could potentially benefit from
etting scheduled on the right part of the cluster.
Takeaway 12: Spatial distribution of congested nodes shows

kewness toward the left part of the supercomputer.
We also calculated the correlation coefficient between the

patial distribution of congested nodes and lane degrades/failures.
he Spearman correlation coefficient was close to zero (0.01); the
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Fig. 21. Spatial distribution of congested nodes count without filter over one
year. Note that the top 10 congested nodes are calculated for each throttle event.
This plot is aggregated over all throttle events.

Fig. 22. Spatial distribution of congested nodes count with 1-h filter over one
year.

Fig. 23. Cumulative distribution of unique applications over congested node
events without filter (a), and with 1-h filter (b) over one year.

nodes with high ejection bandwidth are not strongly correlated
with the interconnect errors. This result was expected since we
found the correlation between throttle events and interconnect
errors was not high. However, surprisingly, there is a low cor-
relation between the heatmap of congested nodes and throttled
blades (Spearman correlation 0.01). This is because congested
node information is collected after the throttle command has
been issued, so it may not capture the nodes which actually
caused the congestion and induced throttling. This also indicates
that the aggregate network traffic at the blade can be poten-
tially different than individual node-level traffic. Future network
performance tools should focus on building more accurate and
fine-grained tools that can detect the root cause in real time.

Takeaway 13: Spatially, lane degrades events show very low
orrelation with throttle events.
Next, we analyze the characteristics of applications running

n all congested nodes. First, we plot the frequency of unique
pplications that were running on congested nodes when the
hrottling events occurred. Fig. 23 shows that only a few ap-
lications tend to dominate. We refer to these applications as
ongestion-causing applications in our discussion; however, we
ote that these applications may not be necessarily responsible
or increasing the congestion that eventually resulted in the net-
ork throttling event. For example, 5 applications alone appear in
ore than 70% of congested node reporting events (Fig. 24), while
ore than 250 unique applications are logged in total across
ll congested node reporting events. Interestingly, when 1-hour

iltering is applied, the number of unique applications decreases

36
Fig. 24. Fraction of top 5 congestion-causing and other applications without
filter (a), and with 1-hour filter (b) over one year.

Fig. 25. Cumulative distribution of unique users over congested node reporting
events without filtering (a), and 1-hour filtering (b) over one year.

significantly. The top 5 most frequently occurring applications
appear only in approx. 50% of congested node reporting events
(Fig. 24). Total number of unique applications goes down from
250 to 90. Reduction in the number of unique applications clearly
indicates that when multiple throttle events occur in the small
time period, they are not because of the same application. In fact,
it turns out that within a 1-hour time window, multiple unique
applications can cause nodes to be highly congested. We also see
the same results on a per-user basis with and without filtering
(Fig. 25). These results confirm that applications and users can
work as proxies for each other.

Takeaway 14: Same applications and users do not cause multiple
throttle events over a small time period.

Next, we analyze the job size of these applications. We limit
our discussion to the top 10 most frequent congestion-causing
applications. As application names can be business-sensitive, we
identify them with English letters. Fig. 26 shows the job size
distribution of top 10 applications that appear most frequently
on congested nodes. We make several interesting observations.
First, most of the applications tend to run on the same number
of nodes every time they appear in the congested node reporting
events. For example, applications A, B, and C run on 4000, 2, and
45 nodes, respectively, for more than 90% of the time that they
appear in the congested node reporting events.

Moreover, counter-intuitively, the job sizes of these applica-
tions are relatively small. For instance, 7 out of the 10 applications
most frequently have a job size of less than 512 nodes. In fact,
5 applications have the most frequent job size of less than 128
nodes. In such cases, the many-to-few communication pattern
can be responsible for congesting the nodes (high ejection band-
width). Therefore, only focusing on large scale jobs for identifying
culprit applications is an ineffective strategy. Our results show
that node congestion is caused by small-scale applications in
real-world scenarios.

Takeaway 15: Congestion causing applications run on same
number of nodes and are generally small in job size.

Next, we want to extend our understanding of
communication-intensive applications and their job size
distributions. On every throttle event, the nlrd daemon collects

the bandwidth data of all applications running on the system
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Fig. 26. Job size distribution of top 10 congestion-causing applications over
one year. X-axis denotes different job size. Y -axis denotes relative frequency
f different job size.

Fig. 27. Cumulative distribution of unique applications over top bandwidth-
eavy application events without filter (a), and with 1-h filter (b) over one
ear.

Fig. 28. Fraction of top 5 bandwidth-heavy and other applications without filter
a), and with 1-hour filter (b) over one year.

nd lists the top 10 of these application sorted by their network
andwidth consumption (total flits/s aggregated over all nodes).
ote that these bandwidth-heavy applications are different than
he ones running on the top 10 heavily congested nodes.

Fig. 27 shows that a few applications tend to be heavy-hitters.
or example, 5 applications alone appear in approximately 57% of
he top bandwidth application reporting events (Fig. 28), while
ore than 200 unique applications show up in total across all

op bandwidth application reporting events. Interestingly, when
-hour filtering is applied, the number of unique applications
ecreases significantly. However, the top 5 most frequently oc-
urring applications constitute 50% of top bandwidth application
eporting events (Fig. 28). The total number of unique appli-
ations reduces dramatically to 60. These results indicate that
ocusing on the top 5–10 applications can cover 50% of the
ommunication-intensive applications space. We also observe
he same results on a per-user basis with and without filtering
Fig. 29). These results again confirm that application and user
an work as a proxy for each other, even for top bandwidth
pplication reporting events.
Takeaway 16: Same applications and users do not cause

ommunication intensive operations.
Next, we want to answer two questions: (1) are these top

andwidth applications the same as the top congestion-causing
pplications running on congested nodes? (2) Is the job size
istribution of the top bandwidth applications different than that
f the top congestion-causing applications?
Fig. 30 shows the job size distribution and anonymized ap-

lication names of the top 10 bandwidth-heavy applications that
37
Fig. 29. Cumulative distribution of unique users over top bandwidth application
reporting events without filtering (a), and 1-hour filtering (b) over one year.

Fig. 30. Job size distribution of top 10 bandwidth-heavy applications over one
year. X-axis denotes different job size. Y -axis denotes different job size relative
frequency.

appear most frequently in the top bandwidth application report-
ing events. We observe that most of the applications tend to run
on the same number of nodes every time they appear in the top
bandwidth application reporting events. However, interestingly,
these applications are not the same as the top congestion-causing
applications running on congested nodes. Only three applications
are common between these two sets (Fig. 30 vs. Fig. 26). They are
situated at positions 1, 4, and 7, in the figures. This indicates that
bandwidth-heavy applications are not necessarily the ones that
cause congestion or run on congested nodes. These bandwidth-
heavy applications are producing a significant amount of traffic,
and are likely to be spread over a large number of nodes or have
a many-to-many communication pattern. We notice that only 3
applications have a job size larger than 4000 nodes, indicating
that even bandwidth-heavy applications are not necessarily large
in size. The communication pattern seems to be playing a crit-
ical role. As an example, App K which runs mostly on 32 and
128 nodes appears second in the bandwidth-heavy applications
list, but does not appear in the congestion-heavy applications
list. This could be because this particular application does not
intensively exhibit a many-to-one communication pattern. Many-
to-few and many-to-one communication patterns can result in
high congestion due to the concentration of messages over a few
nodes. Many-to-few or many-to-one communication patterns re-
sult in over subscription of outgoing link of specific nodes. This
over subscription results in network congestion [24,30,42]. In
summary, bandwidth-heavy applications’ job sizes are similar to
those of congestion-causing applications’, but there is no signifi-
cant overlap between these two sets and they may differ in their
communication patterns.

Takeaway 17: Top bandwidth-heavy applications are not same
s top congestion-causing applications.
As network congestion can significantly affect an application

xecution, we next explored different application characteristics
or the top five bandwidth-heavy applications: (1) processes per
ode count (2) CPUs count, (3) execution time, and (4) users.
igs. 31–34 show the frequency distribution of these application
haracteristics. Most of the applications run have a higher pro-
esses per node, CPUs and users count. For the third application,
s there are less number of users, processes per node and CPU
ount have lower variation, however, the execution time does not
how the same pattern. For all applications, different execution
ime and skewness toward shorter execution time can be a result
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Fig. 31. Processes per node count relative frequency of top 5 bandwidth-heavy
applications over one year. X-axis denotes different processes per node count.
Y -axis denotes different processes per node count relative frequency.

Fig. 32. CPUs count relative frequency of top 5 bandwidth-heavy applications
over one year. X-axis denotes different CPU count. Y -axis denotes different CPU
count relative frequency.

Fig. 33. Execution time (s) relative frequency of top 5 bandwidth-heavy applica-
tions over one year. X-axis denotes different execution times in seconds. Y -axis
enotes the relative frequency of different execution times.
38
Fig. 34. Users id count of top 5 bandwidth-heavy applications over one year.
X-axis denotes the different users id. Y -axis denotes the relative frequency of
different users.

Fig. 35. Congestion count for top 5 bandwidth-heavy applications over one year.
X-axis denotes the time over one year. Y -axis denotes the congestion event
count.

of congestion. To confirm it, we compared the number of runs
encountering congestion events with the total number of runs
for the top five bandwidth-heavy applications. As expected, all
the applications encounter the congestion events multiple times
(Fig. 35).

Takeaway 18: Top-bandwidth applications have multiple pro-
cesses per node, CPUs and users.

Takeaway 19: Top-bandwidth applications show skewness in
xecution time as they observe congestion continuously over time.

. Throttle prediction

Network congestion shows weaker correlation with lane de-
rade, and link failed events in the previous section. However,
e have different application characteristics and network events
hat we can leverage to predict whether an application is going
o encounter throttling (congestion results in throttling) or not.
he goal is to find a high accuracy machine learning model that
an predict the applications encountering network congestion
ased on the available features. This model will be a proof-of-
oncept and requires rigorous testing before using in a real-world
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Table 3
Machine learning models prediction accuracy.
Model Up-sample Down-sample

Precision Recall Precision Recall

LR 82.60 93.91 81.57 95.38
SVM 98.66 99.54 80.95 96.58
SGD 81.04 96.95 81.26 96.39
DT 98.66 99.54 92.63 93.01
GBC 84.80 95.12 85.29 94.89
NB 81.61 97.69 82.20 95.54
KN 98.13 99.28 90.13 93.99
RF 83.46 87.07 82.61 86.85

Table 4
Training time for machine learning models.
Model LR SVM SGD DT GBC NB KN RF

Time 31.98 s 71.40 s 31.41 s 31.60 s 32.50 s 34.92 s 31.43 s 31.82 s

scenario. The users can use such a prediction model to deter-
mine the congestion causing applications without even looking
at throttle events. A prediction model will not only be helpful
for the applications found in our study but also for new ap-
plications as the application set running on the Titan changes
over time. Even for the same applications, such a model will be
beneficial as an application can result in different characteristics
over time. The users can run this model before the application
execution or during the application execution to take pro-active
and dynamic actions for congestion causing applications. Pro-
active actions include detecting congestion causing applications
and not scheduling them simultaneously (temporally or locally).
Dynamic actions include detecting an application experiencing
congestion and applying resilience techniques like restructure of
interconnect to avoid congestion. These pro-active and dynamic
actions will improve both the congestion causing applications
performance and network reliability. The process of finding such
a model involves three steps:

1: Feature selection. Explore and finalize the features for the
achine learning model.
2: Model selection. Evaluate different machine learning

odels to find the best model for the selected features.
3: Model analysis. Analyze all the models on a temporal

ataset to determine the best model. Find out the best features
et and prediction quality for the best model.

.1. Feature selection

We have three different type of data which we can use to final-
ze the features: xtnetwatch, xtnlrd, and application. xtnetwatch
as transmitting packets, receiving packets, mode exchanges, lane
ask, link inactive and different interconnect failures data. xtnlrd
as link failed, application encountering congestion, and the job
haracteristics data of the applications running during congestion,
ncluding APID, number of nodes, the user ID, and the application
ame. Application data has application start time, stop time,
pplication ID, user ID, node list, and number of CPUs. We use
tnlrd and application data to determine whether an application
ncounter congestion or not. From each of these data, we extract
eatures which can be extracted dynamically or known before-
and and have a direct impact on throttle events. The features
nclude application execution time, transmitted packets, received
ackets, mode exchanges, link inactive, link failed, application
ncountering congestion, number of nodes and number of CPUs.
ven though mode exchanges, link inactive, and link failed show a
ow correlation to throttle events, they helped in achieving better

ccuracy while running the prediction model.

39
6.2. Model selection

We run various machine learning models for prediction to
determine the best model. The first step in this process is to
collect the features data periodically. Then we select 60% of this
dataset randomly and used it to train the machine learning model.
After that, the remaining 40% dataset is used to predict the
accuracy of the machine learning model. One of the problems
with the collected dataset was that it was highly imbalanced.
Only 1% of the application run encounters throttle events. This
type of dataset can be handled in two ways. The first one is to
up-sample the minority data. The second way is to down-sample
the majority data. For our case, we go with the second approach
as we want to know the best prediction accuracy in the worst
case. We also normalize the dataset as link failed and link inactive
have a lot of zeros.

Next, we run our training dataset on various machine learn-
ing models like Decision Tree (DT), Gradient Boosting Classifier
(GBC), Stochastic Gradient Descent Classifier (SGD), KNeighbours
KN), Logistic Regression (LR), Naive Bayes (NB), Random Forest
RF) and Support Vector Machine (SVM). We use Python module
cikit-learn [37] for the machine learning models. For each model,
e calculate the feature ranking. We remove the features with

ower feature ranking however it results in lower accuracy for
ach model. Therefore, we include all the features for our ex-
eriments. In later subsection, we analyze the features sets in
ore detail. Table 3 shows the prediction effectiveness for all
achine learning models. Precision indicates the percentage of
orrect predictions in all predictions, defined as:

recision =
True Positives

True Positives + False Positives
(1)

while recall reveals the ratio of identified samples to the ground
truth, defined as:

Recall =
True Positives

True Positives + False Negatives
(2)

Decision tree performs the best in both up-sampling and
down-sampling. As expected up-sampling results in better ac-
curacy, however, we go with down-sampling to handle the
worst-case scenario. KNeighbours perform the second best with
a slighter higher recall and lower precision. It means KNeigh-
bours fetch higher relevant instances among the total relevant
instances. We do further analysis in the next subsection to
determine which is the best model for diverse datasets.

Training overhead can play a significant role in determining
the best model for prediction. Therefore, we evaluate the training
time overhead for all the models. We conduct all the experiments
on Intel(R) Xeon(R) E3-1275 v5 server with 32 GB memory. Ta-
ble 4 shows the training time of all the machine learning models.
Stochastic Gradient Descent Classifier takes least amount of time,
followed by KNeighbours and Decision tree. However, the percent
difference among them is less than 1%, which means choosing
KNeighbours and Decision tree over Stochastic Gradient Descent
Classifier will not affect the training time much. SVM took the
most amount of time, which was expected as the training time
taken is proportional to the third power of the size of the dataset.

6.3. Model analysis

In this step, we evaluate the machine learning models on
diverse datasets. Before presenting the results, we explain the
datasets and evaluation metrics.
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Table 5
Machine learning models F1 Score for each month down-sampled dataset.

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

LR 0.00 82.75 79.05 76.05 82.20 82.33 80.08 91.94 91.17 91.29 75.71 88.44
SVM 0.00 82.43 78.52 75.73 82.72 81.89 80.46 91.57 90.16 86.96 72.25 84.42
SGD 0.00 83.10 84.26 77.90 82.31 82.37 80.49 92.04 96.03 90.24 0.00 33.47
DT 0.00 91.48 90.26 87.73 92.44 95.45 91.82 97.24 95.33 96.89 94.12 93.95
GBC 0.00 90.93 91.38 85.26 86.99 91.95 90.71 96.91 96.34 96.92 92.11 94.71
NB 0.00 84.95 86.37 72.78 81.20 85.10 81.66 93.21 95.94 94.47 87.72 93.27
KN 0.00 89.68 89.69 86.48 92.24 94.47 90.53 96.25 95.51 92.24 79.75 91.13
RF 0.00 83.31 86.31 72.29 81.69 86.15 84.68 93.88 97.37 93.10 79.74 91.58
c
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Fig. 36. F1 Score of different feature set using Decision Tree.

6.3.1. Dataset description and evaluation metrics
We first collect dataset over the entire sampling period (from

anuary to December, 2014). We then divide this data into twelve
ub-datasets (each month data). We then perform downsampling
or each sub-dataset, normalize it and feed it to machine learning
odels. We use F1 Score [39] to measure the prediction accuracy

as it conveys a balance between precision and recall. It is defined
as the harmonic average between precision and recall.

F1 Score =
2 × Precision × Recall
Precision + Recall

(3)

6.3.2. Model comparison
We measure the F1 Score for each machine learning model

for each sub-datasets. Table 5 shows these F1 Scores. The scores
for the January month is zero as it represents the data for only
last four days of the month and no throttling event happen
in that period. For the remaining eleven months, KNeighbours
perform slightly better than Decision Tree for only the month of
September. Therefore, we conclude that the Decision Tree is the
best model for throttle events prediction.

6.3.3. Feature analysis
Selection of feature can severely impact the accuracy of any

machine learning model. To find the best features set, we eval-
uate different features set for the best machine learning model
Decision Tree. We split the available features into four categories:
xtnetwatch, xtnlrd, application and all. Each category is discussed
in Section 6.1. For xtnetwatch, we use transmitting packets,
receiving packets, mode exchanges, and link inactive data. For
xtnlrd, we use link failed data. For application, we use execu-
tion time, number of nodes, and number of CPUs. All category
combines all the features in xtnetwatch, xtnlrd, and application.
Fig. 36 shows the F1 Score of Decision Tree model for different
features selection. As we can see, all features combination dataset
perform better than any other features set for each month. xtnlrd
performs the worst for two reasons: (1) it has only one feature
linked failed, and (2) linked failed has a lower correlation to
network congestion.
40
Table 6
Throttle prediction for short, medium and long running
applications using Decision Tree.
Application Precision Recall F1 Score

Short 0.00 0.00 0.00
Medium 92.71 95.70 94.18
Long 86.18 86.76 86.47

6.3.4. Prediction analysis
In this section, we check how application execution time af-

fects the prediction quality of the best machine learning model
Decision Tree. We categorize applications into three groups:
short-running, medium-running and long-running. Short-running
are those applications which have a runtime that falls below
25 percentile. Long-running are those applications which have a
runtime in top 25 percentile. Medium-running includes all the
remaining applications. Table 6 shows the prediction quality of
Decision Tree model for each application type. Short-running ap-
plications never encounter the throttle events. Medium running
applications encounter less than 1% of the total throttle events.
Long-running applications encounter more than 99% of the to-
tal throttle events. Both medium and long-running applications
show higher prediction quality.

Takeaway 20: Network and application events can predict
ongestion in an application at a high accuracy.

. Related work

Interconnect networks have been a vital part of computer
ystems. With thousands of nodes in HPC systems, execution time
s more dependent on communication time than the calculation
ime [23]. Various HPC interconnect networks are proposed for
mproving HPC systems performance – QsNET [38], SeaStar [11],
ofu [4], Blue Gene/Q [12], Aries [20], TH Express-2 [35] and
thers – which use different types of topology like k-Ary n-
ube, fat-tree/Clos, and dragonfly. Several studies are performed
o understand [1,3,10,15,16,18,21,22,27–29,41,43] and improve
7,8,13,14,17,25,26,32,33,40,46] interconnect failures in HPC sys-
ems.

Interconnect studies in [3,10,41] describe and evaluate specific
nterconnect networks in Cray T3E multiprocessor and Blue-
ene/L. Interconnect networks detail and concepts like topology,
outing, flow control, and router architecture are discussed in
1,15,18,43]. Blue Waters workload and error/failure logs are
nvestigated to determine system errors and failures impact on
ser applications in [16]. The analysis in this work was limited to
ystem errors and failures logs. Blue Waters Gemini interconnect
rchitecture is described in detail in [28,29]. These studies focus
n characterization of recovery mechanisms and interconnect
ailures using raw systems logs. These studies are limited to
nterconnect failures like lane recovery, link failure, and warm
wap only. Blue Waters Gemini interconnect congestion events
mpact on two benchmark applications and network congestion
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haracteristics are presented in [27]. Our work provides a better
nderstanding of impact of congestion events as we analyze
eal-word applications with focus on job characteristics. Fault
njection tool is presented in [21] to understand impact of failures
n network links, nodes, and blades in HPC systems. Data centers
etwork failure analysis with focus on network workload charac-
eristics, failures of network links and devices, and effectiveness
f network redundancy in masking failures is presented in [22].
he limitation of this work is that they only characterize link
nd device failures, instead of focusing on all types of errors and
ailures in network logs.

Interconnect networks type like fat-trees and k-ary n-cube
erformance evaluation is presented in [13,14,32]. Methods for
utomatically routing faults, recursive torus shifting, adaptive
ubble router, fail-in place network, task mapping, and com-
unication intensive applications optimizations for improving

nterconnect performance are discussed in [7,17,25,26,33,40].
functional network simulator, Damselfly, is presented in [8]

o study the effects of job placement, parallel workloads and
etwork configurations on network health of dragonfly-based
upercomputers. A network fault influence domain analysis tool,
IDA, is presented in [46] to study the impact of network faults
n a system.
Supervised learning algorithms such as forests of extremely

andomized trees and gradient boosted regression trees are used
o ascertain the causes and mechanisms of network congestion
n [9]. They created a regression model using communication
ata and application execution time to predict the execution
ime of communication heavy applications. In this study, they
lso determine the hardware components that play a major role
n network congestion. A machine learning approach to predict
otal communication time of parallel applications is proposed
n [36]. A machine learning framework to automatically detect
ompute nodes with performance anomalies and to diagnose
erformance anomalies is presented in [44]. This framework
everages easy-to-compute statistical approach to reduce data
equired for performance anomaly detection.

Titan is the successor of Cray X-series which use the XK7
ystem and 3D Gemini interconnect. The Gemini system inter-
onnect architecture is explained in [6] and evaluated in [19,45]
sing micro-benchmarks. Cray’s latest XC series is implemented
sing the Aries interconnect which supports better bandwidth,
atency, message rate and scalability [5]. Our previous work [31]
iffers from all these studies and evaluations as none of these
orks evaluate how different interconnect errors and congestion
vents occur on a large-scale HPC system. Our current work
iffers as none of the work above utilize interconnect errors,
ongestion events and applications characteristics data to predict
hrottle events. Our field data and analysis is unique and provides
seful insights that can be used by users, system architects, and
perators to improve the overall efficiency of HPC systems.

. Conclusion & future work

Overall, we show how congestion events can impact ap-
lication performance. We discussed many interesting insights
erived from our analysis. Interconnect faults like lane degrades
re continuous and vary significantly among lanes. Link inactive
rrors do not have a temporal or a spatial correlation with lane
egrades, while interconnect errors have a high correlation with
ink inactive/failed errors. We showed that these characteristics
an be exploited for different purposes. We also demonstrated
hat multiple applications can cause multiple congestion events
ithin a short period of time. Furthermore, these applications
an be, surprisingly, small in job size, not scheduled evenly across
he cabinet and have a many-to-few communication pattern. Our
41
analysis can be used in identifying such applications and users
to minimize the performance impact on other applications. In
end, we evaluate different machine learning models to predict
applications encountering throttle events.

Given limited literature on field data and analysis on intercon-
nects error, we hope our study addresses an important topic and
would be useful for current and future systems. A real-world test
of the model on a future HPC system and looking into the impact
of other system attributes on the model in the future can further
strengthen the model to detect network congestion. Furthermore,
the researchers can investigate system and application attributes
to detect a specific application causing congestion while multiple
applications are running at the same time in an HPC system.
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