
Enforce Cooperative Resource Sharing in Untrusted Peer-to-Peer Computing
Environment

Technical Report: MIST-TR-2004-014

Zhengqiang Liang and Weisong Shi

Mobile and Internet Systems Group
Department of Computer Science

Wayne State University
{sean,weisong}@wayne.edu

Abstract

Peer-to-Peer (P2P) computing is widely recognized as a
promising paradigm for building next generation distributed
applications, ranging from large scale scientific applications
to mobile ad hoc information sharing, by federating dis-
persed pools of geographically distributed resources under
loosely coordinated control. However, the autonomous, het-
erogeneous, and decentralized nature of participating peers
across multiple administrative domain introduces the chal-
lenge for resource sharing in such an environment: how to
make the peers profitable in the decentralized resource shar-
ing under the untrusted P2P environment. To address the
problem, in this paper we present a self-policing and dis-
tributed approach by combining two models:PET, a PEson-
alize Trust model, andM-CUBE, a multiple-currency based
economic model, to lay a foundation for resource sharing in
an untrusted P2P computing environment. PET is a flex-
ible trust model that can adapt to different requirements,
and provides the solid support for the currency manage-
ment in M-CUBE. With the help of the trust management
and the merits of the economics, M-CUBE provides a novel
self-policing and quality-aware framework for the sharing
of multiple resources, including homogenous and heteroge-
neous resources. We evaluate the efficacy and performance
of this approach in the context of a real application, a peer-
to-peer Web server sharing. Our results show that our ap-
proach is flexible enough to adapt to different situations and
effective to make the system profitable, especially for the
system with large scale.

Keywords: Cooperative, Heterogeneous, Resource Shar-
ing, Untrusted Environment, Peer-to-Peer, Economic model,
Trust Model.

1 Introduction

Peer-to-Peer (P2P) computing — federated sharing of dis-
persed pools of geographically distributed computing re-

sources under coordinated control — has been considered
as a promising platform for solving large-scale problems in
science and engineering. However, resource management in
these environments is a complex undertaking. These sys-
tems need effective mechanism for fair sharing of commu-
nity resources, adaptability to dynamic changing conditions,
prevention of denial-of-service (DoS) attacks from partici-
pating peers, and coordinaton of the diverse policies, cost
models and varing loads different peers. As one motivat-
ing example, a classical “tragedy of the commons” for peer-
to-peer file sharing is 50% to 70% of peers are free rid-
ers [2, 40], which results in a great load imbalance of the
systems. Resource trading can enforce a cooperative ap-
proach for the resource sharing and is promising to address
the above problems.

The autonomous, heterogeneous, and decentralized na-
ture of participating peers across multiple administrative do-
main introduces two challenging issues related to resource
trading: decentralized trading scheme, which means the
decision of resource exchange and negotiation are deter-
mined by each peer based on its personalized view of the
partner and its own policy;self-policing personalized trust-
worthiness management, which means different peers may
have different opinions on the trustworthiness of the same
peer, instead of unique global trustworthiness value like
eBay [14].

In this paper, we propose our approach combining two
models: M-CUBE, aMultiple CUrrencyBasedEconomic
model, as the decentralized trading scheme, and PET, a
PEsonalizedTrust Model, to provide the trustworthiness of
the peer to support M-CUBE. The M-CUBE model pro-
vides a general and flexible substrate to support most of
high level resource management services required by the
P2P computing, such as resource coallocation, quality of
service (QoS) control, advance reservation and scheduling
algorithms. PET derives the trustworthiness from the rep-
utation evaluation and risk evaluation. The trustworthiness
value provided by PET will be treated as the view of the

1

peer by M-CUBE. The unique feature of our approach is
seamless integrating the trustworthiness and dependability
of peers into the resource trading.

The major contributions of this paper include:

1. We propose a formal trust model, including the reputa-
tion evaluation and risk evaluation, for calculating the
trustworthiness of other peers in a self-policing way.

2. We propose a multiple-currency based economic
model, which seamless integrates the trustworthiness to
provide a self-policing method to enforce the coopera-
tive sharing of heterogeneous P2P resources. Regard-
ing to the pricing problem, we price resources accord-
ing to their prices in the real economic market. By this
mean, prices of heterogeneous resources are compara-
ble, so that heterogeneous resource sharing is feasible
in M-CUBE.

3. We design an efficient resource trading protocol which
has the capability to prevent multiple rebellious prob-
lems related to resource sharing, such asfree rider,
boaster, andapplication-level DoS attack.

4. We evaluate the efficacy and performance of this ap-
proach in the context of a real application, peer-to-peer
Web server sharing. Our results show that our approach
is flexible enough to adapt to different situations and ef-
fective to make the system profitable, especially for the
system with large scale.

The rest of this paper is organized as follows. In the fol-
lowing section, we provide an overview of our approach
first. The details of the PET model is provided in Section 3.
Section 4 depicts the design of the M-CUBE model. In Sec-
tion 5 we describe an application scenario and give the de-
tailed analysis with simulation based on our approach. Fi-
nally, related work and concluding remarks are listed in Sec-
tion 6 and Section 7 respectively.

2 Overview

We first give a brief description about the service-oriented
architecture, which provides a foundation for our system.
After that, five problems to be addressed in our system are
listed, followed by a general overview of our design.

2.1 Service-oriented View

Traditionally, the term “resource” in resource sharing has
been interpreted narrowly as denoting a physical entity, such
as computer, network, or disk storage systems. In con-
trast, we envision that the notion of resource should be in
a more generic sense to denote any capability that may be
shared and exploited in a networked environment, i.e.,ser-
vice. In the rest of this paper, we shall use “service” and “re-
source” interchangeably. Figure 1 shows a general scenario

of P2P resource sharing over the Internet, where multiple
peers are distributed across multiple administrative domains
(also known as autonomous systems (ASes)). The scenario
can be use in the Pure P2P environment, where all the nodes
are peers; at the same time it can also be applied in the Hy-
brid P2P environment, where the nodes provide service (we
call such a node the peer serverPS) form the P2P commu-
nity, while the nodes asking for the services (we call such a
node the client) locate outside the P2P community. For the
Hybrid architecture, we use dotted line to connect clients to
peers in the figure. Note that some ASes may have multi-
ple peers, e.g.,A3 has two peersP3 andP4. This will de-
mand the system to provide flexible security and trustworthi-
ness control to treat intra-AS and inter-AS in different ways,
which is within the capacity of our approach: M-CUBE and
PET.

2.2 Problems of Resource Sharing

Here, we list the problems related to resource sharing in an
open P2P environment.

• HeterogeneityThe heterogeneity of resources makes
the multiple-resource sharing difficult, because of lack-
ing of a formal metric for the trading among different
resources.

• UntrustednessEnforcing a cooperative, adaptive, and
anti-maliciousness P2P sharing environment on top of
an untrusted and private P2P community is really a
challenge.

• SelfishnessThe possible threats launched by selfish
peers, such as cheating and boasting, can destroy the
cooperative resource sharing. Enforcing a fair resource
sharing framework to limit the negative effect of the
selfish peers is one of the goals for our approach.

• Autonomy and Cooperation Peers usually belong to
different administrative domains which may have dif-
ferent local policies. How to effective and efficient in-
tegration of these local policies and general resource
sharing is a challenge.

• IncentivesFree riders are the considerable population
in the P2P community. To attract the peer to contribute
to the community is an old but still ongoing problem.

In this paper, we intend to address all these problems.

2.3 Overview of Our Approach

We conjecture that the fundamental problem of P2P resource
sharing is a trustworthiness mechanism for resource trading,
as the dependable trading to world economics. Based on

2

P3

P4

P2

P1

C

C

C

C

C

C

C
C

AS1

AS2

AS3

M-CUBE
 &PET

Autonomous
System (AS) P Peer C Client Soft Layer

M-CUBE + PET Models

Resource Management Related Services

Applications (computational sharing, data sharing, service sharing)

P1

Service-level
Agreements

Advanced
Reservation

Quality-
of-Service

Access
Control Privacy

P2 P3 PN

Personalized Trust
Management

Feedback
Collection

Self-
Observation

PET

Service
Discovery

Currency
Management

Currency
Exchange

M-CUBE

Price RegulatorRatio Regulator

(Trustworthiness, Service)

 Discovery
 Protocol

 Exchange
 Protocol

recommendations
from others

behavior
observation

Resource Classifying

(a) (b)

Figure 1: (a) A general example of peer-to-peer resource sharing; (b) Overview of the system.

these, a lot of high level resource management related ser-
vices, such as service level agreements, access cost negotia-
tion, resource coallocation, advanced reservation, quality-
of-service scheduling, dynamic adaption and reconfigura-
tion, and even access control (partially) can be easily built.
Therefore, the major objective of this paper is to build a
trusted dependable trading approach, which include two
components: the M-CUBE model and the PET model.

As shown in Figure 1(b), the M-CUBE model is a flexi-
ble universal infrastructure for building high-level resource
management related services, and provides a comprehensive
solution to all challenges listed above. There are four ma-
jor modules in M-CUBE: thePrice Regulatordecides the
price of the resources; theRatio Regulatordetermines the
exchange ratio of the currency based on the trustworthiness
value provided by the PET model; theService Discovery
module is in charge of discovering the available resources
provided by remote peers; finally theCurrency Exchange
module enables peers to bargain until the agreement of the
currency exchange is reached, and then makes the exchange.

PET underpins M-CUBE through providing the accurate
trustworthiness value. Trustworthiness is service-specific.
One peer can have different trustworthiness value corre-
sponding to different services in the eyes of other peers, so
PET actually provides the (trustworthiness, service) pair for
M-CUBE. PET models the reputation, and treats the risk as
the opinion of the short-term behavior and makes it be quan-
tified. The weights of the reputation and risk are adjustable
according to different environments and requirements. Inte-
grating with the risk evaluation distinguishes PET from the
previous work [10, 20, 29, 46].

2.3.1 Assumptions

Before describing the PET and M-CUBE model, we give the
basic assumptions first:

• Each peer has a relative unique and stable ID. This will
make reputation and trustworthiness make sense.

• Coordinated access to diverse and geographically dis-
tributed resources is valuable for participating peers.

• Each peer has an associated public-private key pair to
make its currency unforgeable.

• Most peers in the system need the cooperation so as to
gain profitable through sharing the resources.

• Each peer is selfish.

• Each peer has a pair of public/private keys for peer au-
thentication and building secure communication chan-
nel. Peers use PKI for public key distribution.

3 PET Design

PET is the underpinning of our system, which provides the
trustworthiness to trigger M-CUBE to evolve. Before de-
picting the PET model, we list four principles for the design
first:
P.1Peer will always trust itself.
P.2 Bad behavior makes the trustworthiness value drop
faster and good behavior increases the value slower, which
make the new joiner not to be preferred.
P.3 If a peer continually behaves badly, it will be bad peer
prone.
P.4The recommendations from others will not dominate the
calculation of the trustworthiness value, but it will gain more
weight when no direct interactions happen before.

3.1 Trustworthiness

PET [24] underpins M-CUBE through providing accu-
rate trustworthiness value calculation. Trustworthiness is
service-specific. One peer can have different trustworthiness
values corresponding to different services in eyes of other
peers, so PET actually provides thetrustworthiness, service
pair for M-CUBE. In PET the trustworthinessT is directly
derived from two parts: reputationRe and riskRi, as shown

3

in the upper part of Figure 2.WRe andWRi are the weights
of Re andRi respectively, which are adjustable according
to different environments and requirements. Reputation is
the accumulative opinion, which reflects the quality of target
peer within a long term. PET models the reputation through
combining the recommendation (Er, also called referral or
second hand information) and interaction-derived informa-
tion (Ir). WEr andWIr are their corresponding weights.
Recommendation is the referred opinions from other peers,
which is collected by theFeedback Collectioncomponent in
PET. Interaction-derived information is the self-opinion re-
sulting from the direct interaction. This kind of information
is from feedbacks from peer’s own agent [37] (also collected
by the feedback collecting component) and behavior pattern
information collected by theSelf-Observationmodule . Ba-
sically Ir is the self-knowledge, so it is reliable and self-
determined. The interaction-derived information is also the
base of the risk calculation. Risk is treated as the opinion of
the short-term behavior. Integrating the risk evaluation into
the trustworthiness calculation is one distinguished charac-
teristic of the PET model. All values ofT, Re, Ri, Er, and
Ir are values from interval [0, 1].

Trustworthiness (T)

Reputation (Re) Risk (Ri)

Recommendation
(Er)

Interaction-derived
(Ir)

WRe WRi

WIrWEr

Figure 2: Derivation of the trustworthiness.

There are a wide range of resource categories in P2P re-
source sharing such as CPU, hard disk, and so on. In the
context of heterogeneous resource sharing, another program
componentresource classifyingin PET is employed to iden-
tify the resource category to which the feedback and self-
observation information belong, then this component adopts
different strategies to process these information. In addition,
we abstract four general behaviors, good service, low-grade
service, no response, and Byzantine behavior, in P2P system
as listed in Table 1, so that PET can be applied for most re-
source sharing cases by just modifying its feedback collect-
ing and resource classifying components, which we argue is
application-specific. To be worth noting that, in our classifi-
cation, “no response from the service provider” is a special
behavior. We treat this kind of behavior as a bad behavior,
no matter it is because of subjective factor, e.g., rejecting
the service request intentionally, or objective factor, e.g., the
physical link gets broken. Though this strategy puts more
strict limitation on the peer’s behavior, it is good for the
model to find good peers considering both user’s intention

and the physical condition. Finally the dynamic behavior in
the table is introduced to simulate the dynamics of the P2P
system, and is used in the simulation design.

According to different requirements, we can assign differ-
ent weights to the reputation and risk components, through
which PET can meet most demands, no matter preferring to
the long-term assessment or caring for the short-term assess-
ment. Equation 1 describes the derivation of the trustworthi-
nessT :

T =

α×Re + (1− α)× (1−Ri), 0 6 α 6 1
Re, if Ri is NULL

Ri, if Re is NULL

0.4, bothRi andRe are NULL

(1)

whereRe is the reputation value, andRi is the risk value.
The values ofT, Re, and Ri are all from 0 to 1. Here
WRe= α andWRi = 1 − α. If we setα = 1, that means
the weight of the risk is 0, then PET will degenerate to the
traditional reputation system. However our simulation re-
sults show that risk evaluation is a very helpful component
to build the trust model. Normally when a system is highly
dynamic and most nodes are not good, it is recommended to
set the risk with a high weight (e.g. 0.7), that is, set a lower
value toα (e.g., 0.3), which is supported by the simulation
results in Section 5. For the blind users (i.e., users who do
not know how to tune the parameters of the underlying trust
model),alpha = 0.3 is also the safe recommended value.
For a complete new peer who does not have any relatedRe

andRi information, its trustworthiness is set to 0.4. Nor-
mally, this value is used only when the peer is newcoming
and needs to find some neighbors (partners), such as at the
very beginning of the system. It is worth noting that, the
T defined in Equation 1 is associated with only one service
type. Peers who provide multiple services can have multiple
trustworthiness values.

3.2 Reputation Model

In the following model, we call the peer to evaluate other
peers avaluer, the peer to be evaluated avaluee, and the
peer that sends the trustworthiness value of the known peers
to others therecommender. For example, when peerA tells
peerC the trustworthiness value of peerB, A will be the
valueeof B, and the recommender ofC.

We classify services provided by the peers into the follow-
ing four categories, as shown in Table 1. We formalize the
quality set as Q ={G, L, N, B, D }. Correspondingly,
the peers providingG service is calledG-peer. Then we
haveL-peer, N-peer, B-peer, andD-peer similarly. This
classification is flexible enough to apply to any resource
sharing, but also with coarse grain. More subclasses can
be introduced if necessary. All threeL, N, andB services
are bad services, and will cause thevaluer to decrease the
valuee’s score. Considering the dynamic behaviors of the
peers in the real P2P community, the Dynamic quality (D)

4

Peer Behaviors Definition
Good (G) Provide services as good as expected.

Low Grade (L) Provide correct services, but with some degradation, e.g., delay for service.
No Response (N) Reject any incoming service requests.

Byzantine Behavior (B) Give the wrong or even malicious response for the incoming requests.
Dynamic Behavior (D) Change the behavior among G,L,N,B one after another and repeatedly.

Table 1: Five different peer behaviors.

is also introduced in the simulation in addition to the four
qualities (G, L, N, B), and the corresponding peers are
calledD-peers. For the D-peer, it will change its behavior
amongG, L, N, andB repeatedly and uniformly, so 75% of
the behavior of D-peer is bad, and its score actually also will
decrease gradually. For thevaluer there is a maph from Q
to a score for one cooperation:

h(x) =

S1 , x = G, S1 > 0
S2 , x = L, S2 < 0 and|S2| > S1

S3 , x = N, S3 < S2

S4 , x = B, S4 < S3

(2)

For example, leth(B) = −6, which means when theval-
ueei’s service category is known asByzantine behavior,
i’s total scoreSwill be dropped by six. As shown in Equa-
tion (2), the bad behaviors (L, N, B) will lead to more
extent of decrease of the score than the extend of increase
for the good behavior, and theB is the most harmful action
which cause the most severe decrease. This alters the peer
not to act badly. The score is used to calculate the reputa-
tion, as seen in Equation 3. Simply we can choose a con-
stant value forS1 to S4 (Note,S2, S3, andS4 are negative),
but also we can adjust these values with a complex adaptive
mechanism.

Reputation value is the historical accumulation forval-
uee’s past behavior from thevaluer’s viewpoint. It will re-
flect the overall quality of the peer for a long time. Some-
times some good peers will misbehave for nonsubjective
factors, for example, the good peer rejects the network ser-
vice requests for the breakdown of the physical link, but
after recovery, it will provide good service continually. If
wanting to forgive the occasional nonsubjective misbehav-
ior, we can set a high value toα (α > 0.5 for example) to
make the trustworthiness preferring to the reputation value.
Reputation is derived fromEr andIr, as shown in Equa-
tion 3:

Re = β × Er + (1− β)× Ir, 0 6 β 6 1 (3)

where

Er =
∑

Te

Ne
, Ir =

1, S > Tgood
S

Tgood
, 0 < S < Tgood

0, S 6 0

HereWEr= β andWIr = 1− β.
∑

(Te) stands for the sum
of the recommendations, andNe is the amount of the rec-
ommendations. SoEr is the average value of recommenda-
tions. Tgood is the score threshold to normalize the score.S

is the total score. For example, whenTgood is set to 100 and
the valuee’s score is higher or equal to 100, itsIr will be set
to one.

Since PET aims to deploy in the P2P community, in which
there are malicious recommenders providing the misleading
recommendations, it is good to lower the role of the recom-
mendation. The reasons are:

1. Different peers may have different views on the same
resource provider because different peers may have dif-
ferent situation-specific criteria and requirements for
the sharing.

2. Peer’s behavior can change dynamically, which implies
that we can not compute the trustworthiness relying
much on the recommendations from others.

3. Fraudulent recommendation, especially the collusion
on the recommendation is very difficult to handle if the
trustworthiness calculation relies much on the recom-
mendation.

However, as mentioned before, it is not a good answer to
ignore the recommendation. Assigning it a lower weightβ is
good for the solution, which is supported by the simulation
results in Section 5.

3.3 Risk Model

Reputation is the accumulative value for the past behavior
and reflects the overall evaluation for thevaluee. However,
it is not sensitive enough to perceive the suddenly spoil-
ing peer because it needs time to decrease the accumulative
score. Risk evaluation can help to solve this problem.

The riskRi is defined as the ratio between bad services
and total services, as shown in Equation 4, whereB, N and
L are the service qualities defined in Table 1 andh(i) is the
score for the cooperation with service qualityi define in
Equation 2.Sw is the size of the window, andN is the num-
ber of total history events in the queue. NormallySw andN
are equal, except that at the beginning, the queue is not full.
From Equation 2 we can know that the value of|h(B)| is
largest unit to change the score, so with it we can normalize
Ri to be a value within the range [0,1]. When there is no in-
teraction at the beginning, the risk value is set to be zero, that
is, no risk for the new stranger. It seems that this strategy
opens a door for the new stranger and brings corresponding
threats such as the Sybil attack [13], but actually not. Once a

5

peer behaves badly, the risk value will increase significantly,
so that the door will close very fast for the bad peers. With
the same reason, even the complete new stranger hold a rela-
tively high trustworthiness value 0.5, the risk evaluation can
reduce the threats if the risk component has a high weight,
which will be validated in in the Section 5.3.5.

Ri =

{P
i=B,N,L(Ni∗h(i))

h(B)∗max(Sw,N) max(Sw, N) 6= 0

0 max(Sw, N) = 0
(4)

For the implementation, a risk window is employed to limit
the assessing range. The smaller the window size is, the
more the shorter-term assessment is favorite by the trust-
worthiness calculation. In the simulation, we will see the
results about the effects of changing the window size for the
trustworthiness value.

With the window shifting forward, the risk value reflects
the fresh statistics of thevaluee’s recent behaviors. Trust-
worthiness is a temporal value, because the behavior of the
peer will change dynamically. The old trustworthiness value
may totally misrate one peer after some time passes. To
solve this problem, decay function is used in [4]. How-
ever, it is difficult to choose a unique decay function for all
peers, because different peers have different behavior pat-
terns. In PET, risk window is a more graceful alternate. The
risk contribute to the trustworthiness with thevaluee’s most
recent behaviors, which integrates the temporal factors into
the trustworthiness value. Everyvalueehas the individual
risk value, which makes the temporal factor more precise
than the decay function. To reduce the risk from the cooper-
ation, users can focus more on the risk valueRi by assign-
ing it a high weight. Yet this will decrease the availability
of the resources, because the lower the risk is requested, the
less resources are qualified to be used. The user can make
a tradeoff between the risk and the resource availability by
adjust the weight of the risk.

Using risk evaluation, the risk sensitive users can find the
bad peers much earlier than just using the reputation value,
which is illustrated in Figure 3. In this figure, x-axis rep-
resents the time, and y-axis shows the behavior of the peer.
The line reflects the variation of the peer’s behavior. At time
t0, the peer starts to behave badly. The bad peer will not
be discovered until timet2 when only the reputation value
is taken into consideration. If the risk evaluation is feder-
ated and paid enough attention, the time will be efficiently
shortened to timet1 due to the high risk valueRi.

4 M-CUBE Model Design

M-CUBE makes use of the (trustworthiness, service) pair
provided by PET to change the view on the quality of oth-
ers, then adjusts the corresponding policies to control the
currency. In this section, we first give a brief introduction
about the world economic model, which inspires the design
of M-CUBE, then present the details of the M-CUBE model.
Finally, the advantages of this model are discussed.

Time

Behavior

G

B

t1 t2

t1: time to find the Byzantine
behavior with risk evaluation

t2: time to find the Byzantine
behavior without risk evaluation

t0

Figure 3: Risk evaluation helps to find the peer with dra-
matic spoiling earlier.

4.1 World Economic Model

The ability of trading and price mechanisms combine local
decisions by diverse entities into globally effective charac-
teristics, and imply their value for organizing computations
in large systems such as P2P system. Based on the success
of economic institutions in the real world as a sustainable
model for exchanging and regulating resources, goods, and
services, we propose the M-CUBE model, a computational
economics framework. Several features of world economic
model motivate the design of our own economic model for
trusted resource sharing in P2P environment:
(1) Each country has their own currency;
(2) The consumer (buyer) needs provider (vendor)’s cur-
rency for trading, rather than its own currency;
(3) Currency exchange ratio is floating dynamically to sta-
bilize the world’s economics;
(4) Countries must have incentives for exchange. That
means the two trading sides must be interested in counter-
part’s goods or services;
(5) Some countries may have some restrictions on trading
with some specific countries based on previous reputation;
(6) After finishing the trading, both side can get the infor-
mation of the cooperator’s quality and adjust the reputation
of its cooperator. The trust and reputation information will
be used for the next possible trading.

4.2 Currency Model

Inspired by the above features, we propose the M-CUBE
model, which is a multiple-currency based, self-policing,
dependable and unified method for heterogeneous resource
sharing; however, our approach differs from the real eco-
nomic market in the grain of economic entity. That is in our
currency model, every peer, namely one machine or one or-
ganization, issues and regulates its own currency, while in
the real world economic market, each country (not a single
person) is the smallest entity to control the its currency issu-
ing and exchange.

4.2.1 Currency Model

M-CUBE is built upon currency-based mechanism, where
the uniqueness of M-CUBE is each peer has its own cur-

6

rency. Unlike many of previous work, in addition to asso-
ciating the currency with physical resources directly, such
as CPU and disk, M-CUBE also associates currency with
application-level services directly. For example, in the P2P
Web server sharing application [38], the currency is related
to the service for the HTTP requests.
Pricing and Ratio In M-CUBE, pricing is the first prob-
lem that needs to be addressed before building the cur-
rency model. Since most computer users live in the market-
economy society, it is reasonable and acceptable to price our
resources in the virtual community referring to the real price
of the physical devices. On the other hand, the shared re-
sources have their own period of validity. So from the view
of trading, the currency in the M-CUBE is mainly expressed
as a 3-tuple:(t, p, v), wheret is the type of the resource,p
is the number of this type resource which $1 can buy in the
real economical society, andv is the validity period of the re-
source. In the following subsection, more details about the
format of the currency are described. However, regarding to
the application-level service not only related to a single de-
vice, for example, one calculation request in SETI@Home,
it needs to consider multiple devices related to this service
to fix p. Normally the pricing normally is self-decided, but
it also uses $1 as the basic unit to definep. For example, if
$1 is decided to be able to buy 10 requests, then the value of
p is equal to 10.

Based on the value ofp, heterogeneous resource trading
is feasible. Here is an example of pricing and trading. Peer
A wants to share its 100G harddisk, and peer B wants to
share its 2GHz CPU. Assume in the real market A’s hard-
disk cost $100, and B’s CPU cost $80. Then the value of
p in A’s currency is 1 (unit is GB), and B’s is 25 (unit is
MHz)1. Ignoring the consideration of the validity period,
one unit of currency of A (CA) is expected to get one unit
of currency of B (CB) because one currency is correspond-
ing to $1. In this case, oneCA can be used to exchange for
25 MHz CPU resource from peer B, or oneCB can be used
to exchange for 1G harddisk from peer A. Two advantages
can be expected with this approach:(1) People are willing
to accept this approach because it is similar to their dairy
life; (2) Base on this approach, heterogenous resources can
be easily exchanged, because all currencies are introduced
based on $1 value in the real economic market. In order
to simplify the system design, a pricing bootstrap peer will
be introduced in our system. The bootstrap peer is taking
care of one additional task to update the device price. Other
peers in the system contact the bootstrap peer to get the ref-
erence price. However the reference price is not mandatory;
other peers can price their resources based on their own ex-
perience, disregard for the price from the bootstrap peer. So
the bootstrap peer is not necessary in the system. The ref-
erence price also can be referred to see whether the price
from the counterpart peer between the resource exchange is

125MHz CPU is 1
80

of 2GHz CPU. From the application view, it repre-

sents 1
80

CPU usage.

reasonable or not. The modulePrice Regulatoris employed
to manage the price, whose job is either to contact the price
bootstrap peer periodically or self-decide the price accord-
ing to some pricing mechanism. A lot of previous work has
been done on the pricing [16, 17, 19, 25, 30, 51], which are
the good complementary work for our extensions to decide
the price independent on the real economic market.

Currency Format and ManagementFigure 4(a) shows the
logical relationship among peers, where each peer issues its
own currency according to its contributed resources. When
two peer exchange their currencies, there is a exchange ra-
tio Rc that they agree with. Initially, since every currency
is corresponding to $1, soRc is equal to one, as shown in
Figure 4(a). After sometime,Rc will be adjusted accord-
ing to the trustworthiness value provided by PET. It is the
function of trustworthiness valueT and old value ofRc:
Rc = f(T,Rc). A simple definiton off is Rc = T . That
is, just use the trustworthiness as exchange ratio. For ex-
ample, if for peer B, peer A’s trustworthiness value is 0.5,
then one unit of A’s currency can just exchange for 0.5 unit
of B’s currency when A asks for B’s currency.Rc is reg-
ulated by the moduleRatio Regulatorin Figure 1. In the
principle, whenP1wantsP2’s service, it must useP2’s cur-
rency. ButP1 must have its own currency first which it can
use to exchange withP2. WhenP1 issues its own curren-
cies, it promises to share its resources related to those cur-
rency at the same time. So if one doesn’t contribute any
resource to the community, it has no currency for exchange
so that it won’t get any services from others. The incentive
brought by M-CUBE to the resource sharing is: the more
the contribution a peer provides, the more services it can
get from others; the peer will get more benefits than its ac-
tual contribution because sometimes resources from others
can help the peer to pull through the difficult period such as
overloaded time, which are definitely more valuable than the
normal days. However, issuing more currencies than one’s
capacity blindly is not a good way either. This is what we
call theboaster. The total number of currencies stands for
the peer’s outward service capacity. The boaster may incur
trustworthiness loss because it will be unable to serve the
legal requests when most of its currency holders ask for the
services at the same time. So, the peers must issue the cur-
rency according to its actual service capacity. More details
about the boaster will be depicted in the subsection 4.2.2.
One peer will provide its service only when it receives its
own currency and it must do so in order to maintain its rep-
utation in the community.

The format of the currency is shown in Figure 4(b).Type-
Vec stands for type vector, to specify which resource this
currency related with. It should be made clear that, though
P1’s currencies can relate to different resources, they are all
P1’s currencies. When we talk about multiple-currency, we
are from the view of different peers, not different resources.
When a peer generates a new currency, it will fill in this
field to make the currency to be used only for the specified

7

P1 P2

P3

Initialization:

Some time later:

: :

: :

= 1 : 1 : 1

= i : j : k

Currency
 TypeVec: Vector ;
 ResNum: Int ;
 ValiTime: Vector ;
 LiveTime: Int ;
 IssueTime: Int ;
 SeqNum: String ;
 DigSig: String ;

(a) (b)

Figure 4: An overview of the currency model: (a) Evolution of the M-CUBE, (b)the format of the currency.

resource. Because the resources are limited, the number of
currencies corresponding to one resource is also limited. In
M-CUBE, every issuer must take care of the currency issu-
ing itself so to avoid to be a boaster.ResNumis the num-
ber of corresponding resources which this currency can buy.
ValiTimestands for the validation time (Time-to-Live) of the
resource the contributor guarantees. Based onValiTime, the
receiver of the currency will know when the service is avail-
able on the issuer side. The validity periodp mentioned
in above paragraph can be achieved by subtracting current
time from theValiTime. LiveTimespecifies the validate time
interval of currency. If after the exchange the currency is
not used withinLiveTime, the currency will expired, and the
issuer will re-issue the currency with anotherLiveTime. Dif-
ferent withValiTime, LiveTimeis from the angle of currency,
not the resource. NormallyLiveTimeis less thanValiTime.
IssuedTimeis the time stamp indicating issue time of the
currency. When an issuer receives its currency, it will check
if the currency is valid by comparing theIssuedTime+ Live-
Time to the its current time, but this limitation is not strict
because the time is not strictly synchronized in the distrib-
uted system. Through this way, the service consumer signs
a usage contract with the service provider and takes on the
duty for the expiration of the provider’s currencies.SeqNum
is the sequence number of the currency, which is used for de-
ciding the authenticity of the currency by the issuer. Finally,
DigSig is the digital signature signed by the issuer. The is-
suer uses the node’s private key K− to encrypt theTypeVec,
ResNum, ValiTime, LiveTime, IssuedTime, SeqNumto gen-
erate digital signatureDigSig. The currency is totally self-
determined and self-policing. It meets the demand of high
independence of the P2P community.

Service Discovery ProtocolBefore one peer exchanges cur-
rency with another, it must know who has the currency re-
lated to the resource it wants, which is taken care bySer-
vice Discoverymodule in Figure 1. Two functionalities the
module performs: (1) Locating the wanted currency, and (2)
making sure the validity period of the wanted currency is
long enough. In M-CUBE, limited-hop multicast is used
here for the service discovery, as shown in Figure 5(a). The
requester sends out a request (Cnum, Ctype, R, V) to its co-

operators (cooperators refer to the peers having the history
of currency exchange before), whereCnum is the currency
number it wants,Ctype is the resource type to which the
wanted currency related,R is the identifier of the requester,
and V is the minimum validity period for the request re-
source. The cooperators will forward the request to their
cooperators again. According to the small world phenom-
enon, it is expected that after several hops the wanted cur-
rency can be discovered. In M-CUBE the maximum num-
ber of hops is set to six [31]. All the receivers piggyback the
response to the requester peer. If all the following two con-
ditions are met, that is, (1) the currency associated with the
requested resource is available, and (2) the validity period
is long enough, the receiver will confirm the requester peer,
and tell the requester peer what kind of currency the receiver
needs if the requester peer want to proceed the exchange.

One important thing is, delegation peer is allowed in M-
CUBE to improve the efficiency of the resource sharing.
Peers are not limited to just exchange with the issuer di-
rectly. In other words, if peerA has peerB’s currency, and
peerC wants peerB’s currency, peerC can exchange peer
B’s currency with peerA. We callA anexchange delegation.
This will improve the resource availability and efficiency.
Considering the case that when peerB and peerC does not
know each other, so peerB and peerC can not build the co-
operation relationship. But peer C needs peer B’s service.
Without the exchange delegation,C won’t getB’s help, and
B’s resources can not be known byC.

The request picks up some peers and builds the candidate
list according to the trustworthiness of the peer who issues
the wanted currency (not the peer performing the exchange.
Remember there are delegations here, and the trustworthi-
ness just cares about the service provider, not the currency
provider). Then one peer from the candidate list is chosen to
proceed the currency exchange, whose details are described
in the following paragraph.

If the currency exchange can not be fulfilled (for exam-
ple, the exchange ratio is very high for the requester peer, so
that it doesn’t want to continue exchanging), another peer
from the list is chosen to continue the exchange. When the
requester peer doesn’t have the right currency as the respon-

8

Msg=(Cnum, Ctype, R, V)

Requster Forwarder Final Reciever

R

C

B

A

P

CP

Cc

Cc

CA

CB

R
P:R RB

:C

RA:B

R
C

:R

N'=RA:B*RB:C*RC:R*N

Ratio Feedback

Exchange Inquiry

(a) (b)

Figure 5: The currency discovery protocol: (a) multicast protocol, and (b) an example of exchange chain.

der peer needs, it must try to get the currency the responder
peer wants first. In a worse case, the requester may have to
get several intermediate currencies to finally get the wanted
currency which can be used for exchange. In this case, the
exchange chain shapes up.

Figure 5(b) is an example of the exchange chain combin-
ing the delegation, where peerP possesses the resource the
requesterR wants. NowR wantsP’s currency. After multi-
cast,R knows that peerA hasP’s currency. In this scenario,
A is the delegation ofP. But A just accepts the currency of
peerB, which R doesn’t have. ThenR uses another multi-
cast to find out who hasB’s currency, andB responses and
tell R it just acceptsC’s currency. Fortunately,C acceptsR’s
currency (another multicast to find who hasC’s currency).
Now Rcan build a exchange channel toA through the chain
R ⇒ C ⇒ B ⇒ A. To improve the performance, the ex-
change activity won’t happen until the requester peer agree
all the ratio from the peers in the chain. So during the for-
mation of the chain,R just keep the ratio reported fromA,
B, andC. If R agrees with all the ratios, the exchange chain
forms:Rwill trigger the chain exchange by exchanging with
C first, and then usesC’s currencies to exchange with B, and
the process goes on until getsP’s currency fromA. One de-
tail is, whenA getsR’s exchange request finally,A will in-
quiry P the ratioRP :R first, to defense theexchange shortcut
attackwhich is depicted in Section 4.3. IfR is qualified, A
will give R P’s currency. Actually finally N units ofR’s cur-
rencies can exchange forRA:B∗RB:C∗RC:R∗N units ofP’s
currencies. For resource discovery in a large-scale network,
we can resort to distributed hash table techniques [36, 43] to
uniformly distribute the overhead of resource advertisement
and lookup, which is beyond the scope of this paper.

Currency Exchange ProtocolAt the beginning, one peer
only has its own currency. It needs to exchange the currency
from other peers when it needs the services from others. The
moduleCurrency Exchangein Figure 1 takes care of this
job. When the expected service is time-critical such as CPU
service, peers can pre-exchange the wanted currency. Af-

ter the service discovery stage mentioned in previous para-
graph, the requester already has the candidate list, and one
candidate peer has been chosen. In the following, we will
just state a basic exchange protocol without considering the
chain exchange (Actually the chain exchange is just a lit-
tle bit different. What needed to be modified is to combine
the exchange in the chain together). The requester sends its
request of currency exchange to the candidate, and the can-
didate decides the exchange amount based on the exchange
ratio. The pseudocode of the exchange protocol is shown in
Figure 6(a). We assume thatP1 wants to getN CP2(T1)
(the currency with service typeT1 from P2), and the cur-
rencies ofP1 are related to totaln kinds of resources. Here
we also don’t consider the case of delegation, and assume
that all currencies ofP1 used to exchange are issued byP1
itself. At first, P1 will use the currencyCP1(T1) to ask for
exchange. If this kind of currency is not enough, it can use
other kinds of currencies to continue the exchange until its
request is satisfied or no more kinds of currencies can be
used for the exchange.SUBEXCHANGE function oper-
ates as shown in Figure 6(b), which illustrates the exchange
process for just one kind of currency.P1 inquiriesP2 if pos-
sible to exchange the currency with typeT1 from P2 using
the P1’s currency with typeTi. If P2 can conduct the ex-
change, it sends back the exchange-related information to
P1, which includesLc, Me, andR2:1. Lc meansP1’s credit
limit in P2, which is the total maximum number of curren-
ciesP1can ask fromP2. Me is the maximum number of the
currencyP1 can ask fromP2 in this exchange.R2:1 means
the currency exchange ratio forCP2(T1) to CP1(T1). The
protocol is totally self-policing and negotiable.P1 can re-
ject the exchange for the low exchange ratio specified by
P2. If P1 agrees the ratio,P1 will send P2 its N

′
curren-

ciesCP1(Ti), andP2 will send backN
′ ∗ R2:1 currencies

CP2(T1) to P1. HereN
′

may be not equal toN after nego-
tiation. When the exchange procedure completes, bothP1
andP2will change their currency storage.

After P1 receives the currencies fromP2, it can ask for

9

EXCHANGE(P2,N,T1)

Request_left=N;

FOR every kind of currency Ci, i = 1, 2, ... , n

 Get_currency = SUBEXCHANGE(P2,Request_left,Ci);

 Request_left = Request_left - Get_currency;

 IF Request_left <= 0

 BREAK;

RETURN Request_left;

P1 P2

Ask for CP2(T1) with CP1(Ti)

Lc, Me, R2:1

agree, sendN ' * C
P1 (Ti)

 * CP2(T1)

change currency
storage change currency

storageR2:1

(a) (b)

Figure 6: The currency exchange protocol: (a) the protocol, and (b) the SUBEXCHANGE process.

P2’s resource service immediately or later as long as within
the lifetime ofP2’s currency. If all things are legal,P2 will
provide the service forP1. P2 can’t rejectP1’s request in
order to maintain a good reputation in the community. Oth-
erwise its bad reputation will lead to the ratio of its currency
to P1’s decrease. In the Subsection 5.3.5, we can see how
the ratios change for different peers with different behaviors.
Since the currency exchange tends to attract more attacks,
some special security protocols, e.g.,Diffie-Hellman key ex-
change protocol, can be used here to protect the exchange.

4.2.2 Advantages of the Model

Benefit from the nature of the currency mechanism, we can
make the resource sharing controllable, eliminate the free-
rider and boaster, and make the system anti-DoS with our
M-CUBE model.
Making Resource Sharing ControllableIn M-CUBE, the
resource sharing and trading are under control from the
prospective of the number and time, which is important for
the open P2P community. Through the usage of the cur-
rency, every peer is coupled with the system not only using
the system, but also managing the system by discovering and
propagating the bad peers through the ratio adjustment. The
controllability also provides more benefits of the resource
sharing with morereliability andpredictability, which is a
potential way to put P2P resource sharing to a good direc-
tion against the law violation. Every peer has incentives to
keep good reputation, so that they also take the responsi-
bility to maintain the reliability of their resources claimed
in their currencies. The predictability of the resource let
peers known when can find the available resource, which
is necessary to make the system profitable. Actually from
the view of resource quantity, it is impossible to make the
system profitable, for one contributing one unit of resource
is supposed to get back another unit of resource, however,
when one peer facing the emergency or a complex task, and
its resource is not enough, the value of resources from oth-
ers is more than the normal days. This is the reason why the

resource sharing system can get benefits. The predictabil-
ity is necessary for well planned and scheduled usage of
resources, without which there is no way to cope with the
emergency and complexity.
Eliminating Free-rider Free-rider [2] is a severe problem
in P2P community. In the M-CUBE model, no free-rider can
exist because none of them can get other’s currency without
exchange its currency with other. When one’s currencies
are hold by other peers, it will have to provide the service
whenever it receives its currency, otherwise its credit will be
decrease and finally will be kicked out from the community.
DoS Attack Free Since every peer generates its currency
based on its service capacity, so even facing the burst of
the service requests from others, the peer is still can sat-
isfy the requests at the same time. That is, our currency
model can avoid the DoS attack when the peer issues the
currency legally. It is worth noting that when we say DoS
attack free here, we refer to the possible attack resulting
from our currency model, it is located in the application-
level. The network-layer attack such as the TCP/IP SYN
attack is not our major concern. Taking the Web server shar-
ing case as example, one peer knows it is able to provide
100 request/sec, which won’t bring itself a overload. When
it issues 100 currencies (we assume1C/request), the max-
imum load for the issuer is 100 request/sec.
Anti-Boaster and Inflation One malicious peer may issue
more currencies than its actual resource capacity to try to
get more benefits, or even issue the valueless currencies for
it won’t honor its currency with its service. We called such
a peer aboaster. For example, P1’s capacity is 100GB disk
and the market price of hard disk is 1G/$, so normally it can
just issue 100 currencies. However it issues 200 currencies
to try to get 100 currencies free. In [15], this action is con-
sidered as legal and useful, but we doubt it because it will
lead to the uncontrollable state of the system. In M-CUBE,
this behavior is treated as illegal. In the real economic mar-
ket, if the value of total currencies is larger than the acutal
value of total merchandize, it leads to the inflation and disor-
der the market trading. However, our currency mechanism

10

has a natural essence against inflation. The boaster may be
able to exchange for the currencies of other peers at first
with its devaluated currencies, but the stealing action will be
punished by the community in the long run. Other peers who
have the currency of the boaster will ask for the service later.
When the boaster can not provide service with good quality
facing the burst of the service requests, its trustworthiness
value will be decreased. Finally, when the trustworthiness
drops to below a threshold, the boaster will be eliminated
from the community. Simulation results in Section 5 show
that even most of bad peers in the system are boasters, our
approach is still can make the system profitable.

4.3 Threats and Extensions

The basic model works fine in the normal case, but needs
some extensions to handle different possible attacks. Next,
four possible attacks are discussed sequentially.

Dare-to-Die attack When we talk about the mechanism
against the boaster, we assume every node want to get ser-
vice from others, therefore maintaining a good credit in the
community is very important. However, if the objective of
a peer is disturb and destroy the system, so that punishment
does not make any sense. We call this behaviordare-to-
die attack. Actually we believe it is impossible to elimi-
nate such attack fundamentally. However, we propose to
use three strategies to weaken the attack. First, when one
receives a new exchange request from others, it will base on
the requester’s trustworthiness value to decide the amount
of the request can get. When it is a new requester without
any credit history, the exchange will be limited to a small
amount. After the exchange, if the requester is a dare-to-die
attacker, its failure in the service lead to its credit decreasing.
Second, the provider will decrease the credit of requester
when the provider doesn’t use the requester’s currency after
a long time. Next time the same requester can get even less
currency through the exchange. The second one is to pre-
vent such case happen: provider doesn’t send request to the
attacker, so it won’t know the attacker. Third, after a certain
period LiveTime (Figure 4(b)), the currency in the attacker
will be expired and be regenerated. Through these, we can
limit the system’s damage to a low bound.

Vampire Attack In P2P community, several peers attack
one peer cooperatively is a normal and severe problem. For
M-CUBE, though we limit the exchange quota when ex-
changing with the stranger, but if the number of the stranger
is enough, and consecutively they exchange with peerA,
then peerA will still have risk in exhausting its currency,
then unable to cooperate with others, that is, unable to pro-
vide service for others and ask service from others. we call
this Vampire attack. In order to solve this problem, every
peer will reserve a part of currency for its own use, which
won’t be used for the exchange. So even facing with this

attack, peer won’t be shoot dead.

Unidirectional Service Attack In some cases, a peer will
be able to ask for others’ service continually but without giv-
ing back its service. It happens when the victim won’t ask
back the service from the profiteer directly or indirectly, be-
cause the profiter will be located in a remote place (or low
bandwidth, low process rate), which makes victim unben-
efitable when asking back the service. Then the currency
from the profiter will be useless for victim because the vic-
tim won’t choose to ask for the profiteer’s service. But the
profiteer may ask for the exchange again and again no mat-
ter it is malicious or not. Making the resource single-flow is
the essence of the case.

Again, the three strategies in the first extension for weak-
ening the dare-to-die attack, such aslimiting the exchange
amount each time, decreasing the trustworthiness value of
the peer whose currency is not used for a long time, and
making the currency able to expired, are helpful to address
this problem as well.

Exchange Shortcut Attack In the basic currency model,
exchange chain is allowed. But it enables the possibility
of another attack that malicious peers ask other peers help
to get the currency of third party, who refuses to exchange
currency with the malicious people. We call this behavior
exchange shortcut attack. Figure 7 shows a snapshot of the
system which consists of three peers. Since the credit ofP3

P3

P1 P2

Ratio3:2 = 5:1

80 +10 + 20

80 + 20

Ratio3:1= 2:1

80 + 10

100

20

10
Ratio1:2 = 1:1

10

10

Figure 7: An example scenario for selecting profitable peer
to exchange.

is low in P2, but is relative high inP1, so if P3 wants the
currency C2 of P2, exchange withP1 to get the currency
C1 first, then use currency1 to exchange currency C2 will
be much profitable then direct exchange currency C2 with
currency C3. But this action may be harmful toP1 because
the currency ofP3 in P1 is low-value for other peers when
P3 is known as a bad peer by others.

In order to eliminate the profiteer, additional extension is
needed. Every delegation will have to inquiry the currency
owner if the delegation will represent the currency owner
to exchange the currency to the requester. If the currency
owner know the requester is a bad peer, then it will tell
the delegation, and the delegation will reject the exchange
request from the requester. If the requester is known as

11

good peer by the currency owner, the exchange will con-
tinue. Let’s take Figure 5(b) as an example, after delegation
A gets requesterR’s request, it will inquiry currency owner
O to ask if R is a bad peer forO. If the answer is yes,A
will reject R’s exchange. This extension will make the legal
chain exchange be able to proceed, but the bad peers unable
to gain profit.

5 Experimental Analysis

The simulation is conducted in the context of P2P Web
server sharing application [37], which is a new content de-
livery mechanism for both static and dynamic Web con-
tent by federating participating Web servers together in a
P2P fashion. It empowers the individual peer which is
autonomous with respect to managing the resources and
replica placement. Each Web server is a peer and serves
a bound of clients. The peers pool their resources to help
each other during individual peer’s peak loads and/or sys-
tem failures. The main concept behind the workability of
this arrangement is an understanding that not all companies
which form the peer to peer network will have peak loads
on their web sites simultaneously. PET will be integrated
with the proposed M-CUBE model [23] for the application
in the simulation. we assess the effects of different compo-
nents of PET under various environment options first, then
we analyze the ability of the approach to attract the good
services and resist the bad services, and finally, we study the
relationship of different components. In the following sub-
sections, we will state the related concepts at first; then we
depict the simulation settings; after that the discussions on
the results are presented; finally we will give the summary
of the results.

5.1 Concepts

Before presenting the experimental results, it is necessary to
make some concepts clear.
Cooperation: When peer A uses B’s currency to ask for
B’s service, and B satisfies A’s request, we say A has one
cooperation with B, or A cooperates with B.
Active Cooperator: We call the cooperators which are
ready for the cooperation the active cooperators. When the
cooperation is needed, active cooperators will be considered
first.
Inactive Cooperator: The cooperators which are not ready
for the cooperation are called inactive cooperators. They
may be the peers exchanged the currency before, or the peers
heard from others through the recommendations. They can
also be the active cooperators before, but now are purged
because of their bad trustworthiness values.
Cooperated Cooperator: When A has cooperated with
B, B will be A’s cooperated cooperator. A cooperated co-
operator can be either an active cooperator or an inactive
cooperator.

Good-Known-Cooperator: When the trustworthiness
value of one cooperator is over a certain threshold (the value
is set to 0.7 in our simulation.), the cooperator will be called
the good-known-cooperator.
Active Cooperator Table: The information of the active
cooperator will be stored in this table. The main contents
include the cooperator ID and its corresponding number of
the currency.
History Table: The information of all cooperators, includ-
ing the active cooperators and the inactive cooperators, will
be stored in this table. The main contents include the coop-
erator ID, trustworthiness, type, the number of the currency,
etc. When one peer receives the recommendation from other
peers, it will store the recommendation information into this
table. When an active cooperator is purged, its information
will be kept inside this table also, and a reselection of active
cooperator will be based on this table in priority.

5.2 Experiment Design and Settings

The simulation is thread-based and written in Perl language.
Table 2 gives the details of the settings of the simulation.
There are 500 peer servers to be simulated. To show the
scalability of the model, two sizes of clients are used: 4,700
clients (C1) and 9,400 clients (C2). The peer servers need to
cooperate with each other to make full use of the spare (com-
puting) resource to serve the clients. HTTP requests from
clients are generated using SURGE [5]. The total number
of requests in the simulation is about 300,000 when using
4,700 clients, and 600,000 when using 9,400 clients.

Five configurations (from P1-P5) are used to simulate dif-
ferent P2P communities as listed in Table 2. In order to
simulate the malicious recommenders, peers will also have
a secondary role: sending out the correct recommendation
(M1) or malicious recommendation (M2). In our simula-
tion, the malicious recommendation will rate the good peers
as bad, and bad peers as good. The B-peers will send out
the malicious recommendations when option M2 is chosen.
Finally, in order to simulate the worse untrusted environ-
ment, we also introduce the roleBoasterinto the simulation.
Changing the weights of different model components can
adjust the model to different environments. Finding some
good weight settings through the simulation is one of our
goals as well. To achieve this goal, six weight combinations
(from W1-W6) are used as shown in Table 2.

5.3 Results and Analysis

In the following subsections, we will present the simulation
results with different experiment options. Before analyzing
the results it is important to understand four metrics used to
evaluate our model.
Sensitiveness:This metric is implied by the total number
of cooperated cooperators in the history table. It can be ex-
pected that the more sensitive the model is, the more peers
will be checked, because bad cooperators will be purged and

12

Settings Illustrations
C1 4700 Clients Small-size population.

Client Number
C2 9400 Clients Large-scale population.

To simulate the community with less good
P1 20% : 10% : 10% : 30% : 30%

peers and all kinds of peers coexist.
The Proportion To simulate high dynamic community with
of Peer with

P2 20% : 0% : 0% : 0% : 80%
many dynamic peers.

Different Quality To simulate the stable community without
(G:L:N:B:D)

P3 20% : 20% : 20% : 40% : 0%
dynamic peers.

P4 50% : 10% : 20% : 10% : 10% To simulate a half-good community.
P5 80% : 5% : 5% : 5% : 5% To simulate a terrific community.

Malicious M1 Malicious recommendation Spreading the distorted facts.
Recommendation M2 Correct recommendation Spreading the true facts.

W1 α = 0.3, β = 0.2 EmphasizingRi andIr.
W2 α = 0.3, β = 0.5 EmphasizingRi and relying more onEr.

Weight of
W3 α = 0.7, β = 0 EmphasizingRe and ignoringEr.

Different
W4 α = 0.7, β = 0.2 EmphasizingRe andIr.

Components
W5 α = 0.7, β = 0.5 EmphasizingRe and relying more onEr.
W6 α = 1, β = 0.2 IgnoringRi and EmphasizingIr.

Size of Risk S1 4 Small window size. Based on last four services.
Window S2 32 Large window size. Based on last 32 services.

B1 No boaster The peers issue their currency limitedly.
Boaster

B2 With boaster The peers issue their currency unlimitedly.

Table 2: Simulation settings and their illustrations.

new cooperators will be chosen until all active cooperators
are good. Generally speaking, high sensitiveness is favorite
for the model, because it shows that the model is active. The
sensitiveness will be studied in all the sub-figures (a) from
Figure 8 to Figure 11, in which the x-axis is the number of
the cooperated cooperators, and the y-axis is the the cumu-
lative distribution of the percentage of the peers which have
corresponding amount of cooperated cooperators in the x-
axis.
Hit Ratio: The hit ratio metric is reflected by the num-
ber of the good-known-cooperators. Note, even some peers
are the peers always providing the service with good qual-
ity, we can not say they are good-known-cooperators until
they are discovered to be good (the trustworthiness value
is over the threshold). Even without any cooperation, the
good peers still can be perceived through the recommenda-
tion from others. In order to prevent malicious recommen-
dations, the threshold to be a good cooperator is high so
that it is very difficult for one malicious peer to fool other
peers to take the bad peers as the good ones. The more the
good-known-cooperators, the higher the hit ratio is. This
is important because picking up the good cooperators from
the community is the goal of our trust model. The hit ratio
will be studied in all the sub-figures (b) from Figure 8 to
Figure 11, in which the x-axis is the number of the good-
known-cooperators, and the y-axis is the the cumulative dis-
tribution of the percentage of the peers which have corre-
sponding amount of good-known-cooperators in the x-axis.
Efficiency: Efficiency is the average number of cooper-
ations required to discover certain number of the good-
known-cooperators. The lower number of this value, the

more efficient the model is. All the sub-figures (c) from Fig-
ure 8 to Figure 10 show the efficiency, in which the x-axis
is the number of good-known-cooperators, and the y-axis is
the average number of cooperations to find the correspond-
ing number of good-known-cooperators of the x-axis.
Applicability: Applicability is reflected by the percentage of
good services for clients’ requests. The more good services
the clients get, the more applicability the model has. This
metric shows the effect of our approach most directly. The
applicability will be studied in the sub-figure (d) of every
figure from Figure 8 to Figure 10, Figure 11(c), and Fig-
ure 13 in which the x-axis is the four service categories (G,
L, N, B), and the y-axis is the percentage of the requests
receiving the corresponding service category. For each eval-
uation sub-scenarios (Subsection 5.3.1–5.3.4), we group the
results of these four metrics into four graphs, and three in
Subsection 5.3.2. In Subsection 5.3.5 we will analyze the
relationship among different components, and in Subsec-
tion 5.3.6 we will focus on the applicability to study the
effect of our whole approach.

5.3.1 Effect of Risk Evaluation

There are two ways to change the effect the risk value:
changing the weight of the riskWRi and adjusting the risk
window sizeSw. This group of experiments explore how the
change ofWRi influences the model while remainingSw the
same.
Setup: In order to compare the result more precisely, we fix
other options and just changeWRi. Three values ofWRi

are used here: W1(0.7), W4(0.3), and W6(0). Other fixed

13

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12 15 18 21

Number of Cooperated Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

W1
W4
W6

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Number of Good-Known-Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

W1
W4
W6

(a) (b)

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

Number of Good-Known-Cooperators

A
ve

ra
ge

 N
um

be
r

of
 C

oo
pe

ra
tio

ns

W1 W4 W6

0

0.1

0.2

0.3

0.4

0.5

G L N B

Different Kinds of Services

P
er

ce
nt

ag
e

of
 S

er
vi

ce W1 W4

W6

(c) (d)

Figure 8: Risk evaluation with different weights. Other setting options of this experiment group are: B1, C1, M2, P1, and
S2. (a) CDF of the total number of cooperated cooperators in the history table, (b) CDF of the number of good-known-
cooperators, (c) Number of good-known-cooperators versus related average number of cooperations, and (d) Distribution
of served services.

options are: C1, M2, P1 and S2.
Discussion: Intuitively, when there are bad peers
(L,N,B,D), high value ofWRi will help to get more sat-
isfactory results compared with the model with lower value
of WRi. In Figure 8(a) and Figure 8(b), the model with W1,
the highest value ofWRi in the three experiments, shows
more sensitive and has more hit ratio than other two, which
meets our expectation; we can also see thathigh value of
WRi will make the model more effectivefrom Figure 8(c).
In Figure 8(d), the improvement for the applicability by the
model with W1 is also the highest. All the results show that,
in the P2P community where most peers are not good, the
high value ofWRi is helpful to improve the model.

5.3.2 Selecting the Weight of Recommendation

To select a suitable weight of recommendation is important
for PET, we conduct this group experiments. Through the
results, we will have the idea how to select the weight of the
recommendationWEr (defined in Equation 3) to decrease
the negative effects of the malicious recommendation.
Setup: We will mix M1 (Malicious recommendation) and
M2 (Correct recommendation), P1 (20% G-peers and 30%
D-peers) and P2 (20% G-peers and 80% D-peers), and W3
(WEr is 0), W4 (WEr is 0.2) and W5 (WEr is 0.5) to build
different experiments. Other fixed options include C1 and
S1.
Discussion: Let’s focus on the lines and bars with M1 op-
tion in the following discussion. In Figure 9(a), whenWEr

is set to W3 or W4, more than 25% peers will have three

cooperated cooperators. However, whenWEr is set to W5,
the percentage will drop to about 15%. Sothe model will
gain more sensitiveness whenWEr is set to be low. The
effect is even much close to the model with correct rec-
ommendation. In Figure 9(b), it shows that settingWEr

higher will make the model’s hit ratio increased: the num-
ber of peers having more than two good-known-cooperators
increases from 10% to 15%. Figure 9(c) shows thatwith the
lower value ofWEr(W4), our approach can gain the better
efficiency than the case ignoring the recommendation(W1)
and the case with higherWEr(W5). Finally in Figure 9(d),
with the option W4, among all the requests, 36% are served
with good service, higher than 32% from the case with the
option W3 (ignore the recommendation). The result is even
a little bit higher than the case without malicious recommen-
dations, which implies thata lower value ofWEr is better
than both the case ignoring the recommendation (W1) and
the case relying more on the recommendation (W5) to resist
the malicious recommendations and discover the G-peers.
From the above results, we can conclude thatin a community
with malicious recommenders, just ignoring others’ recom-
mendations is not a good way, even it improves the hit ratio.
The right solution is assigning it a low weight to make a
tradeoff. From the simulation results, the tradeoff can lead
to a good solution.

5.3.3 Risk against Malicious Recommendations

Risk model is very important in the PET model. We can see
the ability of the risk model against the malicious recom-

14

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Number of Cooperated Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

M1, P1, W3 M1, P1, W4

M1, P1, W5 M2, P1, W4

M2, P3, W4

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5

Number of Good-Known-Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

M1, P1, W3 M1, P1, W4

M1, P1, W5 M2, P1, W4

M2, P3, W4

(a) (b)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Number of Good-Known-Cooperators

A
ve

ra
ge

 N
um

be
r

of
 C

oo
pe

ra
tio

ns

M1, P1, W3 M1, P1, W4

M1, P1, W5 M2, P1, W4

M2, P3, W4

0

0.1

0.2

0.3

0.4

0.5

G L N B

Different Kinds of Services
P

er
ce

nt
ag

e
of

 S
er

vi
ce

M1, P1, W3 M1, P1, W4

M1, P1, W5 M2, P1, W4

M2, P3, W4

(c) (d)

Figure 9: Effect of recommendations. Other setting options of this experiment group are: B1, C1 and S1. (a) CDF of the
total number of cooperated cooperators in the history table, (b) CDF of the number of good-known-cooperators, (c) Number
of good-known-cooperators versus related average number of cooperations, and (d) Distribution of served services.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Number of Cooperated Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

M1, W1
M1, W4
M2, W4

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Number of Good-Known-Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

M1, W1

M1, W4
M2, W4

(a) (b)

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

Number of Good-Known-Cooperators

A
ve

ra
ge

 N
um

be
r

of
 C

oo
pe

ra
to

ns

M1, W1 M1, W4 M2, W4

0

0.1

0.2

0.3

0.4

0.5

G L N B
Different Kinds of Services

P
er

ce
nt

ag
e

of
 S

er
vi

ce M1, W1
M1, W4
M2, W4

(c) (d)

Figure 10: Risk evaluation with the effect of malicious recommendations. Other setting options of this experiment group:
B1, C1, P1, and S2. (a) CDF of the total number of cooperated cooperators in the history table, (b) CDF of the number of
good-known-cooperators, (c) Number of good-known-cooperators versus related average number of cooperations, and (d)
Distribution of served services.

15

mendation from this group of experiments.
Setup: We choose two weights of the riskWRi, W1(0.7)
and W4(0.3), and take the malicious recommendation into
the consideration. The other fixed options include: C1, P1
and S2.
Discussion: From Figure 10(a), Figure 10(b) and Fig-
ure 10(d) just with the option M1, it can be seen thatif we
increase the value ofWRi, PET has high resistance to the
malicious recommendations for the sensitiveness, hit ratio,
and the applicability: Considering the sensitiveness, about
25% peers have more than four cooperated cooperators with
options (M1, W1), while with options (M1, W4) this num-
ber drops to less than 15%; for the hit ratio, about 18% peers
pick up more than two good-known-cooperators with op-
tions (M1, W1), while with option (M1, W4), the number
drops to 9%, and the result is even better than the case with-
out malicious recommendations with options (M2, W4); for
the applicability, the options (M1, W1) brings 36% good
services, much better than 31% with the options(M1, W4),
and it is even better than 35% with options (M2, W4), the
case without malicious recommendations. The merit also
appears in the anaphase considering the efficiency from the
Figure 10(c). In summary,when the malicious recommen-
dations exist, settingWRi with a high value is great helpful
to resist the malicious recommendation.

5.3.4 Long Range Effect

Now, we are in a position to investigate the long range effect
of our model. In other words, what will happen if the scale
of the system increases.
Setup: Here we will combine two groups of options, (C1,
C2) and (P1, P4), to proceed the simulation. Other options
are the same: M2, S1, and W4.
Discussion:All the sub-figures show that the more clients,
which means the longer the execution time and the larger
the scale, the more effective, efficient and applicable the
our approach will be. In Figure 11(b), the number of good-
known-cooperators with C2 option is seven, 40% more than
the one with C1 option. From the Figure 11(c), it can be
seen that with the increasing of the client number from C1
to C2, the good service percentage increases from 35% to
48%. All these imply that the experiment results will be bet-
ter if the scale of experiment increases. Thus we expected
that in the large scale P2P community, our approach will be
great promising.

5.3.5 Relationship among Trustworthiness, Reputa-
tion, Risk and Ratio

In PET, the trustworthiness is derived from the reputation
and risk. With the support of the trustworthiness evaluation,
M-CUBE can change the ratio of the currency dynamically,
which makes our currency model effective and accurate. In
this subsection, we will analyze how the reputation and risk

combine together to make the trustworthiness more accu-
rate; we can also see how the trustworthiness affects the
currency ratio (In the following all the ratio is referred to
currency ratio).
Setup: We choose three kinds of peers for the consideration:
G-peer, B-peer(the representative for the bad peers include
L-peer, N-peer, and B-peer), and D-peer. These three peers
are picked up from one peer’s history table randomly.
Discussion:The x-axis in every sub-figure of the Figure 12
represents the time flow, and the y-axis stands for the value
of components. Let’s focus on the trustworthiness first. For
the G-peer, the trend of the trustworthiness in Figure 12(a)
is increasing overall. It can been seen that there are some
fluctuations. This is because of the affect of recommenda-
tions. The malicious recommendations will disrupt the trust-
worthiness; even the correct recommendations will also de-
lay the convergent process, because at the beginning the G-
peer’s trustworthiness value will be low, so the recommen-
dation value for the G-peer will be also low. However, the
fluctuations tend to disappear as time goes on, because when
more interaction-based information has been collected, the
role of the recommendation becomes weaker (the risk for the
G-peer is always zero, which brings no effect for the fluc-
tuations). For the B-peer, the trend of the trustworthiness
is decreasing earlier and suddenly in Figure 12(b), which
is incurred by the risk evaluation. Because the B-peer al-
ways provides Byzantine services, its risk will always be
one for its cooperators once the their cooperation begins.
The risk will make the trustworthiness drop suddenly and
fast, which is helpful to recognize the B-peer. For the D-peer
(Figure 12(c)), the trend is fluctuating first, then decreasing
later. Different from the G-peer, the overall tendency of the
fluctuation is decreasing, while G-peer’s is increasing. This
is because in addition to the effect of the recommendations,
the fluctuation of the D-peer is also because of its dynamic
change of the behaviors, which incurs its reputation to de-
crease. When the cooperation with D-peer begins, the risk
is starts having effect and makes the trustworthiness drop
suddenly. Different from B-peer, the drop of the trustwor-
thiness is less sharp, but enough to reveal the D-peers. From
the above analysis, we can see thatthe risk evaluation is
great helpful to recognize the bad and dynamic peers, but
no effect for the good peers(For the good peers, our PET
model is the same as the reputation model, because the risk
is always zero).

The currency exchange ratio is the bridge between the
PET model and the M-CUBE model. In our simulation, the
functionf (originally defined in Section 4.2.1) is defined as

f(T) =
{

1 , T >= 0.4
T , T < 0.4 (5)

so for the Figure 12(b) and (c), when the trustworthiness
value drops below 0.4, the line denoting the trustworthiness
will overlap with the line denoting the ratio. We can get
more reliable services through setting the threshold higher in

16

0.2

0.4

0.6

0.8

1

0 4 8 12 16

Number of Cooperated Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

C1, P1

C2, P1

C2, P4

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Number of Good-Known-Cooperators

P
er

ce
nt

ag
e

of
 P

ee
rs

C1, P1

C2, P1

C2, P4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G L N B

Different Kinds of Services

P
er

ce
nt

ag
e

of
 S

er
vi

ce

C1, P1
C2, P1
C2, P4

(a) (b) (c)

Figure 11: Long-range effect of the Model. Other setting options of this experiment group: B1, M2, S1, and W4. (a)CDF
of total number of cooperated cooperators in the history table, (b) CDF of the number of good-known-cooperators, and (c)
Distribution of served services.

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

Time

V
al

ue

Ratio
Trustworhiness
Reputation
Risk

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

Time

V
al

ue

Ratio
Trustworhiness
Reputation
Risk

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

Time

V
al

ue
Ratio
Trustworhiness
Reputation
Risk

(a) (b) (c)

Figure 12: Relationship among the trustworthiness, reputation, risk and ratio. The setting options of this experiments are:
B2, M2, P1, S2, and W4. (a) G-peers, (b) B-peers, and (c) D-peers.

0

0.1

0.2

0.3

0.4

0.5

G L N B

Different Kinds of Services

P
er

ce
nt

ag
e

of
 S

er
vi

ce

Without M-CUBE and PET
With M-CUBE and PET, C1
With M-CUBE and PET, C2

0

0.1

0.2

0.3

0.4

0.5

G L N B

Different Kinds of Services

P
er

ce
nt

ag
e

of
 S

er
vi

ce

Without M-CUBE and PET

With M-CUBE and PET, C1

With M-CUBE and PET, C2

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

Different Kinds of Services

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce

Without M-CUBE and PET
S1
S2

(a) (b) (c)

Figure 13: Improvement of our model. (a) Distribution of served services when no malicious recommendations and
boasters exist, (b) Distribution of served services with both malicious recommendations and boasters existing, and (c)
Distribution of served services with different number of peer servers.

17

addition to increasing the weight of the risk, which reassure
the reliable service.

5.3.6 Improvement of Our Approach

In the following, we study the improvement of our approach
in terms ofefficacy, anti-boaster, andscalability.
Setup: The service requests of clients are generated by the
SURGE [5], which are stored in one file. There are some
other files used to specify the quality of the peer servers.
Combining these files, we can get the results of how the re-
quests will be served without our approach (we call it the
standard result). The service provided by D-peers is one of
the four servicesG, L, N, B . Since the D-peer changes
its quality repeatedly and uniformly, we amortize its service
to other four services when calculate the standard result, so
actually noD service exists. Here G : L : N : B : D is 20%
: 10% : 10% : 30% : 30%. So after the amortization, G
: L : N : B will be 27.5% : 17.5% : 17.5% : 37.5% (each
add 30%/4 = 7.5%). We will use this as the expected stan-
dard result without M-CUBE, and see the improvement and
efficacy compare the results with M-CUBE.

To see the effects of the boaster, two groups of experi-
ments are conducted: One is without the boaster and the
other with the boaster. In addition to the boaster, in the sec-
ond group experiments we also let the bad peers act more
intelligently, i.e., the bad peers are able to change the coop-
erators which have recognized their bad quality, and attempt
to find new cooperators, through which to gain more benefits
from the new cooperators. Our goal is to simulate a highly
untrusted environment to test the effect of our approach.

In order to study the scalability, also two groups experi-
ments are conducted: the firstE1 is with different number of
clients, and the secondE2 is with different number of peer
servers.E1 is to study the effect when the system overload
changes. InE1 two sizes of clients (C1 andC2) are used for
the comparison, while the number of peer servers in both is
500.E2 is to study the effect when the system scale changes.
In E2, what we try to do is construct two system scale, one
is 1

10 of the other. Two sizes of peer servers (S1 = 500and
S2 = 50) are simulated. The latter size is110 scale of former
one. When using settingS1 = 500, the size of clients isC1
= 4,700, and the total number of requests generated is about
300,000. When using settingS2 = 50, the size of clients is
1,000, and the total number of requests generated is about
36,000, about110 of C1.
Discussion: Figure 13 shows the related results, in which
the x-axis is the four service categories (G, L, N, B),
and the y-axis is the percentage of the requests receiving
the corresponding service category.
1. Efficacy First, let’s study the efficacy of M-CUBE. In
Figure 13(a) there are three lines. One is the ”Without M-
CUBE and PET”, which is the standard result we have dis-
cussed in the setup part; one is with M-CUBE and PET, and
smaller size of clientsC1; final one is also with M-CUBE
and PET, but with larger size of clientsC2. There are no

boasters in this group of experiment. What is desired for our
approach is to enable more requests to get the good services
and depress the Byzantine services, because Byzantine ser-
vices bring most severe loss among the bad services. From
Figure 13(a), we can see that once applying our approach,
there is great improvement: with small scale (C1=4700), the
percentage of good service is increased from 27.5% (stan-
dard result) to 35.5% (relatively 29.1% improvement); when
the scale is larger (C2=9400), the percentage increases sig-
nificantly to 46.5% (relatively 69.1% improvement). The
suppression to Byzantine behavior is not that good. When
the size of clients isC1, the service served by Byzantine be-
havior is even more than the standard result; however when
increase the number of clients toC2, the result is much bet-
ter: from 42.1% with optionC1 decrease to 27.3% (rela-
tively 35.2% decrease) with optionC2. All these data tell
us:

• Our model is very good to bring more good services
to the system, and with the increase of the number of
clients (service requests), the improvement is even bet-
ter.

• The effect of suppressing the Byzantine service is not
as good as promoting the good service. But the effect
will appear when more service requests are served.

• More requests means more time and more information
to let the system to get convergent, because more feed-
back and observation can be received. From the above
result, we can see that our approach is convergent, for
the result gets more improvement when choosing larger
number of requests, no matter from the view of increas-
ing good service or the view of depressing the Byzan-
tine service.

• It can expected, when increase the number of requests,
the result will get even more competent, because when
the system get convergent, most peer know the good
peers, and most the service requests will get good ser-
vice from these good peers.

2. Anti-boaster In Figure 13(b) the boaster will exist, and
the bad peer can act more intelligently. From Figure 13(b),
we can see that the percentage of good service increases
from 27.5% to 32.8% (relatively 19.3% improvement) with
C1, and to 37.5% (relative 36.4% improvement) with more
requestsC2. The improvement is quite a bit less than Fig-
ure 13(a), and the effect on suppressing the Byzantine ser-
vice is even weaker. However, considering 80% peers are
intelligent bad peers, and malicious recommendations and
boasters exist (a highly untrusted environment), we still can
say our approach is effective and robust for the extremely
untrusted computing environment. The fact behind these
data is, the highly untrusted environment will cost more time
for the system to get convergent, but can not prevent the
trend to convergency.

18

3. Scalability In Figure 13(c), in additional to the standard
results, two experiments are conducted: one is with larger
size of peer serversS1, and the other is with the smaller one
S2. No boasters in this experiment. The settings and the
reasons why choose this have been discussed in setup part.
From the Figure 13(c), we can see that, only about 25.0%
good service the system gets with the small scale, much less
than the result with larger scale 35.5%, and even less than
the standard result 27.5%. It is because when the number of
peer server decrease to110 , the number of requests also de-
crease to1

10 . Obviously we can see that in the smaller scale,
the system is not convergent, so that the performance is not
good. But on the other hand, this also tell us that larger scale
system can help to improve the performance. So the model
is scalable. Of course, there should be one saturate point for
the increase of the system scale, which is one of our future
work.

5.4 Summary

Based on the experiments and analysis in this section, we
summarize the major conclusions in the following:

1. High weight of the risk is much more helpful to im-
prove the performance of the model, including sensi-
tiveness, effectiveness, the hit ratio and applicability,
when the community has more bad peers; it is also very
helpful to resist the negative effect of malicious recom-
mendations.

2. Setting the recommendation a low weight is a good
tradeoff to improve the performance while keeping the
ability of resistance to the malicious recommendations.

3. The larger the scale of the system, the better effect our
approach will bring out.

4. The combination of M-CUBE and PET is effective un-
der the highly untrusted computing environment.

5. Our approach is high sensitive to good services.

6. Setting a high trustworthiness threshold for the cur-
rency ratio is another way to get high reliable services
in addition to adjusting the weight of the risk.

6 Related Work and Discussion

Our work is built upon a great deal of previous work in the
field of peer to peer networks, content distribution networks,
and distributed resource management. Instead of describing
all of them, we cluster them into five groups that are specif-
ically related to our work:trust management, reputation-
based system, economic model based resource management,
andcooperative Web caching.

Trust Management The notion of “trust management”
was first coined by Blaze, Feigenbaum, and Lacy in their

seminal paper on decentralized trust management [6], which
addresses the authentication of each client request from the
perspective of servers (service provider) in terms of security
policies, credentials, and trust relationship. This is differ-
ent from what we proposed, where the trustworthiness of
both sides are considered in general, rather than on each in-
dividual service request. In the computer science literature,
Marsh (1994) is the first one to introduce a computational
model for trust in the distributed artificial intelligence (DAI)
community [27]. However, he did not model reputation in
his work. Mui [29] gives a detailed computational model
of trust and reputation. In Mui’s model, reputation is well
modelled, but it doesn’t take the risk into consideration.

Reputation-based system Centralized reputation systems
is a very hot topic and has been widely deployed in e-
commerce [1, 39, 50], such as eBay (an online auction site),
slashdot.com (an online tech-guru site). Recently, in the P2P
domain decentralized reputation management schemes like
P2Prep [10], EigenTrust [20], and NICE project [22] ap-
pears. P2Prep provides a protocol complementing existing
P2P protocols. EigenTrust assumes that trust is transitive
and address the weakness of the assumption and the col-
lusion problem by assuming there are pre-trusted nodes in
the systems. NICE project [22] discusses the trust inference
problems, and [33] proposes a model to build trustworthy
software agent. However, the objective of these reputation-
based systems are different from that of our effort, which fo-
cuses on the self-policing trustworthiness over other peers,
rather than obtaining a global consistent trust value for each
other peer. However, we believe that our work will benefit
from these reputation-based systems very well.

Economic Model Based Distributed Resource
Management Numerous economic models includ-
ing microeconomics and macronomics principles for
resource management have been proposed in the litera-
ture [3, 7, 8, 21, 28, 41, 44], and various criteria are used
for judging effectiveness of an economic model, including
social welfare, stability, computation efficiency. However,
different from the M-CUBE model proposed here, none of
them take the trustworthness into consideration, also to our
knowledge, few of them consider the dependability of the
economic model to possible DDoS attacks. Several research
systems have explored the use of different economic models
for trading resources in different application domains: CPU
cycles, storage, database query processing, and computing.
Currency and economics based resource management has
been extensively studied in the past [15, 53, 11, 45]. [53]
gives an approach building on the concepts of tickets and
currencies to express resource sharing agreements. Our
work is different from these due to our focus on the trust and
security. To our knowledge, the SHARP Infrastructure [15]
is the closest work related to us. But the details of how to
use the currency are different. Different from [15], our in-
frastructure disagrees with the overbooking and delegation,

19

and we focus on the solution to the random behavior of
resource usage . PPay [52] is a micropayment-based mecha-
nism for P2P resource sharing and it guarantees that all coin
fraud is detectable, traceable and unprofitable. This work
complements our work. Samasara [11] and [9] focus on the
P2P enforcing storage sharing through the construction of
storage claims. It is not applicable to renewable resource
in general. Especially, the trustworthiness of the peers are
either neglected in these system or treated in different way.

Cooperative Web Caching Peer-to-Peer Web server shar-
ing is chosen as a case study to evaluate the efficacy and per-
formance of the proposed model. However, this idea is sim-
ilar to cooperative Web caching, which has been extensively
studied in recent years [12, 18, 26, 32, 34, 35, 42, 47, 48, 49].
Different from these previous work, which are from the per-
spective of client caching (passive mode), P2P Web server
sharing is a proactive approach from the perspective of Web
servers. More detailed comparison can be found in [37].

7 Summary

In this paper we have presented a novel economic model
M-CUBE combining the trust model PET to provide a fun-
damental mechanism for P2P resource trading in an open
environment. The uniqueness of this approach is in its abil-
ity to seamlessly integrate the trustworthiness and depend-
ability of peers into currency ratio floating for resource trad-
ing. Our analysis show that this model can prevent several
possible attacks launched by participating peers under the
untrusted computing environment. To this end, we believe
that the proposed model provides a general and flexible in-
frastructure to build most of high level resource manage-
ment required by P2P computing, such as resource coallo-
cation and quality of service (QoS) control. These will be
our future work.

References
[1] K. Aberer and Z. Despotovic. Managing trust in a peer-to-

peer inforamtion systems.Proceedings of the 10th Interna-
tional Conference on Information and Knowledge Manage-
ment (CIKM’01), 2001.

[2] E. Adar and B. Huberman. Free riding on gnutella.First
Monday5(10), Oct. 2000.

[3] Y. Amir, B. Awerbuch, and R. Borgstrom. A cost-benefit
framework for online management of a metacomputing sys-
tems.Proc. of the first Inernational Conference on Informa-
tion and Computational Economy, Oct. 1998.

[4] F. Azzedin and M. Maheswaran. Evolving and managing
trust in grid computing systems.IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE ’02), May
2002.

[5] P. Barford and M. E. Crovella. Generating representative
web workloads for network and server performance evalu-
ation. Proceedings of Performance ’98/ACM SIGMETRICS
’98, July 1998.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. IEEE Symposium on Security and Privacy,
May 1996.

[7] R. Buyya, D. Abramson, and J. Giddy. A case for economy
grid architecture for service-oriented grid computing.Pro-
ceedings of the 10th IEEE International Heterogeneous Com-
puting Workshop, Apr. 2001.

[8] B. Chun. Market-based Cluster Resource Management.
Ph.D. thesis, Department of Electrical Engineering and Com-
puter Science, UC Berkeley, Oct. 2001.

[9] B. Cooper and H. Garcia-Molina. Peer-to-peer resource trad-
ing in a reliable distributed systems.Proc. of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’02), Feb.
2002.

[10] F. Cornelli, E. Damiani, S. D. C. Vimercati, S. Paraboschi,
and P. Samarati. Choosing reputable servents in a p2p net-
work. Proc. of the 11th International World Wide Web Con-
ference (2002), May 2002.

[11] L. Cox and B. Noble. Samsara: Honor among thieves in peer-
to-peer storage.Proc. of the 19th ACM Symp. on Operating
Systems Principles (SOSP-19), Oct. 2003.

[12] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Co-
operative caching: Using remote client memory to improve
file system performance.Proc. of the First USENIX Sympo-
sium on Operating Systems Design and Implementation, Nov.
1994.

[13] J. Douceur. The sybil attack.Proc. of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS’02), Feb. 2002.

[14] eBay,http://www.ebay.com .

[15] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. Sharp:
An architecture for secure resource peering.Proc. of the
19th ACM Symp. on Operating Systems Principles (SOSP-
19), Oct. 2003.

[16] R. Gupta and A. K. Somani. Compup2p: An architecture
for sharing of compute power in peer-to-peer networks with
selfish nodes.Second Workshop on the Economics of Peer-
to-Peer Systems, June 2004.

[17] D. Hausheer, N. C. Liebau, A. Mauthe, R. Steinmetz, and
B. Stiller. Token-based accounting and distributed pricing
to introduce market mechanisms in a peer-to-peer file shar-
ing scenario.Third International Conference on Peer-to-Peer
Computing (P2P’03), Sept. 2003.

[18] S. Iyer, A. Rowstron, and P. Druschel. SQUIRREL: A de-
centralized, peer-to-peer web cache.Proceedings of the 12th
ACM Symposium on Principles of Distributed Computing
(PODC 2002), July 2002.

[19] H. Junseok. The economics of dynamic bandwidth transac-
tion service: Toward pricing modeling.M3I Workshop on
Modelling, pp. 18-19, June 2001.

[20] S. Kamvar, M. T. Schlosser, and H. Gacia-Molina. The eigen-
trust algorithm for reputation management in p2p networks.
Proc. of the 12th International World Wide Web Conference
(2003), May 2003.

[21] A. Lazar and N. Semret. Auctions for network resource shar-
ing. Tech. Rep. TR 467-97-02, Computer Science Depart-
ment, Columbia University, Feb. 1997.

[22] S. Lee, R. Sherwood, and B. Bhattacharjee. Cooperative peer
groups in nice.Proc. of IEEE Conference on Computer Com-
munications (INFOCOM’03), Mar. 2003.

[23] Z. Liang and W. Shi. M-CUBE: A novel economic model
for trusted P2P resource sharing. Tech. Rep. MIST-TR-2004-
005, Department of Computer Science, Wayne State Univer-
sity, Feb. 2004.

[24] Z. Liang and W. Shi. PET: A PErsonalized Trust model
with reputation and risk evaluation for P2P resource sharing.
HICSS-38, Jan. 2005.

20

[25] J. MacKie-Mason, L. Murphy, and J. Murphy.Responsive
Pricing in the Internet. MIT Press, May 1997, pp. 279-303.

[26] Y. Mao, Z. Zhu, and W. Shi. Peer-to-peer web caching: Hype
or reality? Tech. Rep. MIST-TR-2003-007, Department of
Computer Science, Wayne State University, Aug. 2003.

[27] S. Marsh. Formalising Trust as a Computational Concept.
Ph.D. thesis, University of Stirling, 1994.

[28] M. Miller and K. Drexler.Markets and Computation: Agoric
Open Systems. The Ecology of Computation, B. Huberman
(editor), Elsevier Science Publishers, 1998.

[29] L. Mui, M. Mohtashemi, and A. Halberstadt. A computa-
tional model of trust and reputation.Proceedings of the 35th
Hawaii International Conference on System Sciences, 2002.

[30] L. Murphy and J. Murphy. Feedback and pricing in atm net-
works.Proc. of 3rd Workshop on Performance Modelling and
Evaluation of ATM Networks, July 1995.

[31] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly & Associates, Mar. 2001.

[32] V. Padmanabhan and K. Srpanidkulchai. The case for coop-
erative networking.Proc. of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS’02), Feb. 2002.

[33] A. S. Patrick. Building trustworthy software agents.IEEE
INTERNET COMPUTINGpp. 46-53, Nov. 2002.

[34] G. Pierre and M. van Steen. Globule: A platform for self-
replicating web documents.Proceedings of the 6th Inter-
national Conference on Protocols for Multimedia Systems,
pp. 1-11, Oct. 2001.

[35] M. Rabinovich, I. Rabinovich, R. Rajaraman, and a. Aggar-
wal. A dynamic object replication and migration protocol
for an internet hosting service.Proceedings of the 19 In-
ternational Conference on Distributed Computing Systems
(ICDCS’99), May 1999.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content addressable network.Proc.
of ACM SIGCOMM’01, 2001.

[37] J. Ravi, Z. Liang, and W. Shi. A case for peer-to-peer web
server sharing. Tech. Rep. MIST-TR-2003-010, Department
of Computer Science, Wayne State University, Nov. 2003.

[38] J. Ravi, W. Shi, and C. Xu. Pace: Prefetching and fil-
tering of personalized emails at the network edges. Tech.
Rep. MIST-TR-2003-005, Department of Computer Science,
Wayne State University, May 2003.

[39] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara.
Reputation systems.Communications of the ACM43(12):45–
48, 2001.

[40] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of internet content delivery systems.
Proc. of the Fifth USENIX Symposium on Operating Systems
Design and Implementation, Dec. 2002.

[41] R. Smith and R. Davis. The contract net protocol: High
level communication and control in a distributed problem
solver. IEEE Transactions on ComputersC-29(12):1104–
1113, 1980.

[42] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds.Proc. of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’02), Feb.
2002.

[43] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications.ACM SIGCOMM’2001, 2001.

[44] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and
W. Stornetta. Spawn: A distributed computation economy.
IEEE Transactions on Software Engineering18(2):103–117,
1992.

[45] C. A. Waldspurger and W. E. Weihl. Lottery scheduling-
flexible proportional-share resource management.Proceed-
ings of the First Symposium on Operating Systems Design
and Implementation, Usenix Association, Nov. 1994.

[46] Y. Wang and J. Vassileva. Trust and reputation model in peer-
to-peer networks.Third International Conference on Peer-to-
Peer Computing (P2P’03), Sept. 2003.

[47] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and H. M.
Levy. Organization-based analysis of web-object sharing
and caching. Proc. of the 2nd USENIX Symposium on
Internet Technologies and Systems (USITS’99), 1999,
http://www.cs.washington.edu/research/
networking/websys/pubs/usits99.ps .

[48] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Kar-
lin, and H. M. Levy. On the scale and performance of cooper-
ative web proxy caching.Proc. of 17th ACM Symposium on
Operating Systems Principles (SOSP), pp. 16-31, Dec. 1999.

[49] L. Xiao, X. Zhang, and Z. Xu. On reliable and scalable peer-
to-peer web document sharing.Proceedings of 2002 Interna-
tional Parallel and Distributed Processing Symposium, Apr.
2002.

[50] L. Xiong and L. Liu. A reputation-based trust model for peer-
to-peer ecommerce communities.Proceedings of the IEEE
Conference on E-Commerce, June 2003.

[51] Yamamoto, Yasunori, and H.Junseok. Market-based network
formation for an ad hoc, p2p wireless data network.PWC
2002, Oct. 2002.

[52] B. Yang and H. Carcia-Molina. Ppay: Micropayments for
peer-to-peer systems.Proceedings of ACM CCS’03, Oct.
2003.

[53] T. Zhao and V. Karamcheti. Enforcing resource sharing
agreements among distributed server clusters.Proceedings
of the 16th International Parallel and Distributed Processing
Symposium (IPDPS), Apr. 2002.

21

