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Abstract. Peer-to-Peer (P2P) computing is widely recognized as a promising paradigm for building next generation distributed applications.
However, the autonomous, heterogeneous, and decentralized nature of participating peers introduces the following challenge for resource
sharing: how to make peers profitable in the untrusted P2P environment? To address the problem, we present a self-policing and distributed
approach by combining two models: PET, a personalized trust model, and M-CUBE, a multiple-currency based economic model, to lay
a foundation for resource sharing in untrusted P2P computing environments. PET is a flexible trust model that can adapt to different
requirements, and provides the solid support for the currency management in M-CUBE. M-CUBE provides a novel self-policing and
quality-aware framework for the sharing of multiple resources, including both homogeneous and heterogeneous resources. We evaluate the
efficacy and performance of this approach in the context of a real application, a peer-to-peer Web server sharing. Our results show that our
approach is flexible enough to adapt to different situations and effective to make the system profitable, especially for systems with large
scale.
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1. Introduction

Peer-to-Peer (P2P) computing—federated sharing of dis-
persed pools of geographically distributed computing re-
sources under coordinated control—has been considered as
a promising platform for solving large-scale problems in
science and engineering. However, resource management in
these environments is a complex undertaking. These systems
need effective mechanism for fair sharing of community re-
sources, adaptability to dynamic changing conditions, preven-
tion of denial-of-service (DoS) attacks, and coordinaton of
the diverse policies, cost models, and varying loads different
peers. As one motivating example, a classical “tragedy of the
commons” for peer-to-peer file sharing is 50 to 70% of peers
are free riders [1], which results in a great load imbalance
of the systems. Resource trading can enforce a cooperative
approach for the resource sharing and is promising to address
the above problems.

The autonomous, heterogeneous, and decentralized nature
of participating peers across multiple administrative domain
introduces two challenging issues related to resource trading:
decentralized trading scheme, which means the decision of
resource exchange and negotiation is determined by each peer
based on its personalized view of the partner and its own pol-
icy; self-policing personalized trustworthiness management,
which means different peers may have different opinions on
the trustworthiness of the same peer, instead of unique global
trustworthiness value like eBay.

In this paper, we propose an approach that consists of two
models: M-CUBE, a Multiple CUrrency Based Economic

model, as the decentralized trading scheme, and PET, a
PErsonalized Trust Model, to provide the trustworthiness of
the peer to support M-CUBE. The M-CUBE model provides
a general and flexible substrate to support most of high level
resource management services required by the P2P comput-
ing, such as resource coallocation, quality of service (QoS)
control, advance reservation and scheduling algorithms. PET
derives the trustworthiness from the reputation evaluation
and risk evaluation. The trustworthiness value provided by
PET will be treated as the view of the peer by M-CUBE. The
unique feature of our approach is seamless integrating the
trustworthiness and dependability of peers into the resource
trading.

The major contributions of this paper include: (1) We pro-
pose a formal trust model, including the reputation evalua-
tion and risk evaluation, for calculating the trustworthiness of
other peers in a self-policing way; (2) We propose a multiple-
currency based economic model, which seamless integrates
the trustworthiness to provide a self-policing method to en-
force the cooperative sharing of heterogeneous P2P resources.
Regarding to the pricing problem, we price resources accord-
ing to their prices in the real economic market. By this mean,
prices of heterogeneous resources are comparable, so that het-
erogeneous resource sharing is feasible in M-CUBE; (3) We
design an efficient resource trading protocol which has the
capability to prevent multiple rebellious problems related to
resource sharing, such as free rider, boaster, and application
DoS attack; (4) We evaluate the efficacy and performance of
this approach in the context of a real application, peer-to-peer
Web server sharing. Our results show that our approach is
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flexible enough to adapt to different situations and effective
to make the system profitable, especially for the system with
large scale.

The rest of this paper is organized as follows. We pro-
vide an overview of our approach in Section 2. The details
of the PET model is provided in Section 3. Section 4 de-
picts the design of the M-CUBE model. In Section 5 we
describe an application scenario and give the detailed anal-
ysis with simulation based on our approach. Finally, related
work and concluding remarks are listed in Sections 6 and 7
respectively.

2. Overview

There are five problems related to resource sharing in an open
P2P environment.

(1) Heterogeneity. The heterogeneity of resources makes the
multiple-resource sharing difficult, because of lacking a
formal metric for the trading among different resources;

(2) Untrustedness. Enforcing a cooperative, adaptive, and
anti-maliciousness P2P sharing environment on top of
an untrusted and private P2P community is really a
challenge;

(3) Selfishness. The possible threats launched by selfish peers,
such as cheating and boasting, can destroy the coopera-
tive resource sharing. Enforcing a fair resource sharing
framework to limit the negative effect of the selfish peers
is one of the goals for our approach;

(4) Autonomy and cooperation. Peers usually belong to dif-
ferent administrative domains which may have different
local policies. Effective and efficient integration of these
local policies and general resource sharing is a challenge;

(5) Incentives. Free riders are the considerable population in
the P2P community. To attract the peer to contribute to
the community is an old but still ongoing problem. In this
paper, we intend to address all these problems.

We conjecture that the fundamental solution for these prob-
lems is a trustworthiness mechanism for resource trading, as
the dependable trading to world economics. Based on this
mechanism, a lot of high level resource management related
services, such as service level agreements, access cost negoti-
ation, and advanced reservation can be easily built. Therefore,
the major objective of this paper is to build a trusted depend-
able trading approach, which include two components: the
M-CUBE model and the PET model.

As shown in figure 1, the M-CUBE model is a flexible
universal infrastructure for building high-level resource man-
agement related services, and provides a comprehensive so-
lution to all challenges listed above. There are four major
modules in M-CUBE: the Price Regulator decides the price
of the resources; the Ratio Regulator determines the exchange
ratio of the currency based on the trustworthiness value pro-
vided by the PET model; the Service Discovery module is
in charge of discovering the available resources provided by

remote peers; finally the Currency Exchange module enables
peers to bargain until the agreement of the currency exchange
is reached, and then makes the exchange. PET underpins M-
CUBE through providing the accurate trustworthiness value.
Trustworthiness is service-specific. One peer can have differ-
ent trustworthiness value corresponding to different services
in the eyes of other peers, so PET actually provides the (trust-
worthiness, service) pair for M-CUBE. PET models the rep-
utation, and treats the risk as the opinion of the short-term
behavior and makes it be quantified.

In the design, we assume the use of Public Key Infrastruc-
ture (PKI) for naming and authentication in both M-CUBE
and PET. Before describing the PET and M-CUBE model, we
give the basic assumptions first:

(1) Each peer has a relative unique and stable ID. This will
make reputation and trustworthiness make sense;

(2) Coordinated access to diverse and geographically dis-
tributed resources is valuable for participating peers;

(3) Each peer has an associated public-private key pair to
make its currency unforgeable;

(4) Most peers in the system need the cooperation so as to
gain profitable through sharing the resources;

(5) Each peer is selfish;

(6) Each peer has a pair of public/private keys.

3. PET design

PET is the underpinning of our system, which provides the
trustworthiness to trigger M-CUBE to evolve. In PET the
trustworthiness T is directly derived from two parts: reputa-
tion Re and risk Ri, as shown in the upper right corner of
figure 2. WRe and WRi are the weights of Re and Ri respec-
tively. For a complete new peer without any related Re and
Ri information, its trustworthiness value is set as 0.4, a rela-
tively lower value. Actually T is related to one type of service.
Without specially pointing out, all variables in one formula
is related to the same service. Reputation Re is the accumula-
tive opinion, which reflects the quality of target peer within a
long term. PET models the reputation through combining the
recommendation (Er, also called referral or second hand in-
formation) and interaction-derived information (Ir, also called
first-hand information). WEr and WIr are their corresponding
weights. Recommendation is the opinions from other peers,
which is collected by the Feedback Collection component in
PET. Interaction-derived information is the self-opinion from
the direct interaction. Basically Ir is the self-knowledge, so it
is reliable and self-determined. The interaction-derived infor-
mation is also the base of the risk calculation. Risk is treated
as the opinion on the short-term behavior. All values of T, Re,
Ri, Er, and Ir are values from interval [0, 1].

There are a wide range of resource categories in P2P
resource sharing such as CPU, hard disk, and so on. In
the context of heterogeneous resource sharing, another pro-
gram component resource classifying in PET is employed to
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Figure 1. Overview of the proposed approach, including two models: PET and M-CUBE.

Figure 2. Derivation of the trustworthiness value.

identify the resource category to which the feedback and self-
observation information belong, then this component adopts
different strategies to process these information. In addition,
we abstract four general behaviors, good, low-grade, no re-
sponse, and Byzantine behavior in P2P systems. Peers with
good behavior (G) provide the service as good as expected;
peers with low-grade (L) behavior provides correct services,
but with some degradation, e.g., delay HTTP response; no-
response (N) behavior is from the view of requesters—the
requester can not get any response from the service provider
with this kind of behavior; finally peers with Byzantine (B)
behavior give the wrong, or even malicious answer to the
requester. All three L, N, and B services are bad services,
and have increasing extent of harmfulness to the system.1

To simulate the dynamics in P2P environment, the dynamic
(D) quality is introduced as an additional quality. Peers with
this quality changes its behaviors among G, L, N, and B uni-
formly and repeatedly. We formalize the quality set as Q =
G, L, N, B, D. Correspondingly, the peers providing G service

1Note that in our classification, “no response from the service provider” is
a special behavior. We treat this kind of behavior as a bad behavior, no
matter it is because of subjective factor, e.g., rejecting the service request
intentionally, or objective factor, e.g., the physical link gets broken.

is called G-peer, so do L-peer, N-peer, B-peer, and D-peer.
This coarse-grain classification is flexible enough to apply to
any resource sharing, and more subclasses can be introduced
if necessary.

From figure 2 it can been seen that WRe = α and WRi =
1 − α. When α = 1, which means the weight of the risk is
0, PET degrades to the traditional reputation model that just
considers the peer’s history only. However our simulation
results show that risk evaluation is a very helpful component
to build the trust model. Normally when the system is highly
dynamic and most nodes are not good, it is recommended to
set the risk with a high weight (e.g. 0.7), which is supported
by the simulation results in Section 5. For the blind users
(i.e., users who do not know how to tune the parameters of
the underlying trust model), α = 0.3 is the safe recommended
value. Integrating with risk evaluation distinguishes PET from
the previous work [7,13,17,19].

Reputation model. In the following, we call the peer to evalu-
ate other peers a valuer, the peer to be evaluated a valuee, and
the peer sending out the recommendation the recommender.
For example, when peer A tells peer C the trustworthiness
value of peer B, A will be the valuer of B, and the recom-
mender of C about B. Correspondingly, B is the valuee of A.
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Reputation value is the historical accumulation for valuee’s
past behavior from the valuer’s viewpoint. Sometimes some
good peers will misbehave for nonsubjective factors, for ex-
ample, the good peer rejects the network service requests for
the breakdown of the physical link, but after recovery, it will
provide good service continually. If wanting to forgive the oc-
casional nonsubjective misbehavior, we can set a high value
to α (e.g., α > 0.5 for example) to make the trustworthiness
preferring to the reputation value. Reputation is derived from
Er and Ir. Here WEr = β and WIr = 1 − β.

∑
(Te) stands for

the sum of the recommendations, and Ne is the amount of the
recommendations. So Er is the average value of recommenda-
tions. Ir is derived from the peer’s accumulative score. After
each transaction, the requester evaluates the quality of the
cooperation. The peers providing G service will lead to their
scores (S) increase, while peers providing L, N, or B service
will cause their scores to decease. For the D-peer, it changes
its behaviors among G, L, N, and B repeatedly and uniformly,
so 75% of the behavior of D-peer is bad, and its score actu-
ally also decrease gradually. For the valuer there is a score
function h mapping from Q to a score for one cooperation.
As shown in function h in figure 2, the bad behaviors (L, N,
B) will lead to more decrease of the score than the increase
for the good behavior, and the B is the most harmful action
which cause the most severe decrease. In the simulation, h is
defined as: h(G) = 1, h(L) = −2, h(N) = −3, and h(B) = −4.
The sum of score is normalized by a threshold value Tgood to
derive Ir.

Since PET aims to deploy in the P2P community, in which
there are malicious recommenders providing the misleading
recommendations, it is good to lower the role of the recom-
mendation. The reasons are:

(1) Different peers are hardly consistent on the same service
provider because of their different criteria and experi-
ences.

(2) Peer’s behavior can change dynamically, while recom-
menders need time to perceive this change, and there are
delays for the recommendation to spread, so recommen-
dations somehow inevitably departure from the truth.

(3) Fraudulent recommendation, especially the collusion on
the recommendation is very difficult to handle if the trust-
worthiness calculation relies much on the recommenda-
tion.

However, it is not a good answer to ignore the recommen-
dation. As the knowledge from other peers, the recommenda-
tion is helpful to know more about the system without direct
interaction. Assigning it a lower weight β is a good solution,
which is supported by the simulation results in Section 5.
More detailed analysis of the effect of recommendations can
be found in [15].

Risk model. Reputation is not sensitive enough to perceive
the suddenly spoiling peer because it needs time to decrease
the accumulative score. Risk evaluation can help to solve this
problem. Trustworthiness is a temporal value, because the
behavior of the peer will change dynamically. The old trust-

worthiness value may totally misrate one peer after some time
passes. To solve this problem, a risk window is employed to
limit the assessing range. While the window is shifting for-
ward, the risk value reflects the fresh statistics of the valuee’s
recent behaviors, which integrates the temporal factors into
the trustworthiness value. To calculate the risk Ri, we first
get the total score of the bad service within the window, then
make it normalized with the product of h(B) and the window
size Sw or N. N is the number of total history events in the
queue. Normally Sw and N are equal, except that at the be-
ginning, the queue is not full. When there is no interaction
at the beginning, the risk value is set to be zero, that is, no
risk for the new stranger. It seems that this strategy opens a
door for the new stranger and brings corresponding threats
such as Sybil attack [8], but actually not. Once a peer behaves
badly, the risk will increase significantly, so that the door will
close very fast for the bad peers, which will be validated in
the Section 5.3. To reduce the risk of the cooperation, users
can focus more on the risk by assigning 1 – Ri a high weight
by trading off the resource availability.

4. M-CUBE model design

M-CUBE makes use of the (trustworthiness, service) pair pro-
vided by PET to change the view on the quality of others, then
adjusts the corresponding policies to control the currency. In
this section, we first give a brief introduction about the world
economic model, which inspires the design of M-CUBE, then
present the details of the M-CUBE model. Finally, the advan-
tages of this model are discussed.

4.1. Currency model

Inspired by the features of the world economic model, we pro-
pose the M-CUBE model, which is a multiple-currency based,
self-policing, dependable and unified method for heteroge-
neous resource sharing; however, our approach differs from
the real economic market in the grain of economic entity. That
is in our currency model, every peer, namely one machine or
one organization, issues and regulates its own currency, while
in the real world economic market, each country (not a single
person) is the smallest entity to control the its currency issuing
and exchange. M-CUBE is built upon currency-based mecha-
nisms, where the uniqueness of M-CUBE is each peer has its
own currency. Unlike many of previous work, in addition to
associating the currency with physical resources directly, such
as CPU and disk, M-CUBE also can associate currency with
application-level services directly, e.g., each HTTP request.

Pricing and ratio. In M-CUBE, pricing is the first problem
to be addressed before building the currency model. Since
most computer users live in the market-economy society, it is
reasonable and acceptable to price our resources in the virtual
community referring to the real price of the physical devices.
On the other hand, the shared resources have their own period
of validity. So from the view of trading, the currency in the
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M-CUBE is mainly expressed as a 3-tuple: (t, p, v), where t is
the type of the resource, p is the number of this type resource
which $1 can buy in the real economical society, and v is the
validity period of the resource. In the following subsection,
more details about the format of the currency are described.
However, regarding to the application-level service not only
related to a single device, for example, one calculation request
in SETI@Home, it needs to consider multiple devices related
to this service to fix p. Normally the pricing normally is self-
decided, but it also uses $1 as the basic unit to define p. For
example, if $1 is decided to be able to buy 10 requests, then
the value of p is equal to 10.

Based on the value of p, heterogeneous resource trading is
feasible. Here is an example. Peer A wants to share its 100 G
hard drive, and peer B wants to share its 2 GHz CPU. Assume
in the real market A’s hard drive cost $100, and B’s CPU cost
$80. Then the value of p in A’s currency is 1 (unit is GB),
and B’s is 25 (unit is MHz).2 Ignoring the consideration of
the validity period, one unit of currency of A (CA) is expected
to get one unit of currency of B (CB) because one currency
is corresponding to $1. In this case, one CA can be used to
exchange for 25 MHz CPU resource from peer B, or one CB

can be used to exchange for 1 G harddisk from peer A. Two
advantages can be expected with this approach:

(1) People are willing to accept this approach because it is
similar to their dairy life;

(2) Base on this approach, heterogenous resources can be
easily exchanged, because all currencies are introduced
based on $1 value in the real economic market.

In order to simplify the system design, a pricing bootstrap
peer will be introduced in our system. The bootstrap peer
is taking care of one additional task to update the device
price. Other peers in the system contact the bootstrap peer
to get the reference price. However the reference price is not
mandatory; other peers can price their resources based on their
own experience, disregard for the price from the bootstrap
peer. So the bootstrap peer is not necessary in the system. The
reference price also can be referred to see whether the price
from the counterpart peer between the resource exchange is
reasonable or not. The module Price Regulator is employed
to manage the price, whose job is either to contact the price
bootstrap peer periodically or self-decide the price according
to some pricing mechanism. A lot of previous work has been
done on the pricing [10–12], which complements to our work
and can be used for pricing in M-CUBE.

Currency format and management. When two peer ex-
change their currencies, there is an exchange ratio Rc that
they agree with. Initially, since every currency is correspond-
ing to $1, so Rc is equal to one. After sometime, Rc will be
self-adjusted according to the trustworthiness value provided
by PET, which is defined by a function f: Rc = f (T ,Rc). A
simple definiton of f, Rc = T , is adopted in our following

225 MHz CPU is 1
80 of 2 GHz CPU. From the application view, it represents

1
80 CPU usage.

sections. That is, just use the trustworthiness as the exchange
ratio. For example, if for peer B, peer A’s trustworthiness
value is 0.5, then one unit of A’s currency can just exchange
for 0.5 unit of B’s currency when A asks for B’s currency. Rc

is regulated by the module Ratio Regulator in figure 1. When
P1 wants P2’s service, it must use P2’s currency. But P1 must
have its own currency first which it can use to exchange with
P2. Once P1 issues its own currencies, it promises to share
the corresponding resources those currencies standing for. So
if one doesn’t contribute any resource to the community, it
has no currency for exchange so that it won’t get any services
from others. The incentive brought by M-CUBE to the re-
source sharing is: the more the contribution a peer provides,
the more services it can get from others; the peer will get
more benefits than its actual contribution because sometimes
resources from others can help the peer to pull through the
difficult period such as overloaded time, which are definitely
more valuable than the sharing in the common situation. How-
ever, issuing more currencies than one’s capacity blindly is
not a good way either. This is what we call the boaster. The to-
tal number of currencies stands for the peer’s outward service
capacity. The boaster may incur trustworthiness loss because
it will be unable to serve the legal requests when most of its
currency holders ask for the services at the same time. So, the
peers must issue the currency according to its actual service
capacity. One peer will provide its service only when it re-
ceives its own currency and it must do so in order to maintain
its reputation in the community. The format of the currency is
shown in figure 3(a). TypeVec stands for type vector, to spec-
ify which resource this currency related with. It should be
made clear that, though P1’s currencies can relate to different
resources, they are all P1’s currencies. When we talk about
multiple-currency, we are from the view of different peers, not
different resources. When a peer generates a new currency,
it will fill in this field to make the currency to be used only
for the specified resource. Because the resources are limited,
the number of currencies corresponding to one resource is
also limited. In M-CUBE, every issuer must take care of the
currency issuing itself to avoid to be a boaster. ResNum is
the number of corresponding resources which this currency
can buy. ValiTime stands for the validation time (Time-to-
Live) of the resource the contributor guarantees. Based on
ValiTime, the receiver of the currency will know when the
service is available on the issuer side. The validity period p
mentioned in above paragraph can be achieved by subtract-
ing current time from the ValiTime. LiveTime specifies the
validate time interval of currency. If after the exchange the
currency is not used within LiveTime, the currency will ex-
pired, and the issuer will re-issue the currency with another
LiveTime. Different with ValiTime, LiveTime is from the angle
of currency, not the resource. Normally LiveTime is less than
ValiTime. IssuedTime is the time stamp indicating issue time
of the currency. When an issuer receives its currency, it will
check if the currency is valid by comparing the IssuedTime +
LiveTime to the its current time, but this limitation is not strict
because the time is not strictly synchronized in the distributed
system. Through this way, the service consumer signs a
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usage contract with the service provider and takes on the duty
for the expiration of the provider’s currencies. SeqNum is the
sequence number of the currency, which is used for deciding
the authenticity of the currency by the issuer. Finally, DigSig
is the digital signature signed by the issuer. The issuer uses
the node’s private key K− to encrypt the TypeVec, ResNum,
ValiTime, LiveTime, IssuedTime, SeqNum to generate digital
signature DigSig. The currency is totally self-determined and
self-policing. It meets the demand of high independence of
the P2P community. In order to decrease the space consuming
for the currency storage, every issuer keeps a table to track
where its currencies in terms of (TypeVec, Resnum, SeqNum,
Receiver), so that currency receiver can merge the currency
with the same TypeVec and issuer, just by requesting a new
large-amount currency from the issuer. The issuer just needs
to delete the corresponding small-amount currencies, and add
a new tracking item with new Resnum and SeqNum. The simi-
lar process happens in the process of currency consuming, but
the direction is change the large-amount currency to small-
amount currency. All the communication channels are secure
and authenticated with the help of PKI.

Service discovery protocol. Before one peer exchanges cur-
rency with another, it must know who has the currency related
to the resource it wants, which is taken care by Service Dis-
covery module in figure 1. Two functionalities the module
performs:

(1) Locating the wanted currency,

(2) Making sure the validity period of the wanted currency is
long enough.

In M-CUBE, limited-hop multicast is used here for the ser-
vice discovery. The requester sends out a request (Cnum, Ctype,
R, V) to its cooperators (cooperators refer to the peers having
the history of currency exchange before), where Cnum is the
currency number it wants, Ctype is the resource type to which
the wanted currency related, R is the identifier of the requester,
and V is the minimum validity period for the request resource.
The cooperators will forward the request to their cooperators
again. According to the social network phenomenon, it is ex-
pected that after several hops the wanted currency can be dis-
covered. In M-CUBE the maximum number of hops is set as
six. All the receivers piggyback the response to the requester
peer. If all the following two conditions are met, that is,

(1) The currency associated with the requested resource is
available,

(2) The validity period is long enough,
the receiver will confirm the requester peer, and tell the
requester peer what kind of currency the receiver needs if
the requester peer wants to proceed the exchange.

One important thing is, delegation peer is allowed in
M-CUBE to improve the efficiency of the resource sharing.
Peers are not limited to just exchange with the issuer directly.
In other words, if peer A has peer B’s currency, and peer
C wants peer B’s currency, peer C can exchange peer B’s
currency with peer A. We call A an exchange delegation. This

will improve the resource availability and efficiency. Con-
sidering the case that when peer B and peer C does not know
each other, so peer B and peer C can not build the cooperation
relationship. But peer C needs peer B’s service. Without the
exchange delegation, C won’t get B’s help, and B’s resources
can not be known by C.The requester picks up some peers
and builds the candidate list according to the trustworthiness
of the peer who issues the wanted currency (not the peer
performing the exchange. Remember there are delegations
here, and the trustworthiness just cares about the service
provider, not the currency exchanger). Then one peer from
the candidate list is chosen to proceed the currency exchange.

If the currency exchange can not be fulfilled, e.g., the
exchange ratio is very high for the requester, so that it doesn’t
want to continue exchanging, another peer from the list is
chosen to continue the exchange. When the requester doesn’t
have the right currency as the responder needs, it must try to
get the currency the responder wants first. In a worse case,
the requester may have to get several intermediate currencies
to finally get the wanted currency. In this case, the exchange
chain shapes up, as shown in the left part of figure 3(b). The
intermediate nodes in the exchange chain are the delegations
A, B, and C. Two end points of the chain are issuer P and
the requester R. Now R wants P’s currency. After multicast,
R knows that peer A has P’s currency. In this scenario, A is
the delegation of P. But A just accepts the currency of peer
B, which R doesn’t have. Then R uses another multicast to
find out who has B’s currency, and B responses and tells R it
just accepts C’s currency. Fortunately, C accepts R’s currency
(through another multicast to find who has C’s currency). Now
R can build an exchange channel to A through the chain R ⇒ C
⇒ B ⇒ A. To improve the performance, the exchange activity
won’t happen until the requester agrees with all ratios from the
delegations in the chain. So R records the ratio reported from
A, B, and C first. If R agrees with all the ratios, the exchange
chain forms: R will trigger the chain exchange by exchanging
with C first, and then uses C’s currencies to exchange with
B, and the process goes on until it gets P’s currency from A.
One detail is, when A gets R’s exchange request finally, A
will inquiry P the ratios RP:R (The currency ratio for R in P)
first. A rejects the exchange in case RP:R is low, that is R’s
trustworthiness in P is low (remember R = T). If R has a good
reputation, A gives R P’s currency with ratio RP : A∗ R A :B .
Actually finally N units of R’s currencies can exchange for
R P : A ∗ RA : B ∗ RB:C ∗ RC:R ∗ N units of P’s currencies.

Currency exchange protocol. At the beginning, one peer
only has its own currency. It needs to exchange the currency
from other peers when it needs the services from others. The
module Currency Exchange in figure 1 takes care of this job.
After the service discovery stage mentioned in previous para-
graph, the requester already has the candidate list, and one
candidate peer has been chosen. In the following, we will
just state a basic exchange protocol without considering the
chain exchange (actually the chain exchange is just a little bit
different. What to be modified is to combine the exchange in
the chain together). The requester sends its exchange request



ENFORCING COOPERATIVE RESOURCE SHARING IN UNTRUSTED P2P COMPUTING ENVIRONMENTS 977

Figure 3. Currency format and currency exchange protocol. (a) Currency format, (b) Service discovery and currency exchange protocol.

to the candidate, and the candidate decides the exchange
amount based on the exchange ratio. The pseudocode of the
exchange protocol is shown in the middle of the figure 3(b).
We assume that P1 wants to get N CP2(T1) (the currency with
service type T1 from P2), and the currencies of P1 are related
to total n kinds of resources. Here we also don’t consider the
case of delegation, and assume that all currencies of P1 used
to exchange are issued by P1 itself. At first, P1 will use the
currency CP1(T1) to ask for exchange. If this kind of currency
is not enough, it can use other kinds of currencies to con-
tinue the exchange until its request is satisfied or no more
kinds of currencies can be used for the exchange. SUBEX-
CHANGE function operates as shown in the right part of the
figure 3(b), which illustrates the exchange process for just one
kind of currency. P1 inquiries P2 if possible to exchange the
currency with type T1 from P2 using the P1’s currency with
type Ti. If P2 can conduct the exchange, it sends back the
exchange-related information to P1, which includes Lc, Me,
and R2:1 . Lc means P1’s credit limit in P2, which is the total
maximum number of currencies P1 can ask from P2. Me is
the maximum number of the currency P1 can ask from P2
in this exchange. R2:1 means the currency exchange ratio for
CP2 to CP1. The protocol is totally self-policing and nego-
tiable. P1 can reject the exchange for the low exchange ratio
specified by P2. If P1 agrees the ratio, P1 will send P2 its N ′

currencies CP1(T1), and P2 will send back N′∗R2:1 currencies
CP2(T1) to P1. Here N′ may be not equal to N after negotia-
tion. When the exchange procedure completes, both P1 and
P2 will change their currency storage. Since the currency ex-
change tends to attract more attacks, some special security
protocols, e.g. Diffie-Hellman key exchange protocol, can be
used here to protect the exchange.

4.2. Advantages of the model

Benefiting from the nature of the currency mechanism, we can
make the resource sharing controllable, eliminate the free-
rider and boaster, and make the system anti-DoS with our
M-CUBE model.

Making resource sharing controllable. In M-CUBE, the re-
source sharing and trading are under control from the prospec-
tives of the number and time, which is important for the open
P2P community. Through the usage of the currency, every
peer is coupled with the system not only using the system,
but also managing the system by discovering and propagating
the bad peers through the ratio adjustment. The controllabil-
ity also provides more benefits of the resource sharing with
more reliability and predictability, which is a potential way
to put P2P resource sharing to a good direction against the
law violation. Every peer has incentives to keep good reputa-
tion, so that they also take the responsibility to maintain the
reliability of their resources claimed in their currencies. The
predictability let peers know when they can find the available
resource so that they can deal with emergency or a complex
task with the additional resource from others.

Eliminating free-rider. Free-rider [1] is a severe problem in
P2P community. In the M-CUBE model, no free-rider can
exist because none of them can get other’s currency without
exchange its currency with other. When one’s currencies are
hold by other peers, it will have to provide the service when-
ever other peers redeem the currency, otherwise its credit
will be decreased and finally it will be kicked out from the
community.

DoS attack free. Since every law-abiding peer generates its
currency based on its service capacity, so even facing the burst
of the service requests from others, the peer is still can satisfy
the requests at the same time. That is, our currency model
can avoid the DoS attack for the law-abiding peer. However
for the boaster, it is out of the protection of our model. It
is worth noting that when we say DoS attack free here, we
refer to the possible attack resulting from our currency model
and locating in the application-level. The network-layer attack
such as the TCP/IP SYN attack is not our major concern.

Anti-boaster and inflation. In [9], boasters are considered
as legal and useful. However in M-CUBE, boaster are illegal
because they will lead to the uncontrollable state of the system.
In the real economic market, if the value of total currencies
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is larger than the actual value of the total merchandize, it will
lead to the inflation and disorder the market trading. However,
our currency mechanism has a natural essence to suppress
the inflation. The boaster may be able to exchange for the
currencies of other peers at first with its devaluated currencies,
but the stealing action will be punished by the community in
the long run. Other peers holding the boaster’s currency will
redeem the currency to ask back for the service later. When the
boaster can not provide service with good quality facing the
burst of the service requests, its trustworthiness value will be
decreased. Finally, when the trustworthiness drops to below a
threshold, the boaster will be eliminated from the community.
Simulation results in Section 5 show that even most of bad
peers in the system are boasters, our approach is still can make
the system profitable.

5. Experimental analysis

The simulation is conducted in the context of P2P Web
server sharing application [18], which is a new content
delivery mechanism for both static and dynamic Web
content by federating participating Web servers together
in a P2P fashion. It empowers the individual peer which
is autonomous with respect to managing the resources and
replica placement. Each Web server is a peer and serves
a bunch of clients. The peers pool their resources to help
each other during individual peer’s peak loads and/or system
failures. The main concept behind the workability of this
arrangement is an understanding that not all companies which
form the P2P network will have peak loads on their web sites
simultaneously. PET will be integrated with the proposed
M-CUBE model for the application in the simulation.

The simulation is thread-based and written in Perl lan-
guage. Table 1 gives the details of the settings of the simu-
lation. There are 500 peer servers to be simulated. To show
the scalability of the model, two sizes of clients are used:
4,700 clients (C1) and 9,400 clients (C2). The peer servers
need to cooperate with each other to make full use of the
spare (computing) resource to serve the clients. HTTP re-
quests from clients are generated using SURGE [3]. The total
number of requests in the simulation is about 300,000 when
using 4,700 clients, and 600,000 when using 9,400 clients.
Five configurations (from P1-P5) are used to simulate differ-
ent P2P communities as listed in Table 1. In order to simulate
the malicious recommenders, peers will also have a secondary
role: sending out the correct recommendation (M1) or mali-
cious recommendation (M2). In our simulation, the malicious
recommendation will rate the good peers as bad, and bad peers
as good. The B-peers will send out the malicious recommen-
dations when option M2 is chosen. Finally, in order to simulate
the worse untrusted environment, we also introduce the role
Boaster into the simulation. Changing the weights of different
model components can adjust the model to different environ-
ments. Finding some good weight settings through the simula-
tion is one of our goals as well. To achieve this goal, six weight
combinations (from W1-W6) are used as shown in Table 1.

In the following analysis, we will mainly compare the per-
centage of the good service brought by the system to analyze
the effect of different components and the improvement or our
approach in different kinds of environments. For all figures
except figure 6, the x-axis is the four service categories (G, L,
N, B), and the y-axis is the percentage of the requests receiving
the corresponding service category. In figure 6 the relationship
between PET and M-CUBE are explored. Due to space limit,

Table 1
Simulation settings and their illustrations.

Settings Illustrations

Client number C1 4700 Clients Small-size population.

C2 9400 Clients Large-scale population.

The proportion of peer with P1 20%:10%:10%:30%:30% To simulate the community with less good
peers and all kinds of peers coexist.

different quality (G:L:N:B:D) P2 20%:0%:0%:0%:80% To simulate high dynamic community with
many dynamic peers.

P3 20%:20%:20%:40%:0% To simulate the stable community without
dynamic peers.

P4 50%:10%:20%:10%:10% To simulate a half-good community.

P5 80%:5%:5%:5%:5% To simulate a terrific community.

Malicious recommendation M1 Malicious recommendation Spreading the distorted facts.

M2 Correct recommendation Spreading the true facts.

W1 α = 0.3, β = 0.2 Emphasizing Ri and Ir .

W2 α = 0.3, β = 0.5 Emphasizing Ri and relying more on Er .

Weight of different components W3 α = 0.7, β = 0 Emphasizing Re and ignoring Er .

W4 α = 0.7, β = 0.2 Emphasizing Re and Ir .

W5 α = 0.7, β = 0.5 Emphasizing Re and Ir .

W6 α = 1,β = 0.2 Ignoring Ri and Emphasizing Ir .
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we report the results of only one metric. Interested readers
please refer to the technical report version of this paper [14].

5.1. Effect of different components

In this part, two interesting issues will be studied. We first
focus on the risk evaluation with different weights, then turn
to the effects of recommendations with different weights and
peer constructions

(1) Risk evaluation with different weights. In figure 4(a), we
fix other options and just change WRi. Three values of WRi

are used here: W1(0.7), W4(0.3), and W6(0). Other fixed
options are: C1, M2, and P1, that is a system with only
20% good peers, but peers send out the correct recom-
mendations. Intuitively, when there are large number of
bad peers (L, N, B, D), high value of WRi is helpful to
find the bad peers. In figure 4(a), it can be observed that,
with the increase of the weight WRi (W6(0) → W4(0.3)
→ W1(0.7)), the more good services the system achieves.
However the difference is not that much. It is because we
choose a small number clients (C1) in this experiments.
From the analysis of the last two experiments, we can
expect that, the difference will be enlarged if we select
larger number of clients (C2). From this analysis, a hint
comes out: in the P2P community where most peers are
not good, the high value of WRi is helpful to improve the
model. An interesting topic we will study in figure 4(b)
is the ability of the risk model against the malicious rec-
ommendation. We choose two weights of the risk WRi,
W1(0.7) and W4(0.3), and take the malicious recommen-
dation into the consideration. The other fixed options is
the same with figure 4(a). From the figure, we can see that
the options (M1, W1) brings 36% good services, much
better than 31% with the options(M1, W4), and it is even
better than 35% with options (M2, W4), the case with-
out malicious recommendations. From these data, another
hint comes out: when the malicious recommendations ex-
ist, setting WRi with a high value is great helpful to resist
the malicious recommendation.

(2) Selecting the weight of recommendation. To select a suit-
able weight of recommendation is important for PET. We
conduct this group experiments to try to know how to se-
lect the weight of the recommendation WEr to decrease the
negative effects of the malicious recommendation while
keeping the same performance. We will mix M1 (Mali-
cious recommendation) and M2 (Correct recommenda-
tion), P1 (20% G-peers and 30% D-peers) and P2 (20%
G-peers and 80% D-peers), and W3 (WEr is 0), W4 (WEr

is 0.2) and W5 (WEr is 0.5) to build different experiments.
Other fixed option include C1.

Let’s focus on the lines with M1 option in the following
discussion. In figure 4(c), with the option W4, among all
the requests, 36% are served with good service, higher
than 32% from the case with the option W3 (ignore the
recommendation). The result is even a little bit higher
than the case without malicious recommendations, which

implies that a lower value of WEr is better to resist the ma-
licious recommendations and discover the G-peers than
both ignoring the recommendation (W1) and relying more
on the recommendation (W5). From the above results, we
can conclude that in a community with malicious recom-
menders, just ignoring others’ recommendations is not a
good way. The right solution is assigning it a low weight to
make a tradeoff. From the simulation results, the tradeoff
can lead to a good solution.

5.2. Improvement of our approach

In the following, we will study the improvement of our
approach through three angles of efficacy, anti-boaster, and
scalability.

Setup:The service requests of clients are generated by
SURGE, which are stored in one file. There are some other
files used to specify the quality of the peer servers. Combining
these files, we can get the results of how the requests will be
served without our approach (we call it the standard result).
Since the D-peer changes its quality repeatedly and uniformly,
we amortize its service to other four services when calculate
the standard result, so actually no D service exists. In this
experiment group, G : L : N : B : D is 20% : 10% : 10%: 30%:
30%. So after the amortization, G : L : N : B will be 27.5%:
17.5% : 17.5% : 37.5% (each add 30%/4 = 7.5%). We will
use this as the expected standard result without M-CUBE, and
see the improvement and efficacy compare the results with
M-CUBE. To see the effects of the boaster, two groups of
experiments are conducted: one is without the boaster and the
other with the boaster. In addition to the boaster, in the second
group of experiments we also let the bad peers act more
intelligently, i.e., the bad peers are able to change the coop-
erators which have recognized their bad quality, and attempt
to find new cooperators, through which to gain more benefits
from the new cooperators. Our goal is to simulate a highly
untrusted environment to test the effect of our approach. In
order to study the scalability, two groups of experiments are
conducted also: the first E1 is with different number of clients,
and the second E2 is with different number of peer servers. E1
studies the effect when the system overload changes. In E1
two sizes of clients (C1 and C2) are used for the comparison
with the same number of peer servers (500). E2 is to study the
effect when the system scale changes. In E2, what we try to do
is construct two system scale, one is 1

10 of the other. Two sizes
of peer servers (S1 = 500 and S2 = 50) are simulated. The
latter size is 1

10 scale of former one. When using setting S1
= 500, the size of clients is C1 = 4,700, and the total number
of requests generated is about 300,000. When using setting
S2 = 50, the size of clients is 1,000, and the total number of
requests generated is about 36,000, about 1

10 of C1.

Discussion: Figure 5 shows the related results, in which the
x-axis is the four service categories (G, L, N, B), and the y-axis
is the percentage of the requests receiving the corresponding
service category.
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Figure 4. Effect of different components. (a) Risk evaluation with different weights, (b) Risk evaluation with the effect of malicious recommendations, (c)
Effect of recommendations.

1. Efficacy. First, let’s study the efficacy of M-CUBE. In fig-
ure 5(a) there are three lines. One is the “Without M-CUBE
and PET”, which is the standard result we have discussed in
the setup part; one is with M-CUBE and PET, and smaller
size of clients C1; final one is also with M-CUBE and PET,
but with larger size of clients C2. There are no boasters in
this group of experiment. What is desired for our approach
is to enable more requests to get the good services and de-
press the Byzantine services, because Byzantine services
bring most severe loss among the bad services. From figure
5(a), we can see that once applying our approach, there is
great improvement: with small scale (C1 = 4700), the per-
centage of good service is increased from 27.5% (standard
result) to 35.5% (relatively 29.1% improvement); when the
scale is larger (C2 = 9400), the percentage increases signif-
icantly to 46.5% (relatively 69.1% improvement). The sup-
pression to Byzantine behavior is not that good. When the
size of clients is C1, the service served by Byzantine behav-
ior is even more than the standard result; however when in-
crease the number of clients to C2, the result is much better:
from 42.1% with option C1 decrease to 27.3% (relatively
35.2% decrease) with option C2. All these data tell us:

(1) Our model is very good to bring more good services
to the system, and with the increase of the number
of clients (service requests), the improvement is even
better.

(2) The effect of suppressing the Byzantine service is
not as good as promoting the good service. But the

effect will appear when more service requests are
served.

(3) More requests means more time and more informa-
tion to let the system to get convergent, because more
feedback and observation can be received.

From the above result, we can see that our approach
is convergent, for the result gets more improvement
when choosing larger number of requests, no matter
from the view of increasing good service or the view
of depressing the Byzantine service.

(4) It can expected, when increase the number of
requests, the result will get even more competent,
because when the system get convergent, most peers
know the good peers, and most the service requests
will get good service from these good peers.

(2) Anti-boaster. In figure 5(b) the boaster will exist, and the
bad peer can act more intelligently. From figure 5(b), we
can see that the percentage of good service increases from
27.5 to 32.8% (relatively 19.3% improvement) with C1,
and to 37.5% (relative 36.4% improvement) with more
requests C2. The improvement is quite a bit less than
figure 5(a), and the effect on suppressing the Byzantine
service is even weaker. However, considering 80% peers
are intelligent bad peers, and malicious recommendations
and boasters exist (a highly untrusted environment), we
still can say our approach is effective and robust for the
extremely untrusted computing environment. The fact be-
hind these data is, the highly untrusted environment will
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Figure 5. Improvement of our model. (a) No malicious recommendations and boasters, (b) Both malicious recommendations and boasters exist, and (c)
Different number of peer servers.
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cost more time for the system to get convergent, but can
not prevent the trend to convergency.

(3) Scalability. In figure 5(c), in additional to the standard
results, two experiments are conducted: one is with larger
size of peer servers S1, and the other is with the smaller
one S2. No boasters exist in this experiment. The settings
and the reasons why choose this have been discussed in
setup part. From the figure 5(c), we can see that, only
about 25.0% good service the system gets with the small
scale, much less than the result with larger scale 35.5%,
and even less than the standard result 27.5%. It is because
when the number of peer server decrease to 1

10 , the number
of requests also decrease to 1

10 . Obviously we can see that
in the smaller scale, the system is not convergent, so that
the performance is not good. But on the other hand, this
also tell us that larger scale system can help to improve the
performance. So the model is scalable. Of course, there
should be one saturate point for the increase of the system
scale, which is one of our future work. From figure 5(c), it
can be seen that with the increasing of the client number
from C1 to C2, the good service percentage increases
from 35% to 48%. All these imply that the experiment
results will be better if the scale of experiment increases.
Thus we expect that in the large scale P2P community,
our approach will be great promising.

5.3. Relationship among trustworthiness, reputation, risk
and ratio.

In PET, the trustworthiness is derived from the reputation
and risk. With the support of the trustworthiness evaluation,
M-CUBE can change the ratio of the currency dynamically,
which makes our currency model effective and accurate. In
this subsection, we will analyze how the reputation and risk
combine together to make the trustworthiness more accurate;
we can also see how the trustworthiness affects the currency
ratio (In the following all the ratio is referred to currency ratio).

Setup: We choose three kinds of peers for the consideration:
G-peer, B-peer (the representative for the bad peers include
L-peer, N-peer, and B-peer), and D-peer. These three peers
are picked up from one peer’s history table randomly.

Discussion: The x-axis in every sub-figure of the figure 6
represents the time flow, and the y-axis stands for the value

of components. Let’s focus on the trustworthiness first. For
the G-peer, the trend of the trustworthiness in figure 6(a) is
increasing overall. It can been seen that there are some fluctu-
ations. This is because of the affect of recommendations. The
malicious recommendations will disrupt the trustworthiness;
even the correct recommendations will also delay the conver-
gent process, because at the beginning the G-peer’s trustwor-
thiness value will be low, so the recommendation value for the
G-peer will be also low. However, the fluctuations tend to dis-
appear as time goes on, because when more interaction-based
information has been collected, the role of the recommenda-
tion becomes weaker (the risk for the G-peer is always zero,
which brings no effect for the fluctuations). For the B-peer,
the trend of the trustworthiness is decreasing earlier and sud-
denly in figure 6(b), which is incurred by the risk evaluation.
Because the B-peer always provides Byzantine services, its
risk will always be one for its cooperators once the their co-
operation begins. The risk will make the trustworthiness drop
suddenly and quickly, which is helpful to recognize the B-
peer. For the D-peer (figure 6(c)), the trend is fluctuating first,
then decreasing later. Different from the G-peer, the overall
tendency of the fluctuation is decreasing, while G-peer’s is
increasing. This is because in addition to the effect of the rec-
ommendations, the fluctuation of the D-peer is also because
of its dynamic change of the behaviors, which incurs its repu-
tation to decrease. When the cooperation with D-peer begins,
the risk is starts having effect and makes the trustworthiness
drop suddenly. Different from B-peer, the drop of the trustwor-
thiness is less sharp, but enough to reveal the D-peers. From
the above analysis, we can see that the risk evaluation is great
helpful to recognize the bad and dynamic peers, but no effect
for the good peers (For the good peers, our PET model is the
same as the reputation model, because the risk is always zero.)

6. Related work

The notion of “trust management” was first coined by Blaze
et al. in their seminal paper on decentralized trust manage-
ment [4], which addresses the authentication of each client
request from the perspective of servers (service provider) in
terms of security policies, credentials, and trust relationship.
This is different from what we proposed, where the trustwor-
thiness of both sides are considered in general, rather than
on each individual service request. In the computer science
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Figure 6. Relationship among the trustworthiness, reputation, risk and ratio The setting options of this experiments are: B2, M2, P1, S2, and W4. (a) G-peers,
(b) B-peers, and (c) D-peers.
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literature, Marsh (1994) is the first one to introduce a compu-
tational model for trust in the distributed artificial intelligence
(DAI) community [16]. However, he did not model reputa-
tion in his work. Mui [17] gives a detailed computational
model of trust and reputation. In Mui’s model, reputation is
well modeled, but it doesn’t take the risk into consideration.
Recently, in the P2P domain decentralized reputation man-
agement schemes like P2Prep [7], EigenTrust [13] appear.
P2Prep provides a protocol complementing existing P2P pro-
tocols. EigenTrust assumes that trust is transitive and address
the weakness of the assumption and the collusion problem by
assuming there are pre-trusted nodes in the systems. However,
the objective of these reputation-based systems are different
from that of our effort enforcing self-policing trustworthiness
over other peers, rather than obtaining a global consistent trust
value for each other peer. However, we believe that our work
will benefit from these reputation-based systems very well.
Numerous economic models including microeconomics and
macronomics principles for resource management have been
proposed in the literature [2,5,6], and various criteria are used
for judging effectiveness of an economic model, including so-
cial welfare, stability, computation efficiency. However, dif-
ferent from the M-CUBE model proposed here, none of them
take the trustworthiness into consideration, also to our knowl-
edge, few of them consider the dependability of the economic
model to possible DDoS attacks. Several research systems
have explored the use of different economic models for trad-
ing resources in different application domains: CPU cycles,
storage, database query processing, and computing. Currency
and economics based resource management has been exten-
sively studied in the past [9,21]. Zhao and Karamcheti [21]
give an approach building on the concepts of tickets and cur-
rencies to express resource sharing agreements. Our work is
different from these due to our focus on the trust and secu-
rity. To our knowledge, the SHARP Infrastructure [9] is the
closest work related to us. But the details of how to use the
currency are different. Different from [9], our infrastructure
disagrees with the boaster. PPay [20] is a micropayment-based
mechanism for P2P resource sharing and it guarantees that all
coin fraud is detectable, traceable and unprofitable. This work
complements our work.

7. Summary

In this paper we have presented a novel economic model
M-CUBE combining the trust model PET to provide a fun-
damental mechanism for P2P resource trading in an open
environment. The uniqueness of this approach is in its ability
to seamlessly integrate the trustworthiness and dependability
of peers into currency ratio floating for resource trading. Our
analysis show that this model is effective and robust under
the untrusted computing environment. To this end, we believe
that the proposed model provides a general and flexible in-
frastructure to build most of high level resource management
required by P2P computing, such as resource coallocation and
quality of service (QoS) control.
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