
Performance Evaluation of Rating Aggregation Algorithms

in Reputation Systems

Zhengqiang Liang and Weisong Shi

Wayne State University
{sean,weisong}@wayne.edu

Abstract

Ratings (also known as recommendations, referrals, and
feedbacks) provide an efficient and effective way to build
trust relationship amongst peers in open environments.
The key to the success of ratings is the rating aggre-
gation algorithm. Several rating aggregation algorithms
have been proposed, however, all of them are evaluated
independently so that it is difficult to compare the ef-
fect of these schemes. In this paper, we argue that what
is missing is to evaluate different aggregation schemes
in the same context. We first classify all state-of-the-
art aggregating algorithms into five categories, and then
comprehensively evaluate them in the context of a general
decentralized trust inference model with respect to their
resistance to different factors, such as dynamic behavior
of peers and raters, dishonest ratings, and so on. The
simulation results show that complicated algorithms are
not always a good choice if we take the implementation
cost and resistance to bad raters into consideration.

1 Introduction

Rating is a very powerful vehicle to find wanted resources
and information in our human society. Hinted by the
human social network, computer researchers are of great
interests to employ ratings in the computing society [13],
especially in the field of trust inference, where ratings are
crucial to build the trust relationship. The key to the
success of ratings is the rating aggregation algorithm,
i.e., how to integrate the ratings from other into one
peer’s own trust view, including getting rid of bad raters
and obtaining accurate ratings. In the rest of this paper,
we will use the notion of rater to represent the peer who
assigns her ratings for others.

Many interesting aggregating algorithms have been pro-
posed. Basically, these algorithms can be classified into
five categories. Though noting the potential advantages
of ratings, Resnick et al. [14] challenge the feasibility
of the distribution of feedbacks, from the point of the
expensive cost for the feedback distribution. Holding

the same view, Liang and Shi [8, 9, 10] suggest to treat
the ratings from different raters equally considering the
dynamics of P2P systems. They argue that simply av-
eraging ratings is deserved considering the simplicity of
the algorithm design, and the low cost in the system
running. We call this approach average (or simply Avg).
Different with [8, 9, 10], Wang et al. [18, 19] suggest that,
averaging should be applied only for stranger raters, but
for acquaintances, their ratings should be weighted. We
call this approach half weighted (or simply Half) method
in following sections. Yu et al. [16, 24, 25, 26] give an-
other thought on this issue. They believe that only rat-
ings from witnesses, who have interacted with the ratee
(We call the peer which is recommended by raters as
ratee), are useful. In their weighted majority algorithm
(denoted as WMA), only the ratings from witnesses are
aggregated, and the weight of witnesses is decreased if
the rating is different from self own recognition. Differ-
ent from WMA, Sriatsa et al. [17] argue that, the weight
of ratings should be based on the similarity of the expe-
rience between the rater and the peer itself. We denote
this approach as personalized similarity measure (PSM).
Finally, Jøsang et al. propose to aggregate the ratings
and to update the weight of raters through deriving the
expectation of the Beta distribution [2, 4, 5, 20]. The
details of these algorithms are listed in Section 3.

It is natural to ask, which algorithm is the best? How-
ever, to our best knowledge, systematically evaluating
different aggregation algorithms is still missing. Thus we
take the first step to answer this question. We first ab-
stract a basic decentralized trust inference model which
integrates the rating into the trustworthiness value cal-
culation. In this model, each peer will assign a trust-
worthiness value to a set of peers of interest. The trust-
worthiness value is derived from the interaction-derived
information (first-hand information) and rating (second-
hand information). Based on this model, we build a
simulation platform using Netlogo, a popular multiple-
agent simulation tool in the AI community [21], which
allows us to tune and adjust all design parameters in
a flexible way. We evaluate the effects of ratings ag-

1

gregation from multiple angles, including the number of
good services, the communication workload, the storage
cost, and the running time. The simulation results show
that, simple algorithms are considerable with their fairly
good performance and less overload; in some cases the
simple algorithm can even outperform the complicated
algorithms.

The rest of the paper is organized as follows. Section 2
abstracts a basic decentralized trust inference model.
Section 3 gives the details about the five state-of-the-
art aggregating algorithms we will evaluate. The exten-
sive comparison of these aggregation algorithms is de-
picted in Section 4. Related work and discussions are
described in the following section. Finally, we conclude
in Section 6.

2 The Basic Trust Model

To better compare different aggregating algorithms of
ratings on the trust inference, we first abstract a generic
decentralized trust model in open environments. To re-
duce the complexity of modeling, we make the follow-
ing assumptions: (a) The quality of peers as service
providers (SPs) and as raters is independent; (b) Each
peer has a relative unique and stable ID. This will make
reputation and trustworthiness make sense; and (c) Each
peer holds a limited number of neighbors (six in our sim-
ulation).

Two types of basic information, interaction-derived in-
formation (or first-hand information) and rating (or
second-hand information), are necessary to build a trust
model. In order to make our evaluation general enough,
we will employ a simple model in which the trustwor-
thiness T is derived from two kinds of information men-
tioned above. We define T = W ×I +(1−W)×R, where
I is the value of the interaction-derived information, R
is the value of rating, and W is the weight of I (corre-
spondingly, 1−W is the weight of R). In our simulation,
the value of W is fixed. But we will analyze two scenar-
ios where W is high (0.8) and low (0.2) in the analysis.
For a neighbor k, we calculate its first-hand information
I as suggested in [26]. That is, I =

∑h
i=1 si/h, where

h is the transaction number in a fixed interval, and si

is the opinion about the transaction i with neighbor k.
The update of R is implemented by different aggregation
algorithms. Five algorithms corresponding to previous
introduction are implemented. The details about these
algorithms are listed in Section 3. For algorithms Avg,
Half, and Beta, the possible raters can only be chosen
from the neighbor list, i.e., only the peers with which the
requester have interacted before can become a candidate.
However, with the same limitation, the algorithms PSM
and WMA will be restricted so that they can not show

their special advantages. So for these two algorithms, we
enlarge the rater candidate set to the two-hop neighbors,
that is, neighbor’s neighbor. Because of this, we can see
that these two algorithms consume more storage in the
analysis. In our evaluation, we try our best to keep our
implementations in the original flavor. However, since
these algorithms are just part of the approach from the
original proposer, and we have to integrate all of them
into the same platform with a little adjustment as listed
in Section 3.

All values of T , R and I are taken from range [0,1]. The
model is an independent model, that is, each peer has
its own trustworthiness values about other peers. Since
in every trust model, ratings and interaction-derived in-
formation are necessary and enough to derive the trust-
worthiness value, our evaluation should be meaningful
for all kinds of current approaches.

3 Aggregating Rating Algorithms

In the following we briefly describe the five algorithms
evaluated in this paper. These five algorithms are the
typical aggregating algorithms in the distributed trust
inference where every peer holds personalized views on
their potential raters. The key role of these algorithms
is getting rid of bad raters and obtaining accurate rat-
ings. Note that all these algorithms are proposed in the
context of trust-independent assumption, where the the
quality for a peer to be a SP is independent of the qual-
ity for a peer to be a rater. Some classical algorithms
such as EigenTrust [6] are not included here because it
is not able to be applied in such a context.

• Average (Avg) [8, 10]. In Avg, the rate aggrega-
tion R is defined as: rij =

Pg
z=1 trzj

g , where rij is the
value of aggregated ratings towards peer j in peer
i. trzj is z’s rating towards j. g is the total number
of ratings towards j. For the honest rater, trzj is
the trustworthiness value of peer j in peer z, but for
the bad rater, this value can be any value depending
on what behavior pattern the rater acts with. Since
all the weight of the rating are equal (to 1), there
is no need to update the weight, thus there is no
corresponding communication and storage cost for
the weight update. This is the simplest algorithm
among the five algorithms.

• Half Weighted (Half) [18, 19]. In HALF, the rat-

ing aggregation is defined as: rij = wt∗
Pk

l=1 til∗trljPk
l=1 tril

+

ws ∗
Pg

z=1 trzj

g , where wt is the weight about the rat-
ing from the acquaintance, ws is the weight about
the rating from the stranger, and til is the weight
(trustworthiness) about the rating from rater l. rij

2

and trlj are the same as Avg. For the weight update:
til = α ∗ toil +(1−α) ∗ eα, where til denotes the new
trust value that the ith peer has towards rater l; toil
denotes the old trust value. α is the learning rate–a
real number in the interval [0,1]. eα is the new evi-
dence value. In the original paper [18], eα can be -1
or 1. Authors suggest that, if the rating and the ac-
tual experience has considerable difference, eα will
be set to -1, otherwise, 1. However, if the value of α
is large, it will make the value of til fluctuate very
fast. So in the simulation, we change this formula a
little bit with: til = α∗ toil +(1−α)∗ |sj − tolj | where,
sj is i’s self-opinion towards transaction j, and α is
set to be 0.51.

• Personalized Similarity Measure (PSM) [17].
In PSM, the rating aggregation is: rij =

∑k
l=1(trlj ∗

S(il)
Pk

n=1 S(in)
), where similarity S(in) equals to 1 −√

P
r∈IJS(i,n)(

P
v∈I(i,r) triv

|I(i,r)| −
P

v∈I(n,r) trnv

|I(n,r)|)2

|IJS(i,n)| . S(in) is
the personalized similarity between peer i and rater
n, which is similar to the weight of the rater in Half.
trlj has the same definition as that in Avg. Let IJS(i,
n) denote the set of common peers with whom both
peer i and n have interacted, and I(i, r) denotes the
collection of interactions between peer i and r. The
similarity between peer i and n is computed based
on the root mean square of the differences in their
opinion over the nodes in IJS(i, n). Note that in our
simulation, what we use is actually a slight variant
of the original algorithm proposed in [17]. However,
our basic ideas are the same, i.e., based on the per-
sonalized similarity towards the same interaction.

• Weighted Majority Algorithm (WMA) [26].
In WMA, the rating aggregation is defined as: rij =∑k

l=1(lrlj ∗ tilPk
n=1 tin

), where lrlj is the firsthand in-
formation of peer l about j. For the weight update:
tin = θtoin, where toin is the old weight of rater n in
peer i. θ is defined as: θ = 1 − (1 − β)|lrnj − s|.

• Beta Model (Beta) [2, 4, 5, 20]. In [5], Jøsang and
Ismail propose the beta reputation system which
use beta probability density functions to combine
ratings and derive reputation towards the raters. In
BETA, the rating aggregation is defined as: rij =

p+1
p+n+2 , where p is the number of positive ratings (>
0.5) towards peer j, and n is the number of negative
ratings (< 0.5) towards peer j. Similar to Avg, in
this algorithm we don’t need to maintain the weight
of raters. The raters in the upper and lower 10% will
be excluded from the aggregation. This algorithm is
also a simple algorithm without the weight update.
Note that several variants have been proposed since

they introduced the original idea; however, in our
simulation, we just use a simple algorithm plus a
simple filter to exclude the bad ratings.

4 Performance Evaluation

Now we are in a position to compare all state-of-the-
art rating aggregation algorithms. Note that all these
algorithms are proposed with the trust-independent as-
sumption, that is the the quality for a peer to be a SP is
independent of the quality for a peer to be a rater. The
key role of these algorithms is to get rid of bad raters
and obtaining accurate ratings. We build a simulation
platform using NetLogo [21], a very popular multi-agent
simulation tool in the AI community, which can easily
model the parallel and independent agents, to simulate
interactions among peers. With NetLogo we have de-
veloped a friendly GUI-based user interface to control
the simulation, and we can easily tune different parame-
ters to form different configurations. Figure 1 illustrates
a snapshot of the simulation platform. With this plat-
form, we can get different results for different parameter
combinations.

As seen in Figure 1, there are many parameters involved
in the platform design. Limited by the space, only the
major parameters are described, as shown in Figure 2.
We first define the type of qualities of both SPs and
raters used in our evaluation. The behaviors of peers
as raters BR can be one of the three types: “malicious”
(M), “exaggeration” (E), and “collusive” (C). Suppose
s represents the real opinion of the rater. Malicious
raters always give the complimentary opinion, that is,
sending out 1 − s to others. The exaggerating raters
will exaggerate their ratings by a exaggerating factor α,
which is 0.5 in our simulation. For this type of raters,
the rating s + α ∗ (s − 0.5) will be sent out. For the
final category, collusive raters will send out 1 for the
peers in the collusive group, and 0 for the peers outside
the group. In our simulation, the size of the collusive
group is chosen as 20% (60 peers) of the total number
of peers in the system. Three type of behavior patterns
of SPs are studied: fixed (F), random (R), and oscillat-
ing (O). The type of “F” includes the fixed good and
fixed bad. With the option F , SPs won’t change their
qualities once the simulation starts. With the option R,
SPs will change their qualities randomly. While with
the option O, SPs will change their qualities in a fixed
oscillation span (20 steps in our simulation). Both the
random and oscillating SPs are the dynamic SPs. The
modes of aggregation are the five algorithms we present
in Section 3, i.e., Avg (A), Beta (B), Half (H), PSM
(P), and WMA (W). The percentage of the bad SPs
(PB) can be 20%, 40%, and 70% within the whole sys-
tem. The percentage of the dynamic SPs (PD) can be

3

Figure 1. A snapshot of the GUI interface of the simulation platform.

30% and 70%. For the percentage of honest raters, we
make two choice available, 20% and 80%. Finally, the
weight of rating can be 0.2 and 0.8.

Description Possible Values

BR Behavior of Bad raters C, E, M

BS Behavior of Bad SPs F, O, R

M Mode of Aggregation A, B, H, P, W

PB % of bad SPs 20%, 40%, 70%

PD % of dynamic SPs 30%, 70%

PH % of honest raters 20%, 80%

W Weight of the rating 0.2, 0.8

Figure 2. Major parameters used in the simulation.

In the technical report version of this paper [9], we have
proposed ten novel performance metrics for the evalu-
ation of trust model and rating aggregation algorithms
in a comprehensive way. However, we only select six
most suitable performance metrics from the whole set
because of the limit of the paper length, including the
system workload ω, the accumulative correction rate φA,
the total number of services η, the percentage of good
service among all services ηg/η (ηg is the number of good
services), the storage cost ζ, and the running time Υ, to
conduct a complete comparison of the performance of
different algorithms. Each figure includes a figure part
and a table part. The figures are the interval plots on
the data set corresponding to each peer. Two set of data
are plotted. One is the number of good services ηg (the
sub-figures on the left side), the other is the accumula-
tive storage cost (the sub-figures on the right side, with

unit of “103”). Each figure contains five to six vertical
lines, which are corresponding to different algorithms.
The random algorithm (denoted as Rand) is to simu-
late the case where no trust information is used to help
to choose the SPs. So in Rand, peers randomly choose
the SPs, and do not store the rating from raters. The
value shown in the middle of the line is the correspond-
ing mean. All plots are with 95% confident interval. In
the table part, all the data corresponding to the met-
rics mentioned above are listed, and these data are from
the view of the whole system. Note that since a large
number of experiments with different parameters config-
urations have been conducted in our analysis, so we use
experiment numbers to distinguish them. The configura-
tion of parameters corresponding to each experiment is
explained in the caption of the figure. The experiment
numbers are listed in the x-axis of every figure beside
the names of algorithms, and the first column in the ta-
ble. For example, Exp.#(6) in Figure 4 means the Beta
aggregation algorithm with the configuration that 20%
peers are malicious raters.

Figure 3 shows the execution skeleton of service re-
questers and service providers in the simulation. To be
worth noting that, peers only request raters to update
their ratings once peers get one bad service. Besides
getting one bad service, if since last update time t has
passed, peers will update the weight of raters. In the
simulation, the program runs 2,000 steps and then stops,
and there are totally 300 peers are simulated.

4

REQUESTER:

while TRUE do
pick up one peer k with the highest T;
send the service request to k;
after transaction, adjust k’s T, and update the history list;
if k’s T < Threshold then

put k into the blacklist;
end if
if k’s service is bad then

request all raters rating k to send the new ratings;
every t steps, update the weight of raters;

end if
end while

SERVICE PROVIDER:

while TRUE do
get the service request from i;
if i is in the blacklist then

Reject i’s request;
else

provide the service to i;
if neighbor list is not full then

add i to the neighbor list;
end if

end if
end while

Figure 3. The skeleton of system execution in the
simulation.

S
to

ra
ge

 (
K

)

(11)Beta(10)WMA(9)PSM(8)Half(7)Avg

60

55

50

45

40

35

30

25

25.8683 25.9234

54.6833
57.2824

26.2519

St
or

ag
e(

K
)

(6)Beta(5)WMA(4)PSM(3)Half(2)Avg(1)Rand

60

50

40

30

20
20

25.8508
26.3574

52.8703
56.0257

26.2953

#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(11)Beta(10)WMA(9)PSM(8)Half(7)Avg

0.80

0.78

0.76

0.74

0.72

0.70

0.732823

0.74992 0.754713
0.745907

0.742853

#
 o

f
G

oo
d

S
er

vc
ie

 (
K

)

(6)Beta(5)WMA(4)PSM(3)Half(2)Avg(1)Rand

0.84

0.82

0.80

0.78

0.76

0.74

0.72

0.70
0.704483

0.735213
0.736187

0.795907

0.731887

0.762843

(a) Exp 1-6

(d) Exp 7-11

Exp # ω φΑ η ηg / η ζ ϒ
 1 (Rand) 0 0 278.914 0.758 6000.000 16.093
 2 (Avg) 1.264 0.172 280.048 0.788 7755.226 22.362
 3 (Half) 0.170 0.541 280.220 0.788 7907.216 19.158
 4 (PSM) 49.048 0.743 280.604 0.851 15861.090 36.903
 5 (WMA) 81.639 0.768 280.770 0.782 16807.712 41.38
 6 (Beta) 0.947 0.946 279.558 0.819 7888.604 19.818
 7 (Avg) 2.836 0.718 279.073 0.788 7760.482 22.132
 8 (Half) 0.415 0.670 280.239 0.803 7777.020 20.069
 9 (PSM) 72.619 0.779 279.540 0.810 16404.986 40.709
 10 (WMA) 90.912 0.648 279.769 0.800 17184.726 40.247
 11 (Beta) 0.707 0.098 280.224 0.795 7875.568 19.829

(b) Exp 1-6

(c) Exp 7-11

Figure 4. Baseline and the test of change of the percentage
of honest raters: (a) and (b) (corresponding to Exp.#1
to Exp.#6) are the interval plots of baseline about ηg/η
and the storage cost. In the baseline, only 20% peers are
malicious raters. (c) and (d) (corresponding to Exp.#7 to
Exp.#11) are the interval plots on the scenario with 80%
malicious raters based on the baseline.

4.1 Baseline and Effect of Malicious Raters

Normally, we would expect most SPs and raters in the
system are good, so we simulate an healthy environment
as our baseline, where 80% SPs are good and 80% raters
are honest. The left 20% SPs are fixed malicious SPs,
and the left 20% raters are malicious. Since we want to
study the effect of ratings in the trust inference, it is nat-
ural to set a high weight to the rating. In the baseline,
the weight of rating W is set as 0.8, which is correspond-
ing to figures (a) and (b), and Row 1 - Row 6 of the table
in Figure 4. From Figure 4(a) and column “ηg/η” in the
table, we can see that, from the viewpoint of ηg/η, PSM
outperforms other algorithms obviously. Though Beta is
a little bit worse than PSM, from Figure 4(b) and ζ, we
can find that, the storage cost of Beta is just the half as
that ofPSM. The running time of Beta (19.818) is also
far less than that of PSM (36.903). Despite WMA with
the highest storage cost, the performance is not as good
as PSM. It is even a little bit worse than Avg and Half.
Because of the highest communication and storage cost,
WMA is also the slowest algorithm. Comparing with

Rand, all algorithms get considerable improvement, but
in the cost of more storage and communication.

Figures (c) and (d), and the Row 7 - Row 11 of the ta-
ble in Figure 4 show the results when the percentage
of malicious raters increases from 20% to 80%. Com-
paring these two scenarios, we can find that, ηg/η dose
not decrease significantly. Among all algorithms, PSM
drops most heavily, from 0.795 in subfigure (a) to 0.755
in subfigure (b) for the mean number of good services
among all peers, and from 0.851 to 0.810 for ηg/η from
the system view. Considering the significant change of
the number of malicious raters, we can say that all al-
gorithms still perform well. To this end, we argue that
when the environment is a healthy environment with a
majority of good peers, all algorithms show quite a bit
resistance against malicious raters. From the view of
the storage cost, only PSM and WMA increase a lit-
tle bit, while other algorithms keep almost the same.
The reason is, as explained in the Section 2, PSM and
WMA will accept the raters from two-hops neighbors,
thus more raters will be accepted and more ratings will

5

be generated, which leads to more dependence on rat-
ings for PSM and WMA. When the percentage of mali-
cious raters increases, more ratings are needed to judge
the quality of the rater. For other three algorithms, the
number of ratings is far fewer than those of previous two
algorithms, thus the change of the storage cost is not
obvious.

4.2 Effect of Bad SPs

To study the resistance against the bad SPs, 80% bad
peers are contained in this group of simulations, so that
we can see the obvious effect brought by bad SPs. From
Figure 5, we can see several similar results as the base-
line: the costs of PSM and WMA are much higher than
those of other three algorithms in terms of the storage
cost and the running time, and PSM is still the best al-
gorithm to get the largest ηg/η. However, comparing to
the baseline, the significant increase of the percentage of
bad SPs incurs the significant increase of the communi-
cation and storage for PSM and WMA, and sharply drop
of ηg/η. When the quality of bad SPs are random or os-
cillating, ηg/η is basically higher than the case with fixed
malicious quality. One amazing result is, in the case of
SPs with random or oscillating quality, Avg is the second
best algorithm to get the good services. Since the design
of Avg is much simpler, and the cost of this algorithm is
lower, it is worth considering Avg when an open system
with most peers are oscillating SPs. We can also observe
that the performance of the other simple algorithm Beta
is close to the performance of Avg. Their performance
is better than the more-complicated algorithms, such as
Half and WMA.

4.3 Effect of Different Type of Bad Raters

Next we compare the algorithms with respect to their
resistance to the three kinds of bad raters, i.e., mali-
cious raters, exaggerating raters, and collusive raters. In
this group of experiments, we take the same configura-
tion as the baseline except that the percentage of bad
raters increases from 20% to 80%, and 20% fixed mali-
cious SPs are changed to 40% oscillating SPs. Compar-
ing Figure 4(a) and Figure 6(a), we can see that when
the percentage of malicious raters increases significantly,
the number of good services obtained by the Avg algo-
rithm drops the least among all algorithms: from 0.735
to 0.666 (0.069), which is about 9.3% only. It shows
that Avg is the strongest to resist the malicious raters.
PSM also plays well when facing the bad raters. In Fig-
ure 6(c) when 80% raters are exaggerating, WMA shows
a considerable weakness than other algorithms compar-
ing to the previous cases, while in Figure 6(e) where 80%
raters are collusive, WMA performs closely to PSM and
is better than other four algorithms; for Half, the situa-
tion is opposite to WMA. This implies that WMA highly

resists to collusive raters and weakly resists to exagger-
ating raters, while Half can highly resist to exaggerating
raters, and weakly resists to collusive ratings. Another
interesting fact we can see from Figure 6(a), (c), and
(e) is, no matter facing what kind of bad raters, Avg
performs similarly and is quite stable. This shows that
Avg algorithm is robust against all the three kinds of bad
raters. Figures (b), (d), and (f), and column “ω”and col-
umn “ζ” of the table in Figure 6 show the same result
with all previous cases about the storage cost: WMA is
with the highest communication and storage cost, and
the cost of WMA and PSM are much higher than other
cases from both views of the communication and storage.

4.4 Effect of Oscillating SPs

One of the most challenging issues in open environments
is to detect and handle dynamic behaviors, which at-
tracts a lot of attentions of researchers. In this group of
experiments we intend to study the effect of dynamics.
Comparing to the baseline, Figure 6 increases the per-
centage of oscillating SPs from 30% to 70%. For better
comparison we again include Rand. The result shows
that, except PSM, all other four algorithms get fewer
ηg/η than Rand. Even for PSM, the best algorithm we
think until now, it can just get very limited improve-
ment. Considering the cost of communication and stor-
age, we can say that all the compared algorithms play
a negative effect when the quality of most SPs are oscil-
lating. Thus we conclude that the system dynamics is a
big threat and challenge for the trust inference in open
environments, and more intelligent and agile detection
mechanisms are needed for the future research.

4.5 Effect of Rating Weight Change

In Section 4.2, we have known that increasing the per-
centage of bad SPs quite a bit can drop ηg/η significantly.
In this group of experiments, we use the same percent-
age, 70% oscillating SPs, as the case in Figure 5(e). We
also increase the percentage of malicious raters from 20%
to 80%. If we keep the same weight of rating, that is
W = 0.8, it can be imagined that the performance of
the new scenario must be worse than the case in Fig-
ure 5(e), for there are much more malicious raters. Here
we decrease the weight of the rating from 0.8 to 0.2.
From Figure 8(a) and column “ζ” in the table, we find
that ηg/η does not drop, but increases significantly in-
stead. Avg and Beta even beat PSM considerably. How-
ever, from column “ζ” and column “Υ”, we can see that
the corresponding storage cost of Avg and Beta also in-
crease significantly. These the running time of these two
algorithms is increaseing as well, comparing with Fig-
ure 5(e). Thus, when the weight of rating is set to low
and the environment is severe with many bad SPs and
raters, the simple algorithm Avg and Beta can get same

6

S
to

ra
ge

 (
K

)

(27)Beta(26)WMA(25)PSM(24)Half(23)Avg

100

90

80

70

60

50

40

30

20

28.0801

27.0692

76.8225

89.9468

27.4665

#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(27)Beta(26)WMA(25)PSM(24)Half(23)Avg

0.60

0.55

0.50

0.45

0.40

0.460913

0.42492

0.52572

0.41154

0.442677

S
to

ra
ge

 (
K

)

(22)Beta(21)WMA(20)PSM(19)Half(18)Avg

90

80

70

60

50

40

30

20

28.2852 27.3049

73.5677

85.3432

27.4931

Exp # ω φA η ηg / η ζ ϒ
 12 (Rand) 0 0 280.130 0.288 6000.000 9.464
 13 (Avg) 1.178 0.080 280.661 0.378 8401.274 22.302
 14 (Half) 3.250 0.034 280.039 0.417 8312.734 24.465
 15 (PSM) 243.649 0.326 280.088 0.567 23525.796 59.346
 16 (WMA) 287.646 0.497 279.814 0.425 24181.782 77.421
 17 (Beta) 3.103 0.035 279.772 0.395 8403.846 23.203
 18 (Avg) 3.054 0.531 280.540 0.493 8485.548 33.078
 19 (Half) 2.481 0.504 280.171 0.487 8191.470 23.034
 20 (PSM) 148.413 0.644 279.263 0.601 22070.306 57.002
 21 (WMA) 285.491 0.566 279.779 0.470 25602.964 73.976
 22 (Beta) 1.111 0.512 279.468 0.476 8247.928 22.392
 23 (Avg) 3.710 0.629 279.931 0.494 8424.042 23.294
 24 (Half) 1.292 0.540 279.405 0.456 8120.748 22.643
 25 (PSM) 191.658 0.660 279.383 0.565 23046.754 56.251
 26 (WMA) 302.745 0.518 279.512 0.442 26984.046 78.112
 27 (Beta) 1.149 0.521 278.889 0.476 8239.952 24.135

#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(22)Beta(21)WMA(20)PSM(19)Half(18)Avg

0.60

0.55

0.50

0.45

0.40

0.46076
0.45508

0.55916

0.438313

0.443823

#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(17)Beta(16)WMA(15)PSM(14)Half(13)Avg(12)Rand

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.26894

0.353883

0.389277

0.529613

0.396683

0.368593

S
to

ra
ge

 (
K

)

(17)Beta(16)WMA(15)PSM(14)Half(13)Avg(12)Rand

90

80

70

60

50

40

30

20
20

28.0042

27.7091

78.4193 80.6059

28.0128

(a) Exp 12-17

(c) Exp 18-22

(b) Exp 12-17

(d) Exp 18-22

(e) Exp 23-27 (f) Exp 23-27

Figure 5. Test of the quality change of SPs: (a) and
(b) are the interval plots of the scenario where there
are 70% fixed malicious SPs. (c) and (d) are the
results about the scenario where 70% random SPs.
(e) and (f) are the results about the scenario with
70% oscillating SPs.

S
to

ra
ge

 (
K

)

(32)Beta(31)WMA(30)PSM(29)Half(28)Avg

70

60

50

40

30

20

27.208

26.8704

58.4376

66.5009

26.8904

#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(32)Beta(31)WMA(30)PSM(29)Half(28)Avg

0.750

0.725

0.700

0.675

0.650

0.625

0.600

0.66623

0.63961

0.71004

0.63288

0.65338

Exp # ω φΑ η ηg / η ζ ϒ
 28 (Avg) 3.128 0.728 279.965 0.714 8162.394 25.026
 29 (Half) 2.960 0.707 279.530 0.686 8061.128 25.056
 30 (PSM) 81.060 0.806 280.012 0.761 17531.268 51.835
 31 (WMA) 168.392 0.668 280.109 0.678 19950.274 66.295
 32 (Beta) 0.928 0.931 279.389 0.702 8067.122 22.131
 43 (Avg) 2.273 0.956 281.109 0.722 8104.726 23.744
 44 (Half) 1.928 0.963 279.799 0.753 7896.626 21.451
 45 (PSM) 81.416 0.842 279.578 0.766 17752.656 41.640
 46 (WMA) 146.900 0.736 280.156 0.681 19055.976 48.830
 47 (Beta) 0.191 0.560 280.106 0.712 7817.424 19.668
 48 (Avg) 0.356 0.503 279.624 0.731 7965.508 22.202
 49 (Half) 6.577 0.502 279.457 0.683 8030.142 20.209
 50 (PSM) 82.381 0.672 281.032 0.770 18303.598 40.398
 51 (WMA) 110.891 0.619 280.622 0.757 19277.826 39.907
 52 (Beta) 1.943 0.776 279.939 0.716 7889.914 23.183

S
to

ra
ge

 (
K

)

(52)Beta(51)WMA(50)PSM(49)Half(48)Avg

70

60

50

40

30

20

26.5517

26.7671

61.012
64.2594

26.2997#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(52)Beta(51)WMA(50)PSM(49)Half(48)Avg

0.78

0.76

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.68106

0.63592

0.72092
0.708397

0.66826

S
to

ra
ge

 (
K

)

(47)Beta(46)WMA(45)PSM(44)Half(43)Avg

70

60

50

40

30

20

27.0158
26.3221

59.1755
63.5199

26.0581

#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(47)Beta(46)WMA(45)PSM(44)Half(43)Avg

0.775

0.750

0.725

0.700

0.675

0.650

0.625

0.600

0.676813

0.70223

0.713963

0.636063

0.66468

(a) Exp 28-32

(c) Exp 43-47

(b) Exp 28-32

(d) Exp 43-47

(e) Exp 48-52 (f) Exp 48-52

Figure 6. Test of different types of bad raters. In
all these three scenarios, there are 40% oscillation
SPs: (a) and (b) are the interval plots of the scenario
where there are 80% malicious raters, (c) and (d) are
the results about the scenario with 80% exaggerating
raters, while (e) and (f) are the results about the
scenario with 80% collusive raters.

7

level or even better performance than the complicated
algorithm like PSM. The reason is in this situation, re-
lying more on the self-experience which is more reliable
than the rating, is more helpful to understand the sur-
rounding environment.

5 Relate Work and Discussions

Our work is inspired by a large amount of previous work
on reputation-based systems [3, 14, 22] and trust infer-
ence in P2P systems [1, 6, 7, 8, 10, 11, 12]. To the
best of our knowledge, we are the first to systemati-
cally analyze the effect of ratings on trust inference in
open environments. Next, we will list some related work
on rating aggregating algorithms, trust models and rep-
utation systems. Trust inference or reputation based
systems has been a hot topic and studied in the litera-
ture [2, 10, 15, 16, 19, 23, 24, 25, 26]. Basically, many
researchers are advocating the usage of ratings and pre-
fer to complicated rating aggregation algorithms to try
to filter out the bad ratings [2, 15, 25, 26, 17, 4, 5, 20].
The key to the success of ratings is the rating aggrega-
tion algorithm, i.e., how to integrate the ratings from
other into one peer’s own trust view.

Several recent proposals try to filter out the bad ratings
through introducing another evaluation model dedicated
to evaluate the credibility of the ratings [2, 15, 19, 23, 24,
25, 26], where they try to add the weight to the rating
based on the evaluation of raters. At the same time
for the evaluation, peers adjust the weight for different
raters based on the correctness of ratings in the history.
These work is close to the social network, so they are
applicable to the relatively stable environment. In open
environments such as P2P systems, however, these work
will be degraded because they are not sensitive enough
to catch the dynamics of the system.

It is worth noting that the comparison of different rat-
ing aggregation algorithms is the objective of this paper,
which distinguishes our work with previous work which
focuses on proposing one specific aggregation algorithm.
In these previous work, people proposed the aggregating
model only focus on their own model. To the best of
our knowledge, our work is the first effort in this field.
Whitby et al. [20] conduct a similar analysis on the unfair
ratings based on Bayesian reputation systems. However,
[20] just focuses directly on the fair and unfair ratings,
and doesn’t not involve other factors, such as the dy-
namics of raters and SPs. Also, their evaluation of the
effect in their work is just according to the average rat-
ing errors. Recently, Srivatsa et al. [17] gives another
similar analysis in TrustGuard; however, their approach
is pursuing from the angle of service providers, while our
approach is from the angle of raters. Also, we consider

more factors than their work. Thus, our work compli-
ments to their work very well.

6 Summary

In this paper, we systematically evaluate the effect of
different rating aggregating algorithms in the context
of a simple distributed trust inference model. Figure 9
summarizes the evaluation results from the angles of al-
gorithm complexity, system running cost, and system
benefit. Based on the simulation results, we find that
in most cases PSM outperforms other algorithms. How-
ever, when the number of bad raters and the number
of dynamic peers increase, the performance of PSM de-
grades. In this case, considering the considerable cost
and complexity of this method, we should turn to the
simple algorithm like Avg and Beta combining with lower
weight of ratings. Moreover there are some vulnera-
bilities residing in the design of PSM algorithm. PSM
needs to calculate the personalized similarity based on
the common neighbor set. However, it is very difficult
to decide this common set in a real system, such as P2P
systems. Basically peers decide this set based on the
claim of raters. In the simulation, we make this common
set accurate by abstracting it from the global informa-
tion. But in real P2P systems, malicious raters can give
malicious information to confuse the weight updating.
Moreover, in a system with light workload, it is possible
that peers can not find the raters with common neighbor
set. Thus actually PSM is not as practical as other algo-
rithms. From the results, we also observe that WMA has
the largest cost, but with the worst performance, which
is surprising. The possible reasons are: (1) In Yu’s ap-
proach [26], the weight of rating is dynamic. While in
this paper, the weight is fixed. (2) Studying carefully, we
find that in Yu’s approach, the weight update of raters
always makes the weight decrease. Through compar-

Algorithms Complexity Cost Benefit
Avg Lowest Low Better
Half Medium Low Better
PSM Highest High Best
WMA Higher Highest Good
Beta Lower Low Better

Figure 9. A brief summary for the compared algo-
rithms.

ing several major rating aggregating algorithms, we find
that in several circumstances the simple algorithm out-
performs the complicated algorithms. In particular, the
Avg algorithm is more resistent to different type of bad
raters. Actually, in our simulation, we might choose to

8

S
to

ra
ge

 (
K

)

(58)Beta(57)WMA(56)PSM(55)Half(54)Avg(53)Rand

90

80

70

60

50

40

30

20
20

27.2196

27.5038

70.905

83.4095

26.8117#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(58)Beta(57)WMA(56)PSM(55)Half(54)Avg(53)Rand

0.65

0.60

0.55

0.50

0.45

0.60572

0.4973
0.490263

0.614513

0.483833 0.47929

(a) Exp 53-58 (b) Exp 53-58

Exp # ω φA η ηg /η ζ ϒ
 53 (Rand) 0.000 0.000 257.353 0.706 6000.000 8.081
 54 (Avg) 2.204 0.901 256.782 0.581 8165.892 20.489
 55 (Half) 0.657 0.598 257.099 0.572 8251.128 18.667
 56 (PSM) 114.897 0.745 257.966 0.715 21271.490 46.416
 57 (WMA) 239.884 0.543 257.365 0.564 25022.864 59.545
 58 (Beta) 0.150 0.487 256.986 0.560 8043.514 17.976

Figure 7. Test when there are 70% dynamic SPs:
(a) and (b) are the interval plots of ηg/η and the
storage cost.

S
to

ra
ge

 (
K

)

(42)Beta(41)WMA(40)PSM(39)Hal(38)Ave

110

100

90

80

70

80.0047

93.789

99.601

97.7276

80.3641#
 o

f
G

oo
d

S
er

vi
ce

 (
K

)

(42)Beta(41)WMA(40)PSM(39)Half(38)Avg

0.90

0.88

0.86

0.84

0.82

0.80

0.879443

0.841763

0.86143

0.81599

0.87752

(b) Exp 38-42(a) Exp 38-42

Exp # ω φA η ηg / η ζ ϒ
 38 (Avg) 0.525 0.486 278.047 0.949 24001.414 39.677
 39 (Half) 0.550 0.518 271.053 0.932 28136.702 58.664
 40 (PSM) 33.316 0.570 277.538 0.931 29880.310 47.689
 41 (WMA) 90.162 0.645 278.668 0.878 29318.288 42.491
 42 (Beta) 0.513 0.483 276.743 0.951 24109.230 40.889

Figure 8. Test when the weight of the rating is lower
in a quite severe environment: (a) and (b) are the
interval plots of ηg/η and the storage cost.

make the weight change dynamically in the trustworthi-
ness derivation, as suggested in [26]. It is found that
in this case, all algorithms perform better and similar
in most cases (we don’t list the result here because we
think it is the issue related to the trust model design).
Considering the simplicity of implementation, high re-
sistent to malicious raters, and the acceptable perfor-
mance, we argue that a simple algorithm like the av-
eraging aggregating is good enough for the trust infer-
ence model. Thus, the design emphasis should focus on
attacking other algorithm-independent factors, such as
the dynamics of systems, rather than the rating aggre-
gating algorithm itself. This is very crucial in resource-
constraint collaborative systems, e.g., mobile ad hoc net-
works or sensor networks, where each peer has limited
resources, e.g., memory or power.

Clearly, the work reported herein has not exhausted
the problem area, and there is much more investigation
needs to be done in this field. We hope this paper raises
this problem to the community.

References

[1] K. Aberer and Z. Despotovic. Managing trust in
a peer-to-peer inforamtion systems. Proceedings of
the 10th International Conference on Information
and Knowledge Management (CIKM’01), 2001.

[2] S. Buchegger and J. L. Boudec. A robust reputation
system for p2p and mobile ad-hoc networks. Pro-
ceedings of the Second Workshop on the Economics
of Peer-to-Peer Systems. (2004), 2004.

[3] F. Cornelli, E. Damiani, S. D. C. Vimercati,
S. Paraboschi, and P. Samarati. Choosing reputable
servents in a p2p network. Proc. of the 11th Inter-

national World Wide Web Conference (2002), May
2002.

[4] S. Ganeriwal and M. Srivastava. Reputation-based
framework for high integrity sensor networks. Pro-
ceedings of the 2nd ACM workshop on Security of
ad hoc and sensor networks, 2004.

[5] A. Jøsang and R. Ismail. The beta reputation sys-
tem. In Proceedings of the 15th Bled Electronic
Commerce Conference, June 2002.

[6] S. Kamvar, M. T. Schlosser, and H. Gacia-Molina.
The eigentrust algorithm for reputation manage-
ment in p2p networks. Proc. of the 12th Interna-
tional World Wide Web Conference (2003), May
2003.

[7] S. Lee, R. Sherwood, and B. Bhattacharjee. Co-
operative peer groups in nice. Proc. of IEEE
Conference on Computer Communications (INFO-
COM’03), Mar. 2003.

[8] Z. Liang and W. Shi. Enforcing cooperative re-
source sharing in untrusted peer-to-peer environ-
ment. accepted by ACM Journal of Mobile Networks
and Applications (MONET) special issue on Non-
cooperative Wireless networking and computing, to
appear, 2004.

[9] Z. Liang and W. Shi. Analysis of recommendations
on trust inference in the open environment. Tech.
Rep. MIST-TR-2005-002, Department of Computer
Science, Wayne State University, Feb. 2005.

[10] Z. Liang and W. Shi. PET: A PErsonalized Trust
model with reputation and risk evaluation for P2P
resource sharing. HICSS-38, Jan. 2005.

9

[11] S. Marsh. Formalising Trust as a Computational
Concept. Ph.D. thesis, University of Stirling, 1994.

[12] L. Mui, M. Mohtashemi, and A. Halberstadt. A
computational model of trust and reputation. Pro-
ceedings of the 35th Hawaii International Confer-
ence on System Sciences, 2002.

[13] P. Resnick and H. R. Varian. Recommender sys-
tems. Communications of the ACM 40(3):56–58,
Mar. 1997.

[14] P. Resnick, R. Zeckhauser, E. Friedman, and
K. Kuwabara. Reputation systems. Communica-
tions of the ACM 43(12):45–48, 2001.

[15] J. Sabater and C. Sierra. Regret: Reputation in
gregarious societies. ACM SIGecom Exchanges 3,
2002.

[16] M. P. Singh. Trustworthy service composition:
Challenges and research questions. Proceedings
of the 1st International Joint Conference on Au-
tonomous Agents and MultiAgent System (AA-
MAS), July 2002.

[17] M. Srivatsa, L. Xiong, and L. Liu. Trustguard:
Countering vulnerabilities in reputation manage-
ment for decentralized overlay networks. To Appear
in the Proceedings of 14th World Wide Web Con-
ference (WWW 2005), 2005.

[18] Y. Wang and J. Vassileva. Bayesian network-based
trust model. Proc. of IEEE/WIC International
Conference on Web Intelligence (WI 2003), Oct.
2003.

[19] Y. Wang and J. Vassileva. Trust and reputation
model in peer-to-peer networks. Third International
Conference on Peer-to-Peer Computing (P2P’03),
Sept. 2003.

[20] A. Whitby, A. Jøsang, and J.Indulska. Filtering out
unfair ratings in bayesian reputation systems. Ac-
cepted for the Autonomous Agents and Multi Agent
Systems 2004 (AAMAS-04) Workshop on ”Trust in
Agent Societies”, July 2004.

[21] U. Wilensky. Netlogo. http://ccl.northwestern.
edu/netlogo

[22] L. Xiong and L. Liu. A reputation-based
trust model for peer-to-peer ecommerce communi-
ties. Proceedings of the IEEE Conference on E-
Commerce, June 2003.

[23] P. Yolum and M. P. Singh. Emergent properties of
referral systems. Proc on Autonomous Agents and
Multiagent Systems, 2003.

[24] B. Yu and M. P. Singh. A social mechanism of
reputation management in electronic communities.
Proceedings of Fourth International Workshop on
Cooperative Information Agents, 2000.

[25] B. Yu and M. P. Singh. Searching social networks.
Proceedings of the 2nd International Joint Confer-
ence on Autonomous Agents and MultiAgent Sys-
tem (AAMAS), July 2003.

[26] B. Yu, M. P. Singh, and K. Sycara. Developing
trust in large-scale peer-to-peer systems. Proceed-
ings of First IEEE Symposium on Multi-Agent Se-
curity and Survivability, 2004.

10

