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Abstract—The rapid development of digital technology is
reshaping the architecture of the Industrial Internet of Things
(IIoT). The traditional architecture can not process vast amounts
of data exchanges and provide entities with trust. The future
IIoT is expected to be a decentralized architecture in which
blockchain and digital twin-driven IIoT can enable trusted
data exchanges. However, this architecture can not obtain huge
amounts of external real-time data and isolated data. Moreover,
it can not handle complex industrial computing tasks. Therefore,
we combine oracle with decentralized learning to propose a
novel IIoT-oriented digital twin architecture. We also propose
an effective decentralized collaboration mechanism to support
external data and resources exchanges. Moreover, we propose a
novel computing collaboration mechanism to expand the learning
capabilities of the industrial ecology. Experiments show that
our proposed paradigm has less processing time, a more stable
process, and better learning ability compared to other paradigms.

Index Terms—IIoT, Digital Twin, Blockchain, Oracle

I. INTRODUCTION

THE fast-developing technologies such as IoT, 5G, and
digital twins are reshaping the industrial world. Net-

worked equipment, ultra-low latency, and rapid feedback to
physical and digital systems change the way that industrial
machines work. The development of industrial machines goes
through three stages. First, they require human intervention
to complete tasks. Second, they customize production for
human needs. Finally, they give feedback to human beings.
Human wisdom is illuminating the foggy future of Industry
4.0, devoting all efforts to manufacturing new intelligent IIoT
machines.

However, every coin has two sides. Firstly, advanced in-
dustrial machines and bidirectional data flow of digital twin
bring rapid data exchanges. When data is transmitted to
cloud servers, it consumes lots of bandwidth, bringing severe
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challenges to the traditional architecture. Secondly, different
types of data sources, like database diagrams, interfaces,
and files, of multiple industrial participants make it hard for
digital entities to give feedback to physical entities. Finally,
industrial entities are reluctant to share data with others, which
challenges the precarious centralized architecture. Blockchain
is a brand new decentralized trust machine [1]. It can connect
entities without trust through consensus mechanisms. Jiewu L.
et al. [2] proposed a two-tier industrial architecture based on
blockchain and digital twin for smart factories, which realizes
synchronization of physical and digital systems. Yunlong L.
et al. [3] proposed a digital twin edge network based on
federated learning, edge computing, and blockchain to enhance
the safety of learning.

However, blockchain is a collection of programs based
on rules and method calls with redundant backup, while an
industrial digital twin network possesses massive data. It is
difficult for a single blockchain to handle tons of IIoT data.
Furthermore, since the logic of applications runs in the virtual
machine of blockchain. It is required that each virtual machine
has the same result. The reason is that unknown data sources
may produce different results on different virtual machines.
For example, if a request includes an interface about real-time
industrial data which changes every second, it is impossible
for every node in the blockchain to obtain the same result.
Therefore, blockchain is hard to actively interact with the
industrial environment, which hinders data exchanges between
digital and physical entities. Moreover, it is almost impossible
for an isolated blockchain to execute cumbersome computing
tasks because tasks run in the virtual machine. And it is
inefficient to perform those tasks repeatedly in the virtual
machines. There is an urgent need to give birth to a new data
and collaborative computing paradigm for IIoT. Therefore, we
propose a novel blockchain-based digital twin architecture for
IIoT. This architecture exploits oracle as a communication tool
to link data in the IIoT ecology. The oracle is not a well-known
database but a tool that connects on-chain and off-chain states.
Moreover, we also proposed a decentralized collaboration
mechanism based on oracle, verifiable random functions, and
threshold signatures for trusted off-chain data forwarding and
callback. We also propose a data collaboration mechanism
and a computing collaboration mechanism to implement data
interactions and resource sharing between digital and physical
entities based on the decentralized collaboration mechanism.

Main contributions of this paper are summarized as follows.
• We propose a novel decentralized IIoT architecture based

on blockchain, oracle, and digital twin. This architecture
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is hierarchical to meet the requirements of a complex in-
dustrial environment. Moreover, it helps rapid data flows
and computing feedbacks between digital and physical
entities.

• We propose an effective decentralized collaboration
mechanism based on oracle, verifiable random functions,
and threshold signatures, which supports external data
and resources exchanges between industrial entities, and
protects data flows consistency. Moreover, we propose a
data collaboration mechanism based on the decentralized
collaboration mechanism to provide data exchanges be-
tween digital entities and physical entities.

• We propose a novel computing collaboration mechanism
based on blockchain and decentralized learning to expand
learning capabilities of the industrial ecology, and keep
the authenticity of callback computing results.

The rest of the paper is organized as follows. Related work
is discussed in Section II. Bi-level architecture for digital
twin is introduced in Section III. Key enabling techniques are
presented in Section IV. The proposed method is evaluated in
Section V and the paper is concluded in Section VI.

II. RELATED WORK

This architecture is based on various emerging and enabling
technologies such as blockchain, oracle, decentralized learn-
ing, and digital twin. Therefore, we divide the literature review
into three parts: (a) data collaboration with blockchain, (b)
computing collaboration with learning, and (c) digital twin.

A. Data Collaboration with Blockcahin

Blockchain is an emerging peer-to-peer data sharing
paradigm with the birth of Bitcoin [1]. It has received ex-
tensive attention from institutes. At present, the development
of blockchain is in the 3.0 era, which is an application outside
the financial scenario [4]. The current stage of blockchain
is working on satisfying more complex business logic and
promoting industrial reform. Furthermore, IIoT is becoming
an important application scenario. At the same time, smart
contract [5] [6], a product of the 2.0 era, has become an
essential mean to meet the complex IIoT logic in the 3.0 era.

However, it is hard to deal with a complex IIoT environment
with a large amount of data because of the redundant backup
feature of blockchain, which challenges the storage capability
of blockchain. For example, it is impossible for most existing
blockchains to store tons of pictures. And data from multiple
sources challenges the collaboration ability of blockchain. For
example, blockchain cannot reach a consensus since every
node may get different results from the same interface. To
solve the challenge of storage capacity, Yijing L. et al. [7]
proposed an on-chain and off-chain collaboration mechanism
to expand the storage of blockchain by swapping off-chain
decentralized storage spaces for on-chain storage abilities.
Zhaofeng M. et al. [8] proposed to manage data of edge
devices on cloud services based on blockchain. Moreover,
there are some methods to solve the challenge of collaboration
ability, including sidechain, rollup, multiple blockchains, etc.

Considering a large number of participants and the rela-
tionship of industrial ecology, we focus on the solution of
multiple blockchains to cope with problems of the above
issue. Gokhan S. et al. [9] proposed a hybrid blockchain
architecture. The sub-chain adopts Proof of Work while the
inter-chain adopts relays like Polkadot[10] and Cosmos[11] to
realize data collaboration in the hybrid architecture. Wenyu
L. et al. [12] proposed a scalable PBFT consensus based
on multiple blockchains to improve collaboration efficiency.
Clients’ transactions are first distributed on blockchain in the
first layer to complete initial consensus and then uploaded to
blockchain in the second layer for final consensus. Shaoyong
G. et al. [13] proposed a collaboration method based on the
master-slave chain. Transactions are firstly voted on the slave
chain, and then the node with the highest reputation uploads
transactions to the master chain for data sharing. However,
those methods fail to actively obtain external data and execute
complex computing tasks. For example, blockchain cannot
actively obtain real-time price data of raw materials and train
item sorting tasks. It means that blockchain cannot react to the
unknown state from the outside world according to specific
interfaces because the same interface may lead to different
results in the virtual machines.

Oracle is a tool that connects blockchain with real external
data [14], which is considered as an important application
scenario for interoperability [15]. It bridges smart contracts
with the real world to achieve data collaboration. Chainlink
[16] is the first decentralized data oracle on Ethereum. It
proposed a reporter-based aggregation method to reduce trans-
action fees in the current version. DOS Network [17], Astraea
[18], Nest [19] and other solutions also propose blockchain-
agnostic schemes of data oracle for public blockchains. How-
ever, IIoT has a large amount of data, numerous equipment,
and limited participants, which is not suitable for adopting
solutions of public blockchains. Moreover, there is no solution
for executing complex computing tasks.

B. Computing Collaboration with Learning

Edge computing [20] is an emerging paradigm, which
decentralizes computing and storage capabilities to the edge
reducing the load on the core network. The distributed nature
of edge computing matches with blockchain. Kaile X. et
al. [21] proposed a blockchain-based resource pre-allocation
algorithm for edge computing. Yueyue D. et al. [22] imple-
mented content caching based on deep reinforcement learning
and blockchain. Moreover, Swarm Learning [23] proposed to
train medical models based on blockchain, edge computing,
and federated learning [24]. Clients train models locally and
write model parameters into smart contracts. The client which
completes training first is the node that aggregates parameters
and distributes optimal models. Yunlong L. et al. [3] integrated
blockchain with federated learning and edge computing and
proposed a new edge digital twin network. Digital entities
upload local parameters to blockchain for aggregation. The
node selected by consensus is required to aggregate global
models. However, they do not consider malicious entities in
the network. Chao Q. et al. [25] proposed an edge intelligence
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blockchain, which exploits computing models as mining puz-
zles to avoid waste of energy. It uses computing power to
solve model parameters. The node which claims the smallest
loss is the coinbase node in the communication round. The
coinbase node has the privilege to write global parameters into
blockchain. Other nodes need to use the same dataset to verify
the authenticity of the claimed loss. If the loss is valid, they
update local models. However, it is a waste of energy in the
large-scale network to push all nodes to verify the authenticity
of the claimed loss. In summary, blockchain does not execute
data and computing collaboration in the above methods, which
hinders interaction between participants.

It should be noted that we only focus on that clients may
be malicious entities. For the situation of malicious servers,
we can refer to Xianglong Z. et al. [26] who proposed a
bilinear aggregate signature and homomorphic encryption-
based method to verify whether the specific server aggregates
the parameters of each client.

C. Digital Twin

With the development of new generation digital technolo-
gies, the future IIoT is expected to enable a new and wide
range of decentralized systems [27]. Mohammad A. et al. [28]
proposed a middleware based on fog computing to adapt to
different industrial scenarios. Sambit Kumar M. et al. [29]
proposed a sustainable service distribution method based on
fog computing to solve energy consumption. At the same
time, we can control industrial equipment bidirectionally by
commands and data, making the concept of digital twins attract
more attention. Digital twin is one of the basic techniques of
metaverse. Its concept is simple that it can connect physical
and digital entities in a precise and real-time manner [30].
However, heterogeneous data and trust between entities are
stumbling the development of digital twins [31].

Trusted sharing of blockchain naturally adapts to digital
twin. Jiewu L. et al. [2] proposed a two-layer architecture
combined with blockchain and digital twin. This architecture
exploits blockchain to control the self-organization of low-
level nodes for consensus, while it uses digital twin to control
the high-level ones for data flows. Jiafu W. et al. [32] proposed
a blockchain-based IIoT architecture and data interaction algo-
rithms to solve data heterogeneity. However, how to realize the
life cycle of data collaboration and computing collaboration in
digital twin remains unexplored.

III. BI-LEVEL ARCHITECHTURE FOR DIGITAL TWIN

This section mainly describes the network architecture of
digital twin, as shown in Figure 1. It is divided into physical
entities and digital entities. The physical entities include vari-
ous industrial equipment and network devices in the workshop.
Digital entities have a control panel that receives requirements
and preferences, blockchains that maintain credibility, and an
oracle connecting blockchains and entities. And it can also
be classified into on-chain parts and off-chain parts. On-chain
parts mean that operations and data involve in the blockchain.
Off-chain parts mean that data, state and operations are per-
formed outside the blockchain. And the collaboration means

that data or operations should be performed in the cooperation
of on-chain and off-chain parts. Since blockchain is hard to
obtain real-time data from the real world, it is necessary to
collaborate between on-chain and off-chain parts.

A. Architecture

The architecture comprises Device Layer, Network Layer,
Storage Layer, Pedal Layer, and Control Layer in the order of
data flow.

a) Device Layer: This layer is composed of physical
entities like intelligent machines and workpieces. Physical
entities collect data through sensors and upload data to dig-
ital entities through Network Layer. Moreover, they are also
actuators, which convert electrical signals into some physical
actions.

b) Network Layer: This layer is composed of communi-
cation equipment like edge gateways and base stations. They
are managed over the internet through remote procedure calls.
They receive sensing data from physical entities, upload data to
Storage Layer after preprocessing, and distribute commands of
digital entities to Storage Layer. They requires quick response
and security measures to help achieve bidirectional data flows.

c) Storage Layer: This layer includes off-chain cloud
services and edge blockchain networks, both of which comple-
ment each other. The redundant backups of blockchain make
the architecture unable to store large-scale data. Moreover, the
simple data type and consensus of blockchain mean it is hard
to obtain data from multiple sources of digital twin. Most
importantly, each participant in the IIoT ecosystem would like
to store data in a local data center. They are not willing to
upload all data to decentralized storage. Therefore, we choose
cloud services and blockchain to form the Storage Layer.
However, all cloud-based solutions need to solve the problem
that data may be tampered with. We use cloud services to keep
source data produced by physical entities and upload metadata
of source data to edge blockchain networks for a unique
mapping index. This solution builds unified data and model
standards while expanding the storage capacity of blockchain
and preventing data from being tampered with. Blockchain
and cloud services of Storage Layer interacts with digital and
physical entities through Pedal Layer, see details in Section
IV.

d) Pedal Layer: Pedal means an essential part of the
architecture. This layer comprises data oracles for data col-
laboration and computing oracles for computing collaboration.
Blockchain can not actively interact with external industrial
entities because each node needs to have the same result
for consensus in the same transaction request. Moreover,
contracts run in the virtual machines while it is inefficient
to execute cumbersome tasks. Therefore, we introduce data
and computing oracles to connect blockchain and the external
industrial world.

e) Control Layer: This layer is composed of a digital
twin platform. It provides an interface for users to query, add,
delete, and check based on above layers. The platform can
also provide predictive maintenance, diagnostics, and failure
avoidance. Moreover, it can help decision-makers build an
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Fig. 1: System overview

industrial portrait at all levels to control and adjust equipment
efficiently.

The corresponding relationship between the five layers is
described in the following details. Industrial data is firstly
produced in the device layer and transmitted to the storage
layer by the network layer. Digitial entities and physical
entities interact with each other through the pedal layer. And
users can control the above processes by the control layer.

B. SewingChain: On-chain Part

There are many entities with numerous data from many
fields in the IIoT ecosystem. It is difficult for participants
in the ecosystem to build a single blockchain for data
sharing. Therefore, we build a multi-blockchain ecosystem
named SewingChain. SewingChain is composed of a federal
blockchain for a regulatory role and local blockchains for
participating roles.

a) Federal Blockchain (FBC): FBC is composed of
entities to achieve global industrial data governance. Nodes
participating in consensus and verification processes of FBC
are called federal nodes, denoted as Fg .

b) Local Blockchain (LBC): Digital entities can form
multiple LBCs to realize local industrial data governance.
Nodes participating in consensus and verification processes of
LBC are called local nodes, denoted as Lg . Nodes with query
authorities are called observation nodes, denoted as Lo. Nodes
that can interact with FBC are denoted as Lf . Lg accepts
metadata from entities and stores it in LBC after consensus.
If cloud services tamper with source data, then the metadata
of source data is not equal to that of blockchain. Lo provides
a query interface for the digital twin platform to facilitate the
analysis and mining of industrial data. Keeping the integrity
of source data is a challenge of most existing blockchains.

SewingChain can verify the integrity of off-chain source data
by mapping unique metadata.

C. Pedal: Off-chain Part

Pedal is a off-chain network composed of data oracle and
computing oracle. Data oracle is a bridged network for data
collaborations, see details in Section IV-B2. Computing oracle
is a bridged network for computing collaborations, see details
in Section IV-C.

a) Data Oracle: This network consists of an application
contract for receiving industrial data requests, a proxy contract
for providing a unified data interface, and data oracle for
obtaining and callbacking off-chain industrial data. The appli-
cation contract is a contract that implements data interaction
according to user needs, while the proxy contract is a contract
that provides interactive interfaces for data oracle. Entities call
the application contract, then the application contract forwards
requests to the proxy contract and triggers events listened
by data oracle. Data oracle executes operations according to
specific requests, aggregates results, and callbacks results to
the proxy contract. Finally, the proxy contract calls application
contract to broadcast data to the client. For detail, see Section
IV-B2.

b) Computing Oracle: This network consists of an ap-
plication contract for receive computing requests, a proxy
contract for providing a unified computing interface, and a
computing oracle for computing and callback training results.
Entities write metadata of computing tasks into the application
contract, then the application contract forward tasks to the
proxy contract, and trigger the computing shared event listened
by computing oracle. Computing oracle performs calculations
and callback training results to blockchain. See Section IV-C
for details.
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IV. KEY ENABLING TECHNIQUES

This section introduces the decentralized collaboration
mechanism in Pedal, data collaboration mechanism with data
oracle, and computing collaboration mechanism with com-
puting oracle. The decentralized collaboration mechanism is
the core of the proposed architecture, which helps data and
computing collaboration to implement trusted off-chain data
forwarding and callback. Data collaboration mechanism con-
structs trusted data interactions between blockchains and the
real world. the computing collaboration mechanism constructs
trusted resource sharing between providers.

A. The Decentralized Collaboration Mechanism in Pedal

This section introduces the decentralized collaboration in
Pedal, as shown in Algorithm 1. The method is based on
verifiable random functions [33] and threshold signatures [34]
to support collaboration in data and computing oracles. The
collaboration process is divided into registration, election,
aggregation, and callback. We assume that nodes of Pedal are
anonymous to each other and can not know their true identities.

a) Registration: Nodes participating in the pedal need
to register in advance for legal identities. The generation
of identities require k positive integers s1, s2, ..., sk while
gcd(si, sj) = 1(i 6= j) as the seed. Generators g1 of
multiplicative cyclic group G1 generates key(pki, ski, xi),
where xi is the bilinear aggregate signature calculating as
gxi
1 . Threshold signature includes a bilinear map e where
G1 ×G2 → G3. For two requests req1 and req2, they satisfy
h(req1) ∈ G2 and h(req1 +req2) = h(req1)∆h(req2), where
h is a homomorphic hash function.

b) Election: After nodes register in the contract
FeElect, it is necessary to elect a master node by verifiable
random function. It relies on an arbitrary-length string to
generate (skv, α)

compute−→ τ , where α is a string composed
of message. Moreover, it is necessary to determine a specific
term to prevent fraud. The seed of the master node is empty
in the first term.

Nodes generates public keys pkvi , private keys skvi , sig-
natures (skvi , α)

hash−→ βi, random and proof (skvi , α)
prove−→

(di, πi) for βi. Nodes whose di is less than threshold are
selected as the master node. The threshold is determined by
α. The sk and π are generated locally by each node while other
nodes can not know which is selected as the master node in
advance. There may be two situations. First, if only one node
meets the condition, this node is the master node. Second, if
there are multiple nodes or no node meeting conditions, we
can poll nodes from FeElect. Subsequently, the master node
randoming to select work nodes from the candidate pool and
generate public key of this working group.

c) Aggregation: Nodes obtain results req ←
(req, result) according to contents of message after
catches req. Nodes generates signatures σi = (h(req))x ,
and forward (σi, req) to the master node. The master node
aggregate (σi, req) as (1).

e(g1, σ) = e(g1,

k∏
i=1

σi) (1)

Algorithm 1 The Decentralized Collaboration in Pedal

1: function ELECTION(α) .SewingChain
2: for each node i ∈ Pedal in parallel do
3: βi ← vrf.hash(skvi , α)
4: di, πi ← vrf.prove(skvi , α)
5: end for
6: τ ← vrf.genThreshold(skv, α)
7: if vrf.compare(di, τ) <0 then
8: master[term] = nodei
9: group[term] = group[nodei mod g]

10: group[term].pks =
k∏

i=1

pki

11: end if
12: end function
13:
14: function AGGREGATE(req) .Pedal
15: for each node in group[term] in parallel do
16: σi ← bls.sign(ski, req)
17: Send (req, σi, pki) to master[term]
18: end for
19: (sum, σi, pki, req) ← master[term] receive from

group[term]
20: if sum >= 2

3 len(group[term]) then
21: σ ← bls.aggregate(

∑
( σi, req, pki))

22: master[term] write (σ, pki, req, pkvi , α, βi, πi)
into SewingChain

23: end if
24: end function
25:
26: function CALLBACK(node, req,msg, asig).SewingChain
27: if vrf.verify(pkvi, α, βi, πi) then
28: if bls.AVerify(σ, req, group[term].pks) then
29: Callback LoProd
30: Remove req from the pending queue
31: end if
32: end if
33: end function

The master node writes aggregated message and signature
into LoProxy. LoProxy checks data as described in (2) and
(3).

(pkvi , α, βi, πi)
verify−→ valid (2)

(di, τ)
compare−→ valid (3)

LoProxy accepts if the following equation holds as (4),
otherwise, reject.

e(g1, σ) = e(g1,

k∏
i=1

(h(reqi))
x) = e(g1, (

k∏
i=1

h(reqi)))
x

= e(gx1 , h(

k∑
i=1

reqi)) = e(gx1 , h(req))

(4)

LoProxy callbacks aggregated results to LoProd and
removes req from the executing queue.
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B. Data Collaboration Mechanism with Data Oracle

Data collaboration includes on-chain and off-chain col-
laboration, and cross-chain collaboration. Data collaboration
provides SewingChain with real-time data from the outside
industrial world and isolated data from other blockchains.

1) Initialize: We exploit permissioned blockchain as the
basic technology to restrict participants’ identities. Industrial
equipment, gateways, and edge servers use elliptic curve dig-
ital signature algorithms and asymmetric cryptography algo-
rithms to create unique identities in the SewingChain. Entities
need to pass the authentication of permissioned blockchain.
The legal identity on the blockchain includes account ad-
dress, public key, private key, and certificate, denoted as
Addrei , PKei , SKei , Certei . Addrei is a string calculated
by PKei through cryptographic algorithms with collision-
resistance. SKei is used for signature to uniquely map entities’
ownership of Addrei . Certei is used for authentication.

2) Data Collaboration:
a) On-chain and Off-chain Collaboration: It is necessary

to request real-time off-chain data in IIoT. However, LBC and
FBC are limited by blockchain, while they can not actively
obtain real-time data from the industrial world. Therefore,
we use data oracle to achieve on-chain and off-chain data
collaboration. The workflow is implemented in the Pedal
Layer, as shown in Fig. 2.

The workflow includes entities that require off-chain indus-
trial data, cloud services that store source data, application
contracts LoProd that receive logic of requirements, proxy
contracts LoProxy that provide data interfaces, LBC, and data
oracle.

The entity ei sends a request of off-chain industrial data to
LoProd. LoProd calls the interface provided by LoProxy
and forwards the request to LoProxy, which contains data
source ds and public key PKei , signature Sigei , certificate
Certei , callback address addrc, timestamp ts1 , expiration
expt. The addrc is the contract address of LoProd in LBC.
The request can be denoted as

req = EPKei
(Sigei ||Certei ||ds||callbackaddr||ts1 ||expt)

(5)

LoProd

LoProd

LoProxy

LoProxy

SLBC

SLBC

Pedal

Pedal

FBC
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DestProxy

DestProxy
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<Transaction>

Broadcast <Transaction>

Fig. 3: Cross-chain Collaboration

LoProxy first verifies identities of ei and pushes req to
the pending request queue. A data collaboration event will be
triggered after the transaction is written to the LBC. When data
oracle catches the event, nodes of data oracle obtain, verify
and aggregate data from specific ds. The aggregation process
see details in Section IV-A. Finally, data oracle callbacks
data to LoProxy. The callback message contains public key
group PK∑n

i=1 ei , callback address addrc, timestamp ts2 and
aggregated signature Siga, can be denoted as

resp = EPK∑n
i=1

ei
(data||addrc||ts2 ||Siga) (6)

LoProxy verifies Siga of resq and check whether ts2
is less than expt. If all conditions are complete, LoProxy
callbacks resp to LoProd and delete req from the pending
request queue. When LBC broadcasts transactions, ei can get
the data of the specified ds.

b) Cross-chain Collaboration: The heterogeneous inter-
connection ecosystem makes LBCs hard to collaborate with
other LBCs. Therefore, we use data oracle to achieve cross-
chain collaboration. The workflow is implemented in the Pedal
Layer, as shown in Fig. 3.

The workflow includes Source LBC (SLBC) for proposing
requests, FBC for filing requests, data oracle, and Destination
LBC (DLBC).

The entity ei sends a cross-chain request to LoProd of
SLBC, while LoProd calls cross-chain interfaces provided by
LoProxy on SLBC and forwards the request. The request con-
tains the specified DLBC, LoProd address Addrd in DLBC,
data status s, public key PKei , signature Sigei , certificate
Certei , callback address addrc, timestamp ts1 , expiration
expt, can be denoted as

reqon = EPKei
(Sigei ||Certei ||s||DLBC||Addrd||ts1 ||expt)

(7)
After LoProxy obtains reqon, it verifies Certei of ei and

adds reqon to the pending request queue. A data collaboration
event will be triggered after the transaction is written to the
LBC. After Lf selected by random methods puts on record to
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FBC, it writes the merkel root rootm of the filed transaction
into SLBC’s LoProxy. Data oracle catches the events and
verifies whether rootm exists in the FBC. Subsequently, data
oracle aggregates, consensus, and verifies events. The aggre-
gation process see details in Section IV-A. Finally, it writes
transactions into LoProxy of DLBC, which can be denoted
as

reqoff = EPK∑n
i=1

ei
(Siga||s||DLBC||Addrd||ts2 ||expt)

(8)
DLBC’s LoProxy first verifies Siga and check whether ts2

is less than expt. LoProxy calls LoProd specified by Addrd
to modify s and trigger callback event. Data oracle catches
event and call SLBC’s LoProxy to execute the callback
operation. The content of the callback can be denoted as

resp = EPK∑n
i=1

ei
(result||addrc||ts3 ||Siga) (9)

After SLBC’s LoProxy verifies Siga and resp, it calls
LoProd to return the result, and removes reqon from the
pending request queue.

C. Computing Collaboration Mechanism with Computing Or-
acle

This section introduces the computing collaboration mech-
anism used by entities to outsource computing tasks. Com-
puting oracle combines federated learning to enable nodes of
Pedal to complete tasks. Nodes may do evil in the process of
outsourcing. First, the server may deliver random parameters.
Xianglong Z. [26] proposed a privacy-preserving and verifiable
federated learning scheme to prevent malicious aggregation
nodes. Second, clients may upload random parameters. Our
paper focuses on the second situation and proposes an aggre-
gation method for learning inspired by [25], as described in
Algorithm 2. We assume that the number of malicious nodes
m does not exceed 1

3 [35] of the total number of nodes n in
the network.

a) Release: Entities write computing requirements into
req of LoProd. The requirement contains dataset D, storage
location url, communication rounds r, iteration rounds e,
learning rate η, batch size B, seed, and other necessary training
parameters. Computing oracle calculates optimal model pa-
rameters according to (10). Then req is forwarded to LoProxy
to trigger computing events monitored by Pedal’s master node.

min
w∈Rd

f(w) where f(w)
def
=

1

n

n∑
i=1

fi(w) (10)

b) Local Update: The master node of pedal broadcasts
req to other nodes. Nodes obtain Di according to url after
receiving tasks. And they train models to get gradient wi layer
by layer according to (r, e, η, ..., B), as shown in (11). After
that, they send wi to the master node to perform aggregation.

wi(r) = wi(r − 1)− η∇f(wi(r − 1)) (11)

Algorithm 2 The Decentralized Aggregation for Learning

1: function RELEASE(tasks) .Run on SewingChain
2: master ← ELECTION(α)
3: for each task ∈ tasks in parallel do
4: (D, r, ..., η)→ TaskQueue[task]
5: Trigger events → LOCALUPDATE(args)
6: end for
7: end function
8:
9: function LOCALUPATE(args) .Run on Pedal

10: for each node ∈ nodes in parallel do
11: for ei ∈ e do
12: wr

i ← wr−1
i − η5 f(w; b)

13: end for
14: AGGREGATION(r, wr

i )
15: end for
16: end function
17:
18: function AGGREGATION(r, wr

i ) .Run on Pedal
19: Receive wi from n nodes
20: Test wi with 1

3Dtest

21: ws ← Sort wi according to acci
22: Aggegregate wg as equation 13
23: Write Digest(wg) into LBC
24: end function
25:
26: function GLOBALUPDATE(r, wg′ ) .Run on Pedal
27: if Digest(wg′) == Digest(wg) then
28: for each node ∈ nodes in parallel do
29: w ← w − η5 f(w; b)
30: end for
31: end if
32: end function

c) Aggregation: The master node does not directly ag-
gregate wi like FedAvg [24] after it receives wi from all nodes.
And it is difficult to check the effectiveness of wi since Di

of each node is different. Nodes may upload wi from training
or randoming. Therefore, the master node needs to use α = 1

3
test set to sort wi, as described in (12). The α is determined
by empirical values. And wg is aggregated from the top β = 1

3
wi, as described in 13. Subsequently, the master node delivers
wg to other nodes. At the same time, the master node needs to
write the digest of wg into LBC to prevent it from assigning
different parameters.

ws = [w
(1)
i , w

(2)
i , w

(3)
i , ..., w

(n)
i ] (12)

wg =

∑ 1
3n
j=1 |Di| ∗ w(j)

i

|D|
(13)

d) Global Update: Each node verifies whether the digest
of wg′ is equal to that of wg in LBC. After that, they update
local models according to wg .
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V. PERFORMANCE ANALYSIS

This section evaluates the performance of the SewingChain.
First, we conduct a security analysis of Pedal. Second, we
evaluate the efficiency of decentralized collaboration. Third,
we evaluate the efficiency of the decentralized aggregation for
learning.

A. Security Analysis

1) Security of Decentralized Collaboration: The attacker
may pretend to be the master node to initiate interactive
requests to Pedal so that it can gain the trust of nodes and
decentralized collaboration. However, it does not possess the
private key skvi of the master node, which can not generate
the valid signature βi and proof (di, πi) and fail to obtain trust
from other nodes, as shown in (14) and (15).

(pkvi , α, βi, πi) 6= (pkvi
, α, βa, πa)→ invalid (14)

(di, τ) 6= (da, τ)→ invalid (15)

The malicious master node may callback wrong results. It
means that it does not aggregate results from other nodes and
returns random results to blockchain. However, results from
the malicious node do not attach aggregated signatures σ from
other nodes, which can not pass the verification of LoProxy,
as shown in (16).

e(g1, σb) 6= e(g1, ,

k∏
i=1

(h(reqi))
x) = e(gx1 , h(req)) (16)

The malicious attacker may repeatedly forward previous
computing tasks to waste precious computing resources. How-
ever, each task is published in LoProxy while other nodes can
reject replay attacks by monitoring the states of LoProxy.

The attacker may intentionally initiate a large number of
meaningless computing tasks through LoProxy to occupy
computing resources. It needs to combine with incentive
mechanism. Participants of the proposed mechanism needs
compulsively deposit some stakes. Then they have the access
to occupy computing resources to carry out subsequent tasks.

2) Security of Decentralized Learning: Malicious nodes
may upload random results to the master node while the
number of malicious nodes does not exceed 1

3 of the total
number of nodes in the network. There are two situations.
First, when random results of malicious nodes perform worse
than that of honest nodes. Therefore, results from malicious
nodes can not be aggregated according to (13). Second,
random results perform better than hard workers. The proposed
mechanism can directly use them for training models in the
next rounds while not considering whether it would affect the
convergence. The reason is that more local epochs can alleviate
the performance degradation caused by malicious clients in the
learning system [36]. With the help of at least 2

3 honest nodes,
the training task will finally converge.
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Fig. 4: Collaboration time of different concurrent transactions

B. Decentralized Collaboration

We simulated a digital twin network system based on
blockchain and oracle to provide tamper-proof services,
data collaboration, and computing collaboration in go1.17
linux/amd64. It is deployed on Ubuntu 16.04.7 LTS, Intel(R)
Xeon(R) CPU E5-2620v4@2.10GHz with 8 core, 64G mem-
ory and 1000Mb/s. The collaborative part of SewingChain
(denoted as PEDAL) is compared with DBFT[12], RIBFT[13],
and PBFT[35] respectively. The number of collaborative
groups for PEDAL, DBFT, and RIBFT is 3, and the number
of nodes in each group can be specified (>= 4). The number
of collaborative groups for PBFT is 1, and the total number
of nodes for the four algorithms is the same.

Fig. 4 and Fig. 5 are the total number of nodes in the
network with [12, 27, 3], and the number of nodes in each
cooperative group is [4, 9, 1]. In two figures, red represents
PEDAL, orange represents PBFT, green represents RIBFT,
and blue represents DBFT. The dotted line means that the
algorithm cannot crash under this condition. We set a dif-
ferent number of group nodes in the subgraph to show the
performance of different algorithms as the network scale and
concurrent transaction increase.

Fig. 4 is the processing time while concurrent transactions
is [10, 60, 10] and data size are [500KB, 1MB]. We can see
that PEDAL, represented by the solid red line, has the lowest
transaction processing time when the network scale gradually
increases. Moreover, PEDAL can maintain normal status while
the network scale is 27 and the concurrent transactions are
60. It can be seen from Fig. 4 that some algorithms cannot
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Fig. 5: Collaboration time of different data size

withstand high concurrency as the network scale increases.
Fig. 5 is the processing time while data volume is different

and the concurrent transaction is [10tx, 20tx]. It can be seen
from the figure that PEDAL has the shortest processing time
under different data volumes.

We also tested the I/O traffic of the collaborative network,
as shown in Fig. 6 and Fig. 7. Those two figures are measured
while the total number of network nodes is [12, 27, 3]. The
reason why sets a different number of group nodes in the
subgraph is the same as above.

Fig. 6 is the I/O traffic while the concurrent transactions is
[10, 60, 10] and the data size are [500KB, 1MB] respectively.
It can be seen from the figure, as the concurrent transaction
volume increases in the PEDAL network, the overall network
traffic remains stable, and the overall traffic cost is less than
the other algorithms.

Fig. 7 is the I/O traffic while data volume is different and
the concurrent transaction is [10tx, 20tx]. It can be seen from
the figure that with the increase of data volume in the PEDAL
network, the trend of network traffic is smaller than that of
the other algorithms, and the overall traffic cost is less than
that of the other algorithms.

It can be seen from Fig. 4-7 that the compared algorithms
crash down when node=27. Therefore, we only tested the
performance of the proposed algorithm in a large-scale net-
work. Fig. 8 (a) and (b) are the processing time when the
network volume is [30, 99, 3] and the concurrent transaction
is [10, 90, 10] with different data sizes. Fig. 8 (c) and (d)
are the processing time when the network volume is [30, 99,
3] and the data volume is different with different concurrent
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Fig. 6: I/O traffic of different concurrent transactions
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Fig. 7: I/O traffic of different data size

transactions. It can be seen from the figure that PEDAL has
good performance when the number of nodes and concurrent
transactions increase.



10

Node

30
40

50
60

70
80

90
100

Con
cu

rre
nt 

(tx
)

10
20

30
40

50
60

70
80

90

Ti
m

e 
(s

)

0.00
0.67
1.35
2.02
2.70
3.37
4.05
4.72
5.40
6.07

1

2

3

4

5

(a) DataSize=500KB

Node

30
40

50
60

70
80

90
100

Con
cu

rre
nt 

(tx
)

10
20

30
40

50
60

70
80

90

Ti
m

e 
(s

)

0.00
0.99
1.99
2.98
3.98
4.97
5.97
6.96
7.96
8.95

1

2

3

4

5

6

7

8

(b) DataSize=1MB

Node

30
40

50
60

70
80

90
100

Data
 Size

(K
B)

0

2000

4000

6000

8000

10000

Ti
m

e(
s)

0.00
1.17
2.34
3.51
4.67
5.84
7.01
8.18
9.35
10.52

1

2

3

4

5

6

7

(c) Concurrent=10tx

Node

30
40

50
60

70
80

90
100

Data
 Size

(K
B)

0

2000

4000

6000

8000

10000

Ti
m

e(
s)

0.60
4.08
7.56
11.04
14.52
18.00
21.48
24.96
28.44
31.92

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(d) Concurrent=20tx

Fig. 8: Collaboration time of different concurrent transactions
and data size in the large-scale network

C. Decentralized Learning

In this section, we implemented the proposed approach
in XuperChain1, PyTorch 1.7.0 and go1.17 linux/amd64. All
experiments are performed on a server with Ubuntu 16.04.7
LTS, Intel(R) Xeon(R) CPU E5-2620v4@2.10GHz with 8
core, 64G memory, and four NVIDIA RTX 3090 GPUs.
The decentralized aggregation for learning of SewingChain
(denoted as Pedal) is compared with proof of learning (denoted
as Proof)[25] and FedAvg[24]. In the experiment, the number
of nodes participating in the calculation is 100, and the active
nodes are 10 [24]. The iteration epoch of client nodes is 5, and
the communication round is 30. We use MNIST2, Fashion-
MNIST3, CIFAR-104 and KMNIST5 as the primary dataset
of the calculation task. Moreover, we set up IID and non-
IID cases based on the above datasets. IID is constructed by
randomly extracting the same amount of data from the dataset
of clients. Non-IID is constructed by sorting all training sets
according to labels, dividing them into 200 slices. And clients
randomly select the same amount of data from slices.

We use a convolutional neural network as a local training
model. Since the complexity of MNIST and KMINIST are
different from that of Fashion-MNIST and CIFAR-10, we use
different calculation graphs of CNN to train three datasets
separately, as described in TABLE I, TABLE II and TABLE
III. The experiment examines the collaboration efficiency of
different computing paradigms by changing the proportion of
malicious nodes. Moreover, we repeated 3 times experiments
and took the average value as the final results.

It should be noted that Proof selects the nodes with the
claimed smallest loss as the consensus node and delegates the

1https://github.com/xuperchain/xuperchain
2http://yann.lecun.com/exdb/mnist/
3https://github.com/zalandoresearch/fashion-mnist
4https://www.cs.toronto.edu/ kriz/cifar.html
5https://github.com/rois-codh/kmnist

TABLE I: Architecture of CNN in MINIST and KMNIST

Layer Shapes Layer Shapes
Conv2d 1 1 x 10 x 5 Maxpool 2

Maxpool 2 ReLu

ReLu Linear 320 x 10

Conv2d 2 10 x 20 x 5

TABLE II: Architecture of CNN in Fashion-MINIST

Layer Shapes Layer Shapes
Conv2d 1 1 x 16 x 5 x 2 BatchNorm2d 32

BatchNorm2d 2 ReLu

ReLu Maxpool 2

Maxpool 2 Linear 7 x 7 x 32 x 10

Conv2d 2 16 x 32 x 5 x 2

TABLE III: Architecture of CNN in CIFAR-10

Layer Shapes Layer Shapes
Conv2d 1 3 x 64 x 3 x 1 Conv2d 5 3 x 512 x 3 x 1

MaxPool 2 Conv2d 6 3 x 512 x 3 x 1

Conv2d 2 3 x 128 x 3 x 1 MaxPool 2

MaxPool 2 Conv2d 7 3 x 512 x 3 x 1

Conv2d 3 3 x 256 x 3 x 1 Conv2d 8 3 x 512 x 3 x 1

Conv2d 4 3 x 256 x 3 x 1 MaxPool 2

MaxPool 2 Linear 512 x 10
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Fig. 9: Accuracy of IID dataset

parameters to other nodes. Other nodes will verify whether the
claimed loss is true by re-executing tasks of that node. When
malicious nodes generate a loss randomly, other nodes will
not update local models. Therefore, we choose to aggregate
parameters of honest nodes as the accuracy of Proof.

Fig. 9 and Fig. 10 indicate different number of malicious
nodes. It can be seen from the figure that when the number
of malicious nodes is 0, the accuracy of Pedal and Proof are
inferior to that of FedAvg in the IID and Non-IID of Fashion-
MNIST, CIFAR-10 and KMNIST. However, as the proportion
of malicious nodes increases, the accuracy of Pedal and Proof
far exceeds FedAvg. At the same time, Pedal and Proof have
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Fig. 10: Accuracy of Non-IID dataset

similar accuracy in the IID and Non-IID datasets of MNIST
and KMNIST. Furthermore, the accuracy of Pedal is higher
than that of Proof in the IID and Non-IID datasets of Fashion-
MNIST and CIFAR-10. It can be considered that Pedal has
better generalization ability in complex datasets.

VI. CONCLUSION

The new intelligent IIoT machine requires frequent data
exchange between physical and digital entities, bringing se-
vere challenges to the traditional centralized architecture. The
decentralized industrial architecture is imminent. Blockchain
is a decentralized trust machine. However, the decentralized
architecture based on blockchain and digital twins cannot
handle vast and complex data collaboration and computing
collaboration. Therefore, we propose a novel architecture
combining oracle with decentralized learning for IIoT. We also
propose an effective decentralized collaboration mechanism to
support trusted data sharing and resource exchanges. More-
over, we propose a novel computing mechanism to expand
the learning capabilities of the industrial ecology. In the future,
we will further study the blockchain-based computing collab-
oration mechanism and find a way to integrate blockchain
and AI deeply. Moreover, further adaptation will be made
to blockchain and oracle for IIoT. An industrial computing
mechanism will come up that can carry large amounts of data,
high concurrency, and low consumption.
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