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Abstract

Automatic performance debugging of parallel applications includes two main steps: locating performance bottlenecks
and uncovering their root causes for performance optimization. Previous work fails to resolve this challenging issue in
two ways: first, several previous efforts automate locating bottlenecks, but present results in a confined way that only
identifies performance problems with apriori knowledge; second, several tools take exploratory or confirmatory data
analysis to automatically discover relevant performance data relationships, but these efforts do not focus on locating
performance bottlenecks or uncovering their root causes.

The simple program and multiple data (SPMD) programming model is widely used for both high performance comput-
ing and Cloud computing. In this paper, we design and implement an innovative system, AutoAnalyzer, that automates
the process of debugging performance problems of SPMD-style parallel programs, including data collection, performance
behavior analysis, locating bottlenecks, and uncovering their root causes. AutoAnalyzer is unique in terms of two
features: first, without any apriori knowledge, it automatically locates bottlenecks and uncovers their root causes for
performance optimization; second, it is lightweight in terms of the size of performance data to be collected and analyzed.
Our contributions are three-fold: first, we propose two effective clustering algorithms to investigate the existence of
performance bottlenecks that cause process behavior dissimilarity or code region behavior disparity, respectively; mean-
while, we present two searching algorithms to locate bottlenecks; second, on a basis of the rough set theory, we propose
an innovative approach to automatically uncovering root causes of bottlenecks; third, on the cluster systems with two dif-
ferent configurations, we use two production applications, written in Fortran 77, and one open source code—MPIBZIP2
(http://compression.ca/mpibzip2/), written in C++, to verify the effectiveness and correctness of our methods. For
three applications, we also propose an experimental approach to investigating the effects of different metrics on locating
bottlenecks.
Keywords: SPMD parallel programs, automatic performance debugging, performance bottleneck, root cause analysis,
performance optimization

1. Introduction

How to improve the efficiency of parallel programs is a
challenging issue for programmers, especially non-experts
without the deep knowledge of computer science, and
hence it is a crucial task to develop an automatic per-
formance debugging tool to help application programmers
analyze parallel programs’ behavior, locate performance
bottlenecks (in short bottlenecks), and uncover their root
causes for performance optimization.

Although several existing tools can automate analysis
processes to some extent, previous work fails to resolve
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this issue in three ways. First, with traditional perfor-
mance debugging tools [13] [40] [36], though data collec-
tion processes are often automated, detecting bottlenecks
and uncovering their root causes need great manual ef-
forts. Second, several previous efforts can only automati-
cally identify critical bottlenecks with apriori knowledge
specified in terms of either the execution patterns that
represent situations of inefficient behaviors [2] [3] [4] [5]
or the predefined performance hypotheses/thresholds [7] [9]
or the decision tree classification trained by microbench-
marks [26]. Third, while a lots of existing tools [15] [19]
[20] [21] [24] [26] [28] [35] [15] take exploratory or confirma-
tory data analysis approaches to automatically discovering
relationships of relevant performance data, these efforts do
not focus on locating performance bottleneck and uncov-
ering their root causes of performance bottlenecks.

The SPMD [43] programming model is widely used for
high performance computing [45]. Recently, as an in-
stance [44], Mapreduce-like techniques [49] [46] also pro-
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mote the wide use of the SPMD programming model in
Cloud computing [45] [47] [48]. This paper focuses on how
to automate the process of debugging performance prob-
lems of SPMD style programs: including collecting per-
formance data, analyzing application behavior, detecting
bottlenecks, and uncovering their root causes, but not in-
cluding performance optimization. To that end, we design
and implement an innovative system, AutoAnalyzer.

Without human involvement, our tool uses source-to-
source transformation to automatically insert the instru-
mentation code into the source code of a parallel program,
and divide the whole program into code regions, each of
which is a section of code executed from start to finish
with one entry and one exit. For a SPMD-style parallel
program, if we exclude code regions in the master pro-
cess responsible for the management routines, each pro-
cess or thread should have similar behavior. At the same
time, if a code region takes up a trivial proportion of a
program’s running time, the performance improvement of
the code region will contribute little to the overall perfor-
mance of the program. From the above intuition, in this
paper we pay attentions to two types of performance bot-
tlenecks: bottlenecks that cause process or thread behavior
dissimilarity, which we call dissimilarity bottlenecks, and
bottlenecks that cause code region behavior disparity—
significantly different contributions of code regions to the
overall performance, which we all disparity bottlenecks. Af-
ter collecting the performance data of code regions from
four hierarchies: application, parallel interface, operat-
ing system, and hardware, AutoAnalyzer proposes a series
of innovative approaches to searching code regions that
are dissimilarity and disparity bottlenecks and uncover-
ing their root causes for performance optimization. Our
contributions are concluded as follows:

• For SPMD-style parallel applications, we utilize two
effective clustering algorithms to investigate the exis-
tence of performance bottlenecks that cause process
behavior dissimilarity or code region behavior dispar-
ity, respectively; if there are bottlenecks, we present
two searching algorithms to locate performance bot-
tlenecks.

• On a basis of the rough set theory, we propose an
innovative approach to automatically uncovering root
causes of bottlenecks.

• We design and implement AutoAnalyzer. On the
cluster systems with two different configurations, we
use two production applications and one open source
code—MPIBZIP2 to verify the effectiveness and cor-
rectness of our system. We also investigate the effects
of different metrics on locating bottlenecks. our ex-
periment results showed for three applications, our
proposed metrics outperforms the cycles per instruc-
tion (CPI) and the wall clock time in terms of locating
disparity bottlenecks.

The rest of this paper is organized as follows: Section
2 formulates the problem. Section 3 outlines the related
work, followed by the description of our solution in Sec-
tion 4. The implementation and evaluation of AutoAna-
lyzer are depicted in Section 5 and Section 6, respectively.
Finally, concluding remarks are listed in Section 7.

2. Problem Statement

A code region is a section of code that is executed from
start to finish with one entry and one exit. A code region
can be a function, subroutine or loop, which can be nested
within another one. After dividing the whole program
into n code regions CRj, j=1...n, we organize CRj, j=1···n
as a tree structure with the whole program as the root.
According to the definition of the tree structure, for any
node CRj , its depth is the length of the path from the root
to CRj . For example, in Fig.1, the depth of code region
1 is one. We call a code region of the depth L an L-code
region.

In our system, to accurately measure the contribution
of each code region to the overall performance of the pro-
gram, we require that code regions that have the same
depth can not be overlapped. For code regions with dif-
ferent depths, we encourage the nesting of code regions
because deep nesting leads to fine granularity, which is
helpful in narrowing the scope of the source code in lo-
cating bottlenecks. For example, in Fig.1, for two 1-code
regions, code region 1 and code region 2 do not intersect.
For code region 1, its two children nodes: code region 4
and code region 6 are nested within it.

program
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Code
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Code
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Code
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Code
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Code
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Figure 1: The code region tree of a parallel program.

For a parallel program, if its processes or threads have
similar behavior, performance vectors of all processes or
threads should be classified into one cluster, or else there
are dissimilarity bottlenecks, indicating load imbalance.
For each code region, if we average its performance data
among all processes or threads, we can measure its con-
tribution to the overall performance. We will identify a
code region that takes up a significant proportion of a pro-
gram’s running time and has the potential for performance
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improvement as a disparity bottleneck. Of course, we can
not exhaust all types of bottlenecks, since users hope pro-
grams to run faster and faster.

Our work focuses on how to automatically locate dissim-
ilarity and disparity bottlenecks, and uncover their root
causes for performance optimization. However, automatic
performance optimization is not our target.

3. Related Work

Table 1: The comparison of different systems. Yes indi-
cates it is automatic; else not.

system data
collec-
tion

behavior
analy-
sis

bottle
necks

root
causes

optimi
zation

HPC
Viewer

yes no no no no

HPC
TOOLKIT

yes no no no no

TAU yes no no no no
EXPERT yes yes yesa no no
Paradyn yes yes yesb no no
Aksum yes yes yesc no no
Perf Ex-
plorer

yes yes no no no

Tallent et
al. [16]

/ / / / yes

Auto An-
alyzer

yes yes yes yes no

awith apriori knowledge
bwith apriori knowledge
cwith apriori knowledge

Table 1 summarizes the differences of the related sys-
tems from five perspectives: data collection, behavior anal-
ysis, bottleneck detection, uncovering root causes and per-
formance optimization. Hollingsworth et al [32] proposes
a plan to develop a test suite for verifying the effective-
ness of different tools in terms of locating performance
bottlenecks. If it succeeds, this test suite can provide a
benchmark for evaluating the accuracy of locating bottle-
necks for different tools in terms of the false positive and
the false negative. Unfortunately, this project seems ended
without updating its web site.

The traditional approach for performance debugging is
through automated data collection and visualizing perfor-
mance data, while performance analysis and code opti-
mization need great manual efforts. With this approach,
application programmers need to learn appropriate tools,
and rely on their expertise to interpret data and its re-
lation to the code [24] so as to optimize the code. For
example, HPCViewer [13], HPCTOOLKIT [40], and TAU
[36] display the performance metrics through a graphical
user interface. Users depend on their expertise to choose
valuable data, which is hard and tedious.

With apriori knowledge, previous work proposes sev-
eral automatic analysis solutions to identify critical bot-
tlenecks. The EXPERT system [2] [3] [4] [5] describes
performance problems using a high level of abstraction in
terms of execution patterns that result from an inefficient
use of the underlying programming models, and performs
trace data analysis using an automated pattern-matching
approach [5]. The Paradyn parallel performance tool [7]
starts searching for bottlenecks by issuing instrumenta-
tion requests to collect data of a set of pre-defined perfor-
mance hypotheses for the whole program. Paradyn starts
its search by comparing the collected performance data
with the predefined thresholds, and the instances where
the measured value for the hypothesis exceeds the thresh-
old are defined as bottlenecks [9]. Paradyn starts a hier-
archical search of the bottlenecks, and refines this search
by using stack sampling [11] and pruning the search space
through considering the behavior of the application dur-
ing previous runs [8]. Using a decision tree classification,
which is trained by the microbenchmarks that demonstrate
both efficient and inefficient communication, Vetter et al
[26] automatically classify individual communication op-
erations, and reveal the cause of communication inefficien-
cies in the application. The Aksum tool [33] automatically
performs multiple runs of a parallel application and detects
performance bottlenecks by comparing the performance
achieved varying the problem size and the number of al-
located processors. The key idea in the work of [38] [39]
is to extract performance knowledge from parallel design
patterns or model that represent structural and communi-
cation patterns of a program for performance diagnosis.

Several previous efforts propose exploratory or confirma-
tory data analysis [24] or fuzzy set method [30] to auto-
mated discoveries of relevant performance data. The Per-
fExplorer tool [19] [20] [21] addresses the need to manage
large-scale data complexity using techniques such as clus-
tering and dimensionality reduction, and performs auto-
mated discovery of relevant data relationships using com-
parative and correlation analysis techniques. By cluster-
ing thread performance for different metrics, PerfExplorer
should discover these relationships and which metrics best
distinguish their differences. Calzarossa et al. [15] pro-
poses a top-down methodology towards automatic perfor-
mance analysis of parallel applications: first, they focuses
on the overall behavior of the application in terms of its ac-
tivities, and then they consider individual code regions and
activities performed within each code region. Calzarossa
et al. [15] utilizes clustering techniques to summarize and
interpret the performance information by identifying pat-
terns or groups of code regions characterized by a similar
behavior. Ahn et al. [28] use several multivariate statisti-
cal analysis techniques to analyze parallel performance be-
havior, including cluster analysis and F-ratio, factor anal-
ysis, and principal component analysis. Ahn et al. [28]
show how hardware counters could be used to analyze the
performance of multiprocessor parallel machines. The pri-
mary goal of the SimPoint system [31] is to reduce long-
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running applications down to tractable simulations. Sher-
wood et al. [31] define the concept of basic block vectors,
and use those concepts to define the behavior of blocks
of execution, usually one million instructions at a time.
Truong et al. [29] [30] propose a fuzzy set approach to
search bottlenecks. However, it does not intend to un-
cover the root causes of bottlenecks. Tallent et al. [16]
propose the approaches to measure and attribute parallel
idleness and parallel overhead of multi-threaded parallel
applications.

Tiwari et al. [35] describes a scalable and general-
purpose framework for auto-tuning compiler-generated
code, which generates in parallel a set of alternative im-
plementations of computation kernels and automatically
selects the one with the best-performing implementation.
Tu et al. [41] [42] propose a new parallel computation
model to characterize the performance effects of the mem-
ory hierarchy on multi-core clusters in both vertical and
horizontal levels. Babu et al. [34] make a case for tech-
niques to automate the setting of tuning parameters for
MapReduce programs. Zhang et al. [27] propose a precise
request tracing approach to debug performance problems
of multi-tier services of black boxes.

Our system has two distinguished differences from other
systems as shown in Table 1: first, in addition to auto-
matic performance behavior analysis, we automatically lo-
cate bottlenecks of SPMD-style parallel programs without
apriori knowledge; second, we automatically uncover the
root causes of bottleneck for performance optimization.
With regard to proposing performance vectors to represent
behavior of parallel application, AutoAnalyzer is similar to
the work in [15] [19] [20] [21] [29], but we investigate the ef-
fect of different metrics on locating bottlenecks. Different
from PerfExplorer [19] [20] [21], which leverages sophisti-
cated clustering techniques, AutoAnalyzer adopts compar-
atively simple clustering algorithms, which are lightweight
in terms of the size of performance data to be collected
and analyzed.

4. Our Solution

This section includes four parts: Section 4.1 summa-
rizes our approach, followed by the description of the ap-
proaches to investigating the existence of bottlenecks in
Section 4.2. How to locate bottlenecks is given out in Sec-
tion 4.3. Finally, we propose an approach to uncovering
the root causes of bottlenecks.

4.1. Summary of our approach
Our method includes four major steps: instrumentation,

collecting performance data, locating bottlenecks, and un-
covering their root causes.

First, we instrument a whole parallel program into code
regions. Our tool uses source-to-source transformation to
automatically insert instrumentation code into the source
code, which requires no human involvement.

Second, we collect performance data of code regions.
For each process or thread, we collect the following perfor-
mance data of code regions: (1) application-level perfor-
mance data: wall clock time and CPU clock time; (2) hard-
ware counter performance data: clock cycle, instructions
retired, L1 cache miss, L2 cache miss, L1 cache access, L2
cache access; (3) communication performance data: MPI
communication time—the executing time in MPI library
and MPI communication quantity—the quantity of data
transferred by the MPI library; (4) operation system level
performance data: disk I/O quantity—the quantity of data
read and written by disk I/O. On a basis of hardware
counter performance data, we obtain two derived metrics:
L1 cache miss rate and L2 cache miss rate. For exam-
ple L1 cache miss rate can be obtained according to the
formula—((L1 cache miss) / (L1 cache access)).

Third, we utilize two clustering approaches to investigat-
ing the existence of bottlenecks. If there are bottlenecks,
we use two searching algorithms to locate bottlenecks.

Finally, on a basis of the rough set theory, we present
an approach to uncovering the root causes of bottlenecks.

4.2. Investigating the existence of bottlenecks
In this section, we present how to investigate existence

of dissimilarity bottlenecks and disparity bottlenecks, re-
spectively.

4.2.1. The existence of dissimilarity bottlenecks
For a SPMD program, each process or thread is com-

posed of the same code regions. If we exclude code re-
gions in the master process responsible for the manage-
ment routines, the high behavior similarity of each process
or thread indicates the balance of workload dispatching
and resources utilizing, and vice versa [15]. So we use a
similarity analysis approach to investigate the existence of
dissimilarity bottlenecks.

The performance similarity is analyzed among all par-
ticipating processes or threads to discover the discrepancy.
We presume that the whole program is divided into n
code regions, and the whole program has m processes or
threads. In our approach, each process' or thread' perfor-
mance is represented by a vector −→

Vi , where i is the process
or thread rank. Tit represents the performance measure-
ment of the tth code region in the ith process or thread.
So

−→
Vi is described as

−→
Vi = (Ti1, Ti2 · · · , Tin).

We define the Euclidean distance—Distij of two vectors
−→
Vi and

−→
Vj in Equation(1).

Distij =
√

(Ti1 − Tj1)2 + · · · + (Tin − Tjn)2 (1)

We choose the CPU clock time of each code region as
the main measurement. Different from the wall clock time,
the CPU clock time only measures the time during which
the processor is actively working on a certain task, while
the wall clock time measures the total time for a process
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to complete. We also observe the effect of choosing differ-
ent metrics—the wall clock time on locating dissimilarity
bottlenecks in Section 6.4

On a basis of Equation(1), we present a simplified OP-
TICS clustering method [1]—Algorithm 1 to classify all
processes or threads. We choose the simplified OPTICS
clustering method because it has advantage in discovering
isolated points. In this approach, the performance vector
of each process or thread is considered as a point in an
n-dimension space. A set of points is classified into one
cluster if the point density in the area, where these point
scattered, is larger than the defined threshold. If a point
is not included into any clusters, we consider it an isolated
point, which is also a new cluster.

Algorithm 1 The simplified OPTICS clustering algo-
rithm {}
1. repeat
2. select a performance vector

−→
Vp not belonging to any

clusters.
3. count=0;
4. for each point

−→
Vq (q , p) in the n-dimension space

do
5. if (distance(

−→
Vp ,

−→
Vq) < threshold) then

6. count++;
7. //We set the threshold as 10% × length (

−→
Vp).

8. end if
9. end for

10. if count > count_threshold then
11. confirm that this is a new cluster.
12. end if
13. until all vectors are compared.

For a SPMD program, if Algorithm 1 classifies perfor-
mance vectors of all processes or threads into one cluster,
indicating all processes have similar performance behav-
ior, we confirm that there are no dissimilarity bottlenecks,
or else there are dissimilarity bottlenecks.

4.2.2. The existence of disparity bottlenecks
For each code region, if we average performance data

among all processes or threads, we can measure its contri-
bution to overall performance. We will identify a code re-
gion that takes up a significant proportion of a program’s
running time and has the potential for performance im-
provement as a disparity bottleneck.

We propose a single normalized metric, named the code
region normalized metric (in short, CRNM), as the mea-
surement basis for performance contribution of each code
region to the overall performance of the application. For
each code region, CRNM is defined in Equation (2):

CRNM = CRWT

WPWT
⋆ CPI (2)

In Equation (2), CRWT is the wall clock time of the
code region; WPWT is the wall clock time of the whole

program; CPI is the average cycles per instruction of each
code region. In Section 6.4, we also investigate the effects
of choosing other metrics, e.g., CPI and wall clock time of
each code region, on locating disparity bottlenecks.

As shown in Fig.2, the procedure of searching disparity
bottlenecks is as follows:

First, for each processes or thread, we obtain the CRNM
value of each code region. If a code region is not on the call
path in a process or thread, its CRNM value is zero. Since
a SPMD program can contain ’if’ statements, we obtain
the average value of each code region among all processes
or threads.

Second, we use a k-means clustering method [12] to
classify each code region according to the average CRNM
value. We choose the k-means clustering method because
it can classify data into k clusters without user provid-
ing the threshold value. We define five severity categories:
very high (4), high (3), medium (2), low (1), and very low
(0). The k-means clustering method finally classifies each
code region into one of the severity categories according to
its CRNM value.

Third, if a code region is classified into one of severity
categories of very high or high, we consider it as a critical
code region (CCR).

Figure 2: The k-means clustering approach [12].

4.3. Locating bottlenecks

When users confirm there are bottlenecks, they need
to locate bottlenecks. We call the code region that is a
bottleneck a critical code region (in short CCR). A CCR
of the depth L is called an L-CCR. If a CCR satisfies
the following conditions, we call it a core of critical code
regions (in short, CCCR): (1) the CCR is a leaf node in
the code region tree; (2) for a CCR, its children nodes are
not CCR. For example, in Fig.1, both code region 6 and
code region 7 are CCCR.

We propose a top-down searching algorithm—Algorithm
2 to locate dissimilarity bottlenecks as follows:

According to Line 17-26 in Algorithm 2, a CCCR has
higher effect on the clustering results than the other chil-
dren of its parent CCR, and hence we only consider CCCR
as dissimilarity bottlenecks, on which users should focus
for performance optimization. If the number of clusters or
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Algorithm 2 The searching algorithm for dissimilarity
bottlenecks{}
n: the number of code regions;
r: the number of 1-code region;
m: the number of process or threads;
1. CCR_set=null;
2. CCCR_set=null;
3. for each code region j, j = 1...n do
4. T_backupij = Tij , i = 1...m.
5. if its depth is greater than one then
6. Tij = 0, i = 1...m.
7. end if
8. end for
9. Obtain the clustering results.

10. for each code region j, j = 1...n do
11. if its depth is equal with one then
12. Tij = 0, i = 1...m.
13. Obtain the new clustering results.
14. if the clustering result changes then
15. Add code region j into CCR_set.
16. Recursively analyze children of code region j.
17. for each child code region k do
18. Tik = T_backupik, i = 1...m.
19. Obtain the new clustering results.
20. if the clustering result does not change then
21. Add code region k into CCR_set.
22. if (CCR k is a leaf node) or (its any child

is not a CCR) then
23. CCR k is a CCCR.
24. end if
25. end if
26. end for
27. Tij = T_backupij , i = 1...m.
28. end if
29. end if
30. end for
31. if CCR_set is null then
32. Combine s adjacent 1-code regions into composite

code regions without overlapping, s ≥ 2.
33. Repeat the above analysis.
34. if CCR_set is null and s < (r − 1) then
35. increment s and repeat the above analysis.
36. end if
37. end if

members of a cluster change, we think the clustering result
changes, or else not.

We also propose a simple searching algorithm to refine
the scope of disparity bottlenecks as follows:

• If a leaf node j is a CCR, then the code region j is a
CCCR.

• For a none-leaf CCR j, if its severity degree is larger
than that of each child node, then we consider the
code region j as a CCCR.

4.4. Root Cause Analysis

In this section, we introduce the background material
of the rough set theory, and present the approaches to
recovering roots causes of dissimilarity and disparity bot-
tlenecks, respectively.

4.4.1. The rough set approach [14] [17]
The rough set approach is a data mining method that

can be used for classifying vague data. In this paper, we
use the rough set approach to uncovering the root causes
of dissimilarity and disparity bottlenecks.

We start with introducing some basic terms, including
information system, decision system, decision table, and
core.

An information system is a pair Λ = (U, A), where U
is is a non-empty finite set of objects, called the universe,
and A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A. The set Va is called the value
set of a.

A decision system is any information system of the form
Λ = (U, A ∪ d), where d < A is the decision attribute. The
elements of A are called conditional attributes.

As shown in Table 2, a decision table is used to describe
the decision system. Each entry of a decision table con-
sists of three parts: object ID, conditional attributions, and
decision attribution. For example, in Table 2, the set of
object ID is {0, ..., 3}, the set of attributions is {a1, ..., a4},
and the set of decisions is {N, P}.

The core attributions are the attributions that are crit-
ical to distinguishing with the decision attributions. How
to find the core attributions is a main research field in the
rough set approach. One of the solutions is to create a
discernibility matrix [14] according to the decision table,
and then obtain the core attributions using a discernibility
matrix as follows:

For a decision system, its decision-relative discernibility
matrix is a symmetric n×n with entries cij given in Equa-
tion 3. Each entry thus consists of the set of attributions
upon which xi and xj differ [14].

cij, i,j=1,...,n =

{
(a ∈ A|a(xi) , a(xj) if d(xi) , d(xj))
(ϕ otherwise )

(3)
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A discernibility function fΛ for the decision table Λ is
a Boolean function of m Boolean variables a1, a2, ..., am

defined in Equation 4. For example, for Table 2, the dis-
cernibility functions are shown in Equation 5.

fΛ(a1, ...am) =
∧

{
∨

cij | 1 ≤ i ≤ j ≤ n, ci,j , ϕ} (4)

Table 2: An example of decision table

ID a1 a2 a3 a4 decision
0 sunny hot high False N
1 sunny hot high True N
2 overcast hot high False P
3 sunny cool low False P


ϕ ϕ a1 a2, a3

ϕ a1, a4 a2, a3, a4
ϕ ϕ

ϕ



Figure 3: The discernibility matrix for the decision table
in Table 2.

The core attributions are the same conjunctive terms
shared by the discernibility functions of each object, which
are defined in Equation 4.

fΛ(a1, a2, a3, a4) =(a1) ∧ (a2 ∨ a3)
(a1 ∨ a4) ∧ (a2 ∨ a3 ∨ a4)

}
(5)

According to Equation 5, the same conjunctive terms
are {a1, a2} or {a1, a3}, which are the core attributions of
Table 2.

4.4.2. Root cause analysis
For performance optimization, users need to know the

root causes of bottlenecks. In this section, we propose the
rough set theory based approach to uncovering the root
causes of dissimilarity and disparity bottlenecks, and give
suggestions for performance improvements.

As shown in Fig.4, we create the decision table for dis-
similarity bottlenecks as follows: we choose the rank of
each process as the object ID. We select L1 cache miss
rate, L2 cache miss rate, disk I/O quantity, network I/O
quantity and instructions retired as five different attribu-
tions ak,k=1...5.

We take the attribution a1 (L1 cache miss rate) as an
example. For process i, the entry of the decision table
corresponding to a1 is obtained as follows:

For the performance vector
−→
Ti , where i = 1...m, we

assign Tij with the L1 cache miss rate of the jth code region
in process i.

After having created the performance vector, we use the
simplified OPTICS clustering algorithm to classify perfor-
mance data. If −→

Ti is classified into a cluster with the ID of
x according to the approach introduced in Section 4.2.1,
for process i, we assign the entry corresponding to a1 with
x.

For process i, the decision value is the ID of the cluster
into which process i is classified according to the metrics
of the CPU clock time.

Figure 4: The approach to uncovering the root causes of
dissimilarity bottlenecks.

For disparity bottlenecks, we create the decision table
as follows:

We use the code region ID to identify each table entry.
We also select L1 cache miss rate, L2 cache miss rate,
disk I/O quantity, network I/O quantity and executing
instruction number as five different attributions.

We take attribution a1 (L1 cache miss rate) as an ex-
ample. For code region j, the element of the decision table
corresponding to a1 is obtained as follows:

For each code region, we obtain the average L1 cache
miss rate in all processes or threads. We use the K-means
clustering algorithm to classify the average L1 cache miss
rates of each code region into five categories: very high (4)
, high (3), medium (2) , low (1), and very low (0). For code
region j, if its severity category is higher than medium, we
assign the entry corresponding to the attribution a1 with
1, otherwise 0.

For code region j, if it is a disparity bottleneck accord-
ing to the approach proposed in Section 4.2.2, then the
decision value is 1, otherwise 0.

After having created the decision table, we obtain the
core attributions according to the approaches proposed in
Section 4.4.1. Since the core attributions are the ones that
have dominated effects on the decision, we consider them
as the root causes of disparity bottlenecks.

5. AutoAnalyzer implementation

In order to evaluate the effectiveness of our proposed
methods, we have designed and implemented a prototype,
AutoAnalyzer. Presently, AutoAnalyzer supports debug-
ging of performance problems of SPMD style MPI applica-
tions, written in C, C++, FORTRAN 77, and FORTRAN
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Figure 5: The approach to uncovering the root causes of
disparity bottlenecks.

90. We are also extending our work to MapReduce [49]
and other data-parallel programming models [46]. Fig. 6
shows AutoAnalyzer architecture.

Figure 6: The AutoAnalyzer Architecture.

The major components of AutoAnalyzer include auto-
matic instrumentation, data collector, data management,
and data analysis.

Automatic instrumentation. On a basis of OMPi
[16]—a source-to-source compiler, we have implemented
the source code level instrumentation. Without human in-
volvement, our tool uses source-to-source transformation
to automatically insert instrumentation code. After hav-
ing parsed the program, the system builds the abstract
syntax tree (AST). AST shows program’s structure infor-
mation, e.g., the begin and end of functions, procedures
or loops. With the structure information, our tool can
automatically insert instrumentation codes, and divide a
program into code regions.

Our tool supports several instrumentation modes: outer
loop, inner loop, mathematical library, parallel interface
library like MPI, system call, C/FORTRAN library, and
user-defined functions or procedures. Without any restric-
tions on instrumentation, a program can be divided into
hundreds or thousands of code regions. For example, af-
ter instrumentation, a parallel program of 2,000 lines is

divided into more than 300 code regions. This situation
has negative influence on the performance analysis because
AutoAnalyzer needs to collect and analyze a large amount
of performance data. To decrease the size of performance
data, we propose two solutions: first, we adopt two rounds
of analysis. For the first round, we divide a parallel pro-
gram into coarse-grained code regions, e.g., per function,
for roughly locating bottlenecks; for the second round, we
divide the code regions that are possible bottlenecks into
fine-grained code regions, e.g., loops. Second, users can
selectively choose one or more modes to instrument the
code, or interact with the GUI of the tool to eliminate,
merge, and split code regions.

Data collector. We collect performance data from four
hierarchies: application, parallel interface, operating sys-
tem, and hardware.

In the application hierarchy, we collect the wall clock
time and the CPU clock time of each code region. In the
parallel interface hierarchy, we have implemented an MPI
library wrapper to record MPI routines’ behavior of both
point-to-point and collective communication. The wrap-
per is implemented by wrapping the MPI standard pro-
filing interface—PMPI. In the wrapper, we instrumented
codes to collect performance data of MPI library, e.g., the
executing time and the quantity of data transferred in MPI
library.

In the operating system hierarchy, we use systemtap
(http://sourceware.org/systemstap/) to monitor disk
I/O, recording the execution time and quantity of data
read and written in I/O operations. Systemtap is based
on Kprobe, which is implemented in the Linux kernels.
Kprobe can instrument the system calls of the Linux ker-
nel to obtain the executing time and functions’ parameters
as well as I/O quantity.

In the hardware hierarchy, we use PAPI (http://icl.
cs.utk.edu/papi/) to count hardware events, including
L1 cache miss, L1 cache access, L2 cache miss, L2 cache
access, and instructions retired.

Data management. We collect all performance data
on different nodes and send them to one node for analysis.
All data are stored in XML files.

Data analysis. We analyze performance data of code
regions so as to search bottlenecks and uncover their root
causes.

Before using AutoAnalyzer, users need to perform the
following setup work. Before installing PAPI, they must
make sure that the kernel has been patched and recom-
piled with the PerfCtr or Perfmon patch. Then they can
compile the PAPI source code to install it. SystemTap
is also dependent upon the installation of several pack-
ages: kernel-debuginfo, kernel-debuginfo-common RPMs,
and the kernel-devel RPM. Before installing Systemtap,
users need to install these packages. However, with the
support of state-of-the-practice operating system deploy-
ment tool, like SystemImager, which is open source, we
can automate the deployment of AutoAnalyzer.
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6. Evaluation

In this section, we use two production parallel applica-
tions, written in Fortran 77, and one open-source parallel
application, written in C++, to evaluate the correctness
and effectiveness of AutoAnalyzer.

The first program is ST, which calculates the seismic
tomography using a refutations method. ST is on the pro-
duction use in the largest oil company in China. Fig.7
shows the model obtained with ST. The second one is
a parallel NPAR1WAY module of SAS. SAS is a sys-
tem widely used in data and statistical analysis. The
third one is MPIBZIP2—a parallel implementation of the
bzip2 block-sorting file compressor that uses MPI and
achieves significant speedup on cluster machines (http:
//compression.ca/mpibzip2/).

In Section 6.1, Section 6.2, and Section 6.3, for three ap-
plications we choose the CPU clock time as the main per-
formance measurement for searching dissimilarity bottle-
necks, and our proposed CRNM as the main performance
measurement for disparity bottlenecks, respectively. In
Section 6.4, we investigate the effects of different metrics
on locating bottlenecks.

6.1. ST

In this section, we use a production parallel application
of 4307 line codes—ST, to evaluate the effectiveness of
our system. To identify a problem, a user of our tools
does little to start. The tool automatically instruments
the code. After analysis, the tool informs the user about
bottlenecks and their root causes. For ST, it took about 2
days for a master student in our lab to locate bottlenecks
and rewrite about 200 lines to optimized the code.

Figure 7: The model obtained with ST.

Out testbed is a small-scale cluster system, connected
with 1000 Mbps networks. Each node has two processors,
each of which is AMD Opteron with 64KB L1 data cache,

Figure 8: The code region tree of ST. Code region 11, 12
are in subroutine ramod3, which is nested in code region
14. All code regions contain loops.

64KB L1 instruction cache, and 1MB L2 cache. The OS
version is linux − 2.6.19.

In the rest of this section, we give the detail of locat-
ing bottleneck and optimizing performance. Section 6.1.1
reports a case study of ST with coarse-grain code regions
for locating bottlenecks and optimizing application. Sec-
tion 6.1.2 reports a case study of ST with fine-grain code
regions.

6.1.1. Locating bottlenecks and optimizing the applications
To reduce the number of code regions, AutoAnalyzer

support an instrumentation mode that allows a user to
select whether to instrument functions or procedures, or
outer loops. In this subsection, we instrument ST into 14
coarse-grain code regions, and Fig. 8 shows the code region
tree. For ST, a configuration parameter—the shot number
decides the amount of data input. For this experiment,
the shot number is 627.

According to the similarity analysis approach proposed
in Section 4.3, AutoAnalyzer outputs the analysis result
for each process behavior of ST, which is shown in Fig.9.
We can find that all processes are classified into five clus-
ters. For a SPMD program, the analysis results indi-
cate that dissimilarity bottlenecks exist. According to the
searching result, we can conclude that code region 11 and
code region 14 are CCRs. Since code region 11 is the child
node of code region 14, we consider code region 11 as a
CCCR, which is the location of the problem.

We create the decision table to analyze the root causes
of code region 11.

Table 3 shows the decision table. In the decision ta-
ble, the attributions ak,k=1,2,3,4,5 represents L1 cache miss
rate, L2 cache miss rate, disk I/O quantity, network I/O
quantity, and instructions retired, respectively. Fig.10
shows the discernibility matrix.
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Performance similarity

there are 5 clusters of processes

cluster 0: 0

cluster 1: 1 2

cluster 2: 3

cluster 3: 4 6

cluster 4: 5 7

dissimilarity severity, S: 0.783958

CCCR: code region 11

CCR tree:

code region 14 (1-CCR) ---> code region 

11 (2-CCR & CCCR)

Figure 9: The analysis results of similarity measurement.

Table 3: Decision table for the dissimilarity bottlenecks

ID a1 a2 a3 a4 a5 D
0 0 0 0 0 0 0
1 0 0 0 0 1 1
2 0 0 0 0 1 1
3 1 0 0 0 2 2
4 0 1 0 0 3 3
5 1 1 0 1 4 4
6 1 2 0 1 3 3
7 1 2 0 0 4 4



ϕ a5 a5 a1,a5 a2,a5 a1,a2,a4,a5 a1,a2,a4,a5 a1,a2,a5
ϕ ϕ a1,a5 a2,a5 a2,a4,a5 a1,a2,a4,a5 a1,a2,a5

ϕ a1,a5 a2,a5 a2,a4,a5 a1,a2,a4,a5 a1,a2,a5
ϕ a1,a2,a5 a2,a4,a5 a2,a4,a5 a2,a5

ϕ a1,a4,a5 ϕ a1,a2,a5
ϕ a2,a5 ϕ

ϕ a4,a5
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Figure 10: The discernibility matrix for Table 3.

According to the approach proposed in Section 4.4.1, we
find that a5 is the core attribution, which indicates that
the variance of instructions retired in different processes is
the root cause of code region 11.

Fig.11 verifies our analysis, from which we can discover
obvious differences of instructions retired of code region 11
among different processes.

Using the K-means clustering approach, AutoAnalyzer
outputs the analysis result for each code region of ST,
which is shown in Fig.12. The severity degree of code
region 14, code region 11, code region 8 is larger than
medium, respectively. According to the analysis result,
we confirm that code regions 14, code region 11 and code
region 8 are CCR. Since code region 11 is nested within
code region 14 and the severity degree of code region 11 is
the same as code region 14, so code region 11 is a CCCR.

Figure 11: The variance of instructions retired of code re-
gion 11 in different processes.

Since no code region is nested in code region 8, so code
region 8 is also a CCCR. We focus on code region 8 and
code region 11 for performance optimization.

very high: code regions: 14,11

high: code regions: 8

medium: code regions: 5,6

low: code regions: 2

very low: code regions: 1,9,3,7,10,12,13,4

Figure 12: The analysis results of the k-means clustering
approach.

Figure 13: The average CRNM of each code region.

We analyze the root causes of disparity bottlenecks with
the rough set approach. The decision table is shown in
Table 4. In the decision table, attribution ak,k=1,2,3,4,5
represents L1 Cache miss rate, L2 cache miss rate, disk I/O
quantity, network I/O quantity, and instructions retired,
respectively.

According to the approach proposed in Section 4.4.1, we
find that {a2, a3} is the core attributions, which indicates
high L2 cache miss rate and high disk I/O quantity are the
root causes of disparity bottlenecks. Then we search the
decision table and find that the root cause of code region 8
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Table 4: Decision table used for searching disparity bot-
tlenecks.

ID a1 a2 a3 a4 a5 D
1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 1 1 0 0 1 0
6 1 0 0 0 1 0
7 0 0 0 0 0 0
8 0 0 1 0 1 1
9 1 0 0 0 0 0
10 1 0 0 0 0 0
11 1 1 0 0 1 1
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 1 1 0 0 1 1

is high disk I/O quantity and the root cause of code region
11 is high L2 cache miss. From the performance data, we
can observe that the disk I/O quantity of code region 8 is
as high as 106G and the L2 cache miss rate of code region
11 is high as 17.8%.

In order to eliminate the dissimilarity bottleneck—code
region 11, we replace the static load dispatching in the
master process, adopted in the original program, with a
dynamic load dispatching mode. After the optimization,
we use AutoAnalyzer to analyze the optimized code again.
The analysis results show that all processes, excluding the
code regions in the master process responsible for the man-
agement routines, are classified into one cluster, indicating
that all processes have the similar performance with bal-
anced workloads.

We take the following approaches to optimizing the
disparity bottlenecks—code region 8 and code region 11.
First, we improve code region 8 by buffering as many as
data into the memory. Second, we improve the data local-
ity of code region 11 by breaking the loops into small ones
and rearranging the data storage.

We use AutoAnalyzer to analyze the optimized code
again. The new analysis results show code region 8 is not
a disparity bottleneck again, while code region 11 is still a
disparity bottleneck, but the average CRNM value of code
region 11 decreases from 0.41 to 0.26. The root cause of
code region 11 is no longer the high L2 caches miss rate,
but the large quantity of instructions retired.

Fig.14 shows the performance of ST before and after the
optimization. With the disparity bottlenecks eliminated,
the performance of ST rises by 90% in comparison with
the original program. With the dissimilarity bottlenecks
eliminated, the performance of ST rises by 40% in com-
parison with the original program. With both disparity
and dissimilarity bottlenecks eliminated, the performance
of ST rise by 170% in comparison with the original pro-

gram.

Figure 14: ST performance before and after the optimiza-
tion.

6.1.2. A case study of ST with fine-grain code regions
In this subsection, on a basis of the code region tree

shown in Fig.8, we divide the program into fine-grained
code regions, which is shown in Fig. 15. For saving time,
we choose the shot number as 300, and the run time of
application is about 9815.52454 seconds. Please note that
with the exception of newly added code regions, the same
code regions in Fig.8 and Fig. 15 keep the same ID.

We use the simplified OPTICS clustering algorithm to
find dissimilarity bottlenecks. From the analysis result,
we can find that code region 14, code region 11, and code
region 21 are CCRs. Since code region 21 is nested within
code region 11 and the latter is also nested within code
region 14, we confirm that code region 21 is a CCCR,
which is the location of the problem.

From Fig.8 and Fig. 15, we can observe the newly iden-
tified dissimilarity bottleneck— code region 21 is nested
within code region 11, which is identified as a dissimilar-
ity bottlenecks in Section 6.1.1 when a coarse-grain code
region tree is adopted.

Figure 15: The refined code region tree.

We also use the k-means clustering approach to locate-
ing disparity bottlenecks. From the analysis results, we
conclude code region 19 and code region 21 are disparity
bottlenecks.
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Figure 16: The variance of instructions retired of code re-
gion 21 in different processes.

From Fig.8 and Fig. 15, we can observe the newly identi-
fied disparity bottlenecks—code region 19 and code region
21 are nested within code region 8 and code region 14,
respectively, which are identified as disparity bottlenecks
in Section 6.1.1 when a coarse-grain code region tree is
adopted. These results show our two-round analysis, in-
troduced in Section 5, indeed can refine the scope of both
dissimilarity bottlenecks and disparity bottlenecks. Fig.16
shows the variance of instructions retired of code region
21 in different processes.

6.2. NPAR1WAY

NPAR1WAY is a module of the SAS (Statistical Anal-
ysis System) responsible for reading, writing, managing,
analyzing, and displaying data. SAS is Widely used in
data and statistical analysis. The parallel NPAR1WAY
module uses MPI to calculate the exact p-value to achieve
high performance. AutoAnalyzer divides the whole pro-
gram into 12 code regions to separate functions, subrou-
tines, and outer loops.

Out testbed is a small-scale cluster system. Each node
has two processors, each of which is a 2 GHz Intel Xeon
Processor E5335 with quad cores, 128KB L1 data cache,
128KB L1 instruction cache, and 8 MB L2 cache. The
operating system is Linux 2.6.19.

6.2.1. Bottleneck detection
The analysis results of AutoAnalyzer shows all processes

are classified into one cluster, which indicates that no dis-
similarity bottleneck exists. AutoAnalyzer also analyzes
the application performance from the perspective of each
code region. The analysis results show that the severity
degrees of code region 3 and code region 12 are larger than
medium, and we consider them as CCR. Because there are
no nested code regions in code region 3 and code region 12,
both of two code regions are CCCRs, which we consider
disparity bottlenecks.

We also use the rough set approach to uncover the root
causes of disparity bottlenecks. In the decision table, the
attributes ak,k=1,2,3,4,5 represents L1 cache miss rate, L2

Figure 17: The average CRNM of each code region in eight
processes.

cache miss rate, disk I/O quantity, network I/O quantity,
and instructions retired, respectively.

Through analyzing the discernibility matrix, we con-
clude that {a4, a5} are the core attributions, which indi-
cates that both high network I/O quantity and high in-
structions retired are root causes of the disparity bottle-
necks. Then we search the decision table and find that
code region 3 has high quantity of instructions retired.
Meanwhile code region 12 has both high quantity of in-
structions retired and high network I/O quantity. From
the performance data, we can see that instructions retired
of code region 3 and code region 12 take up 26% and 60% of
the total instructions retired of the program, respectively.
At the same time, the network I/O quantity of code region
12 takes up 70% of the total network I/O quantity of the
program.

6.2.2. The performance optimization
According to the root causes uncovered by AutoAna-

lyzer, we optimize the code to eliminate the disparity bot-
tlenecks. The performance of NPAR1WAY rises by 20%
after the optimization.

We optimize code region 3 and code region 12 by elimi-
nating redundant common expressions. For example, there
is one common multiply expression occurring three times
in code region 3. We use one variable to store the results of
the multiply expression at its first appearance, and later
directly use the variable to avoid subsequent redundant
computation. In this way, we can decrease massive in-
structions by eliminating redundant common expressions
in deep loops.

Then we analyze the code again. For the optimized code
region 3, the analysis results show that the quantity of in-
structions retired and the wall clock time are reduced by
36.32% and 20.33%, respectively. For the optimized code
region 12, the analysis results show that the instructions
retired and the wall clock time are reduced by 16.93% and
8.46%, respectively. For code region 12, we fail to elimi-
nate high network I/O quantity.
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6.3. Analysis of an open source application—MPIBZIP2

MPIBZIP2 is a parallel implementation of the bzip2
block-sorting file compressor that uses MPI and achieves
significant speedup on cluster machines. The output is
fully compatible with the regular bzip2 data so any files
created with MPIBZIP2 can be uncompressed by bzip2
and vice-versa. This software is open source and dis-
tributed under a BSD-style license. AutoAnalyzer divides
the whole program into 16 code regions to separate func-
tions, subroutines, and outer loops. Fig.18 shows the code
region tree. Out testbed is just the same as that in Section
6.2.

Figure 18: The code region tree of TMPIBzip2.

Excluding the code regions that are responsible for man-
agement routines in the master process, we use the sim-
plified OPTICS clustering algorithm to find dissimilarity
bottlenecks. From the analysis result, we find all processes
are classified into one cluster, and we confirm that there
are no dissimilarity bottlenecks in MPIBZIP2. We also use
the K-means clustering approach to analyzing the dispar-
ity bottlenecks. The analysis results show that the severity
degrees of code region 6, and code region 7 are larger than
medium, and we consider them as CCR. Since there are
no nested code regions in code region 6 and code region 7,
both of two code regions are CCCRs, which we consider
disparity bottlenecks. Fig.19 shows the average CRNM of
each code region of MPIBZIP2.

Figure 19: The average CRNM of each code region of
MPIBZIP2.

We uncover the root causes of disparity bottlenecks with
the rough set approach. In the decision table, the at-
tributes ak,k=1,2,3,4,5 represents L1 cache miss rate, L2
cache miss rate, disk I/O quantity, network I/O quantity
and instructions retired, respectively. Through analyzing
the discernibility matrix, we conclude that {a4, a5} are the
core attributions, which indicates that network I/O quan-
tity and instructions retired are root causes of the disparity
bottlenecks. Then we search the decision table and find
that the root cause of code region 6 is high quantity of
instructions retired and the root cause of code region 7 is
high network I/O quantity. From the performance data,
we also observe that instructions retired of code region 6
take up 96% of the total instructions retired of the pro-
gram. At the same time,the network I/O quantity of code
region 7 take up 50% of the total network I/O quantity of
the program.

Through reading the source code, we
found out that code region 6 calls the
BZ2_bzBuffToBuffCompress() function to com-
press the data. BZ2_bzBuffToBuffCompress() is a
third-party function and packaged in the static library
libbz2.a of bzip2. Code region 7 call MPI_Send() to
send the compressed data to the master process. Those
two bottlenecks are difficult to optimize. For the first
bottleneck, we need to improve the mature compression
algorithm; for the second bottleneck, we need to decrease
the data transferred to the master process, however the
data has been compressed. We fail to optimize the code.

6.4. Effect of different metrics on bottleneck detections
For three applications, we investigate the effect of differ-

ent metrics on locating bottlenecks. For ST, NPAR1WAY,
and MPIBZIP2, the number of code regions is 14, 12, and
16, respectively. For ST, we perform the experiments on
the same testbed as that in Section 6.1, but the shot num-
ber is changed from 627 to 300 for saving time. For two
other applications, the testbed is the same as that in Sec-
tion 6.2.

We choose the CRNM value, the CPI, and the wall clock
time of each code region as the main performance measure-
ment to locate disparity bottlenecks, respectively.

Our experiment shows CRNM is more valuable than
CPI or the wall clock time on locating disparity bottle-
necks. For example, for ST, using CRNM, AutoAnalyzer
identifies code region 8, code region 11, and code region
14 as CCR, and we significantly improve the application
performance through optimizing them, as shown in Sec-
tion 6.1.1; using the average wall clock time of each code
region, AutoAnalyzer identifies code region 2,5, 6, 10 as
disparity bottlenecks in addition to code region 8, 11 and
14. From Fig. 20, we can observe code region 2, 5, 6, 10
take up trivial proportion of the running time of the appli-
cation. Using CPI, AutoAnalyzer identifies code region 2,
8 as disparity bottlenecks, while code region 11 and code
region 14, which take up most of the running time of the
application, are ignored.
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Figure 20: The average wall clock time and CPU clock
time of each code region of ST.

Fig.20, Fig.21, and Fig.22 show the average wall clock
time and CPU clock time, the average CRNM, and CPI
of each code region of ST, respectively.

Figure 21: The average CRNM of each code region of ST.

Figure 22: The average CPI of each code region of ST.

CRNM is more valuable than CPI or wall clock time on
locating disparity bottlenecks because of the following two
reasons: first, by using the ratio of the wall clock time of
a code region to the wall clock time of the whole program,
our metrics can judge the performance contribution of a
code region to the overall performance of a program. Sec-
ond, CPI measures the efficiency of instruction execution.
Derived from the total instructions retired and the total
executing cycles, CPI is a basic metric that reflects all

hardware events: cache or TLB miss, cache line invention,
pipeline stall caused by data dependency or branches mis-
prediction and so on. So our normalized CPI represents
a measurement of the importance of a code region to the
overall performance of the application.

We choose the wall clock time and the CPU clock time as
the main measurement to locate dissimilarity bottlenecks,
respectively. For three applications, we utilize two met-
rics to locate dissimilarity bottlenecks, respectively. As
an example, Fig.20 compares the average wall clock time
and the average CPU clock time of each code region of
ST, and Fig.23 shows the wall clock time and the CPU
clock time of code region 11 of ST in different processes,
which is identified as a dissimilarity bottleneck in Section
6.1.1. Though two measurements have some differences,
our results show they have the same effects on locating
dissimilarity bottlenecks.

Figure 23: The wall clock time and CPU clock time of
code region 11 of ST in different processes.

7. Conclusions

This paper presented a series of innovative methods in
automatic performance debugging of SPMD-style paral-
lel programs. For SPMD-style parallel applications, we
utilized two effective clustering algorithms to investigate
the existence of two types of bottlenecks: dissimilarity
bottlenecks that cause process behavior dissimilarity and
disparity bottlenecks that cause code region behavior dis-
parity; if there are bottlenecks, we presented two search-
ing algorithms to locate performance bottlenecks. On a
basis of the rough set theory, we proposed an innovative
approach to automatically uncovering root causes of bot-
tlenecks. We designed and implemented AutoAnalyzer.
On the cluster systems with two different configurations,
we used two production applications and one open source
code—MPIBZIP2 to verify the effectiveness and correct-
ness of our methods. Meanwhile, we also investigate the
effects of different metrics on locating bottlenecks, and our
experiment results showed for three applications, our pro-
posed metrics—CRNM outperforms CPI and wall clock
time in terms of locating disparity bottlenecks; the wall
clock time and the CPU clock time have the same effects
on locating dissimilarity bottlenecks.
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In the near future, we will extend our method to more
generalized parallel applications beyond the SPMD style.
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