
Edge Computing for
Autonomous Driving:
Opportunities and Challenges
This article surveys the designs of autonomous driving edge computing systems. In
addition, it presents the security issues in autonomous driving as well as how edge
computing designs can address these issues.

By SHAOSHAN LIU , Senior Member IEEE, LIANGKAI LIU, JIE TANG, Member IEEE,
BO YU, Member IEEE, YIFAN WANG, AND WEISONG SHI, Fellow IEEE

ABSTRACT | Safety is the most important requirement for

autonomous vehicles; hence, the ultimate challenge of design-

ing an edge computing ecosystem for autonomous vehicles is

to deliver enough computing power, redundancy, and secu-

rity so as to guarantee the safety of autonomous vehicles.

Specifically, autonomous driving systems are extremely com-

plex; they tightly integrate many technologies, including sens-

ing, localization, perception, decision making, as well as the

smooth interactions with cloud platforms for high-definition

(HD) map generation and data storage. These complexities

impose numerous challenges for the design of autonomous

driving edge computing systems. First, edge computing sys-

tems for autonomous driving need to process an enormous

amount of data in real time, and often the incoming data from

different sensors are highly heterogeneous. Since autonomous

driving edge computing systems are mobile, they often have

very strict energy consumption restrictions. Thus, it is imper-

ative to deliver sufficient computing power with reasonable

energy consumption, to guarantee the safety of autonomous

vehicles, even at high speed. Second, in addition to the edge

system design, vehicle-to-everything (V2X) provides redun-

dancy for autonomous driving workloads and alleviates strin-

Manuscript received February 10, 2019; revised April 6, 2019; accepted
May 5, 2019. Date of publication June 24, 2019; date of current version
August 5, 2019. (Corresponding author: Jie Tang.)

S. Liu and B. Yu are with PerceptIn, Fremont, CA 94539 USA.

L. Liu andW. Shi are with the Department of Computer Science, Wayne State
University, Detroit, MI 48202 USA.

J. Tang is with the School of Computer Science & Engineering, South China
University of Technology, Guangzhou 510330, China (e-mail:
cstangjie@scut.edu.cn).

Y. Wang is with Wayne State University, Detroit, MI 48202 USA, and also with
the Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China.

Digital Object Identifier 10.1109/JPROC.2019.2915983

gent performance and energy constraints on the edge side.

With V2X, more research is required to define how vehi-

cles cooperate with each other and the infrastructure. Last,

safety cannot be guaranteed when security is compromised.

Thus, protecting autonomous driving edge computing systems

against attacks at different layers of the sensing and comput-

ing stack is of paramount concern. In this paper, we review

state-of-the-art approaches in these areas as well as explore

potential solutions to address these challenges.

KEYWORDS | Connected and autonomous vehicles (CAVs);

edge computing; heterogeneous computing; security; vehicle-

to-everything (V2X); vehicular operating system.

I. I N T R O D U C T I O N

The design goal of autonomous driving edge computing
systems is to guarantee the safety of autonomous vehicles.
This is extremely challenging, as autonomous vehicles
need to process an enormous amount of data in real
time (as high as 2 GB/s) with extremely tight latency
constraints [1]. For instance, if an autonomous vehicle
travels at 60 miles per hour (mph), and thus about 30 m
of braking distance, this requires the autonomous driving
system to predict potential dangers up to a few seconds
before they occur. Therefore, the faster the autonomous
driving edge computing system performs these complex
computations, the safer the autonomous vehicle is.

Specifically, autonomous driving systems are extremely
complex; they tightly integrate many technologies, includ-
ing sensing, localization, perception, decision making,
as well as the smooth interaction with cloud platforms for
high-definition (HD) map generation and data storage [2].

These complexities pose many challenges for the design
of autonomous driving edge computing systems, just to

0018-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1697

https://orcid.org/0000-0002-5132-8351

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

name a few. First, they need to enable the interactions
between the functional modules with low overheads, and
this requires a lightweight operating system. Second, they
need to process an enormous amount of data in real time,
and often the incoming data from different sensors are
highly heterogeneous. In addition, since they are mobile
systems, they often have very strict energy consumption
restrictions. This requires a high-performance and energy-
efficient hardware system.

In addition to the edge system design, vehicle-to-
everything (V2X) technologies should also get involved
in the communication of the edge system. V2X provides
redundancy for autonomous driving workloads; it also
alleviates stress on the edge computing system. We believe
this is a promising approach, but the key is to identify
a sweet spot between the tradeoffs of fully relying on
the edge computing system versus fully relying on the
V2X infrastructure. Hence, exploring how V2X enables
autonomous vehicles to cooperate with each other and
with the infrastructure remains an open research topic.

Having a high-performance and energy-efficient edge
computing system is not enough, as attackers may turn an
autonomous vehicle into a dangerous weapon by hacking
into any layer of the autonomous driving sensing and
computing stack. More research is required to identify all
possible attack surfaces as well as protection mechanisms
before autonomous vehicles are released on public roads.

To summarize, the overarching challenge of
autonomous driving edge computing systems design
is to efficiently integrate the functional modules, including
interactions with edge servers and V2X infrastructure,
to process a massive amount of heterogeneous data in
real time, within a limited energy budget, and without
sacrificing the security of the users. In this paper,
we review state-of-the-art approaches in these areas
as well as explore potential solutions to address these
challenges.

Before delving into the details of the autonomous
driving edge computing system designs, let us first define
the autonomous driving computing ecosystem. As illus-
trated in Fig. 1, each autonomous vehicle is equipped
with an edge computing system, which integrates all the
real-time functional modules, such as localization, percep-
tion, planning and control, and so on. Then, each vehicle
communicates with edge servers, and eventually with the
central cloud, through existing 3G/4G/5G communica-
tion networks. In addition, the vehicles can communicate
with the road side units (RSUs) through either the 5G
networks or the dedicated short-range communications
(DSRC) networks; this is a typical vehicle-to-infrastructure
(V2I) scenario. Moreover, the vehicles can communicate
with each other through the DSRC networks, and this is a
typical vehicle-to-vehicle (V2V) scenario.

The remainder of this paper is organized as follows.
In Section II, we review the background of autonomous
driving technologies and help readers understand the com-
plexities of autonomous driving systems. In Section III,

Fig. 1. Autonomous driving edge computing architecture.

the latest progress on the designs of autonomous driving
edge computing systems is presented and discussed. In
Section IV, we focus on how V2X alleviates the stress on
edge computing systems. In Section V, we review security
issues in autonomous driving and how edge computing
designs address these issues. We conclude in Section VI.

II. A U T O N O M O U S D R I V I N G
T E C H N O L O G I E S

As detailed in [3], autonomous driving is not one tech-
nology but rather an integration of many technologies.
As is shown in Fig. 2, the autonomous driving technol-
ogy stack consists of three major subsystems: algorithms,
including sensing, perception, and decision; a vehicular
edge subsystem, including the operating system and hard-
ware platform; and a cloud platform, including data stor-
age, simulation, HD mapping, and deep learning model
training.

A. Algorithm Subsystem

The algorithm subsystem extracts meaningful informa-
tion from sensor raw data to understand its environment
and dynamically make decisions about its actions.

Fig. 2. Autonomous driving technology stack.

1698 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

1) Sensing: Normally, an autonomous vehicle consists of
several major sensors. Since each type of sensor presents
advantages and drawbacks, the data from multiple sensors
must be combined. The sensor types include the following.

a) GNSS/IMU: The global navigation satellite system
and inertial measurement unit (GNSS/IMU) system helps
autonomous vehicles localize themselves by reporting both
inertial updates and a global position estimate at a high
rate, e.g., 200 Hz. While GNSS is a fairly accurate local-
ization sensor at only 10 Hz, its update rate is too slow to
provide real-time updates. Now, although an IMU’s accu-
racy degrades with time and thus cannot be relied upon
to provide accurate position updates over long periods,
it provides updates more frequently—at, or higher than,
200 Hz. This should satisfy the real-time requirement.
By combining GNSS and IMU, we provide accurate and
real-time updates for vehicle localization.

b) LiDAR: Light detection and ranging (LiDAR) is
used for mapping, localization, and obstacle avoidance.
It works by bouncing a beam off surfaces and measuring
the reflection time to determine distance. LiDAR is used to
generate HD maps, localize a moving vehicle against HD
maps, detect obstacles ahead, and so on.

c) Cameras: Cameras are mostly used for object
recognition and object tracking tasks, such as lane detec-
tion, traffic light detection, pedestrian detection, and more.
To enhance autonomous vehicle safety, existing imple-
mentations usually mount eight or more cameras around
the car, and we use cameras to detect, recognize, and
track objects in front, behind, and on both sides of the
vehicle. These cameras usually run at 60 Hz and, when
combined, generate around multiple gigabytes of raw data
per second.

d) Radar and Sonar: The radar and sonar system is
used for the last line of defense in obstacle avoidance.
The data generated by radar and sonar show the distance
from the nearest object in front of the vehicle’s path. When
we detect that an object is not far ahead and that there
may be a danger of a collision, the autonomous vehicle
should apply the brakes or turn to avoid the obstacle.
Therefore, the data generated by radar and sonar do not
require much processing and are usually fed directly to
the control processor—not through the main computation
pipeline—to implement such urgent functions as swerving
and applying the brakes.

2) Perception—Localization: The perception subsystem
consumes incoming sensor data to understand the vehi-
cle’s environment. The main tasks in autonomous driving
perception include localization, object detection, object
tracking, and so on.

While GNSS/IMU is used for localization, GNSS pro-
vides fairly accurate localization results but with a slow
update rate; IMU provides a fast update with less accu-
rate results. We use Kalman filtering to combine the
advantages of the two and provide accurate and real-time
position updates [4]. Nonetheless, we cannot solely rely

on this combination for localization for three reasons:
1) the accuracy is only about one meter; 2) the GNSS
signal has multipath problems, which means that the
signal may bounce off buildings and introduce more
noise; and 3) GNSS requires an unobstructed view of the
sky so it fails to work in closed environments such as
tunnels.

Cameras are used for localization. The pipeline line of
Vision-based localization is simplified as follows: 1) by tri-
angulating stereo image pairs, a disparity map is obtained
and used to derive depth information for each point; 2) by
matching salient features between successive stereo image
frames in order to establish correlations between feature
points in different frames, the motion between the past
two frames is estimated; and 3) by comparing the salient
features against those in the known map, we derive the
current position of the vehicle [5].

LiDAR is used for localization, relying heavily on a parti-
cle filter [6]. The point clouds generated by LiDAR provide
a “shape description” of the environment, but it is hard
to differentiate individual points. By using a particle filter,
the system compares a specific observed shape against the
known map to reduce uncertainty. To localize a moving
vehicle relative to these maps, we apply a particle filter
method to correlate the LiDAR measurements with the
map. The particle filter method has been demonstrated to
achieve real-time localization with 10-cm accuracy and is
effective in urban environments.

3) Perception—Object Recognition and Tracking: In recent
years, we have seen the rapid development of deep learn-
ing technology, which achieves significant object detec-
tion and tracking accuracy. A convolution neural network
(CNN) is a type of deep neural network (DNN) that is
widely used in object recognition tasks. A general CNN
evaluation pipeline usually consists of the following layers:
1) the convolution layer uses different filters to extract
different features from the input image. Each filter con-
tains a set of “learnable” parameters that will be derived
after the training stage; 2) the activation layer decides
whether to activate the target neuron; 3) the pooling layer
reduces the spatial size of the representation to reduce the
number of parameters and consequently the computation
in the network; and last, 4) the fully connected layer
connects all neurons to all activations in the previous
layer [7].

Once an object is identified using a CNN, next comes
the automatic estimation of the trajectory of that object as
it moves—or, object tracking. Object tracking technology
is used to track nearby moving vehicles, as well as people
crossing the road, to ensure the current vehicle does not
collide with moving objects. In recent years, deep learning
techniques have demonstrated advantages in object track-
ing compared to conventional computer vision techniques.
By using auxiliary natural images, a stacked autoencoder
is trained offline to learn generic image features that are
more robust against variations in viewpoints and vehicle

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1699

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

positions. Then, the offline-trained model is applied for
online tracking [8].

4) Decision: In the decision stage, action prediction,
path planning, and obstacle avoidance mechanisms are
combined to generate an effective action plan in real time.
One of the main challenges for human drivers when navi-
gating through traffic is to cope with the possible actions of
other drivers, which directly influences their own driving
strategy. This is especially true when there are multiple
lanes on the road or at a traffic change point.

To make sure that autonomous vehicles travel safely in
these environments, the decision unit generates predic-
tions of nearby vehicles and then decides on an action
plan based on these predictions. To predict the actions
of other vehicles, we generate a stochastic model of
the reachable position sets of the other traffic partici-
pants and associate these reachable sets with probability
distributions [9].

Planning the path of an autonomous, responsive vehicle
in a dynamic environment is a complex problem, especially
when the vehicle is required to use its full maneuvering
capabilities. One approach would be to use deterministic,
complete algorithms to search all possible paths and utilize
a cost function to identify the best path. However, this
requires enormous computational resources and may be
unable to deliver real-time navigation plans. To circum-
vent this computational complexity and provide effective
real-time path planning, probabilistic planners have been
utilized [10].

Since safety is of paramount concern in autonomous
driving, we should employ at least two levels of obsta-
cle avoidance mechanisms to ensure that the vehi-
cle will not collide with obstacles. The first level is
proactive and based on traffic predictions. The traffic
prediction mechanism generates measures like time-to-
collision or predicted-minimum-distance. Based on these
measures, the obstacle avoidance mechanism is triggered
to perform local path replanning. If the proactive mech-
anism fails, the second-level reactive mechanism, using
radar data, takes over. Once the radar detects an obstacle
ahead of the path, it overrides the current controls to avoid
the obstacle [11].

B. Vehicular Edge Subsystem

The vehicular edge subsystem integrates the above-
mentioned algorithms together to meet real-time and
reliability requirements. There are three challenges to
overcome: 1) the system needs to make sure that the
processing pipeline is fast enough to consume the enor-
mous amount of sensor data generated; 2) if a part of
the system fails, it needs to be robust enough to recover
from the failure; and 3) the system needs to perform all
the computations under energy and resource constraints.

1) Hardware Architecture: First, we review the exist-
ing computer architecture for autonomous driving tasks.

A more detailed review is found in [1]. The Nvidia PX
platform is the current leading GPU-based solution for
autonomous driving [12]. Each PX 2 consists of two Tegra
systems-on-chip (SoCs) and two Pascal graphics proces-
sors. Each GPU has its own dedicated memory, as well as
specialized instructions for DNN acceleration. To deliver
high throughput, each Tegra connects directly to the Pascal
GPU using a PCI-E Gen 2 × 4 bus (total bandwidth:
4.0 GB/s). In addition, the dual CPU-GPU cluster is con-
nected over the gigabit Ethernet, delivering 70 Gb/s. With
optimized I/O architecture and DNN acceleration, each
PX2 is able to perform 24 trillion deep-learning calcula-
tions every second.

Texas Instruments’ TDA provides a DSP-based solution
for autonomous driving. A TDA2x SoC consists of two
floating-point C66x DSP cores and four fully program-
mable vision accelerators, which are designed for vision
processing functions. The vision accelerators provide eight-
fold acceleration on vision tasks compared to an ARM
Cortex-15 CPU while consuming less power [13]. Similarly,
CEVA XM4 is another DSP-based autonomous driving com-
puting solution. It is designed for computer vision tasks
on video streams. The main benefit for using CEVA-XM4 is
energy efficiency, which requires less than 30 mW for a
1080p video at 30 frames/s [14].

Altera’s Cyclone V SoC is one field-programmable gate
array (FPGA)-based autonomous driving solution, which
has been used in Audi products. Altera’s FPGAs are opti-
mized for sensor fusion, combining data from multiple sen-
sors in the vehicle for highly reliable object detection [15].
Similarly, Zynq UltraScale MPSoC is also designed for
autonomous driving tasks [16]. When running CNN tasks,
it achieves 14 images/s/W, which outperforms the Tesla
K40 GPU (4 images/s/W). Also, for object tracking tasks,
it reaches 60 frames/s in a live 1080p video stream.

MobilEye EyeQ5 is a leading application-specified inte-
grated circuit (ASIC)-based solution for autonomous
driving [17]. EyeQ5 features heterogeneous, fully pro-
grammable accelerators, where each of the four accelera-
tor types in the chip is optimized for their own family of
algorithms, including computer-vision, signal-processing,
and machine-learning tasks. This diversity of accelerator
architectures enables applications to save both computa-
tional time and energy by using the most suitable core
for every task. To enable system expansion with multiple
EyeQ5 devices, EyeQ5 implements two PCI-E ports for
interprocessor communication.

2) Real-Time Operating Systems: A real-time operating
system (RTOS) is a special operating system intended to
serve real-time applications, such as industrial, automo-
tive, aviation, military, and so on [18]. QNX is a popular
commercial RTOS widely used in the automotive indus-
try. The QNX kernel contains only CPU scheduling, inter-
process communication, interrupt redirection, and timers.
Everything else runs as a user process, including a special
process known as proc that performs process creation

1700 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

and memory management by operating in conjunction
with the microkernel [19]. This is achieved by two key
mechanisms—subroutine-call-type interprocess communi-
cation and a boot loader that loads an image which con-
tains not only the kernel but also any desired collection of
user programs and shared libraries. There are no device
drivers in the kernel.

Another popular commercial RTOS is VxWorks, which
is designed for use in embedded systems requiring real-
time, deterministic performance and, in many cases, safety
and security certification [20]. VxWorks supports mul-
tiple architectures including Intel architecture, POWER
architecture, and ARM architectures. VxWorks have been
used in multicore asymmetric multiprocessing, symmetric
multiprocessing, and mixed modes.

Both QNX and VxWorks use real-time kernels for
mission-critical applications subject to real-time con-
straints, which guaranty a response within predefined time
constraints. While QNX is based on a message passing
architecture, VxWorks utilizes a shared memory architec-
ture. Message passing is fundamental to the kernel design,
which allows the system to pass information from one
task to another or to several others in the system. Shared
memory architecture refers to a system that has its own
private address space for physically distributed memories.

On kernel design, QNX uses a microkernel, and VxWorks
uses a monolithic kernel. A microkernel leverages system
calls to manage basic services such as address space man-
agement, thread management, and interprocess communi-
cations. A monolithic kernel manages all the basic services
and user-defined services including interprocess commu-
nications in protected kernel space. Therefore, using a
monolithic kernel design, VxWorks is self-contained.

On priority scheduling under QNX, all the processes run
on a priority-driven preemptive basis, meaning the process
with the highest priority gets to access the CPU first and
the priorities range from 0 to 31. The scheduling occurs in
real time, and every thread inherits its parent’s priority by
default. VxWorks, on the other hand, uses only two types
of scheduling algorithms, preemptive priority-based and
round-robin scheduling.

3) Middleware: On top of the RTOS, we need a mid-
dleware layer to bind different autonomous driving ser-
vices together. To achieve this, most existing autonomous
driving solutions utilize the robot operating system (ROS)
[21] or modified versions of ROS. Specifically, ROS is a
communication middleware that facilitates communica-
tions between different parts of an autonomous vehicle
system. For instance, the image capture service publishes
messages through ROS, and both the localization service
and the obstacle detection service subscribe to the pub-
lished images to generate position and obstacle updates.

Although ROS is a popular choice for the operating sys-
tem in autonomous vehicle systems, in practice, it suffers
from a few problems. The first one is reliability; ROS has
a single master and no monitor to recover failed nodes.

Fig. 3. Autonomous driving cloud architecture.

Performance is second; when sending out broadcast mes-
sages, it duplicates the message multiple times, leading to
performance degradation. Security is also a concern; it has
no authentication and encryption mechanisms. Although
ROS 2.0 promised to fix these problems, it has not yet
been extensively tested, and many features are not yet
available. Most importantly, for a piece of software to run
securely and reliably in vehicles, it needs to meet cer-
tain automotive-grade standards, such as ISO26262 [22].
Unfortunately, an automotive-grade middleware is still
missing today.

C. Cloud Subsystem

Autonomous vehicles are mobile systems that, there-
fore, need a cloud subsystem to benefit from the extra
computing power of a cloud subsystem. The two main
functions provided by the cloud include distributed com-
puting and distributed storage. Such a cloud subsystem
has several applications, including simulation, which is
used to verify new algorithms, HD map production, and
deep learning model training [23]. Note that due to the
limitations on communication bandwidth, latency, and reli-
ability, currently, we only perform offline computing tasks
on the cloud. With more advancements in communication
infrastructure, we enable more edge-cloud cooperation in
real-time computing tasks.

1) Simulation: The first application of a cloud platform
system is a simulation. There are two main kinds of
simulation technologies. The first type is to simulate the
environment based on synthetic data; these simulators are
mainly used for the control and planning, especially at
the initial development stage of the algorithm. The second
type of simulator is based on real data playback to verify
the function and performance of different components,
which is mainly used in the iterative process of algorithm
development. Take planning and control algorithm devel-
opment for example, with offline simulations, we verify the
effectiveness of planning and control algorithms, especially
with different corner cases. Then, once the algorithms pass
all the simulation scenarios, we deploy the algorithms in a
vehicle for real-time execution.

As described in [24], the core problem of the sim-
ulator lies in how realistically we simulate the actual
driving environment. No matter how good the simulator

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1701

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

is, the artificial simulation of the scene and the real scene
still has some differences. There are still many unexpected
events in the real scene that cannot be simulated in a sim-
ulator. Therefore, if real traffic data are used to reproduce
the real scene, better test results will be achieved compared
to the artificial simulation of the scene.

However, the major problem of replaying real-world
data is the computing power required to process it. In
order to reproduce the scene of every section of the real
world on the simulator, the autonomous vehicles need to
collect the information of each section of the road. This
amount of data cannot be processed on single machines.
In addition, in each scene, it is further broken down into
basic fragments and rearrange the combinations of these
fragments to generate more test cases. However, this would
generate even more data and add more burden to the
simulation platform which is already stressed.

2) HD Map Generation: As detailed in [25], HD maps
are generated in the following steps.

Pose Estimation: For map data collection vehicles, getting
accurate poses (location and orientation) of the vehicles is
key to generating HD maps. If the poses of the vehicles col-
lecting map data are inaccurate, it is impossible to produce
precise maps. Once we have the accurate poses of the data-
collecting vehicles, and with accurate sensor installation
information such as how the sensors are mounted and their
relative angles to the vehicle frame, we could calculate the
accurate poses of the generated point clouds.

Map Data Fusion: Once we have accurate poses, the next
step is map data fusion. Map data here includes LiDAR 3-
D point clouds and camera images. In this step, multiple
scans of point clouds are calibrated and then aligned to
generate denser point clouds, and the generated point
clouds and captured images are then registered to each
other. This way, we could use the point clouds to get
the 3-D location of objects and use the registered images
to extract semantic information. Note that, point clouds
accurately provide 3-D positions but usually do not allow
semantic information extraction, while on the other hand,
images are great for semantic information extraction.
By combining point clouds and captured images, we allow
both accurate poses extraction and semantic information
extraction.

Three-Dimensional Object Location Detection: For basic
road elements whose geometry and precise locations are
important (e.g., lane boundaries, curbs, traffic lights,
overpasses, railway tracks, guardrails, light poles, speed
bumps, even potholes, etc.), we need to register their
precise 3-D locations and geometries in the HD maps.

Semantics/Attribute Extraction: At last, we extract
semantics and attributes from captured data and integrate
these into the HD Maps. The semantic information includes
lane/road model construction, traffic signs recognition and
their association with lanes, the association of traffic lights
with lanes, road marking semantics extraction, road ele-
ments, and so on.

3) Model Training: The second application this
infrastructure needs to support is offline model training.
As we use different deep learning models in autonomous
driving, it is imperative to provide updates that will
continuously improve the effectiveness and efficiency of
these models. However, since the amount of raw data
generated is enormous, we would not be able to achieve
fast model training using single servers.

One effective way to achieve high performance is
through the utilization of heterogeneous computing and
high-throughput storage systems. As described in [23],
Liu et al. integrated a distributed computing platform,
a heterogeneous computing acceleration layer, and a dis-
tributed storage layer together to deliver an extremely
high-performance and high-throughput distributed train-
ing engine. Specifically, to synchronize the nodes, at the
end of each training iteration, this system summarizes
all the parameter updates from each node, performs cal-
culations to derive a new set of parameters, and then
broadcasts the new set of parameters to each node so
they start the next iteration of training. It is the role of
the parameter server to efficiently store and update the
parameters.

III. I N N O VAT I O N S O N T H E V E H I C U L A R
C O M P U T I N G E D G E

In this Section, we review the latest progress in the
design of edge computing systems for autonomous driving
applications. First, we start with benchmark suites avail-
able for evaluating edge computing system designs. Sec-
ond, we review different approaches in designing com-
puter architectures for autonomous driving workloads.
Third, we describe the designs of runtime layers for effi-
cient mapping of incoming workloads onto heterogeneous
computing units. Fourth, we discuss the designs of middle-
ware for binding different autonomous driving functional
modules. Last, we present three examples of autonomous
driving edge computing systems.

A. Benchmark Tools

To improve a computing system, the most effective tool
is a standard benchmark suite to represent the workloads
widely used in the target applications. The same princi-
ple applies when it comes to designing and improving
edge computing systems for autonomous vehicles. Cur-
rent research in this area is divided into two categories:
data sets and workloads. KITTI [26], [27] was the first
benchmark data set related to autonomous driving. It is
composed of rich vision sensor data with labels, such
as monocular/stereo image data and 3-D LiDAR data.
According to different data types, it also provides a ded-
icated method to generate the ground truth and to cal-
culate the evaluation metrics. KITTI was built for evalu-
ating the performance of algorithms in the autonomous
driving scenario, including but not limited to visual odom-
etry, lane detection, object detection, and object tracking.

1702 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

In addition to KITTI, there are some customized bench-
mark data sets for each algorithm, such as the Technical
University of Munich Red Green Blue-Depth (TUM RGB-
D) [28] for RGB-D simultaneous localization and mapping
(SLAM), PASCAL3D [29] for 3-D object detection, and
the MOTChallenge benchmark [30], [31] for multitarget
tracking. These kinds of data sets serve as very good data
sources for stressing edge computing systems.

Another class of related benchmark suites is designed
to benchmark the performance of novel hardware archi-
tectures and software framework, which usually consists
of a set of computer vision kernels and applications.
The San Diego Vision Benchmark Suite (SD-VBS) [32]
and MEVBench [33] both are performance benchmark
suites for mobile computer vision system. SD-VBS provides
single-threaded C and MATLAB implementations of nine
high-level vision applications. MEVBench is an extended
benchmark based on SD-VBS. It provides single-threaded
and multithreaded C++ implementations of 15 vision
applications. However, these two benchmarks are prior
works in the field, so they are not targeted toward hetero-
geneous platforms such as GPUs and did not contain novel
workloads, such as the deep learning algorithms. SLAM-
Bench [34] concentrates on using a complete RGB-D SLAM
application to evaluate novel heterogeneous hardware.
It takes KinectFusion [35] as the implementation and pro-
vided C++, OpenMP, OpenCL, and CUDA versions of key
function kernels for heterogeneous hardware. These efforts
are a step in the right direction, but we still need a compre-
hensive benchmark that contains diverse workloads that
cover varied application scenarios of autonomous vehicles
(like the MAVBench [126] for micro aerial vehicle system
benchmarking) to evaluate the autonomous driving edge
computing systems as we mentioned above.

CAVBench is a released benchmark suite specially devel-
oped for evaluating autonomous driving computing system
performance [36]. It summarizes four application scenar-
ios on CAVs: autonomous driving, real-time diagnostics,
in-vehicle infotainment, and third-party applications, and
chooses six classic and diverse real-world on vehicle appli-
cations as evaluation workloads, which are SLAM, object
detection, object tracking, battery diagnostics, speech
recognition, and edge video analysis. CAVBench takes four
real-world data sets as the standard input to the six work-
loads and generates two categories of output metrics. One
metric is an application perspective metric, which includes
the execution time breakdown for each application, help-
ing developers find the performance bottleneck in the
application side. Another is a system perspective metric,
which is the Quality of Service–Resource Utilization curve
(QoS-RU curve). The QoS-RU curve is used to calculate
the matching factor (MF) between the application and the
computing platform on autonomous vehicles. The QoS-
RU curve is considered as a quantitative performance
index of the computing platform that helps researchers
and developers optimize on-vehicle applications and CAVs
computing architecture. We hope to see more research in

the area of benchmarking for autonomous vehicle work-
loads, but currently, CAVBench serves as a good starting
point to study edge computing systems for autonomous
driving.

As autonomous driving is still a fast developing
field, we hope to see continuous effort to incorporate
more dynamic workloads and data to cover emerging
autonomous driving usage scenarios. In addition, stan-
dardized scoring methods are required (but still missing)
to rank different edge computing systems based on differ-
ent optimization metrics.

B. Computing Architectures

Once we have standard benchmark suites, we start
developing suitable architectures for autonomous driving
workloads. Liu et al. [1] proposed a computer architec-
ture for autonomous vehicles which fully utilizes hybrid
heterogeneous hardware. In this work, the applications for
autonomous driving are divided into three stages: sens-
ing, perception, and decision-making. The authors com-
pared the performance of different hardware running basic
autonomous driving tasks and concluded that localization
and perception as the bottlenecks of autonomous driving
computing systems, and they also identified the need for
different hardware accelerators for different workloads.
Furthermore, the authors proposed and developed an
autonomous driving computing architecture and software
stack that is modular, secure, dynamic, high-performance,
and energy-efficient. By fully utilizing heterogeneous com-
puting components, such as CPU, GPU, and DSP, their
prototype system on an ARM Mobile SoC consumes 11 W
on average and is able to drive a mobile vehicle at 5 mph.
In addition, the authors indicated that with more comput-
ing resources, the system would be able to process more
data and would eventually satisfy the need of a production-
level autonomous driving system.

Similarly, Lin et al. [37] explored the architectural
constraints and acceleration of the autonomous driving
system. The authors presented and formalized the design
constraints of autonomous driving systems in performance,
predictability, storage, thermal, and power when building
autonomous driving systems. To investigate the design
of the autonomous driving systems, the authors devel-
oped an end-to-end autonomous driving system based on
machine learning algorithmic components. Through the
experiments on this system, the authors identified three
computational bottlenecks, namely, localization, object
detection, and object tracking. To design a system which
meets all the design constraints, the authors also explored
three different accelerator platforms to accelerate these
computational bottlenecks. The authors demonstrated that
GPU, FPGA, and ASIC-accelerated systems could effec-
tively reduce the tail latency of these algorithms. Based
on these acceleration systems, the authors further explored
the tradeoffs among performance, power, and scalability
of the autonomous driving systems. Their conclusion is

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1703

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

that although power-hungry accelerators like GPUs pre-
dictably deliver the computation at low latency, their
high power consumption, further magnified by the cool-
ing load to meet the thermal constraints, significantly
degrades the driving range and fuel efficiency of the
vehicle. Finally, the authors indicated that computational
capability remains the bottleneck that prevents them from
benefiting from the higher system accuracy enabled by
higher resolution cameras.

Interestingly, in their pioneering architectural explo-
ration work, the authors discussed above both concluded
that localization and perception are the computing bottle-
necks and heterogeneous computing is a feasible approach
to accelerate these workloads. For localization accelera-
tion, Tang et al. [38] proposed a heterogeneous architec-
ture for SLAM [38]. The authors first conducted a thorough
study to understand visual inertial SLAM performance
and energy consumption on existing heterogeneous SoCs.
The initial findings indicate that existing SoC designs
are not optimized for SLAM applications, and systematic
optimizations are required in the IO interface, the memory
subsystem, as well as computation acceleration. Based on
these findings, the authors proposed a heterogeneous SoC
architecture optimized for visual inertial SLAM applica-
tions. Instead of simply adding an accelerator, the authors
systematically integrated direct IO, feature buffer, and a
feature extraction accelerator. To prove the effectiveness
of this design, the authors implemented the proposed
architecture on a Xilinx Zynq UltraScale MPSoC and were
able to deliver over 60 frames/s performance with average
power less than 5 W. These results verify that the pro-
posed architecture is capable of achieving performance and
energy consumption optimization for visual inertial SLAM
applications.

Similarly, to solve the localization computing problem,
Zhang et al. [39] proposed an algorithm and hardware
codesign methodology for visual–inertial odometry (VIO)
systems, in which the robot estimates its ego-motion (and
a landmark-based map) from the onboard camera and
IMU data. The authors argued that scaling down VIO to
miniaturized platforms (without sacrificing performance)
requires a paradigm shift in the design of perception algo-
rithms, and the authors advocated a codesign approach
in which algorithmic and hardware design choices are
tightly coupled. In detail, the authors characterized the
design space by discussing how a relevant set of design
choices affects the resource-performance tradeoff in VIO.
Also, the authors demonstrated the result of the codesign
process by providing a VIO implementation on specialized
hardware and showing that such implementation has the
same accuracy and speed of a desktop implementation
while requiring a fraction of the power.

Besides academic research, PerceptIn has released
a commercial production SLAM system titled
DragonFly+ [40]. DragonFly+ is an FPGA-based real-time
localization module with several advanced features:
1) hardware synchronizations among the four image

channels as well as the IMU; 2) a direct IO architecture
to reduce off-chip memory communication; and 3) a fully
pipelined architecture to accelerate the image processing
frontend. In addition, parallel and multiplexing processing
techniques are employed to achieve a good balance
between bandwidth and hardware resource consumption.
Based on publicly available data, for processing four-
way 720p images, DragonFly+ achieves 42 frames/s
performance while consuming only 2.3 W of power.
In comparisons, Nvidia Jetson TX1 GPU SoC achieves
9 frames/s at 7 W and Intel Core i7 achieves 15 frames/s
at 80 W. Therefore, DragonFly+ is 3× more power efficient
and delivers 5× of computing power compared to Nvidia
TX1, and 34× more power efficient and delivers 3× of
computing power compared Intel Core i7.

For perception acceleration, most recent research has
focused on the acceleration of deep convolutional neural
networks (CNNs). To enable CNN accelerators to sup-
port a wide variety of different applications with suffi-
cient flexibility and efficiency, Liu et al. [41] proposed a
novel domain-specific instruction set architecture (ISA) for
neural network accelerators. The proposed ISA is a load-
store architecture that integrates scalar, vector, matrix,
logical, data transfer, and control instructions, based on a
comprehensive analysis of existing neural network accel-
eration techniques. The authors demonstrated that the
proposed ISA exhibits strong descriptive capacity over a
broad range of neural network acceleration techniques and
provides higher code density than general-purpose ISAs
such as x86, Microprocessor without Interlocked Pipeline
Stages (MIPS), and GPGPU.

Realizing that data movement is a key bottleneck for
CNN computations, Chen et al. [42] presented a dataflow
to minimize the energy consumption of data movement
on a spatial architecture. The key is to reuse local data
of filter weights and feature map pixels, or activations,
in the high-dimensional convolutions, and minimize data
movement of partial sum accumulations. The proposed
dataflow adapts to different CNN shape configurations and
reduces all types of data movement by maximally utilizing
processing engine (PE) local storage, spatial parallelism,
and direct inter-PE communication. Through the CNN
configurations of AlexNet, evaluation experiments show
that the proposed dataflow for more energy efficient
than other dataflows for both convolutional and fully
connected layers.

Also, memory access latency and throughput are often
bottlenecks for neural network computations. One tech-
nique that has the potential to be used for the main
memory is the metaloxide resistive random access memory
(ReRAM). Moreover, with the crossbar array structure,
ReRAM performs matrix–vector multiplication more effi-
ciently and has been widely studied in accelerations of
CNN applications. To accelerate CNN computations from
the memory side, Chi et al. [43] proposed a processor-
in-memory (PIM) architecture to accelerate CNN appli-
cations in ReRAM based main memory. In the proposed

1704 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

design, a portion of ReRAM crossbar arrays is configured
as accelerators for CNN applications or as normal memory
for larger memory space. The microarchitecture and cir-
cuit designs are provided enable the morphable functions
with an insignificant area overhead. Benefiting from both
the PIM architecture and the efficiency of using ReRAM
for CNN computation, the proposed design achieved sig-
nificant performance improvement and energy savings,
demonstrating the effectiveness of CNN accelerations from
the memory side.

We have seen much recent progress on acceleration
localization and perception functions, with many stud-
ies focused on reconfigurable fabrics [44]–[48]; how-
ever, with limited chip area, it is inefficient to integrate
one accelerator for each perception and localization task.
Therefore, the efficient utilization of reconfigurable fab-
rics is a major challenge for autonomous driving edge
computing design. For instance, the object tracking task
is triggered by the object recognition task and the traffic
prediction task is triggered by the object tracking task. The
data uploading task is also not needed all the time since
uploading data in batches usually improves throughput
and reduces bandwidth usage. To optimize for chip area
and power consumption, one way is to have these tasks
time-share an FPGA chip in the system. It has been demon-
strated that using partial-reconfiguration techniques [49],
an FPGA soft core could be changed within less than a few
milliseconds, making time-sharing possible in real time.

In the near future, as more autonomous driving work-
loads and usage scenarios emerge, we look forward to the
designs of more accelerators targeted for these workloads.
Also, we expect to see more exploration studies on the
cache, memory, and storage architectures for autonomous
driving workloads. In addition, hardware security for
autonomous driving is of utmost importance. Within a
decade, the research community and the industry shall be
able to come up with a “general-purposed” architecture
design for autonomous driving workloads.

C. Runtime Systems

With heterogeneous architectures ready for autonomous
driving tasks, the next challenge is how to dispatch
incoming tasks to different computing units at runtime to
achieve optimal energy efficiency and performance. This
is achieved through a runtime layer. Designing runtime
for heterogeneous autonomous driving systems is a whole
new research area with tremendous potentials, as most
existing runtime designs focus on either mapping one
algorithm to one type of accelerators or on scheduling for
homogeneous systems or heterogeneous systems with a
single accelerator.

Several existing designs focus on mapping one deep
learning or computer vision workload to heterogeneous
architectures: Hegde et al. [50] propose a framework
for easy mapping of CNN specifications to accelerators
such as FPGAs, DSPs, GPUs, and Reduced Instruction Set
Computer (RISC) multicores. Malik et al. [51] compare

the performance and energy efficiency of computer
vision algorithms on on-chip FPGA accelerators and GPU
accelerators. Many studies have explored the optimization
of deep learning algorithms on embedded GPU or FPGA
accelerator [52], [53]. There have also been many
projects on optimizing computer vision related tasks
on embedded platforms. Honegger et al. [54] propose
FPGA acceleration of embedded computer vision. Satria
et al. [55] perform platform-specific optimizations of
face detection on embedded GPU-based platform and
reported real-time performance. Vasilyev et al. [56]
evaluate computer vision algorithms on programmable
architectures. Nardi et al. [57] present a benchmark suite
to evaluate dense SLAM algorithms across desktop and
embedded platforms in terms of accuracy, performance,
and energy consumption. However, these designs did not
consider the complexity of integrating the various kinds of
workloads into a system and only focus on mapping one
task to different accelerators.

Other existing designs focus on scheduling for hetero-
geneous architectures with one accelerator that has been
broadly studied for single-ISA multiprocessors, such as
asymmetric multicore architectures, i.e., big and small
cores, and multi-ISA multiprocessors such as CPU with
GPU. On the single-ISA multiprocessor side, much work
has been done at the operating system level to map work-
load onto most appropriate core type in run time. Koufaty
et al. [58] identified that the periods of core stalls is a
good indicator to predict the core type best suited for
an application. Based on the indicator, a biased schedule
strategy was added to operating systems to improve system
throughput. Saez et al. [59] proposed a scheduler that adds
efficiency specialization and thread-level parallelism (TLP)
specialization to operating systems to optimize throughput
and power at the same time. Efficient specialization maps
CPU-intensive workloads onto fast cores and memory-
intensive workloads onto slow cores. TLP specialization
uses fast cores to accelerate a sequential phase of parallel
applications and use slow cores for the parallel phase to
achieve energy efficiency. On the asymmetric multicore
architectures side, Jiménez et al. [60] proposed a user-level
scheduler for CPU with GPU like system. It evaluates and
records the performance of a process on each PE at the ini-
tial phase. Then, based on this history information, it maps
the application onto the best suited PE. Luk et al. [61]
focus on improving the latency and energy consumption of
a single process. It uses dynamic compilation to character-
ize workloads, determines optimal mapping, and generates
codes for CPUs and GPUs.

Unlike existing runtime designs, Liu et al. [62] proposed
PerceptIn Runtime (PIRT), the first runtime framework
that is able to dynamically map various computer vision
and deep learning workloads to multiple accelerators and
to the cloud. The authors first conducted a comprehensive
study of emerging robotic applications on heterogeneous
SoC architectures. Based on the results, the authors
designed and implemented PIRT to utilize not only the

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1705

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

on-chip heterogeneous computing resources but also the
cloud to achieve high performance and energy efficiency.
To verify its effectiveness, the authors have deployed
PIRT on a production mobile robot to demonstrate that
full robotic workloads, including autonomous navigation,
obstacle detection, route planning, large map generation,
and scene understanding, are efficiently executed
simultaneously with 11 W of power consumption.

The runtime layer connects autonomous driving soft-
ware and hardware, but there are several upcoming chal-
lenges in the design of runtime systems for autonomous
driving. First, as the computing system becomes more
heterogeneous, the runtime design becomes more com-
plicated in order to dynamically dispatch incoming work-
loads. Second, as more edge clouds become available,
the runtime system needs to be cloud-aware and able to
dispatch workloads to edge clouds. Third, the runtime
shall provide a good abstraction to hide all the low-level
implementations.

D. Middleware

Robotic systems, such as autonomous vehicle systems,
often involve multiple services, with a lot of dependencies
in between. To facilitate the complex interactions between
these services, to simplify software design, and to hide
the complexity of low-level communication and the het-
erogeneity of the sensors, a middleware is required.

An early design of robotic middleware is Miro, a distrib-
uted object-oriented framework for mobile robot control,
based on Common Object Request Broker Architecture
technology (COBRA) [63]. The mirocore components have
been developed under the aid of Adaptive Communications
Environment, an object-oriented multiplatform framework
for OS-independent interprocess, network, and real-time
communication. Mirocore provides generic abstract ser-
vices like localization or behavior engines, which is applied
on different robot platforms. Miro supports several robotic
platforms including Pioneers, B21, robot soccer robots, and
various robotic sensors.

ORCA is an open-source component-based software
engineering framework developed for mobile robotics with
an associated repository of free, reusable components
for building mobile robotic systems [64]. ORCA’s project
goals include enabling software reuse by defining a set of
commonly-used interfaces; simplifying software reuse by
providing libraries with a high-level convenient application
program interface (API); and encouraging software reuse
by maintaining a repository of components.

Urbi is open-source cross-platform software used to
develop applications for robotics and complex systems
[65]. Urbi is based on the UObject distributed C++

component architecture. Urbi includes the urbiscript
orchestration language, a parallel and event-driven script
language. In this design, UObject components are plugged
into urbiscript as native objects to specify their interactions
and data exchanges. UObjects are linked to the urbiscript

interpreter, or executed as autonomous processes in
“remote” mode, either in another thread, another process,
a machine on the local network, or a machine on a
distant network.

RT-middleware is a common platform standard for dis-
tributed object technology based robots based on dis-
tributed object technology [66]. RT-middleware supports
the construction of various networked robotic systems
through the integration of various network-enabled robotic
elements called RT-components. In the RT-middleware,
robotics elements, such as actuators, are regarded as RT-
components, and the whole robotic system is constructed
by connecting these RT-components. This distributed archi-
tecture helps developers to reuse the robotic elements and
boosts the reliability of the robotic system.

OpenRDK is an open-source software framework for
robotics for developing loosely coupled modules [67].
It provides transparent concurrency management, inter-
process via sockets, and intraprocess via shared memory.
Modules for connecting to simulators and generic robot
drivers are provided.

The above-mentioned middleware projects mostly
focused on providing a software component management
framework for mobile robots and they were not used in
autonomous vehicles. On the other hand, ROS has been
widely used in autonomous vehicle development [21],
mainly due to the popularity of ROS amount robotic devel-
opers and the richness of its software packages. However,
as discussed in Section II, at its current state, ROS is not
suitable for the production deployment of autonomous
vehicles as it suffers from performance, reliability, and
security issues.

PerceptIn Operating System (PIOS) is a developed
extremely light-weighted middleware to facilitate the com-
munications between services on production low-speed
autonomous vehicles [68]. PIOS builds on top of Nanomsg,
a networking library written in C that allows for easy
integration of shared memory, transmission control pro-
tocol (TCP)/IP, in-process messaging, and web sockets
while retaining efficiency [69]. Compared to ROS, PIOS
is extremely lightweight, able to achieve a startup memory
footprint of merely 10 KB, which is negligible comparing
to 50 MB of ROS startup footprint.

OpenEI [70] is a lightweight software platform to equip
edges with intelligent processing and data sharing capa-
bility. Due to the computing power limitation, weak data
sharing, and collaborating, the deployment of artificial
intelligence (AI)-based algorithms has faced many chal-
lenges. The goal of OpenEI is that any hardware, such
as Raspberry Pi, will become an intelligent edge after
deploying OpenEI.

The middleware layer facilitates communication
between different autonomous driving services, but we
summarize several challenges. First, the middleware
should impose minimal computing overhead and memory
footprint, thus making it scalable. Second, as some
autonomous driving services may stay in edge clouds,

1706 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

Table 1 Summary of Computing Edge Designs

the middleware should enable a smooth edge client
and cloud communication. Third and most importantly,
the middleware should be secure and reliable to guarantee
the quality of service and autonomous vehicle safety.

E. Case Studies

To simultaneously enable multiple autonomous driving
services, including localization, perception, and speech
recognition workloads on affordable embedded systems,
Tang et al. designed and implemented Π-Edge, a complete
edge computing framework for autonomous robots and
vehicles [68]. The challenge of designing such a system
include the following: managing different autonomous
driving services and their communications with minimal
overheads, fully utilizing the heterogeneous computing
resources on the edge device, and offloading some of the
tasks to the cloud for energy efficiency.

To achieve these, first, the authors developed a run-
time layer to fully utilize the heterogeneous computing
resources of low-power edge computing systems; second,
the authors developed an extremely lightweight middle-
ware to manage multiple autonomous driving services and
their communications; third, the authors developed an
edge-cloud coordinator to dynamically offload tasks to the
cloud to optimize client system energy consumption.

OpenVDAP is another real-world edge computing
system which is a full-stack edge-based platform including
vehicle computing unit, an isolation-supported and
security and privacy-preserved vehicle operation system,
an edge-aware application library, as well as task
offloading and scheduling strategy [71]. OpenVDAP allows
connected and autonomous vehicles (CAVs) to dynamically
examine each task’s status, computation cost, and the
optimal scheduling method so that each service could be
finished in near real time with low overhead. OpenVDAP is
featured as a two-tier architecture via a series of systematic
mechanisms that enable CAVs to dynamically detect
service status and to identify the optimal offloading des-
tination so that each service could be finished at the right
time. In addition, OpenVDAP offers an open and free edge-
aware library that contains how to access and deploy edge-
computing-based vehicle applications and various common
used AI models, thus enabling researchers and developers
to deploy, test, and validate their applications in the real

environment. Novel applications such as AutoVAPS benefit
from it [72]. AutoVAPS is an Internet-of-Things (IoT)-
enabled public safety service, which integrates body-worn
cameras and other sensors on the vehicle for public safety.

HydraOne is an indoor experimental research and
education platform for edge computing in CAVs scenar-
ios [127]. HydraOne is a full-stack research and education
platform from hardware to software, including mechanical
components, vision sensors, as well as computing and com-
munication system. All resources on HydraOne are man-
aged by the Robot Operating System [76], and the data
analytics on HydraOne is managed by OpenVDAP, which
is a full-stack edge based platform [71]. HydraOne has
three key characteristics: design modularization, resource
extensibility, and openness, as well as function isolation,
which allows users to conduct various research and educa-
tion experiments of CAVs on HydraOne.

IV. I N N O VAT I O N S O N T H E V 2 X
I N F R A S T R U C T U R E

One effective method to alleviate the huge computing
demand on autonomous driving edge computing systems
is V2X technologies. V2X is defined as a vehicle commu-
nication system that consists of many types of communica-
tions: V2V, vehicle-to-network (V2N), vehicle-to-pedestrian
(V2P), V2I, vehicle-to-device (V2D), and vehicle-to-grid
(V2G). Currently, most research focuses on V2V and V2I.
While conventional autonomous driving systems require
costly sensors and edge computing equipment within the
vehicle, V2X takes a different and potentially complimen-
tary approach by investing in road infrastructure, thus
alleviating the computing and sensing costs in vehicles.

With the rapid deployment of edge computing facilities
in the infrastructure, more and more autonomous driving
applications have started leveraging V2X communications
to make the in-vehicle edge computing system more effi-
cient. One popular direction is cooperative autonomous
driving. The cooperation of autonomous driving edge
computing system with V2X technology makes it pos-
sible to build a safe and efficient autonomous driving
system [73]. However, the application and deployment
of cooperative autonomous driving systems are still open
research problems. In this section, we discuss the evolution
of V2X technology and present four case studies of V2X

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1707

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

for autonomous driving: convoy driving, cooperative lane
change, cooperative intersection management, and coop-
erative sensing.

A. Evolution of V2X Technology

In the development of V2X technology, many researchers
have contributed solutions to specific challenges of V2X
communication protocols. The intervehicle hazard warn-
ing (IVHW) system is one of the earliest studies to take the
idea of improving vehicle safety based on communication
[74]. The project is funded by the German Ministry of Edu-
cation and Research and the French government. IVHW
is a communication system in which warning messages
are transmitted as broadcast messages in the frequency
band of 869 MHz [75]. IVHW takes a local decision-
making strategy. After the vehicle receives the message,
it will do relevant checks to decide whether the warning
message is relevant and should be shown to the driver. The
majority of the research efforts have been made on the
design of relevance check algorithms. However, as IVHW
takes a broadcast mechanism to share the message,
there is a huge waste in both bandwidth and computing
resources.

Compared with the broadcast message in IVHW, ad hoc
networking is a better solution to support multihop inter-
vehicle communication [76]. FleetNet is another research
project taking the idea of vehicle communication [77], and
it is based on ad hoc networking. In addition, the FleetNet
project also wants to provide a communication platform
for Internet-protocol-based applications. FleetNet is imple-
mented based on the IEEE 802.11 Wireless LAN system
[78]. For V2V communication, if two vehicles are not
directly connected wirelessly, it would need other vehicles
to forward the message for them. Designing the routing
and forwarding protocol is a major challenge. In order
to meet the requirements for adaptability and scalability,
FleetNet proposed a position-based forwarding mecha-
nism. The idea is to choose the next hop to forward the
message based on the geographical location of the vehicle.

CarTALK 2000 is also a project working on using an ad
hoc communication network to support co-operative driver
assistance applications [79]. There is a major challenge
for ad hoc-based routing in V2V communication because
the vehicle network topology is dynamic and the number
of vehicles is frequently changing [80]. In order to solve
the problem, a spatial aware routing algorithm is proposed
in CarTALK 2000, which takes spatial information like
underlying road topology into consideration. Compared
with FleetNet, CarTALK 2000 achieves better performance
as it uses spatial information as additional input for routing
algorithm. Another similar part of CarTALK 2000 and
FleetNet is that they are both based on WLAN technology.
AKTIV is another project that is the first one tried to apply
cellular systems in driving safety applications [81]. One
of the reasons that FleetNet and CarTALK 2000 project
built their system based on WLAN technology is that the

latency of safety-related applications required is less than
500 ms. However, with the assumption that a long-term
evolution (LTE) communication system is greatly further
developed, cellular systems are a good choice for sparse
vehicle networking.

Meanwhile, several research projects have focused on
warning applications based on V2V communication. Wire-
less local danger warning (WILLWARN) proposed a risk
detection approach based on in-vehicle data. The warning
message includes obstacles, road conditions, low visibility,
and construction sites [82]. Unlike other projects focus-
ing on the V2X technology itself, WILLWARN focuses on
enabling V2X technology in some specific scenario such
as the danger spot. Suppose some potential danger is
detected in a specific location, but there is no vehicle
within the communication range that supports the V2X
communication technology to share the warning mes-
sage [83]. To share warning messages, WILLWARN pro-
posed a decentralized distribution algorithm to transmit
the warning message to vehicles approaching the danger
spot through V2V communication. The project Network
on Wheels (NoW) was one work which takes the idea
of FleetNet to build vehicle communication based on
802.11 WLAN and ad hoc networking [84]. The goal of
NoW is to set up a communication platform to support both
mobility and Internet applications. For example, a hybrid
forwarding scheme considering both network layer and
application layer is developed. Also, security and scalability
issues are discussed in NoW.

As the infrastructure also plays a very important part
in V2X technology, several efforts focus on building safety
applications based on the cooperation with infrastructure.
SAFESPOT is an integrated project that is aimed at using
roadside infrastructure to improve driving safety [85].
Through combining information from the on-vehicle sen-
sors and infrastructure sensors, SAFESPOT detects danger-
ous situations and shares the warning messages in real
time. Also, the warning forecast is improved from the
milliseconds level to the seconds level, thus giving the
driver more time to prepare and take action. Five appli-
cations are discussed in SAFESPOT, including hazard and
incident warning, speed alert, road departure prevention,
cooperative intersection collision prevention, and safety
margin for assistance and emergency vehicles [86].

In 2007, a nonprofit organization called the Car 2 Car
Communication Consortium (C2C-CC) was set up to com-
bine all solutions from different former projects to make
a standard for V2X technology. Since 2010, the focus of
work on V2X technology has moved from research topics to
the real environment deployment of the whole intelligent
transportation system (ITS). One of the most popular
deploy projects is simTD [73], targeted on testing the V2X
applications in a real metropolitan field. In simTD, all
vehicles connect with each other through dedicated short-
range communications (DSRC) technology that is based on
IEEE 802.11p. Meanwhile, vehicles also communicate with
roadside infrastructure using IEEE 802.11p. The system

1708 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

Table 2 Evolution of V2X Communication Technology

architecture of simTD is divided into three parts: the ITS
vehicle station, the ITS roadside station, and the ITS
central station. Applications for testing in simTD include
traffic situation monitoring, traffic flow information and
navigation, traffic management, driving assistance, local
danger alert, and Internet-based applications.

Cellular V2X (C-V2X) is designed as a unified connec-
tivity platform which provides low-latency V2V and V2I
communications [87]. It consists of two modes of commu-
nications. The first mode uses direct communication links
between vehicles, infrastructure, and pedestrian. The sec-
ond mode relies on network communication, which lever-
ages cellular networks to enable vehicles to receive infor-
mation from the Internet. C-V2X further extends the com-
munication range of the vehicle and it supports the higher
capacity of data for information transmission for vehicles.

B. Cooperative Autonomous Driving

Cooperative autonomous driving is divided into two
categories: one is cooperative sensing and the other is
cooperative decision [88]. Cooperative sensing focuses on
sharing sensing information between V2V and V2I. This
data sharing increases the sensing range of autonomous
vehicles, making the system more robust. The cooperative
decision enables a group of autonomous vehicles to coop-
erate and make decisions.

Several studies have focused on the exploration of
applications for cooperative autonomous driving. In [88],
four use cases including convoy driving, cooperative lane
change, cooperative intersection management, and coop-
erative sensing are demonstrated. According to the design
of AutoNet2030 [89], a convoy is formed of vehicles on
multilanes into a group and the control of the whole group
is decentralized. The safety and efficient control of the
convoy require high-frequency exchanges of each vehicle’s
dynamic data. As shown in Fig. 4, a roadside edge server

and a cloud server are used to coordinate and manage the
vehicles and convoys to go through crossroads safely. One
convoy control algorithm in [90] only exchanges dynamic
information of the nearby vehicle rather than for all the
vehicles within a convoy. This design makes the algorithm
easy to converge.

Cooperative lane change is designed to make vehi-
cles or convoys to collaborate when changing lanes. Proper
cooperative lane change cannot only avoid traffic accidents
but it also reduces traffic congestion [91]. MOBIL [92] is
a general model whose objective is to minimize overall
braking induced by lane changes.

Cooperative intersection is also helpful for safe driving
and traffic control. The World’s Smartest Intersection in
Detroit [93] focuses on safety and generates data that

Fig. 4. V2X communications in crossroads.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1709

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

pinpoint areas where traffic-related fatalities and injuries
are reduced. Effective cooperative intersection manage-
ment is based on the coordination mechanism between
V2V and V2I.

Cooperative sensing increases the autonomous vehicle
sensing range through V2X communication. Meanwhile,
cooperative sensing also helps in cutting the cost of build-
ing autonomous driving. As vehicles rely more on the
sensors deployed on roadside infrastructure, the cost of
on-vehicle sensors is reduced. In the future, sensor infor-
mation may become a service to the vehicle provided by
the roadside infrastructure.

V2X networking infrastructure is also a very impor-
tant aspect of cooperative autonomous driving. Hetero-
geneous vehicular network (HetVNET) [94] is an initial
work on networking infrastructure to meet the communi-
cation requirements of the ITS. HetVNET integrates LTE
with DSRC [95] because relying on the single wireless
access network cannot provide satisfactory services in
dynamic circumstances. In [96], an improved protocol
stack is proposed to support multiple application scenar-
ios of autonomous driving in HetVNET. In the protocol,
the authors redefined the control messages in HetVNET to
support autonomous driving.

Similarly, the vehicular delay-tolerant network (VDTN)
[97] is an innovative communication architecture, which
is designed for scenarios with long delays and sporadic
connections. The idea is to allow messages to be for-
warded in short-range WiFi connections and reach the
destination asynchronously. This property enables VDTN
to support services and applications even when there is
no end to end path in current Vehicular Ad hoc Network
(VANET). Dias et al. [98] discuss several cooperation
strategies for VDTN. The challenge for cooperation in
VDTN is how to coordinate the vehicle node to share their
constrained bandwidth, energy resources, and storage with
one another. Furthermore, an incentive mechanism that
rewards or punishes vehicles for cooperative behavior is
proposed.

In order to support seamless V2X communication, han-
dover is also a very important topic for V2X networking
infrastructure. Due to the dynamic changing of the net-
working topology and the relatively small range of the
communication coverage, the handover mechanism in a
cellular network is no longer suitable for VANET. Based on
proactive resource allocation techniques, Ghosh et al. [99]
propose a new handover model for VANET. With the help
of proactive handover, cooperative services are migrated
through RSUs with the moving of the vehicle. Hence,
proper designing of proactive handover and resource allo-
cation is essential for developing reliable and efficient
cooperative systems.

The development of edge computing in the automotive
industry is also very inspiring. Automotive Edge Comput-
ing Consortium (AECC) is a group formed by automotive
companies to promote edge computing technologies in
future automobiles [100]. According to an AECC white

paper from 2018, the service scenarios include intelli-
gent driving, HD map, V2Cloud cruise assist, and several
extended services like finance and insurance. In addition,
the white paper discusses the service requirements in
terms of data source, the volume of data generated in the
vehicle, target data traffic rate, response time, and required
availability.

C. Challenges

In order to guarantee the robustness and safety of
autonomous driving systems, autonomous vehicles are
typically equipped with numerous expensive sensors and
computing systems, leading to extremely high costs and
preventing ubiquitous deployment of autonomous vehi-
cles. Hence, V2X is a viable solution in decreasing the costs
of autonomous driving vehicles as V2X enables information
sharing between vehicles and computation offloading to
RSUs. There are several challenges in achieving coopera-
tive autonomous driving. Here, we discuss the challenges
and our vision for application scenario of cooperative
decision and cooperative sensing.

1) Cooperative Decision: The challenge of cooperative
decisions is handling the dynamic changing topology
with a short-range coverage of V2X communications. The
design of VDTN is a good hint to solve this challenge.
Effective proactive handover and resource allocation are
potential solutions. Also, the coming 5G wireless com-
munication [101] also provides a way to handle this
challenge.

2) Cooperative Sensing: The main challenge of coopera-
tive sensing is sharing the information from infrastructure
sensors to autonomous vehicles in real time, and the other
challenge is to dynamically trade off the cost of infrastruc-
ture sensors and on-vehicle sensors. For the first chal-
lenge, the promising edge computing technology is used to
solve the problem [71] because edge computing enables
the edge node(vehicle) and edge server(infrastructure) to
conduct computation and compression to provide real-
time performance. In addition, the tradeoff of cost on
infrastructure sensors and on-vehicle sensors will be deter-
mined by the automobile market. Both the government
and companies will invest much money to support edge
intelligence.

V. V E H I C U L A R E D G E S E C U R I T Y

The previous sections reviewed innovations in an edge
computing infrastructure to make autonomous driving
computing more efficient in terms of performance
and energy consumption. As mentioned above, each
autonomous vehicle is equipped with or supported by
dozens of computing units in the edge and cloud to process
the sensor data, to monitor the vehicles’ status and to
control the mechanical components. Hence, the security
threats against these computing units are of paramount
concern. Specifically, the attacks targeting autonomous

1710 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

vehicles could cause terrible traffic accidents, threatening
both personal and public safety. In this Section, we review
recent advancements in the security of autonomous vehi-
cles, including sensor security, operating system security,
control system security, and communication security. These
security problems cover different layers of the autonomous
driving edge computing stack.

A. Sensors Security

The autonomous vehicles are equipped with various sen-
sors (camera, GNSS, LiDAR, etc.) to enable the perception
of the surrounding environments. The most direct security
threats against autonomous vehicles are attacks against
the sensors. With this attack method, attackers generate
incorrect messages or completely block sensor data so as to
interfere in the autonomous driving without hacking into
the computing system. According to the working principle
of sensors, the attackers have many specific attack methods
to interfere, blind, or spoof each of them [102].

A camera is the basic visual sensor in autonomous
driving systems. Modern autonomous vehicles are usually
equipped with multiple cameras with the same or different
lenses [1], [26]. In general, many autonomous driving
perception workloads take camera images as inputs, for
example, object detection and object tracking. The attack-
ers place fake traffic lights, traffic signs, and traffic objects
(cars or pedestrians) to spoof autonomous vehicles and
let them make the wrong decisions [103]. The cameras
are also interfered with infrared so the attackers use high-
brightness IR laser to blind the cameras, thus preventing
these cameras from providing effective images for the
perception stage [103], [104].

Autonomous vehicles use GNSS and inertial navigation
system (INS) sensors to update vehicles’ real-time loca-
tions. Typical attacks against GNSS sensors are jamming
and spoofing. The attackers could use out-of-band or in-
band signals to intentionally interfere with the function of
the GNSS receiver [105]. They also deploy GNSS trans-
mitter near the autonomous vehicles to deceive the GNSS
receiver by replicating original signals and providing false
locations [103], [105]. In addition, the INS sensors are
sensitive to magnetic fields, so an extra and powerful
magnetic field could effectively interfere with the INS
sensors to produce incorrect orientation of the vehicles
under attack.

LiDAR provides point clouds of the vehicle’s surround-
ings to generate 3-D sensing data of the environments.
LiDAR measures distance to a target by illuminating
the target with pulsed laser light and measuring the
reflected pulses. A smart surface that is absorbent or reflec-
tive deceives LiDAR sensors to miss real obstacles in
traffic [102], and light laser pulse illuminating the LiDAR
could also manipulate the data sensed by the LiDAR,
deceiving the LiDAR to sense objects in incorrect posi-
tions and distances [103]. For ultrasonic sensors and
radars, which are mostly used for passive perception and
the last line of defense for the autonomous vehicles,

Yan et al. [106] have successfully spoofed and jammed
these two kinds of sensors in the Tesla Autopilot system
via the specific signal generator and transmitter.

B. Operating Systems Security

One widely used autonomous vehicle operating system
is ROS. Attackers target ROS nodes and/or ROS messages.
In the ROS running environment, there is no authentica-
tion procedure for message passing and new node creation.
The attackers use the IP addresses and ports on the master
node to create a new ROS node or hijack an existing
one without further authentication [107]. If service on
the node keeps consuming system resources, for example,
memory footprint or CPU utilization, it will impact the
performance of other normal ROS nodes, even crashing the
whole autonomous driving system. The attackers also use
the controlled ROS node to send manipulated messages to
disturb other nodes running and output.

For the attacks on ROS messages, the first security threat
is message capture. The attackers monitor and record every
ROS message topics via the IP address and port on the mas-
ter node. The recorded data are stored in the ROS bag file,
and the attackers play the ROS bag file to resend history
ROS messages, which will affect current ROS messages
communication [107]. The message passing mechanism of
ROS is based on the socket communication so the attackers
sniff the network packets to monitor and intercept the ROS
messages remotely without hacking in the master node
[108], [109]. The attacks on ROS messages do not need
to start or hijack a ROS node, but the security threat level
is not lower than the attack with the ROS node method.

C. Control Systems Security

In modern vehicles, many digital devices and
mechanical components are controlled by electronic
control units (ECUs). The ECUs are connected to each
other via the digital buses, which form the in-vehicle
network. Controller area network (CAN) is the primary
bus protocol in the vehicle [110]. CAN is the typical bus
topology; there is no master/slave node concept in the
CAN bus so any node connected to the CAN bus can send
a message to any other node. Thus, the CAN network
usually uses the priority to control accesses to the bus. The
CAN network is isolated to the external network, but the
attackers hack the digital devices in the vehicle to attack
the CAN and ECUs indirectly, which is very dangerous to
the vehicle and the public.

There are many attack surfaces of the CAN bus. First is
the onboard diagnostics (OBD)-II port, which is used for
vehicle status diagnostics, ECU firmware update, and even
vehicle control. The OBD-II port is connected to the CAN
bus, so the attackers use the OBD-II device and diagnostic
software to sniff the message on the bus or control the
vehicle [111], [112]. The attackers easily gain access to
the CAN bus through OBD-II ports. Second is the media
player (e.g., CD player) in the vehicle. The media player

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1711

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

Table 3 Security Threats and Defense Technologies of CAVs

needs to receive the control message from the driver and
send the status to the screen (UI), so the media player
usually has a connection to the CAN. The attackers easily
flash the malicious code to a CD; when the driver plays
the CD, the malicious code attacks the CAN bus [113].
In addition, the attackers utilize the Bluetooth interface
in the vehicle. Modern vehicles support Bluetooth connec-
tions to smartphones. The attackers use smartphones to
upload malicious applications via Bluetooth to take over
the CAN bus, or they sniff the vehicle status via Bluetooth.
It is important to note that the attackers use this interface
to attack the vehicle remotely.

Once the attacker hijacks the CAN bus, there are secu-
rity threats to the CAN network [111]. First is broadcast
trouble. The CAN message is broadcast to all nodes, and
the attackers capture and reverse-engineer these messages
and inject new messages to induce various actions. Second
is a denial-of-service (DoS) attack. The CAN protocol is
extremely vulnerable to the DoS attack because of the lim-
ited bandwidth. In addition to message flooding attacks,
if one hijacked node keeps claiming highest priority in
the network, it will cause all other CAN nodes to back
off, and the whole CAN network will crash. Last is no
authentication fields. The CAN message does not contain
the authentication fields, which means that any node sends
a packet to any other node without an authentication
process so the attackers use this to control any node in
the CAN network.

D. V2X Security

With V2X, vehicles access the Internet to obtain
real-time traffic data (e.g., real-time map and weather
data) or leverage the cloud computing for autonomous
driving [23], and the vehicle also communicates with other
nodes in the V2X network via some emerging technologies
(e.g., DSRC and LET-V) [114]. This V2X network creates
many new application scenarios for the CAV, but it also
brings more security problems to the vehicles [115]–[117].

The traditional Internet and ad hoc networks suffer
from many security threats, which may occur in the

V2X network but with different manifestations. DoS and
distributed DoS (DDoS) attacks are two basic attack
methods on the Internet. In V2X networks, every node is
an attacker or a victim, causing various traffic problems
[118]. If the infrastructure is the victim, it cannot provide
real-time service for the nearby vehicles. In contrast,
if the vehicle is the victim, it cannot receive the messages
from the infrastructure or cloud, and the DoS attack
also interferes with the performance of other tasks on the
vehicle, causing unacceptable latency of some autonomous
driving applications [102].

In V2X networks, the attackers create multiple vehicles
on the road with the same identity or remain anonymous,
which we call the Sybil attack [119]. The Sybil attack
may enforce the vehicles running on the road to make
way for the fake vehicles and prevent other vehicles from
driving on this road because they are deceived to think
there is a traffic jam. Information forgery is also a common
attack; a vehicle changes its identity or sends fabricated
messages to V2X networks, thus preventing itself from
being detected or to shirk their responsibilities [120].
There are many other traditional network threats, such
as a replay attack and a block hole attack, but the attack
method is similar to the threats mentioned above.

The V2X network brings new types of network nodes,
such as the infrastructure and pedestrian so it will have
new threats that are rare on the traditional Internet. The
first one is about privacy. The communication between
V2P and V2I may be based on some short-range protocol
(Bluetooth low energy (BLE) and DSRC); if access authen-
tication is not strict, privacy of drivers and pedestrians will
be exposed [121]. The second one is about infrastructure.
If infrastructure (RSU) has been attacked and fake traffic
information is broadcast, it influences the running state of
the nearby vehicle.

E. Security for Edge Network and Platforms

Security is a critical topic for edge computing, so sev-
eral works on security for the edge computing system in
some general scenarios may provide solutions for security

1712 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

problems in CAV scenarios. The related work is divided into
two categories: network in edge and running environment
for edge computing.

Bhardwaj et al. [122] proposed ShadowNet, which
deploys the edge functions on the distributed edge
infrastructure and aggregates that information about the
IoT traffic to detect an imminent IoT-DDoS. ShadowNet
detects IoT-DDoS ten times faster than existing approaches
and also prevents 82% of traffic to enter the Internet
infrastructure, reducing security threats. Yi et al. [123]
summarized the method that uses the software-defined
network (SDN) to solve edge network security problems,
such as network monitoring and intrusion detection and
network resource access control. This kind of work will
help us solve the related network threats in CAV scenarios.

Ning et al. [124] evaluated several trusted execution
environments (TEEs) on heterogeneous edge platforms,
such as Intel SGX, ARM TrustZone, and AMD SEV, and
deployed the TEEs on edge computing platform to effi-
ciently improve the security with a low-performance over-
head [124]. Kernel level resource auditing tool (KLRA)
[125] is a KLRA for IoT and edge operating system security.
KLRA takes fine-grained events measured with low cost
and reports the relevant security warning the first time
when the behavior of the system is abnormal with this
device. This kind of work will help us solve the security
problems in the operating system on CAVs.

VI. C O N C L U S I O N

Safety is the most important requirement for autonomous
vehicles; hence, the challenge of designing an edge com-
puting ecosystem for autonomous vehicles is to deliver
enough computing power, redundancy, and security to
guarantee the safety of autonomous vehicles. In this paper,
we reviewed recent advancements and presented chal-
lenges in building edge computing systems for autonomous
vehicles, mainly in three categories: edge computing sys-
tem designs, V2X applications, and autonomous vehicle
security.

In edge computing system designs, we face a system-
atic challenge for delivering more computing power with
reasonable energy consumption, to guarantee the safety of
autonomous vehicles, even at high speed. First, as more
autonomous driving edge computing workloads emerge,
we need to continue developing standard benchmarks
to more accurately evaluate edge computing systems.
Second, although we have seen some recent progress

in utilizing heterogeneous computing architectures for
autonomous driving workloads, more research is required
to improve the edge computer architecture for autonomous
driving. The aim is to deliver more computing power with a
limited chip area and energy budget. Third, with the evolu-
tion of computer architectures, we need to design runtime
layers for efficient mapping of the incoming dynamic work-
loads. Fourth, a reliable, robust, and production-quality
middleware is still missing to bind various autonomous
driving services together. For large-scale deployment of
autonomous vehicles, we hope to see more production-
quality full-edge computing systems that incorporate inno-
vations in these layers.

V2X enables information sharing between vehicles and
computation offloading to RSUs. Hence, V2X not only
alleviates the stress on edge computing systems but also
provides redundancy for sensing, perception, and decision
tasks. Therefore, we see V2X as an effective way to improve
the safety of autonomous vehicles. Yet, several technical
challenges remain such as how the edge computing sys-
tems on different vehicles cooperate to make sensing and
planning decisions, and how to share the information from
infrastructure sensors to autonomous vehicles in real time,
as well as to dynamically trade off the cost on infrastruc-
ture sensors and on-vehicle sensors. With more research
exploring V2X technologies, we hope to see more industrial
standards emerging to define how vehicles cooperate with
each other and with the infrastructure.

The safety of autonomous vehicles is at risk if security
is compromised at any level. As each autonomous vehicle
is equipped with numerous sensors and computing units,
an attacker targets one of the sensors, the computing sys-
tems, the control systems, or the communication networks
to confuse, blind, or even take over control of the vehicle
under attack, leading to catastrophic accidents. Hence,
the challenge is to guarantee security at all levels of the
stack. Although in recent years there have been some
interesting proposals regarding protecting the security of
autonomous vehicles, such as sensor fusion, more research
is required before we deploy autonomous vehicles on a
large scale. We hope to see more research on defining
attack surfaces against autonomous driving edge com-
puting ecosystems and proposals to protect autonomous
vehicles from these attacks. Most importantly, we urgently
need industrial security verification standards to certify
whether an autonomous vehicle is secure enough to run
on public roads.

R E F E R E N C E S
[1] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot,

“Computer architectures for autonomous driving,”
Computer, vol. 50, no. 8, pp. 18–25, 2017.

[2] S. Liu, J. Peng, and J.-L. Gaudiot, “Computer, drive
my car!” Computer, vol. 50, no. 1, p. 8, 2017.

[3] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot,
“Creating autonomous vehicle systems,” Synth.
Lect. Comput. Sci., vol. 6, no. 1, p. 186, 2017.

[4] S. Huang and G. Dissanayake, “Convergence and
consistency analysis for extended Kalman filter
based SLAM,” IEEE Trans. Robot., vol. 23, no. 5,

pp. 1036–1049, Oct. 2007.
[5] H. Durrant-Whyte and T. Bailey, “Simultaneous

localization and mapping: Part I,” IEEE Robot.
Autom. Mag., vol. 13, no. 2, pp. 99–110,
Jun. 2006.

[6] J. Levinson, M. Montemerlo, and S. Thrun,
“Map-based precision vehicle localization in urban
environments,” in Robotics: Science and Systems,
vol. 4. 2007, p. 1.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional

neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 1097–1105.

[8] L. Bertinetto, J. Valmadre, J. F. Henriques,
A. Vedaldi, and P. H. Torr, “Fully-convolutional
siamese networks for object tracking,” in Proc. Eur.
Conf. Comput. Vis. Springer, 2016, pp. 850–865.

[9] D. Ferguson, M. Darms, C. Urmson, and S. Kolski,
“Detection, prediction, and avoidance of dynamic
obstacles in urban environments,” in Proc. IEEE
Intell. Vehicles Symp., Jun. 2008, pp. 1149–1154.

[10] S. M. LaValle, Planning Algorithms. Cambridge,

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1713

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

U.K.: Cambridge Univ. Press, 2006.
[11] J. V. Frasch et al., “An auto-generated nonlinear

MPC algorithm for real-time obstacle avoidance of
ground vehicles,” in Proc. Eur. Control Conf. (ECC),
Jul. 2013, pp. 4136–4141.

[12] Nvidia Drive PX. Accessed: Dec. 28, 2018.
[Online]. Available: https://www.nvidia.com/en-
au/self-driving-cars/drive-px/

[13] Texas Instruments TDA. Accessed: Dec. 28, 2018.
[Online]. Available: http://www.ti.com/
processors/automotive-processors/tdax-adas-
socs/overview.html

[14] CEVA-XM4. Accessed: Dec. 28, 2018. [Online].
Available: https://www.ceva-dsp.com/
product/ceva-xm4/

[15] Intel Cyclone. Accessed: Dec. 28, 2018. [Online].
Available: https://www.intel.com/content/
www/us/en/fpga/devices.html

[16] Xilinx Zynq. Accessed: Dec. 28, 2018. [Online].
Available: https://www.xilinx.com/products/
silicon-devices/soc/zynq-7000.html

[17] Mobileye Eyeq. Accessed: Dec. 28, 2018. [Online].
Available: https://www.mobileye.com/our-
technology/evolution-eyeq-chip/

[18] E. D. Jensen, C. D. Locke, and H. Tokuda,
“A time-driven scheduling model for real-time
operating systems,” in Proc. RTSS, vol. 85, 1985,
pp. 112–122.

[19] D. Hildebrand, “An architectural overview of
QNX,” in Proc. USENIX Workshop Microkernels
Other Kernel Archit., 1992, pp. 113–126.

[20] Vxworks. Accessed: Dec. 28, 2018. [Online].
Available: https://www.windriver.com/
products/vxworks/

[21] M. Quigley et al., “ROS: An open-source Robot
Operating System,” in Proc. ICRA Workshop Open
Sour. Softw., Kobe, Japan, 2009, vol. 3. no. 2, p. 5.

[22] ISO 26262. Accessed: Dec. 28, 2018. [Online].
Available: https://www.iso.org/standard/
43464.html

[23] S. Liu, J. Tang, C. Wang, Q. Wang, and
J.-L. Gaudiot, “A unified cloud platform for
autonomous driving,” Computer, vol. 50, no. 12,
pp. 42–49, 2017.

[24] J. Tang, S. Liu, C. Wang, and C. Liu, “Distributed
simulation platform for autonomous driving,” in
Proc. Int. Conf. Internet Vehicles Springer, 2017,
pp. 190–200.

[25] J. Jiao, “Machine learning assisted high-definition
map creation,” in Proc. IEEE 42nd Annu. Comput.
Softw. Appl. Conf. (COMPSAC), Jul. 2018,
pp. 367–373.

[26] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready
for autonomous driving? The KITTI vision
benchmark suite,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2012,
pp. 3354–3361.

[27] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun,
“Vision meets robotics: The KITTI dataset,” Int. J.
Robot. Res., vol. 32, no. 11, pp. 1231–1237, 2013.

[28] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of
RGB-D SLAM systems,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2012,
pp. 573–580.

[29] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond
PASCAL: A benchmark for 3D object detection in
the wild,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Mar. 2014, pp. 75–82.

[30] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and
K. Schindler. (2015). “MOTChallenge 2015:
Towards a benchmark for multi-target tracking.”
[Online]. Available: https://arxiv.org/abs/
1504.01942

[31] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and
K. Schindler. (2016). “MOT16: A benchmark for
multi-object tracking.” [Online]. Available:
https://arxiv.org/abs/1603.00831

[32] S. K. Venkata et al., “SD-VBS: The San Diego
vision benchmark suite,” in Proc. IEEE Int. Symp.
Workload Characterization (IISWC), Oct. 2009,
pp. 55–64.

[33] J. Clemons, H. Zhu, S. Savarese, and T. Austin,
“MEVBench: A mobile computer vision
benchmarking suite,” in Proc. IEEE Int. Symp.

Workload Characterization (IISWC), Nov. 2011,
pp. 91–102.

[34] L. Nardi et al., “Introducing SLAMBench, a
performance and accuracy benchmarking
methodology for SLAM,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 5783–5790.

[35] R. A. Newcombe et al., “KinectFusion: Real-time
dense surface mapping and tracking,” in Proc.
10th IEEE Int. Symp. Mixed Augmented
Reality (ISMAR), Oct. 2011, pp. 127–136.

[36] Y. Wang, S. Liu, X. Wu, and W. Shi, “CAVBench:
A benchmark suite for connected and autonomous
vehicles,” in Proc. IEEE/ACM Symp. Edge Comput.
(SEC), Oct. 2018, pp. 30–42.

[37] S.-C. Lin et al., “The architectural implications of
autonomous driving: Constraints and
acceleration,” in Proc. 23rd Int. Conf. Architectural
Support Program. Lang. Oper. Syst., 2018,
pp. 751–766.

[38] J. Tang, B. Yu, S. Liu, Z. Zhang, W. Fang, and
Y. Zhang, “π-SOC heterogeneous SOC
architecture for visual inertial SLAM applications,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2018, pp. 1–6.

[39] Z. Zhang, A. A. Suleiman, L. Carlone, V. Sze, and
S. Karaman, “Visual-inertial odometry on chip:
An algorithm-and-hardware co-design approach,”
Tech. Rep., 2017.

[40] W. Fang, Y. Zhang, B. Yu, and S. Liu,
“DragonFly+: FPGA-based quad-camera visual
SLAM system for autonomous vehicles,” in Proc.
IEEE HotChips, 2018, p. 1.

[41] S. Liu et al., “Cambricon: An instruction set
architecture for neural networks,” ACM SIGARCH
Comput. Archit. News, vol. 44, no. 3, pp. 393–405,
2016.

[42] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for
convolutional neural networks,” ACM SIGARCH
Comput. Archit. News, vol. 44, no. 3, pp. 367–379,
2016.

[43] P. Chi et al., “PRIME: A novel
processing-in-memory architecture for neural
network computation in ReRAM-based main
memory,” ACM SIGARCH Comput. Archit. News,
vol. 44, no. 3, pp. 27–39, Jun. 2016.

[44] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and
X. Zhou, “DLAU: A scalable deep learning
accelerator unit on FPGA,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 36,
no. 3, pp. 513–517, Mar. 2017.

[45] O. Rahnama, D. Frost, O. Miksik, and P. H. Torr,
“Real-time dense stereo matching with ELAS on
FPGA-accelerated embedded devices,” IEEE Robot.
Autom. Lett., vol. 3, no. 3, pp. 2008–2015,
Jul. 2018.

[46] W. Fang, Y. Zhang, B. Yu, and S. Liu, “FPGA-based
ORB feature extraction for real-time visual
SLAM,” in Proc. Int. Conf. Field Program. Technol.
(ICFPT), Dec. 2017, pp. 275–278.

[47] X. Wei et al., “Automated systolic array
architecture synthesis for high throughput CNN
inference on FPGAs,” in Proc. 54th Annu. Design
Autom. Conf., 2017, p. 29.

[48] Y. Guan et al., “FP-DNN: An automated framework
for mapping deep neural networks onto FPGAs
with RTL-HLS hybrid templates,” in Proc. IEEE
25th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), Apr. 2017, pp. 152–159.

[49] S. Liu, R. N. Pittman, A. Forin, and J.-L. Gaudiot,
“Achieving energy efficiency through runtime
partial reconfiguration on reconfigurable
systems,” ACM Trans. Embedded Comput. Syst.,
vol. 12, no. 3, p. 72, 2013.

[50] G. Hegde et al., “CaffePresso: An optimized library
for deep learning on embedded accelerator-based
platforms,” in Proc. CASES, 2016, p. 14.

[51] M. Malik et al., “Architecture exploration for
energy-efficient embedded vision applications:
From general purpose processor to domain
specific accelerator,” in Proc. ISVLSI, Jul. 2016,
pp. 559–564.

[52] L. Cavigelli, M. Magno, and L. Benini,
“Accelerating real-time embedded scene labeling
with convolutional networks,” in Proc. DAC, 2015,
p. 108.

[53] J. Qiu et al., “Going deeper with embedded FPGA
platform for convolutional neural network,” in
Proc. FPGA, 2016, pp. 26–35.

[54] D. Honegger et al., “Real-time and low latency
embedded computer vision hardware based on a
combination of FPGA and mobile CPU,” in Proc.
IROS, Sep. 2014, pp. 4930–4935.

[55] M. T. Satria et al., “Real-time system-level
implementation of a telepresence robot using an
embedded GPU platform,” in Proc. DATE,
Mar. 2016, pp. 1445–1448.

[56] A. Vasilyev, N. Bhagdikar, A. Pedram,
S. Richardson, S. Kvatinsky, and M. Horowitz,
“Evaluating programmable architectures for
imaging and vision applications,” in Proc. MICRO,
2016, pp. 38–49.

[57] L. Nardi et al., “Introducing SLAMBench, a
performance and accuracy benchmarking
methodology for SLAM,” in Proc. ICRA, May 2015,
pp. 5783–5790.

[58] D. Koufaty, D. Reddy, and S. Hahn, “Bias
scheduling in heterogeneous multi-core
architectures,” in Proc. 5th Eur. Conf. Comput.
Syst., 2010, pp. 125–138.

[59] J. C. Saez, M. Prieto, A. Fedorova, and
S. Blagodurov, “A comprehensive scheduler for
asymmetric multicore systems,” in Proc. 5th Eur.
Conf. Comput. Syst., 2010, pp. 139–152.

[60] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil,
G. Fursin, and N. Navarro, “Predictive runtime
code scheduling for heterogeneous architectures,”
in Proc. HiPEAC, vol. 9, 2009, pp. 19–33.

[61] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting
parallelism on heterogeneous multiprocessors
with adaptive mapping,” in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2009,
pp. 45–55.

[62] L. Liu, S. Liu, Z. Zhang, B. Yu, J. Tang, and Y. Xie.
(2018). “Pirt: A runtime framework to enable
energy-efficient real-time robotic applications on
heterogeneous architectures.” [Online]. Available:
https://arxiv.org/abs/1802.08359

[63] H. Utz, S. Sablatnog, S. Enderle, and
G. Kraetzschmar, “Miro-middleware for mobile
robot applications,” IEEE Trans. Robot. Autom.,
vol. 18, no. 4, pp. 493–497, Aug. 2002.

[64] A. Brooks, T. Kaupp, A. Makarenko, S. Williams,
and A. Oreback, “Towards component-based
robotics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Aug. 2005, pp. 163–168.

[65] J.-C. Baillie, “Urbi: Towards a universal robotic
low-level programming language,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Aug. 2005, pp. 820–825.

[66] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and
W.-K. Yoon, “RT-middleware: Distributed
component middleware for RT (robot
technology),” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Aug. 2005, pp. 3933–3938.

[67] D. Calisi, A. Censi, L. Iocchi, and D. Nardi,
“OpenRDK: A modular framework for robotic
software development,” in Proc. IROS, Sep. 2008,
pp. 1872–1877.

[68] J. Tang, S. Liu, B. Yu, and W. Shi. (2018).
“PI-Edge: A low-power edge computing system for
real-time autonomous driving services.” [Online].
Available: https://arxiv.org/abs/1901.04978

[69] M. Sustrik. (2016). Nanomsg. [Online]. Available:
https://www.nanomsg.org

[70] X. Zhang, Y. Wang, S. Lu, L. Liu, L. Xu, and W. Shi,
“OpenEI: An open framework for edge
intelligence,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2019.

[71] Q. Zhang et al., “OpenVDAP: An open vehicular
data analytics platform for CAVs,” in Proc. IEEE
38th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2018, pp. 1310–1320.

[72] L. Liu, X. Zhang, Q. Zhang, A. Weinert, Y. Wang,
and W. Shi, “AutoVAPS: An IoT-enabled public
safety service on vehicles,” in Proc. 4th Workshop
Int. Sci. Smart City Oper. Platforms Eng. (SCOPE),
New York, NY, USA, 2019, pp. 41–47.

[73] H. Stübing et al., “SIM TD: A car-to-x system
architecture for field operational tests [topics in
automotive networking],” IEEE Commun. Mag.,

1714 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Liu et al.: Edge Computing for Autonomous Driving

vol. 48, no. 5, pp. 148–154, May 2010.
[74] (2010). Deufrako. [Online]. Available:

http://deufrako.org/web/index.php
[75] M. Chevreuil, “IVHW: An inter-vehicle hazard

warning system concept within the DEUFRAKO
program,” in Proc. e-Saf. Congr. Exhib., Lyon,
France, 2002.

[76] W. Franz, H. Hartenstein, and M. Mauve,
“Inter-vehicle-communications based on ad hoc
networking principles. The FleetNet project,”
Universitätsverlag Karlsruhe Karlsruhe, Karlsruhe,
Germany, Tech. Rep., 2005.

[77] H. Hartenstein, B. Bochow, A. Ebner, M. Lott,
M. Radimirsch, and D. Vollmer, “Position-aware ad
hoc wireless networks for inter-vehicle
communications: The Fleetnet project,” in Proc.
2nd ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
2001, pp. 259–262.

[78] A. Festag, H. Fußler, H. Hartenstein, A. Sarma,
and R. Schmitz, “FleetNet: Bringing car-to-car
communication into the real world,” Computer,
vol. 4, no. L15, p. 16, 2004.

[79] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink,
and W. Schulz, “CarTALK 2000: Safe and
comfortable driving based upon
inter-vehicle-communication,” in Proc. IEEE Intell.
Vehicle Symp., vol. 2, Jun. 2002, pp. 545–550.

[80] P. L. J. Morsink et al., “CarTALK 2000:
Development of a co-operative ADAS based on
vehicle-to-vehicle communication,” in Proc. 10th
World Congr. Exhib. Intell. Transp. Syst. Services,
Madrid, Spain, Nov. 2003.

[81] Y. Chen, G. Gehlen, G. Jodlauk, C. Sommer, and
C. Görg, “A flexible application layer protocol for
automotive communications in cellular networks,”
in Proc. 15th World Congr. Intell. Transp. Syst.
(ITS), New York City, NY, USA, 2008, pp. 1–9.

[82] M. Schulze, G. Nocker, and K. Bohm, “PReVENT:
A European program to improve active safety,” in
Proc. 5th Int. Conf. Intell. Transp. Syst.
Telecommun., Paris, France, 2005.

[83] A. Hiller, A. Hinsberger, M. Strassberger, and
D. Verburg, “Results from the WILLWARN
project,” in Proc. 6th Eur. Congr. Exhib. Intell.
Transp. Syst. Services, 2007, pp. 1–8.

[84] A. Festag et al., “‘NoW–network on wheels’:
Project objectives, technology and achievements,”
Tech. Rep., 2008.

[85] G. Toulminet, J. Boussuge, and C. Laurgeau,
“Comparative synthesis of the 3 main European
projects dealing with Cooperative Systems (CVIS,
SAFESPOT and COOPERS) and description of
COOPERS Demonstration Site 4,” in Proc. 11th
IEEE Int. Conf. Intell. Transp. Syst. (ITSC),
Oct. 2008, pp. 809–814.

[86] F. Bonnefoi, F. Bellotti, T. Scendzielorz, and
F. Visintainer, “SAFESPOT applications for
infrasructurebased co-operative road safety,” in
Proc. 14th World Congr. Exhib. Intell. Transp. Syst.
Services, 2007, pp. 1–8.

[87] A. Papathanassiou and A. Khoryaev, “Cellular V2X
as the essential enabler of superior global
connected transportation services,” IEEE 5G Tech
Focus, vol. 1, no. 2, pp. 1–2, Jun. 2017.

[88] L. Hobert, A. Festag, I. Llatser, L. Altomare,
F. Visintainer, and A. Kovacs, “Enhancements of
V2X communication in support of cooperative
autonomous driving,” IEEE Commun. Mag.,
vol. 53, no. 12, pp. 64–70, Dec. 2015.

[89] A. De La Fortelle et al., “Network of automated
vehicles: The AutoNet 2030 vision,” in Proc. ITS
World Congr., 2014, pp. 1–10.

[90] A. Marjovi, M. Vasic, J. Lemaitre, and A. Martinoli,
“Distributed graph-based convoy control for
networked intelligent vehicles,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2015,
pp. 138–143.

[91] U. Khan, P. Basaras, L. Schmidt-Thieme,
A. Nanopoulos, and D. Katsaros, “Analyzing
cooperative lane change models for connected
vehicles,” in Proc. Int. Conf. Connected Vehicles
Expo (ICCVE), Nov. 2014, pp. 565–570.

[92] A. Kesting, M. Treiber, and D. Helbing, “General
lane-changing model MOBIL for car-following
models,” Transp. Res. Rec., vol. 1999,
pp. 86–94, Jan. 2007.

[93] (2018). Miovision Unveils the World’s Smartest
Intersection in Detroit. [Online]. Available:
https://miovision.com/press/miovision-unveils-
the-worlds-smartest-intersection-in-detroit/

[94] K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, and
Y. Zhou, “Heterogeneous vehicular networking:
A survey on architecture, challenges, and
solutions,” IEEE Commun. Surveys Tuts., vol. 17,
no. 4, pp. 2377–2396, 4th Quart., 2015.

[95] J. B. Kenney, “Dedicated short-range
communications (DSRC) standards in the United
States,” Proc. IEEE, vol. 99, no. 7, pp. 1162–1182,
Jul. 2011.

[96] K. Zheng, Q. Zheng, H. Yang, L. Zhao, L. Hou, and
P. Chatzimisios, “Reliable and efficient
autonomous driving: The need for heterogeneous
vehicular networks,” IEEE Commun. Mag., vol. 53,
no. 12, pp. 72–79, Dec. 2015.

[97] J. N. G. Isento, J. J. P. C. Rodrigues, J. A. F. F. Dias,
M. C. G. Paula, and A. Vinel, “Vehicular
delay-tolerant networks? A novel solution for
vehicular communications,” IEEE Intell. Transp.
Syst. Mag., vol. 5, no. 4, pp. 10–19, Oct. 2013.

[98] J. A. Dias, J. J. Rodrigues, N. Kumar, and
K. Saleem, “Cooperation strategies for vehicular
delay-tolerant networks,” IEEE Commun. Mag.,
vol. 53, no. 12, pp. 88–94, Dec. 2015.

[99] A. Ghosh, V. V. Paranthaman, G. Mapp,
O. Gemikonakli, and J. Loo, “Enabling seamless
V2I communications: Toward developing
cooperative automotive applications in VANET
systems,” IEEE Commun. Mag., vol. 53, no. 12,
pp. 80–86, Dec. 2015.

[100] (2018). Automotive Edge Computing Consortium.
[Online]. Available: https://aecc.org/

[101] J. G. Andrews et al., “What will 5G be?” IEEE J.
Sel. Areas Commun., vol. 32, no. 6,
pp. 1065–1082, Jun. 2014.

[102] J. Petit and S. E. Shladover, “Potential cyberattacks
on automated vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 546–556, Apr. 2015.

[103] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl,
“Remote attacks on automated vehicles sensors:
Experiments on camera and lidar,” Black Hat
Europe, vol. 11, 2015.

[104] K. N. Truong, S. N. Patel, J. W. Summet, and
G. D. Abowd, “Preventing camera recording by
designing a capture-resistant environment,” in
Proc. Int. Conf. Ubiquitous Comput. Springer, 2005,
pp. 73–86.

[105] R. T. Ioannides, T. Pany, and G. Gibbons, “Known
vulnerabilities of global navigation satellite
systems, status, and potential mitigation
techniques,” Proc. IEEE, vol. 104, no. 6,
pp. 1174–1194, Jun. 2016.

[106] C. Yan, W. Xu, and J. Liu, “Can you trust
autonomous vehicles: Contactless attacks against
sensors of self-driving vehicle,” DEF CON, vol. 24,
2016.

[107] S.-Y. Jeong et al., “A study on ROS vulnerabilities
and countermeasure,” in Proc. Companion
ACM/IEEE Int. Conf. Hum.-Robot Interact., 2017,
pp. 147–148.

[108] F. J. R. Lera, J. Balsa, F. Casado, C. Fernández,
F. M. Rico, and V. Matellán, “Cybersecurity in
autonomous systems: Evaluating the performance
of hardening ROS,” Málaga, Spain, Tech. Rep.,
vol. 47, 2016.

[109] J. McClean, C. Stull, C. Farrar, and D. Mascareñas,
“A preliminary cyber-physical security assessment
of the robot operating system (ROS),” Proc. SPIE,
vol. 8741, May 2013, Art. no. 874110.

[110] K. H. Johansson, M. Törngren, and L. Nielsen,
“Vehicle applications of controller area network,”
in Handbook of Networked and Embedded Control
Systems Springer, 2005, pp. 741–765.

[111] K. Koscher et al., “Experimental security analysis
of a modern automobile,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2010, pp. 447–462.

[112] Q. Wang and S. Sawhney, “VeCure: A practical
security framework to protect the CAN bus of
vehicles,” in Proc. Int. Conf. Internet Things (IOT),
Oct. 2014, pp. 13–18.

[113] S. Checkoway et al., “Comprehensive
experimental analyses of automotive attack
surfaces,” in Proc. USENIX Secur. Symp.,
San Francisco, CA, SA, 2011, pp. 77–92.

[114] J. Hu et al., “Link level performance comparison
between LTE V2X and DSRC,” J. Commun. Inf.
Netw., vol. 2, no. 2, pp. 101–112, 2017.

[115] M. Raya and J.-P. Hubaux, “Securing vehicular ad
hoc networks,” J. Comput. Secur., vol. 15, no. 1,
pp. 39–68, 2007.

[116] R. G. Engoulou, M. Bellaíche, S. Pierre, and
A. Quintero, “VANET security surveys,” Comput.
Commun., vol. 44, pp. 1–13,
May 2014.

[117] Y. Yang, Z. Wei, Y. Zhang, H. Lu, K.-K. R. Choo,
and H. Cai, “V2X security: A case study of
anonymous authentication,” Pervas. Mobile
Comput., vol. 41, pp. 259–269, Oct. 2017.

[118] A. M. Malla and R. K. Sahu, “Security attacks with
an effective solution for dos attacks in VANET,”
Int. J. Comput. Appl., vol. 66, no. 22, pp. 1–5,
2013.

[119] B. Yu, C.-Z. Xu, and B. Xiao, “Detecting sybil
attacks in VANETs,” J. Parallel Distrib. Comput.,
vol. 73, no. 6, pp. 746–756, 2013.

[120] J. Petit, M. Feiri, and F. Kargl, “Spoofed data
detection in VANETs using dynamic thresholds,” in
Proc. VNC, 2011, pp. 25–32.

[121] J. Liu and J. Liu, “Intelligent and connected
vehicles: Current situation, future directions, and
challenges,” IEEE Commun. Standards Mag.,
vol. 2, no. 3, pp. 59–65, Sep. 2018.

[122] K. Bhardwaj, J. C. Miranda, and A. Gavrilovska,
“Towards IoT-DDoS prevention using edge
computing,” in Proc. USENIX Workshop Hot Topics
Edge Comput. (HotEdge 18), 2018.

[123] S. Yi, Z. Qin, and Q. Li, “Security and privacy
issues of fog computing: A survey,” in Proc. Int.
Conf. Wireless Algorithms, Syst., Appl. Springer,
2015, pp. 685–695.

[124] Z. Ning, J. Liao, F. Zhang, and W. Shi, “Preliminary
study of trusted execution environments on
heterogeneous edge platforms,” in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 421–426.

[125] D. Li, Z. Zhang, W. Liao, and Z. Xu, “KLRA:
A kernel level resource auditing tool for IoT
operating system security,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Oct. 2018,
pp. 427–432.

[126] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A.
Faust, and V. Reddi, “MAVBench: Micro aerial
vehicle benchmarking,” in Proc. 51st Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO),
2018, pp. 894–907.

[127] Y. Wang, L. Liu, X. Zhang, and W. Shi, “HydraOne:
An indoor experimental research and education
platform for CAVs,” in Proc. 2nd USENIX Workshop
Hot Topics Edge Comput. (HotEdge). Renton, WA,
USA: USENIX Association, 2019.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1715

Liu et al.: Edge Computing for Autonomous Driving: Opportunities and Challenges

A B O U T T H E A U T H O R S

Shaoshan Liu (Senior Member, IEEE) received the Ph.D. degree
in computer engineering from the University of California at Irvine,
Irvine, CA, USA, in 2010.

He was a Founding Member of Baidu USA, Sunnyvale, CA,
USA, and the Baidu Autonomous Driving Unit, where he was
in charge of system integration of autonomous driving systems.
He is currently the Founder and CEO of PerceptIn, Fremont, CA,
USA, a company focusing on providing visual perception solutions
for autonomous robots and vehicles. He has authored or coau-
thored more than 40 high-quality research papers. He holds more
than 150 U.S. international patents on robotics and autonomous
driving. He is also the Lead Author of the best-selling textbook
Creating Autonomous Vehicle Systems, which is the first technical
overview of autonomous vehicles written for a general computing
and engineering audience. His current research interests include
computer architecture, deep learning infrastructure, robotics, and
autonomous driving.

Dr. Liu co-founded the IEEE Special Technical Community
on Autonomous Driving Technologies to bridge communications
between global autonomous driving researchers and practition-
ers and serves as the Founding Vice President. He is an ACM
Distinguished Speak and an IEEE Computer Society Distinguished
Speaker.

Liangkai Liu received the B.S. degree in telecommunication engi-
neering from Xidian University, Xi’an, China, in 2017. He is cur-
rently working toward the Ph.D. degree at Wayne State University,
Detroit, MI, USA.

His current research interests include edge computing, distrib-
uted systems, and autonomous driving.

Jie Tang (Member, IEEE) received the B.E. degree in computer
science from the National University of Defense Technology, Chang-
sha, China, in 2006, and the Ph.D. degree in computer science from
the Beijing Institute of Technology, Beijing, China, in 2012.

She was a Visiting Researcher with the Embedded Systems
Center, University of California at Irvine, Irvine, CA, USA, and
a Research Scientist with Intel China Runtime Technology Lab,
Beijing. She is currently an Associate Professor with the School of
Computer Science and Engineering, South China University of Tech-
nology, Guangzhou, China. Her current research interests include
research on computer architecture, autonomous driving, cloud, and
run-time system.

Dr. Tang is a Founding Member and the Secretary of the IEEE
Computer Society Special Technical Community on Autonomous
Driving Technologies.

Bo Yu (Member, IEEE) received the B.S. degree in electronic
technology and science from Tianjin University, Tianjin, China,
in 2006, and the Ph.D. degree from the Institute of Microelectronics,
Tsinghua University, Beijing, China, in 2012.

He is currently the CTO of PerceptIn, Fremont, CA, USA, a com-
pany focusing on providing visual perception solutions for robotics
and autonomous driving. His current research interests include
algorithm and systems for robotics and autonomous vehicles.

Dr. Yu is a Founding Member of the IEEE Special Technical
Community on Autonomous Driving.

Yifan Wang received the B.S. degree in electronic information
engineering from Tianjin University, Tianjin, China, in 2014. He is
currently working toward the Ph.D. degree at the Institute of Com-
puting Technology, Chinese Academy of Sciences, Beijing, China.

His current research interests include computer architecture,
edge computing, and connected and autonomous vehicles.

Weisong Shi (Fellow, IEEE) received the B.S. degree in computer
engineering from Xidian University, Xi’an, China, in 1995, and the
Ph.D. degree in computer engineering from the Chinese Academy
of Sciences, Beijing, China, in 2000.

He is currently the Charles H. Gershenson Distinguished Faculty
Fellow and a Professor of computer science with Wayne State
University, Detroit, MI, USA. His current research interests include
edge computing, computer systems, energy efficiency, and wire-
less health.

Dr. Shi was a recipient of the National Outstanding Ph.D. Disser-
tation Award of China and the NSF CAREER Award.

1716 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

