
Prophet: Realizing a Predictable Real-time
Perception Pipeline for Autonomous Vehicles

Liangkai Liu∗, Zheng Dong∗, Yanzhi Wang†, and Weisong Shi‡
∗Department of Computer Science, Wayne State University

†Department of Electrical & Computer Engineering, Northeastern University
‡Department of Computer and Information Sciences, University of Delaware

Abstract—We have witnessed the broad adoption of Deep Neu-
ral Networks (DNNs) in autonomous vehicles (AV). As a safety-
critical system, deadline-based scheduling is used to guarantee
the predictability of the AV system. However, non-negligible time
variations exist for most DNN models in an AV system, even
when the whole system is just running one model. The fact that
multiple DNNs are running on the same platform makes the
time variations issue even more severe. However, none of the
existing works have thoroughly studied the root cause of the
time variation issue. In the first part of the paper, we conducted
a comprehensive empirical study. We found that the inference
time variations for a single DNN model are mainly caused by the
DNN’s multi-stage/multi-branch structure, which has a dynamic
number of proposals or raw points. In addition, we found that
the uncoordinated contention and cooperation are the roots of
the time variations for multi-tenant DNNs inference.

Second, based on these insights, we proposed the Prophet
system that addresses the time variations in the AV perception
system in two steps. The first step is to predict the time variations
based on the intermediate results like proposals and raw points.
The second step is coordinating the multi-tenant DNNs to ensure
the execution progress is close to each other. From the evaluation
results on the KITTI dataset, the time prediction of a single
model all achieve higher than 91% accuracy for Faster R-CNN,
LaneNet, and PINet. Besides, the perception fusion delay is
bounded to 150ms, and the fusion drop ratio is reduced from
5.4% to less than 1 percent.

Index Terms—deep neural networks, predictability, au-
tonomous driving, end-to-end system

I. INTRODUCTION

Owing to their high safety and efficiency, autonomous vehi-
cles (AV) have attracted colossal investment and studies from
industrial and academic communities [1]. Since the primary
goal is to understand the driving environment and drive the
vehicle safely, building a reliable and efficient computing stack
becomes one of the fundamental challenges for autonomous
driving [2]. Given the considerable success in many scenarios,
Deep Neural Networks (DNNs) are widely deployed in the
autonomous driving system for sensing and perception [3].
Typical examples include YOLOv3, SSD, and Faster R-CNN
for object detection [4]–[6]; Deeplabv3 for image semantic
segmentation [7], [8]; LaneNet and PINet for lane detec-
tion [9], [10]. There are two main reasons for the success
of DNNs in autonomous driving systems. The first is the
higher accuracy compared with traditional computer vision-
based approaches [3]. The other is that DNNs can process

raw data, making it suitable for autonomous driving vehicles
since it generates terabytes of raw sensor data daily [11].

As a safety-critical system, autonomous driving sets high
requirements in accuracy and latency [1]. The high accuracy
of DNN-based algorithms promotes the development of au-
tonomous vehicles. However, satisfying the real-time require-
ments of the sensing, perception, and planning tasks are still
significant challenges. As DNN models are widely deployed in
perception applications, guaranteeing the real-time execution
of the DNN inference becomes the key to satisfying the
real-time requirements of autonomous driving [3]. According
to [12], when the vehicle drives at 40 km per hour in urban
areas, autonomous functions should be effective every 1 meter
with the task execution time less than 100ms.

Current AV systems rely on deadline-based scheduling to
guarantee predictability, where the deadline is mostly set as
the worst-case observed time. However, although the trained
model has a fixed structure and weights, non-negligible time
variations exist for most DNN models in AV systems, even
in silo mode (the whole system is just running one DNN
model) [13]–[15]. These inference time variations bring a
big challenge for setting deadlines since enormous resources
could be wasted if the scheduler manages resources based on
the worst-case observed inference time. Prior work observed
the time variations for DNN inference in mobile devices and
found that inference time follows an approximately Gaussian
distribution [13]. Another work on the anytime DNN system
also observed the time variations issue and provided a Kalman
Filter-based estimation for latency distribution [14]. D3 is a
work that addresses the time variations in AV systems with
dynamic deadlines rather than static deadlines [16]. However,
none of the existing approaches could handle huge time
variations since they do not consider the roots causing DNN
inference time variations. In addition to the time variations in
silo mode, a real AV system usually consists of hundreds of
tasks simultaneously (multi-tenant mode). Multi-tenant DNNs
on the same platform compete for resources like GPU, mem-
ory, etc., making the time variations issue even more severe.
However, none of the existing works have addressed this issue
before.

Based on the comprehensive study in this paper, we derive
two important insights. In silo mode, the time variations
of DNN inference have strong relationships with the DNN’s
structure and the runtime configurations. If we can narrow

the inference time variations to a small range, the resource
scheduling will be more efficient. From an empirical study on
real AV perception systems, we found that the model structure
mainly causes the inference time variations in the object and
lane detection models. The multi-stage/multi-branch structure
generates a dynamic number of object proposals/raw points,
which causes the variances of DNN inference time [6], [9],
[10], [17]. For multi-tenant DNN inference, we found that
these tasks are competing for resources and collaborating with
each other since the results of these DNN tasks need to be
merged for the following planning and control modules [1].
This characteristic makes the multi-tenant DNNs inference
show even higher time variations than the silo mode. In
multi-tenant mode, proper task coordination to manage the
contention and cooperation between multi-tenant DNNs is the
key to addressing the time variations issue. Besides, under-
standing the DNN model’s inference time variations brings
some guidance for the multi-tenant DNN coordination.

In this paper, driven by the two insights from the empirical
study, we propose Prophet solve the time variations issue in the
AV perception system in two steps. The first step is to predict
the time variations based on the intermediate results like
proposals and raw points. The second step is coordinating the
multi-tenant DNNs inference to ensure the inference progress
is close to each other. Prophet realizes a predictable perception
pipeline for the AV system in both silo mode and multi-tenant
mode. The Prophet comprises four main modules: the profiler,
the time predictor, the timeline analyzer, and the coordinator.
First, the profiler collects real-time process status messages
from all running tasks. Next, the time predictor predicts the
time needed for the following stage of the current frame based
on intermediate results like the number of proposals and raw
points. Next, the timeline analyzer generates a delay map
based on the time prediction results and the inference progress
from all the tasks. Finally, the coordinator leverages the time
prediction results and early exits the inference if it is predicted
to miss the deadline. Besides, the coordinator uses the delay
map to adjust the inference progress by asking some tasks to
yield while others skip frames to achieve fairness among multi-
tenant tasks. We implement Prophet on a GPU workstation
and use deadline-based coordination as the baseline. From the
experiment results on the KITTI dataset, the time prediction
of DNN models achieves higher than 91% accuracy. For the
multi-tenant DNNs scenario, the Prophet makes the fusion
delay time bounded by 150ms, reducing the fusion drop ratio
to less than 1 percent. The AV perception system becomes
safer and more predictable with Prophet.

In summary, this paper makes the following contributions:
• We get two insights from an empirical study on the roots

causing inference time variations for a single DNN and
multi-tenant DNN models.

• We propose Prophet, which solves the time variations in
a predictable AV perception pipeline in two steps: predict
the time variations based on the intermediates results like
proposals and raw points, and coordinate the multi-tenant
DNNs to ensure the inference progress is close to each

other.
• We implement Prophet in a ROS-based system and

evaluate it with the KITTI dataset. The time prediction
of a single model all achieves higher than 91% accuracy
for Faster R-CNN, LaneNet, and PINet. The fusion delay
time is bounded to 150ms, and the fusion drop ratio is
reduced from 5.4% to less than 1 percent.

The rest of the paper is organized as follows. Section II
and Section III presents the background and motivation of
this work. Section IV discusses the insights from empirical
study. Section V presents the proposed Prophet. Section VI
presents the implementation of the Prophet, while Section VII
presents the evaluation. Section IX describes the related work.
Section X concludes the paper.

II. BACKGROUND

Sensing

Localization Global Planning

Local Planning

Drive-by-wire

Location

Objects

Open Space

Navigation

Trajectory

steering

throttle

brake
Sensor
Fusion

Lane Detection

Object Detection

Segmentation

Lanes

Image

(1a)

(1b)

(1c)

(1d)

(2)

(2)

(2)

(3)

(4)

(5)

(6)

(2)

Fig. 1. A general end-to-end pipeline for modular-based autonomous driving.

Autonomous vehicles (AV) are equipped with a variety of
sensors to capture and understand the surrounding environment
of the vehicles [3], [18]. A typical driving system is based on
a modular design, which consists of sensing, perception, plan-
ning, and control [2], [12], [19]. Figure 1 shows a generalized
pipeline for modular-based autonomous driving.

A sensing node publishes the captured sensor data to all the
perception nodes for localization (step 1a), object detection
(step 1b), lane detection (step 1c), and segmentation (1d).
Next, the perception results are submitted to a sensor fusion
node (step 2), which combines the information of the vehicle’s
location, object, lanes, and open spaces. The location is also
published to the global planning node to calculate a navigation
route to the destination. The navigation route (step 4) and
sensor fusion results (step 5) are both published to the local
planning stage, which constructs a local driving space cost
map and generates vehicle trajectories and publishes it to
the vehicle’s drive-by-wire system (step 6). Finally, the drive-
by-wire system will send control messages to ECUs through
the Controller Area Network (CAN bus) to make the vehicle
drive.

III. MOTIVATION

To guarantee the vehicle’s safety, the end-to-end pipeline
(from sensing to control) requires both functional and tem-

outliers

(a)

outliers

(b)

outliers

(c)

Fig. 2. The Inference latency for state-of-the-art DNN models for (a) object detection, (b) lane detection, and (c) semantic segmentation.

poral correctness. The operations must be performed in real-
time. With the huge development in Deep Neural Networks
(DNN) and hardware accelerators like Graphics Processing
Unit (GPU), these requirements are satisfied in most cases [2],
[3]. However, the execution time variability of DNN tasks
in perception brings a huge challenge for making the end-
to-end system real-time [13], [14], [20]. Figure 2 shows the
DNN inference time variability in silo mode, where only one
task runs on the platform. We choose state-of-the-art models
for object detection (Faster R-CNN [6], Mask R-CNN [17],
SSD [5], RetinaNet [21], and YOLOv3 [4]), lane detection
(LaneNet [9], PINet [10], RESA [22], and SCNN [23]), and
segmentation (UNet [24], Deeplabv3 [8], [25], FCN [26],
and LRASPP [27]). Faster R-CNN and Mask R-CNN have
more outliers and a wider range than SSD, RetinaNet, and
YOLOv3. Two lane detection models (LaneNet, PINet) show
huge inference time variations. Two segmentation models also
show non-negligible inference time variations.

Since non-negligible inference time variations exist in silo
mode, when multiple DNNs run simultaneously on the same
platform, the predictability of the perception pipeline becomes
even more challenging. Therefore, this paper will focus on
realizing a predictable AV perception pipeline.

IV. KEY INSIGHTS FROM EMPIRICAL STUDY

DNN inference time variations bring a significant challenge
to achieving the predictability of the AV’s perception system.
In this section, we present in-depth profiling and analysis
for DNN inference time variations and coordination of multi-
tenant DNNs. Two insights are summarized for the design of
a predictable AV perception pipeline.

A. Inference Time Variations for DNN Tasks

The root cause of inference time variations for object and
lane detection models is the design of the DNN model.
Generalized object and lane detection pipelines are shown
in Figure 3. Generally, the detection pipeline starts with the
sensor data access and pre-processing of the raw data. For
image-based object and lane detection, the pre-processing con-
tains resize and transform operations pre-defined by the model
training process. The output of pre-processed sensor data will

be fed into the inference engine for feature extraction and post-
processing for final detection results. With the breakdown of
inference latency, we found that majority of time variations
are on post-processing.

Pre-processing Backbone

RPN

RoI
Pooling Transform

Binary
Segmentation

Instance
Segmentation

Clustering Lane Fit

Read

Raw
Points

Inference Post-processing

Pre-processing Feature
Extraction

Classifier Filter

Read

(a)

(b)

Fig. 3. Generalized two-stage object detection (a) and lane detection (b).

Object Detection: For object detection algorithms, the back-
bone like ResNet [28] or VGG [29] extracts features from
the pre-processed image data and creates feature maps. For
one-stage models, the feature maps will be used to generate
a static number of anchors or default boxes [4], [5]. For two-
stage models, the first stage goes through the Region Proposal
Network (RPN), which creates region proposals based on a
softmax layer to classify anchors as objects or backgrounds
and uses bounding box regression to fix the proposals [6]. The
second stage starts with Region of Interest (RoI) pooling which
collects features maps and region proposals to extract proposal
feature maps. Then the proposals are sent to the classifier,
which has fully connected layers to get the proposal’s object
class and fixed bounding box. Post-processing operations
include bounding box filter and transformation to the original
image.

Therefore, we can find the difference in network design:
two-stage models generate a dynamic number of proposals
in the first stage. The dynamic number of proposals give
two-stage models more time variations in post-processing.
In contrast, one-stage models generate a static number of
anchors/default boxes for detection.

Lane Detection: The network in lane detection models starts

7LPHOLQH��V�

1
RU
P
DO
L]
HG
�9
DO
XH

����
����
����
����
����
����

��� ��� ��� ��� ���

SRVW�SURFHVVLQJ�WLPH SL[HO�SURSRVDOV

3,1HW
7LPHOLQH��V�

1
RU
P
DO
L]
HG
�9
DO
XH

����
����
����
����
����
����

��� ��� ��� ��� ���

SRVW�SURFHVVLQJ�WLPH SL[HO�SURSRVDOV

/DQH1HW
7LPHOLQH��V�

1
RU
P
DO
L]
HG
�Y
DO
XH

����

����

����

����

����

��� ��� ��� ��� ���

SRVW�SURFHVVLQJ�WLPH REMHFW�SURSRVDOV

)DVWHU�5�&11

correlation coefficient: 0.898

correlation coefficient: 0.960

correlation coefficient: 0.901

Fig. 4. The time sequence and correlation coefficients of proposals and DNN
inference post-processing time.

with feature extraction, which contains an encoder-decoder
structure like the hourglass block to create feature maps.
For models like RESA and SCNN, the output of the multi-
layer encoder-decoder is directly the lanes. Two segmentation
branches are leveraged for models like LaneNet and PINet to
get the pixel-wise lane proposals. Binary segmentation outputs
the pixels belonging to lanes, while the instance segmentation
branch outputs which lane each pixel belongs to. Raw lane
points are generated by combining the results from these two
branches. Post-processing contains the clustering of raw lane
points and lane fitting results.

Lane detection models show similar relationships between
the structure and the inference time variations. From the
inference latency in Figure 3(b), LaneNet and PINet are based
on two branches to generate binary and instance-level pixel
proposals. The generated raw points (pixel proposals) are a
dynamic value, contributing to the time variations in post-
processing.

To validate our object/lane detection model structure analy-
sis, we collected the intermediate results, including proposals
and raw points from Faster R-CNN, LaneNet, and PINet. We
include the second stage (RoI pooling and classifier) into
the post-processing for Faster R-CNN. From Figure 4, we
found that the number of proposals/pixels and post-processing
time is highly correlated. Since the post-processing mainly
causes the inference time variations, we can conclude that the
dynamic number of object proposals and raw points caused
the inference time variations for object/lane detection.

Insight 1: Non-negligible time variations exist in the run-
time of object and lane detection models, mainly caused by
post-processing. A dynamic number of object proposals and
raw points caused the inference time variations for two-

stage/two-branch-based object/lane detection.

B. Uncoordinated Execution of Multi-Tenant DNN Tasks
Since AV is composed of hundreds of tasks in several

modules, the impact of a single model’s time variations could
be even worse when multiple models run simultaneously. From
Figure 1, the perception module comprises four tasks: local-
ization, object detection, lane detection, and segmentation.
Figure 7 shows a simplified timeline of multi-tenant DNN
inference generated based on the traces collected by nvprof
from multiple processes [30].

Four tasks are considered for perception: ORB-SLAM2 [31]
for monocular camera-based localization, executed on CPU;
Faster R-CNN, LaneNet, and Deeplabv3 are executed with
the same GPU device. All the tasks are assigned with the
same priority for CPU and GPU resources. The results for the
latency of all four tasks under multi-tenant mode are shown
in Figure 5. ORB-SLAM2 shows the lowest time variations,
while all three DNN tasks show drastic variations. Compared
with Figure 2, which runs in silo mode, we found that all three
DNN models show much higher inference time variations,
mainly caused by the competition of CPU and GPU resources.
As a result, driven by the wooden barrel effect, the capacity of
a barrel is determined not by the longest wooden bars, but by
the shortest. The fusion task is expected to show higher time
variations than any individual task. Figure 6 shows the results
for sensor fusion delay, which is the time interval between
the current and former sensor fusion message. Although the
inference time of each task is mostly less than 200ms, the
fusion delay is larger than 250ms for most of the time, with the
highest fusion delay larger than 800ms, which is unacceptable
for safety-critical applications like autonomous vehicles.

7LPHOLQH��V�

/D
WH
QF
\�
�P

V�

�

��

��

��

��

��� ��� ��� ���

25%�6/$0�

7LPHOLQH��V�

/D
WH
QF
\�
�P

V�

�

��

���

���

���

��� ��� ��� ���

/DQH1HW

7LPHOLQH��V�

/D
WH
QF
\�
�P

V�

�

��

���

���

���

��� ��� ��� ���

)DVWHU�5�&11
7LPHOLQH��V�

/D
WH
QF
\�
�P

V�

�

��

���

���

���

���

��� ��� ��� ���

'HHSODEY�

Fig. 5. The latency of multi-tenant DNNs and the delay of fusion messages.

Timeline (s)

Fu
si

on
 d

el
ay

 (m
s)

0

250

500

750

1000

100 200 300 400

Fig. 6. The delay of fusion message.

The root cause for these huge time variations is the un-
coordinated execution of multi-tenant DNN tasks. Figure 7

shows a timeline analysis of multi-tenant tasks. Although
images are published from the camera with a static frame
per second (FPS), each task subscribes to the communication
bus separately, making some nodes run faster than others.
Since ORB-SLAM2 is not competing for GPU resources
with other tasks and its execution latency is less than the
communication delay, it processes all the images published
by the sensor. The number in each time frame represents the
image’s sequence number. Owing to the contention for GPU
resources, Deeplabv3’s inference on the nth frame is much
slower than other tasks, so it missed the (n+ 1)th frame and
the (n + 3)th frame. Similarly, Faster R-CNN has a longer
inference time on the (n+1)th frame, so it missed the (n+2)th

frame and the (n+3)th frame. As a result of the interference,
sensor fusion happens only on the nth and the (n + 4)th

frame. Suppose the scheduler or controller knows each task’s
execution speed. It could coordinate the execution to ensure
all tasks are running at a similar speed.

Deeplabv3

LaneNet

Faster RCNN

n

n

n

n+2

n+1

n+1

n+2 n+3

n+4

n+4

Timeline
dn

…

…

……

…

…

ORB-SLAM2 n n+1 n+2 n+3 n+4… …n+5

Fn

missing Fn+1, Fn+2, and Fn+3

n+4

dn+4 Fn+4

Fig. 7. The timeline analysis of uncoordinated execution of multi-tenant DNN
tasks.

Furthermore, the current GPU runtime library CUDA is not
open-sourced, and the execution on GPU is not preemptable,
which makes it waste lots of GPU resources for some tasks
because they miss the deadline [32]. Since the single model’s
inference variation is determined by the number of proposal-
s/raw points, the coordinate could terminate some tasks early
if the prediction latency is longer than the deadline, yielding
CPU/GPU resources to other slower tasks.

Insight 2: Uncoordinated execution of multi-tenant DNN
tasks causes huge time variations for sensor fusion, and it
also wastes lots of GPU resources since the GPU stream is
non-preemptable. The coordinator could terminate some tasks
early based on the predicted time variations to make it yield
resources for other tasks.

V. PROPHET DESIGN

The time variations in DNN inference bring an essential
challenge for building a predictable AV perception pipeline.
This section presents the Prophet system, which contains
a proposal-based inference time modeling to predict time
variations for a single task and a coordinator to reduce the
time variations when multiple tasks run simultaneously.

A. Prophet Overview
Based on two insights from an empirical study, Prophet

is designed to build a predictable AV perception pipeline in

two steps. The first step is to predict the inference time of a
single DNN based on Insight 1, and the second is to coordinate
the execution of multi-tenant tasks based on their inference
progress. As is shown in Figure 8, sensor data is fed into N
number of perception tasks, and then the fusion task combines
all the results for the planning module.

Time
Predictor

Coordinator

Timeline
Analyzer

Profiler

Fusion

T1 TN

CPU

Sensor Data

GPU

single-task

multi-task

T2 …

…

Prophet component AV component

process
status

processor
mapping

stream yield

fps

early
exit

proposals & runtime

delay map

de
la

y
pr

ed
ic

tio
n

Planning

Fig. 8. High-level design of Prophet system.

The Profiler is designed to monitor the real-time execution
of every task in perception and fusion. process_status
is published by the tasks after inference on each frame, and
it consists of information like process ID, scheduling policy,
priority, image sequence number, proposals (for object detec-
tion)/raw points (for lane detection), object/lane probabilities,
and the execution time of the current frame. Next, the proposal
and execution time will be combined and sent to the time
predictor to predict the inference time. As a result, all tasks
have a predicted response time for the current frame. Together
with the image sequence number, this delay prediction is sent
to the timeline analysis to coordinate multi-task execution.
If the response time for the current frame is larger than
the task’s deadline, the post-processing would be skipped.
Besides, the timeline analyzer constructs a delay_map based
on each task’s image sequence number and the sensor driver’s
newest image sequence number. The delay_map represents
the progress of each task, which is used to calculate how
many frames to skip for each task. Besides, the delay_map
also determines whether a task should yield GPU resources to
other tasks and whether the sensor driver should reduce the
publishing frequency.

B. Proposal-based Inference Time Modeling

Profiler. Monitoring the execution status and intermediate
results from all the tasks is the key to inference time
modeling. The profiler is designed to collect and analyze
process_status, which contains all the information, in-
cluding the image timestamp, app name, process ID, schedul-
ing policy, priority, image sequence number, etc. Figure 9

shows an example of the process_status message. The
runtime means the execution time for the current frame. For
object detection, the proposals represent the number of object
proposals from the first stage. For lane detection, the proposals
represent the number of raw points generated for clustering.
The object represents the number of detected objects in
the current frame with probabilities higher than a threshold
(0.5 for Faster R-CNN), and the probability contains all the
probabilities for detection. The object and probability are filled
with several detected lanes/segments and their probabilities for
lane detection and segmentation.

Fig. 9. An example of the process_status message for Faster R-CNN.

Time Predictor. For each perception task, the time predictor
consists of two parts: static time modeling for prediction of
time variations brought by a different number of object/lane
proposals and dynamic time modeling for prediction of time
variations caused by the devices’ runtime conditions (temper-
atures, etc.) [14]. Based on the observations in Section IV,
we know that the DNN inference time for one-stage object
detection, one-branch lane detection, and segmentation models
are within a limited range. The real challenge is the time
prediction of two-stage object detection and two-branch lane
detection models, which show huge inference time variations
caused by post-processing. In contrast, time variations of the
other processes are negligible. Besides, since the operations in
post-processing are closely related to the intermediate results
in inference, finding the mathematical relationship between
post-processing and inference becomes the key to predicting
model DNN inference time.

Static time modeling. The static time modeling is based
on collected logs to find the distribution and relationship for
each component within the DNN inference. To begin with, we
collected logs of DNN models with fine-grained breakdowns,
and some intermediate inference results, including the pro-
posal. Typically, the inference time can be divided into four
parts: reading, pre-processing, inference, and post-processing.
As is shown in Equation 1 and Equation 2, subscripts represent
the breakdown of each part: read for reading, pre for pre-
processing, infer for inference, and post for post-processing.
We use t(0) to represent the total inference time and t

(0)
r

to represent the remaining time (total time without post-
processing) for collected logs. To distinguish the collected
logs and current measurement, superscript (0) represents the

collected logs (history) while superscript (n) represents the
current measurement.

t(0) = t
(0)
read + t(0)pre + t

(0)
infer + t

(0)
post (1)

t(0)r = t
(0)
read + t(0)pre + t

(0)
infer (2)

Based on the time profiling, the time variations in reading,
pre-processing, and inference are limited to a small range.
Therefore, we use the average value from collected logs for
prediction of the current remaining time t

(n)
r . As shown in

Figure 4, the post-processing time correlates with the number
of proposals. For object detection, we leverage the number
of proposals from the RPN to predict the post-processing
time. We found a linear relationship between the number of
proposals and post-processing time for object detection based
on the correlation analysis and code computation complexity
analysis. The prediction of the current post-processing time
t
(n)
postOD

is shown in Equation 3, where α1 and α0 are
coefficients learned from logs. p(n) is the current number
of proposals. λ is the calibration factor for dynamic time
profiling. Similarly, in lane detection, the raw points generated
from two segmentation branches can be seen as lane point
proposals, which can be leveraged to predict the follow-up
post-processing time that contains huge time variations. Since
the clustering process requires calculating all the neighbors
of the pixels, the relationship is expected to be polynomial
rather than linear. By analysis of the code time complexity
and testing different orders of polynomial regression of the
lane points with post-processing time, we found a second-
order polynomial relationship between lane points and clus-
tering time. The prediction of the current post-processing time
t
(n)
postLD

is shown in Equation 4, where β2, β1, and β0 are also
coefficients learned from logs. l(n) is the current number of
lane points.

t
(n)
postOD

= (α1p
(n) + α0)λ (3)

t
(n)
postLD

=
[
β2(l

(n))2 + β1l
(n) + β0

]
λ (4)

Dynamic time modeling. In addition to static time modeling,
we introduce a calibration factor λ which reflects the dynamic
time modeling caused by the devices’ runtime conditions
(temperatures, etc.) [14]. The calibration factor reflects the
relative execution time performance compared with when logs
are collected. Equation 5 shows the calculation of λ, using the
average current remaining time t

(n)
r divided by the average

remaining time in collected logs t
(0)
r . With the adjustment

of prediction time from the static time modeling, the final
prediction for DNN inference time is generated.

λ =
t
(n)
r

t
(0)
r

(5)

With the calculation of the remaining time t
(0)
r , the post-

processing time t
(0)
post, and calibration factor λ, we can pre-

dict the current inference time as shown in Equation 6 and
Equation 7. Since all the regression coefficients are trained
from collected logs, we first add the average history remaining
time (t(0)rOD and t

(0)
rLD) with the predicted post-processing time

(α1p
(n)+α0)λ and β2

[
l(n)

]2
+β1l

(n)+β0). Then we multiply
it with the calibration factor λ.

t
(n)
OD = (t

(0)
rOD + α1p

(n) + α0)λ (6)

t
(n)
LD =

{
t
(0)
rLD + β2

[
l(n)

]2
+ β1l

(n) + β0

}
λ (7)

C. Multi-Tenant DNN Execution Coordination

With the inference time prediction of each perception task,
coordinating their executions to guarantee real-time is the
second step. To begin with, all prediction results and execution
progress will be sent to the timeline analyzer, which constructs
a delay map and sends it to the coordinator. The coordinator
will generate task/system management policies based on the
delay map to achieve real-time and fairness.

Timeline Analyzer. With the process_status message
sent from each task, the timeline analyzer can create a global
delay_map to represent the execution progress of each task
compared with the sensor data publisher. Since inference time
variations exist for most DNN models, the processing image
sequence number varies significantly among them. We can
calculate the delay based on the delta of current publishing
and processing image sequence numbers for each task. The
delay_map is constructed by combining all the delay values,
and it updates every time a new image is published or image
processing is finished by one task. Figure 10 shows an example
of the update of delay_map over time. The number in the
table represents the image sequence number for publishing or
processing. Since the execution time of ORB-SLAM2 is less
than the publishing delay, it can process all the images.

Publisher … 60 61 62 63 64 65 …

ORB-SLAM2 … 60 61 62 63 64 65 …

Deeplabv3 … 59 60 61 …

Faster R-CNN … 58 59 …

LaneNet … 60 61 62 …

0
1
2
0

0
2
3
1

0
2
4
1

0
3
4
2

0
3
6
3

0
3
4
2

Delay Map

Fig. 10. An example of the update of delay_map over time.

From the example in Figure 10, we can observe that the
delay value for ORB-SLAM2 is always 0 while the delay
for all three DNN tasks is increasing, whereas Faster R-CNN
shows the slowest progress with a delay value of 6. When the
delay value is larger than the predefined threshold, the task will
start to capture the newest frame from the communication bus

and reset the delay value as 0. The threshold is set based on
each task’s deadline and average execution time. For example,
if the deadline of Faster R-CNN is 100ms while the average
execution time is 30ms, then the delay threshold for Faster R-
CNN would be set as 3. In general, the delay_map provides
a general solution for managing deadline misses. It also allows
the coordinator to adjust data/system/model configurations to
reduce time variations.

Coordinator. As the last step of Prophet, the coordinator
is designed to generate management policies to improve the
predictability of the perception system. Therefore, there are
two primary goals for coordination. The first is to decrease
the delay value for each task to keep pace with the publisher.
The second is to average the execution of multiple tasks to
avoid cases like some tasks running too fast or others running
too slow.

We introduce an early_exit policy based on the in-
ference time prediction to achieve the first goal. In general,
it means skipping the processing of the second stage and
post-processing for object detection and clustering and post-
processing for lane detection if the response time has already
been longer than the deadline. Unlike the traditional approach
with static deadlines, it only drops the execution until it misses
the deadline. The Prophet drops the execution in the middle
of the pipeline based on the observation of DNN inference
time variations. Figure 11 illustrates the benefit of the early-
exit policy over the deadline-based policy. Suppose there are
three tasks to process the same image. The execution of a
typical publisher-subscriber system is a callback function on
coming frames. All three tasks start to process the nth frame,
and the deadline is dn. After finishing the first stage/part,
the intermediate results can predict the execution time for the
second stage, which means knowing whether continuing the
execution would miss the deadline. Here we assume task 1
and task 2 are predicted to miss the deadline while task 3
is not. Then tasks 1 and 2 would early exit the execution to
save time for the next frame, while task 3 would continue
to execute. Since it is possible to wait for the coming of the
(n+1)th frame, we assume task 2 is waiting for a while and
then launch the callback on the (n+1)th frame, while task 1
is not waiting. Compared with the deadline-based policy, we
can see the early_exit policy helps to save computation
for the second stage, which makes it save time for each task.

For the second goal, the coordinator addresses the case of
”running too fast” and ”running too slow” separately. For the
”running too fast” case, the delay value for one task would be
close to zero while other tasks are much higher than zero. The
coordinator would apply a yield policy to ask it to yield CPU
and GPU resources to other tasks by skipping the processing
of frames. For the ”running too slow” case, the coordinator
would apply a skip_frame policy to ask the task to skip the
execution of several frames. Finally, if all the tasks are running
much slower than the publisher, the coordinator would apply
an fps policy on the publisher to decrease the publishing
frequency.

Callback n
Callback n+1

deadline dn

Task 1

Task 2

Task 3

deadline dn+1

early-exit

Callback n
Callback n+1

early-exit

saved time

Callback n
Callback n+1

early-exit

waiting time

Fig. 11. An illustration of the benefit of early-exit policy over deadline-based
policy.

In general, the coordinator is a referee for managing the
execution progress of multiple tasks. With the four policies
(early_exit, yield, skip_frame, fps), the coordi-
nator guarantees the real-time execution and the fairness of
multiple task execution.

VI. SYSTEM IMPLEMENTATION

Autonomous driving vehicles have various applications for
sensing, perception, and decision. The system performance
is expected to rely on the coordination of several modules.
To evaluate the performance of Prophet, we integrate its
implementation into an AV perception prototype based on ROS
in a GPU workstation with Linux RT kernel patched.

A. Overview of the Perception System

Based on the overview autonomous driving system in
Figure 1, we develop a ROS framework for the perception
system, as shown in Figure 12. Since this paper focuses on
the perception latency variations and the planning modules are
all rule-based algorithms with stable execution time, the ROS
framework does not include that part. The pipeline starts with
the /image node, capturing and publishing images from the
cameras. Three ROS nodes subscribe /image raw messages
and execute the DNN inference on the images, including object
detection, lane detection, and semantic segmentation. Another
perception node is responsible for Simultaneous Localization
and Mapping (SLAM). After perception, four nodes publish
their results, covering the position information, objects, lanes,
and semantics. The /fusion node subscribes to these four
topics. It synchronizes them to get the sensor fusion results,
giving the control module the vehicle’s obstacles and open
driving space.

Besides, each perception task and the sensor publisher
also publishes its execution information based on the process
context and intermediate inference results. The prophet node
subscribes to this information and coordinates task execution
by updating the policy parameters accessible by all the tasks.

/image_raw
/darknet_ros/bounding_boxes
/darknet_ros/detection_image
……

/lane

/object

/segmentation

/image /fusion

/lane

/semantic

cameras controls

/slam

/image_raw

/prophet

/pose

/object_ps

/lane_ps
/semantic_ps

/slam_ps

ROS
master

*_early_exit, *_yield, *_skip_frame, delay_map, fps
(* contains slam, object, lane, and semantic)

Fig. 12. The ROS implementation of the perception system.

B. ROS Nodes and Topics

A ROS node (i.e., the nodes in the figure) is a process
to perform a particular computation, while ROS topics (i.e.,
the arrows in the figure) are named buses for ROS nodes
to exchange messages [33]. In the perception system, we
implement seven ROS nodes to access the sensor data and
process the data: /image, /object, /slam, /lane /segmentation,
/fusion, and /prophet. Publish-subscriber-based message shar-
ing is used to transmit messages between these nodes. In
our implementation, the algorithm used for SLAM is ORB-
SLAM2, which is a pure camera-based approach to capture
key points in pixels, localize the vehicles and generate maps
simultaneously [31]. Faster R-CNN and LaneNet are deployed
for object and lane detection, while Deeplabv3 is deployed for
semantic segmentation [6], [8].

The ROS topics are defined as exchanging messages be-
tween ROS nodes. Ten ROS topics are implemented to ex-
change messages, including images, positions, objects, and
customized messages. The summarized descriptions of some
ROS topics are reported in Table I. There are two messages
based on Image type: header, height, width, encoding, data,
etc. The ROS topic’s header contains the sequence ID, times-
tamp, and frame ID to represent a specific message. Since
timestamp and sequence ID are needed for the synchroniza-
tion, we implement /pose timestamp based on /pose, which
contains the position and orientation data. For object detection,
bounding boxes are used to present the detected objects,
determined by min and max values of the x and y-axis and the
probability and the object class. /bounding boxes include all
the bounding boxes for one image and contain a header inside.
The results are shown as different colors inside the image to
represent different segments for semantic segmentation. An
Image-based topic called /semantic is used to represent the
results with the message header. The /lane topic contains the
header and curve, composed of pixels described by three float
values. The /* ps contains four topics: /slam ps, /object ps,
/lane ps, and /semantic ps, a customized topic containing a
header, process ID, scheduling policy, priority, image seq,
runtime, proposals, and probability.

TABLE I
ROS TOPICS IMPLEMENTED IN THE PERCEPTION SYSTEM.

ROS Topics Library Type Fields

/image raw sensor msgs Image header, height, width, encoding,
data, etc.

/pose geometry msgs PoseStamped header, position (x, y, z float64)
orientation (x, y, z, w, float64)

/bounding boxes darknet ros msgs BoundingBoxes header, image header,
bounding boxes

/bounding box darknet ros msgs BoundingBox probability, xmin, ymin, xmax,
ymax, id, class

/semantics sensor msgs Image header, height, width, encoding,
data, etc.

/lane geometry msgs Points header, curve

/* ps prophet ros msgs ProcessStatus header, pid, priority, image seq,
runtime, proposals, etc.

C. Message Synchronization

Message synchronization becomes one of the biggest chal-
lenges for ROS nodes that need to subscribe to multiple
ROS topics and process them together. Generally, message
synchronization is based on the timestamp and sequence ID.

The /fusion node’s objective is to combine all the perception
results of the same image frame. The first thing is to make a
unique ID for each image frame. In the beginning, the /image
node attaches timestamp information and frame ID to each
message it publishes. After DNN inference on the coming
image frame for four perception nodes, the timestamp and
sequence ID of the coming images will be used as the header’s
timestamp and sequence ID of the new message like /pose,
/semantic, etc. With unique IDs on each image frame and
detection results, the remaining question is how to synchronize
them. Our design uses a message filter with Approximate
Time Synchronizer to manage the fusion process [34]. The
approximate synchronizer sets queue size as 100 and 100ms
as the slop, which means the message with a time difference
less than 100ms is considered synchronized.

D. Scheduling Policies

Typically, Linux supports four scheduling policies:
SCHED-OTHER, SCHED-FIFO, SCHED-RR, and SCHED-
DEADLINE [35]. SCHED-OTHER is Linux’s default
scheduling policy for supporting user applications and
maximizing processors’ utilization. SCHED-FIFO schedules
in a first-come-first-serve method, while SCHED-RR
schedules in a round-robin way. SCHED-DEADLINE is
a CPU scheduler based on the Earliest Deadline First
(EDF) [36]. Two DNN models are used to compare the
scheduling performance: Faster R-CNN and PINet. All the
tasks’ nice values are default values 0. From the profiling
results in Figure 2, we can find that Faster R-CNN has a
shorter period than PINet. Therefore, under SCHED-FIFO
and SCHED-RR, we set the priorities for Faster R-CNN and
PINet as 99 and 90, respectively. Faster R-CNN has a higher
priority since it has a shorter period. The round-robin interval
is the default value of 100ms. The SCHED-DEADLINE
policy’s runtime, deadline, and period are equally set based
on the image publisher’s FPS. We configure the image
publisher at three types of FPS: 10, 20, and 30 to compare
the performance of different scheduling policies. Therefore,

the runtime/deadline/period for both Faster R-CNN and PINet
are set as 100ms (10FPS), 50ms (20FPS), and 33ms (30FPS),
respectively.

Figure 13 shows the CDF of inference latency for Faster R-
CNN and PINet under different scheduling policies and FPS.
For Faster R-CNN and PINet, we can find that the long tail
latency exists for all scheduling policies. From the comparison,
we can observe that all scheduling policies show similar
inference latency among all the testing cases. Besides, we can
observe that a large percentile of image frames are missing
deadlines but are still processed until the end, reflecting the
fact that the Linux scheduler does not fully terminate the tasks
when it misses the deadline. Moreover, we have conducted
additional experiments to show the performance comparisons
of multi-tenant DNNs, which are included in the Appendix of
a longer version [37].

In this paper, we implement an application deadline schedul-
ing with an exit policy and use SCHED-OTHER as the Linux
scheduling policy. Each perception task is assigned a 100ms
deadline [12]. Before entering the callback function, if the
delay has already exceeded 100ms, the frame will be skipped.
The delay map and delay threshold are used to check the
deadline miss. Given the average inference time of Faster R-
CNN, LaneNet, and PINet, the delay thresholds are set as
3, 3, and 2, respectively. The scheduling happens when the
callback function returns with a new image frame. Since the
image is published periodically, the task model is periodically
dispatching jobs.

Fig. 13. The CDF of Faster R-CNN and PINet execution latency under
different scheduling policies and FPS.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

To begin, we present the experimental setup for the imple-
mentation of Prophet. We choose a GPU workstation as the
computing platform. Besides, we use the KITTI Odometry
dataset as the input to the perception pipeline [38]. The image
dataset is composed of 4660 image frames. We use a ROS
node to publish images at 30 FPS.

Hardware and software setup. The Prophet is implemented
and evaluated on a GPU workstation. It has 28 Intel® Core™
i9-9940X CPUs with the highest frequency at 3.3GHz. The
platform has 4 NVIDIA GeForce RTX 2080 Ti/PCIe/SSE2
GPU cards, providing 304 TOPS in total. Each GPU card has
4352 CUDA cores, supporting 10 Giga Rays/s and 14 Gbps
memory speed. The GPU shared memory has 11GB GDDR6
with 352 memory interface width. In addition, the platform has
64 GB DDR4 memory. There are four DDR4-based memory
devices, each 16GB with a speed at 2666 MT/s.

The libraries installed for machine learning-related
applications include: CUDA Driver 510.47.03,
CUDA runtime 11.6, TensorFlow 1.15.2, torch
v1.10.1, torchvision v0.11.2, cuDNN 8.3.2,
OpenCV 4.2, etc. ROS Melodic is deployed as the
communication middleware. Since accuracy is essential for
the autonomous driving scenario, all the DNN models are
trained and tested with single precision (FP32) [39].
Metrics. We measure several metrics, including the perception
latency (from image publishing to sensor fusion), processor
utilization, memory utilization, etc. We calculate latency’s
statistic metrics for specific time analysis, including minimum,
maximum, range, average, variance, processed frames, dead-
line misses, and coefficient of variation. The range R is defined
as the difference between maximum and minimum values. The
processed frame is the number of frames from sensor fusion.
The higher the value is, the safer the vehicle’s planning and
control. In addition to the deadline of each task, the sensor
fusion also has a deadline. The fusion message that missed the
deadline is dropped. The coefficient of variation (cv) is used
to evaluate the relative variability, and it is calculated using
the standard deviation σ divided by the mean value µ. cv is
a positive value. The higher the value is, the higher variations
the data has.

Coefficient of Variation:

cv =
σ

µ
(8)

B. Single Model Inference Time Prediction

To evaluate the performance of the proposed DNN inference
time model, we collect logs when running models on the
KITTI image dataset and train the weights for Faster R-CNN,
LaneNet, and PINet. Figure 14 shows the results for ground
truth and predicted latency. We can observe that the prediction
line aligns well with the ground truth line over time.

We collect the prediction results and calculate each im-
age’s mean absolute error (MAE) and prediction accuracy.

�

��

��

��

��� ��� ��� ��� ���

3,1HW

�

��

��

��

��� ��� ��� ��� ���

/DQH1HW

�

��

��

��

��

��� ��� ��� ��� ���

UHDO SUHGLFW
)DVWHU�5�&11

Timeline (s)

In
fe

re
nc

e
la

te
nc

y
(m

s)

Fig. 14. The ground truth (real) results and predicted latency.

TABLE II
THE AVERAGE REAL/PREDICTED LATENCY, MEAN ABSOLUTE ERROR, AND

PREDICTION ACCURACY FOR THREE MODELS.

Model Real (ms) Predicted (ms) MAE (ms) Accuracy (%)
Faster R-CNN 32.18 32.17 0.33 98.99

LaneNet 15.27 15.24 0.99 94.03
PINet 25.32 23.72 2.31 91.68

The results are shown in Table II. We can observe that the
prediction for Faster R-CNN performs the best, with 98.99
percent accuracy and less than 0.35ms average error. LaneNet
and PINet have accuracy higher than 90 percent, while the
average errors are less than 2.4ms. However, the prediction
error is still acceptable compared with the DNN time variation
range, which is more than 26ms for LaneNet and PINet.

The high accuracy for time prediction helps the coordinator
to exit some tasks early if they are predicted to miss the
deadline. The main reason why we have this high prediction
accuracy is the observation that the model’s multi-stage/multi-
branch design generates a random number of intermediate
proposals/raw points, while the following stages are designed
to process the proposals/raw points one by one. This strong re-
lationship makes it possible for us to leverage the intermediate
results to predict whether the deadline is missed or not.

Takeaway: The intermediate results-based time prediction
model in Prophet shows high accuracy, making it possible
for the system to know if one particular frame will miss the
deadline before finishing the execution.

C. Multi-Tenant DNNs Coordination

To show the performance of Prophet in reducing perception
time variations for multi-tenant DNN scenario, we present
the evaluation in two cases: the one-GPU case where three
perception tasks share the same GPU card and; the multi-GPU
case where three perception tasks are distributed on three GPU

TABLE III
LATENCY RESULTS FROM A COMPARISON BETWEEN PROPHET AND THE

BASELINE UNDER ONE GPU CASE.

Metrics Baseline Prophet
MIN (ms) 19.80 22.93
MAX (ms) 728.94 583.47
Range (ms) 709.14 560.54

Average (ms) 196.88 153.47
Variance 12227.34 6466.80

cv 0.56 0.52
Processed frames 1008 1271
Dropped frames 289 185
Drop ratio (%) 28.67 14.56

cards. Four models/algorithms are executed for both cases:
Faster R-CNN, PINet, Deeplabv3, and ORB-SLAM2.

Timeline (s)

Fu
si

on
 d

el
ay

 (m
s)

0

200

400

600

800

100 200 300 400

Baseline Prophet

Fig. 15. The fusion delay of Prophet and baseline with one GPU card.

One-GPU case. When multiple DNN models share the same
GPU, the time variation issue becomes more challenging. Not
only does the design of two-stage/two-part detection models
cause time variations, but the contention of multiple tasks
for GPU resources also causes time variation. The profiling
of time variations caused by resource contention would be
our future work. To simplify the problem, all tasks are given
the same priority on CPU scheduling, and their GPU streams
are executed without preemption. In the design of Prophet,
we leverage the delay map to coordinate multi-tenant task
execution to decrease the perception time variations. Figure 15
shows the fusion delay of Prophet and baseline in one GPU
card case, and Table III shows the statistical analysis on MIN,
MAX, range, average, variance, cv , processed frames, dropped
frames, and drop ratio. For three DNN tasks running on one
GPU card, the fusion drop delay is set as 200ms. We can
find that in one GPU case, Prophet helps to reduce the fusion
delay compared to the baseline. Prophet’s range, variance, and
cv are smaller than the baseline. In addition, the drop ratio is
reduced from 28.67% to 14.56%. However, the performance is
bounded by the GPU resources. There are still many dropped
frames; only 1270 frames are processed out of 4660.
Multi-GPU case. In the multi-GPU case, we distribute the
execution of multiple DNNs tasks to separate GPU cards.
Faster R-CNN, LaneNet, and Deeplabv3 are mapped to three
CUDA devices in our experiments. By isolating the execution
of these perception tasks, the inference time of each task is
more predictable since there is no GPU resource contention
from other tasks, which could make the early exit more

Timeline (s)

Fu
si

on
 d

el
ay

 (m
s)

0

200

400

600

0 250 500 750 1000

Baseline Prophet

Fig. 16. The fusion delay of Prophet and baseline with all four GPU cards.

TABLE IV
LATENCY RESULTS FROM A COMPARISON BETWEEN PROPHET AND THE

BASELINE UNDER MULTIPLE GPU CASE.

Metrics Baseline Prophet
MIN (ms) 40.65 6.87
MAX (ms) 1089.94 399.58
Range (ms) 1049.29 392.71

Average (ms) 93.28 54.09
Variance 2212.25 1243.58

cv 0.50 0.65
Processed frames 2042 3496
Dropped frames 111 3
Drop rate (%) 5.43 0.085

effective. Figure 16 shows the fusion delay of Prophet and
baseline in one GPU card case, while Table IV shows the
statistical analysis of the fusion delay of the Prophet and the
baseline. From the timeline with 1000s experiments, we can
find that the fusion delay of the Prophet is perfectly bounded
under 150ms. At the same time, the baseline shows huge
time variations, with the largest fusion delay getting close
to 600ms. The table shows that the Prophet’s MIN, MAX,
range, average, and variance are much lower than the baseline,
except for the cv . This is because of the early-exit policy.
Since the Prophet early exits some frames to save time for the
other frames, the fusion delay of some frames would be much
lower than the average, which makes the cv larger. Besides,
the Prophet has more frames through sensor fusion, which is
almost doubled compared with the baseline. We set the fusion
deadline for the multi-GPU case as 150ms, and we can find
that the dropped frames are reduced from 111 to 3 by Prophet,
which corresponds to a 0.085 percent drop ratio.

Takeaway: Under the multi-GPU case, the Prophet makes
the fusion delay time bounded by 150ms, reducing the fusion
drop ratio to less than 1 percent. Isolate DNN tasks on multiple
GPU cards also helps reduce the time variation. The AV
perception pipeline becomes more predictable with Prophet.

VIII. DISCUSSIONS

A. Applicability of the Prophet

There are several conditions for the applicability of the
Prophet. First, the computing hardware should be a hetero-
geneous platform with CPU and GPU architecture. The DNN
time variations pattern on a pure CPU platform differs from
the CPU-GPU platform.

Secondly, in this work, all the DNN models are trained and
tested with single precision (FP32), and there is no model
compression (pruning, quantization, etc.) [39]–[41]. Gener-
ally, DNN models are trained with single precision weights
and compressed for faster inference performance. However,
DNN prediction accuracy is essential for autonomous vehicles.
Although model compression could help to decrease the
latency, the impact on the accuracy in real experiments is
unpredictable [42].

Thirdly, the proposed system works for all the models
profiled in this paper, including five object detection mod-
els (Faster R-CNN [6], Mask R-CNN [17], SSD [5], Reti-
naNet [21], and YOLOv3 [4]), four lane detection models
(LaneNet [9], PINet [10], RESA [22], and SCNN [23]), and
four semantic segmentation models (UNet [24], Deeplabv3 [8],
[25], FCN [26], and LRASPP [27]). Since the DNN structure
greatly impacts inference time variations, other DNN models
might not show similar time variations. However, if the other
DNN model’s structure also fits into one-stage and two-stage
designs, Prophet will still work.

B. Safety-critical Level

The primary goal of Prophet is to reduce the impact of
DNN inference time variations on the perception pipeline since
DNNs are mainly used in AV perception. However, our system
is not for a high safety-critical level since we do not guarantee
end-to-end predictability from sensing to vehicle control [2].
By proactively dropping frames that are supposed to miss
deadlines, the proposed system will help to guarantee the
detection of objects/lanes/segmentation. Our system will get
rid of cases of missing perception because of abnormal long
latency. The understanding of DNN time variations to the AV’s
planning and control modules would be our future work.

IX. RELATED WORK

Autonomous vehicles are proposed to understand the en-
vironment and drive without human intervention [18]. DNNs
play an essential role in the sensing, perception, decision, and
control tasks in autonomous driving. Generally, the research
on DNNs for autonomous driving can be divided into two
categories: training DNN models with higher accuracy and
improving the runtime performance of trained DNN models.

Many DNN-based algorithms are deployed in autonomous
vehicles for object detection, lane detection, semantic segmen-
tation, localization, etc. [11]. The object detection algorithms
can be divided into two types: one-stage based algorithms
like YOLO and SSD [4], [5]; two-stage based algorithms
like Fast R-CNN, Mask R-CNN, etc. [6], [17]. The critical
difference is whether there is a proposal bounding box stage.
Semantic segmentation is used to detect driving segments.
The fully convolutional neural network has been applied and
achieves good performance [26]. LaneNet is a lane detection
algorithm that uses an instance segmentation problem and
applies image semantic segmentation algorithms [9]. Another
approach called PINet adds key points estimation with the
instance segmentation [10].

After the DNN models are trained, optimizing the model
inference in latency, energy consumption, and memory utiliza-
tion becomes a big challenge. In 2015, Han et al. proposed
pruning redundant connections and retraining the deep learn-
ing models to fine-tune the weights, effectively reducing com-
puting complexity [43]. Reducing the precision of operations
and operands is another direction for the runtime optimization
of DNN inference. Reducing precision is usually achieved by
reducing the number of bits/levels representing the data and re-
ducing computation requirements and storage costs [44]. Prior
works [13] observed the time variations for DNN inference
in mobile devices and found that inference time follows an
approximately Gaussian distribution. However, the statistic-
based approach performs poorly when time variations are
enormous. Another work [14] on the anytime DNN system
also observed the time variations issue and provided a Kalman
Filter-based estimation for latency distribution. However, it
cannot handle huge time variations since understanding roots
causing time variations in DNN inference is missing. A
scheduling-based approach is leveraged to provide predictable
DNN inference [45]. However, the system is based on a
cloud server-level GPU platform which is not practical for
an onboard embedded system on the autonomous vehicle. D3

is work that considers the time variations in AV systems,
and they proposed to use dynamic deadlines to address time
variations [16]. However, since the roots for DNN inference
time variations are not studied, the proposed approach still
wastes lots of time processing frames that are supposed to
miss the deadline.

X. CONCLUSION

DNN inference time variations are non-negligible for most
models in an AV system, which brings a significant challenge
to the predictability of the system. We derive two important
insights from a comprehensive empirical study and introduce
Prophet, which addresses the DNN inference time variation
in two-step: the first is to predict the time variations of a
single DNN model; the second is to coordinate multiple DNN
models inference to reduce the fusion time variations. From
the evaluation results on the KITTI dataset, the time prediction
of a single model achieves higher than 91% for Faster R-CNN,
LaneNet, and PINet. Besides, the perception fusion delay is
bounded to a 150ms, and the fusion drop ratio is reduced from
5.4% to 0.085%.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their constructive and helpful feedback. This work was
partly supported by the U.S. National Science Foundation
under Grants CNS-2103604, CNS-2140346, and IIS-1724227.

XI. APPENDIX

A. Comparison of Scheduling Policies with Multi-task

To show the impact of different operating system schedulers
in the Multi-Tenant DNNs scenario, we conduct experiments
on both the baseline and the Prophet under four scheduling
policies.

Four models/algorithms are executed: Faster R-CNN, PINet,
Deeplabv3, and ORB-SLAM2. One thousand images from
the KITTI dataset are used as the input. Three DNN models
share one GPU card. All the tasks’ nice values are default
values 0. The priorities of SCHED-FIFO and SCHED-RR are
set based on rate monotonic scheduling. From the profiling
results in Figure 2, we can find the period increases in the
order of ORB-SLAM2, Faster R-CNN, Deeplabv3, and PINet.
Therefore, under SCHED-FIFO and SCHED-RR, we set the
priorities for ORB-SLAM2, Faster R-CNN, Deeplabv3, and
PINet as 99, 90, 80, 70, respectively. Under SCHED-OTHER
and SCHED-DEADLINE, all tasks’ priority values are 0.
The round-robin interval is the default value of 100ms. The
SCHED-DEADLINE policy’s runtime, deadline, and period
are equally set based on the image publisher’s FPS. A thousand
images from the KITTI dataset is published at 10 FPS as the
input. Therefore, the runtime/deadline/period for all the tasks
are set as 100ms.
Baseline Performance. Figure 17 shows the CDF of execution
latency of four tasks under different OS scheduling policies.
We can find that the distribution of execution latency is similar
among all scheduling policies. Table V shows the statistical
analysis of the fusion delay of the baseline. 200ms is used as
the threshold for dropping fusion frames. SCHED-RR performs
better than the other policies in average, processed frames,
drop ratio, etc.

Fig. 17. The CDF of multi-task under different scheduling policies.

Prophet Performance. Figure 18 shows the CDF of execution
latency of four tasks under different OS scheduling policies.

TABLE V
LATENCY RESULTS FROM A COMPARISON BETWEEN SCHEDULING

POLICIES WITH THE BASELINE.

Metrics DEADLINE FIFO RR OTHER
MIN (ms) 86.23 42.01 43.79 45.91
MAX (ms) 249.20 332.66 231.24 292.63
Range (ms) 162.97 290.64 187.45 246.71

Average 116.28 117.49 113.33 120.98
Variance 445.80 449.02 206.83 815.43

cv 0.18 0.18 0.13 0.24
Processed frames 918 936 971 883
Dropped frames 29 27 11 48
Drop ratio (%) 3.16 2.88 1.13 5.44

TABLE VI
LATENCY RESULTS FROM A COMPARISON BETWEEN SCHEDULING

POLICIES WITH THE Prophet.

Metrics DEADLINE FIFO RR OTHER
MIN (ms) 36.67 35.06 2.21 35.64
MAX (ms) 203.89 195.05 220.67 210.91
Range (ms) 167.23 159.99 218.46 175.27

Average 108.64 106.58 106.56 105.94
Variance 1216.54 605.89 739.25 1223.64

cv 0.32 0.23 0.26 0.33
Processed frames 998 998 999 998
Dropped frames 3 0 2 3
Drop ratio (%) 0.3 0 0.2 0.3

Table VI shows the statistical analysis of the fusion delay of
the Prophet. 200ms is used as the threshold for dropping fusion
frames. It can be found that both SCHED-FIFO has a zero
drop ratio. SCHED-FIFO processed the most frames.

Fig. 18. The CDF of multi-task under different scheduling policies with
Prophet.

Comparing the drop ratio from Table V and Table VI, we
can find that Prophet performs better in reducing dropping
frames than the OS’s real-time schedulers.

REFERENCES

[1] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[2] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2018, pp. 751–766.

[3] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362–386, 2020.

[4] J. Redmon and A. Farhadi, “YOLOv3: an incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[8] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[9] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Towards end-to-end lane detection: an instance segmen-
tation approach,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 286–291.

[10] Y. Ko, J. Jun, D. Ko, and M. Jeon, “Key points estimation and
point instance segmentation approach for lane detection,” arXiv preprint
arXiv:2002.06604, 2020.

[11] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi, “Com-
puting systems for autonomous driving: State-of-the-art and challenges,”
arXiv preprint arXiv:2009.14349, 2020.

[12] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[13] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning
at Facebook: Understanding inference at the edge,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 331–344.

[14] C. Wan, M. Santriaji, E. Rogers, H. Hoffmann, M. Maire, and S. Lu,
“ALERT: Accurate learning for energy and timeliness,” in 2020 USENIX
Annual Technical Conference (USENIX ATC 20), 2020, pp. 353–369.

[15] P. H. Becker, J. M. Arnau, and A. González, “Demystifying power
and performance bottlenecks in autonomous driving systems,” in 2020
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2020, pp. 205–215.

[16] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3: a
dynamic deadline-driven approach for building autonomous vehicles,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 453–471.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 2961–2969.

[18] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[19] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[20] W. Shi and L. Liu, “Systems runtime optimization,” in Computing
Systems for Autonomous Driving. Springer, 2021, pp. 81–107.

[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[22] T. Zheng, H. Fang, Y. Zhang, W. Tang, Z. Yang, H. Liu, and D. Cai,
“Resa: Recurrent feature-shift aggregator for lane detection,” arXiv
preprint arXiv:2008.13719, vol. 5, no. 7, 2020.

[23] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep:
Spatial cnn for traffic scene understanding,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[25] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801–818.

[26] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–
3440.

[27] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314–1324.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] “Profiler User’s Guide,” https://docs.nvidia.com/cuda/profiler-users-gui
de/index.html.

[31] R. Mur-Artal et al., “ORB-SLAM2: an open-source SLAM system for
monocular, stereo and rgb-d cameras,” arXiv preprint arXiv:1610.06475,
2016.

[32] “CUDA Toolkit Documentation v11.6.0,” https://docs.nvidia.
com/cuda/archive/11.6.0/.

[33] “Robot Operating System(ROS), Powering the World’s Robots,” 2019.
[Online]. Available: https://www.ros.org/

[34] “message filters,” http://wiki.ros.org/message_filter
s.

[35] “sched(7) — Linux manual page,” https://man7.org/linux/m
an-pages/man7/sched.7.html.

[36] M. Spuri and G. C. Buttazzo, “Efficient aperiodic service under earliest
deadline scheduling.” in RTSS, 1994, pp. 2–11.

[37] “Prophet: Realizing a Predictable Real-time Perception Pipeline for
Autonomous Vehicles,” https://www.weisongshi.org/paper
s/liu22-prophet.pdf.

[38] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3354–3361.

[39] “Floating Point and IEEE 754 Compliance for NVIDIA GPUs,”
https://docs.nvidia.com/cuda/floating-point/inde
x.html.

[40] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[41] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quanti-
zation for deep learning inference: Principles and empirical evaluation,”
arXiv preprint arXiv:2004.09602, 2020.

[42] R. Yazdani, M. Riera, J.-M. Arnau, and A. González, “The dark side of
dnn pruning,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2018, pp. 790–801.

[43] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and con-
nections for efficient neural networks,” arXiv preprint arXiv:1506.02626,
2015.

[44] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[45] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving DNNs like clockwork: Performance predictability
from the bottom up,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 443–462.

