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CPT: A Configurable Predictability Testbed for DNN Inference in AVs

Liangkai Liu, Yanzhi Wang, and Weisong Shi∗

Abstract: Predictability is an essential challenge for autonomous vehicles’ safety. Deep neural networks have been

widely deployed in the AV’s perception pipeline. However, it is still an open question on how to guarantee the

perception predictability for AV because there are millions of DNN model combinations and system configurations

when deploying DNNs in AVs. This paper proposes CPT, a configurable testbed for quantifying the predictability

in AV’s perception pipeline. CPT provides flexible configurations of the perception pipeline on data, DNN models,

fusion policy, scheduling policies, and predictability metrics. On top of CPT, the researchers can profile and optimize

the predictability issue caused by different application and system configurations. CPT has been open-sourced at:

https://github.com/Torreskai0722/CPT.
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1 Introduction

Deep neural networks (DNNs) are widely used in
autonomous driving due to their high accuracy for
perception, decision, and control [51]. Predictability
of the perception module is essential for the AV’s
safety. Predictability generally consists of temporal and
functional aspects: [47]. Temporal aspects mean the
task should be finished before the deadline. Functional
aspects mean the task should make correct decisions.

Variabilities in time are non-negligible during DNN
inference [79, 82]. Earlier research pinpointed these
variations, especially in mobile devices, and noted
that the inference durations typically align with a
Gaussian distribution [82]. Another study focusing on
the ”anytime DNN system” highlighted these timing
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variations and introduced a Kalman Filter methodology
for estimating latency distribution [79]. The D3

approach offers a solution to these timing variations
in autonomous vehicle systems by proposing dynamic
instead of static deadlines [26]. This approach allows
the perception, planning, and sensing modules to have
dynamic deadlines and change adaptively. The Prophet
system tackles timing variations in two-stage models
by utilizing the insights that intermediate object/lane
proposals cause time varaitions [50]. It’s important
to recognize that understanding DNN inference time
variations is a challenging problem, influenced by
various elements such as traffic conditions, DNN model
categories, scheduling strategies, fusion methods,
DVFS settings, and more [52].

In-depth profiling and optimization of the DNN
inference variations require a computing testbed that
provides flexible configurations of the AV’s perception
pipeline. The predictability of the perception pipeline
is still an open issue, given that the total number
of configurations of these factors is enormous [85].
However, current AV testbeds or benchmarks ignore
this issue or provide a limited number of perception
pipeline configurations, including Autoware.ai, and
Autoware.auto, Apollo, NVIDIA DriveWorks, and
CAVBench [11, 19, 20, 63, 81]. A testbed that could
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provide flexible configurations of all these factors to
study the predictability issue in AV’s DNN inference is
still missing.

In this paper, we present CPT, a configurable
testbed for quantifying the predictability in AV’s
perception pipeline. CPT is composed of three
modules: the application configurations, the system
configurations, and the evaluator. It provides two
image datasets covering over 100 scenarios as sensor
data. CPT provides Over 19 million DNN model
combinations through the integration with the model
zoo of OpenMMLab and BDD100K. CPT also supports
a flexible configuration of scheduling, policies, and
DVFS policies. Finally, several metrics represent the
time and performance variations for every task and the
fusion task. In summary, this paper makes the following
two contributions:

• We observe and redefine the predictability issue
for DNN inference, which consists of time and
performance predictability.

• We design and implement CPT, a configurable
predictability testbed for DNN inference in AVs.
We open-source the CPT testbed for the research
on predictable DNN inference.

The rest of the paper is organized as follows. Section
3 presents the background and motivation of this
work. Section 4 describes the design of the CPT
testbed. Section 5 presents the implementation of CPT.
Section 6 discusses two use cases for studying DNN
inference predictability. The related work is presented
in Section 2. Section 8 concludes the paper.

2 Related Work

Autonomous vehicles are proposed to understand the
environment and drive without human intervention [53].
DNNs play an essential role in the sensing, perception,
decision, and control tasks in autonomous driving.
Generally, the prior research on real-time DNNs for
autonomous driving can be divided into two categories:
model compression and inference time variations.

Model Compression After model training, a
fundamental challenge for deployment is how to
optimize the model inference in execution time, energy
consumption, as well as memory utilization. Han
and colleagues [30] have proposed a technique that
involves pruning redundant connections and then

retraining the DNN models. This approach reduces the
computational demands effectively. Another direction
for the runtime optimization of DNN inference is
to reduce the precision of operations and operands,
which is usually achieved by reducing the number
of bits/levels representing the data and reducing
computation requirements and storage costs [75].

Inference Time Variations Variabilities in time are
non-negligible during DNN inference [79, 82]. Earlier
research pinpointed these variations, especially in
mobile devices, and noted that the inference durations
typically align with a Gaussian distribution [82].
Another study focusing on the ”anytime DNN system”
highlighted these timing variations and introduced
a Kalman Filter methodology for estimating latency
distribution [79]. However, it cannot handle huge
time variations since understanding roots causing time
variations in DNN inference is missing. A scheduling-
based approach is leveraged to provide predictable
DNN inference [28]. However, the system is based on a
cloud server-level GPU platform, which is impractical
for an onboard embedded system on an autonomous
vehicle. The D3 approach offers a solution to these
timing variations in autonomous vehicle systems by
proposing dynamic instead of static deadlines [26].
This approach allows the perception, planning, and
sensing modules to have dynamic deadlines and change
adaptively. However, since the roots for DNN
inference time variations are not studied, the proposed
approach still wastes lots of time processing frames
that are supposed to miss the deadline. The Prophet
system tackles timing variations in two-stage models
by utilizing the insights that intermediate object/lane
proposals cause time varaitions [50]. It’s important
to recognize that understanding DNN inference time
variations is a challenging problem, influenced by
various elements such as traffic conditions, DNN model
categories, scheduling strategies, fusion methods,
DVFS settings, and more [52].

3 Background and Motivation

Predictability is essential for safety-critical
applications like autonomous vehicles [39]. Generally,
predictability consists of two perspectives: accurate
and real-time [47]. Previous works treated the temporal
and functional as separate aspects, which is not enough
to achieve predictability [23, 57, 85]. Besides, they



Liangkai Liu et al.: CPT: A Configurable Predictability Testbed for DNN Inference in AVs 3

Sensing

Localization Global Planning

Local Planning

Drive-by-wire

Location

Objects

Open Space

Navigation

Trajectory

steering

throttle

brake
Sensor 
Fusion

Lane Detection

Object Detection

Segmentation

Lanes

Image

(1a)

(1b)

(1c)

(1d)

(2)

(2)

(2)

(3)

(4)

(5)

(6)

(2)

Fig. 1 A general autonomous driving pipeline.

have yet to discuss how to evaluate the predictability
of multi-tasks with dependencies. In this section, we
present a new definition of predictability.

3.1 DNNs for AV’s Perception

AV Pipeline DNNs play a significant role in the whole
pipeline of driving autonomously. Figure 1 shows a
generalized pipeline for autonomous driving. A sensing
node publishes the captured sensor data to all the
perception nodes for localization (step 1a) [1, 60, 61],
object detection (step 1b) [33, 70, 71], lane detection
(step 1c) [41, 62, 64, 90], and segmentation (1d) [16,
72]. Next, the perception results are submitted to
a sensor fusion node (step 2), which combines the
information on the vehicle’s location, object, lanes, and
open spaces [29, 39]. The location is also published to
the global planning node to calculate a navigation route
to the destination [4]. The navigation route (step 4)
and sensor fusion results (step 5) are both published
to the local planning stage [3], which constructs a
local driving space cost map and generates vehicle
trajectories and publishes it to the vehicle’s drive-by-
wire system (step 6) [12, 65]. Finally, the drive-by-
wire system sends control messages to ECUs through
the Controller Area Network (CAN bus) to drive the
vehicle [18].

Object Detection Object detection accuracy is pivotal
for environmental perception in autonomous vehicles
(AVs) [58]. DNN-based object detection has evolved
through the R-CNN series [24, 25, 71], SSD series [21,
54], the YOLO series [68–70], and vision transformer-
based [15, 55]. The use of deep learning in object
detection was initiated with R-CNN in 2014, leading
to faster iterations, Fast R-CNN and Faster R-CNN
[24, 25, 71]. YOLO, the premier one-stage object
detector, emerged in 2015 [68, 69], progressing to

versions such as YOLOv3 and YOLOv4 [13, 70].
SSD balanced speed and accuracy using regression
technologies [54]. ViT-based models replace the CNNs
with multi-head attention for better feature extraction
and classification [15, 55].

Lane Detection and Segmentation Real-time lane
detection is a vital function in autonomous driving [62].
Recently, deep learning-based segmentation approaches
have dominated this field for their accuracy [27].
VPGNet introduces a multi-task network for lane
marking detection [42], while SCNN employs a
novel convolution operation to effectively aggregate
various dimension information [64]. Light-weight
DNNs are developed for real-time applications, like
the self-attention distillation mechanism in SAD [35].
Alternative methods, such as sequential prediction and
clustering, are also deployed. For instance, an LSTM
network addresses the lane’s linear structure [44],
Fast-Draw predicts the lane direction pixel-wise [66],
and in [36], lane detection is redefined as a binary
clustering problem, a technique further adopted by [34].
Lastly, a 3D form of lane detection is introduced
to tackle non-flat terrains [22]. Segmentation is
another pixel-level classification task in AV’s pipeline
to find open driving space [37]. Mask R-CNN
is a generalization of Faster R-CNN for semantic
segmentation [33]. PSPNet is another model that
leverages the feature pyramid networks with dilated
convolutions for segmentation [88]. Deeplab series
are recent works leveraging sparse convolutions for
segmentation [16].

3.2 Perception Predictability

3.2.1 DNN Inference Time variations
DNN models show non-negligible inference time

variations when running on mobile or embedded
systems [26, 52, 79, 82].

By deploying the model zoo of the DBB100K
dataset [2], we tested eight DNN models for each of
the three perception tasks. For object detection, we
choose ATSS [87], Cascade R-CNN [14], ConvNeXt
with Cascade R-CNN [56], Faster R-CNN [71],
FCOS [77], RetinaNet [48], Sparse R-CNN [74], and
Swin Transformer with Cascade R-CNN [55]. For lane
(drivable space) detection, we choose APCNet [32],
CCNet [38], Deeplabv3+ [16], DMNet [31],
DNLNet [83], HRNet [80], PSANet [89], and Swin
Transformer [55]. For semantic segmentation, we
choose Deeplabv3+ [16], EMANet [46], HRNet [80],
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Fig. 2 The box plot of DNN inference time for object detection, lane detection, and semantic segmentation.

PSPNet [88], ConvNeXt [56], DeiT [78], Swin
Transformer [55], and Vision Transformer [17]. The
input to the DNN model includes over 4800 images
from the BDD100K video dataset [84].

The box plot of the inference time for all the
DNN models is shown in Figure 2. We can observe
non-negligible time variations among all the models.
However, the time variations issue shows differently
for different tasks. Object detection models show
much higher time variations than the other two
tasks. However, regarding the average inference
time, semantic segmentation is the largest while
object detection is the smallest. Among the object
detection models, the time variation issue also shows
differently. Two stage-based detectors, Cascade R-
CNN, ConvNeXt, Faster R-CNN, Sparse R-CNN, and
Swin Transformer, show much higher time variations
than one stage-based detector [52]. This is because the
region proposal network (RPN) generates a dynamic
number of object proposals which makes the execution
of the second stage dynamic [45,50,71]. Since different
traffic scenario has a different number of potential
objects, the actual execution time for the same R-CNN
model in different scenarios (city, residential, Road,
etc.) also has inference time variations [8, 45, 52].

The inference time variations bring a big challenge
for the scheduling of AV’s operating system. Enormous
resources are wasted if the scheduler is unaware of
the inference time variations. If we consider the
autonomous driving system a hard real-time system, the
scheduler assigns deadlines for each task based on the
worst observed execution time [26, 52].

Observation 1: Non-negligible time variations exist
in the runtime of DNN models in AV’s perception
pipeline. The time variation is a cross-layer issue
related to the input data, the DNN model’s structure,
and the runtime system scheduling.
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Fig. 3 Performance variations of object detection models under
different scenarios.

3.2.2 DNN Performance Variations
DNN-based models exhibit variations in performance

across different scenarios and inference times. We
examine both offline and online scenarios. In the offline
scenario, the impact of inference time is not considered,
and the average precision is calculated based on the
input image. In contrast, the online scenario accounts
for inference time and evaluates the image with the
added inference time.

Offline Detection Performance Variations. Here
we leverage the Argoverse-HD dataset, which
provides high-frame-rate annotations for streaming
evaluation [45]. The Argoverse-HD dataset includes
39,384 images covering 65 scenarios. These scenarios
cover traffic environments like downtown, rural areas,
highways, daytime, and night.

We test four object detection models (ATSS [87],
Mask R-CNN [33], Faster R-CNN [71], and Swin
Transformer [55]) on each scenario and calculate the
average precision. All four models are trained with the
MS COCO dataset [49]. Figure 3 shows the scatter
plot of AP for all four models under different traffic
scenarios. We can observe that all four models show
huge performance variations under different scenarios.
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Table 1 The AP comparison of different object sizes under
scenarios 18 and 40.

Scenario 18 AP AP small AP medium AP large

ATSS 0.442 0.028 0.458 0.664
Mask R-CNN 0.571 0.198 0.635 0.733
Faster R-CNN 0.423 0.038 0.458 0.646
Swin T 0.555 0.132 0.603 0.734

Scenario 40 AP AP small AP medium AP large

ATSS 0.130 0.038 0.249 0.713
Mask R-CNN 0.163 0.049 0.365 0.776
Faster R-CNN 0.095 0.027 0.270 0.521
Swin T 0.155 0.051 0.346 0.764

Table 2 The number of small/medium/large objects under the
scenarios 18 and 40.

objects / ratio small medium large

scenario 18 2560 / 0.416 2127 / 0.346 1465 / 0.238
scenario 40 9966 / 0.579 5921 / 0.344 1335 / 0.078

The highest AP is 0.57 by Mask R-CNN under scenario
18, while the lowest AP is 0.095 by Faster R-CNN
under scenario 40. Table 1 shows compares AP, AP
small, AP medium, and AP large under both scenarios.
All the detection models show the highest AP value for
large objects and the lowest AP value for small objects.
This is understandable since detecting small objects is
more challenging than large objects due to their low
resolution and noisy representation [43].

One primary reason for the performance variations
under different scenarios is the composition of small,
medium, and large objects. Table 2 shows the number
and ratio of small/medium/large objects under scenarios
18 and 40. We found smaller objects like traffic lights
and small vehicles in scenario 40 than in scenario 18.

Online Detection Performance Variations. The
inference time significantly impacts the DNN model’s
performance for safety-critical applications like AV.
Because when the detection is finished, the real-world
environment has already changed, and there might
be insufficient time for the AV to react in some
emergencies.

To show the impact of inference time on the
streaming perception’s accuracy, we leverage the object
detection models from the MMDetection project [6]
and evaluate the box mAP by comparing the detected
bounding boxes with the input image frame and the
newest image frame [45]. Figure 4 shows the box
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Fig. 4 The box mAP and inference time of offline and
streaming online detection for 400+ object detection models in
mmdetection [6].

mAP result and the average inference time of over 400
object detection models in MMdetection. The online
streaming detection results are emulated by multiplying
a box-changing ratio for every 33ms. The average box-
changing ratio is calculated from the BDD100K video
data. We compare the results of offline detection as well
as real-time streaming detection. For offline detection,
we can find that as the average inference time increases,
the box mAP also increases [6, 76]. The DNN model
with more parameters is expected to learn more features
and patterns from the raw data. However, in real-
time streaming detection, the box mAP decreases when
the inference time increases. Because the longer the
inference takes, the more the difference between the real
world and the input frame [26, 45].

The performance degradation of DNN detection
models on streaming detection is mainly caused by
the changing traffic environment when the DNN model
is executing, which is a fundamental challenge for
functional predictability [86].

Observation 2: Significant performance variations
are observed in DNN models used in AV’s perception
pipeline. The offline DNN performance variations are
primarily attributed to the specific running scenario. In
contrast, online DNN performance variations combine
inference time and offline performance variations.

4 CPT Design

Predictability is an essential challenge for the safety
of AVs. This section begins with the overview and
design principles for the CPT testbed, followed by a
detailed introduction of each component.
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Fig. 5 An overview of the CPT testbed.

4.1 CPT Overview

The DNN inference time variations are related to
several factors: the input image, the DNN model’s
structure, the scheduling policy, and other system
configurations [52]. To profile and quantify the impact
of these factors on the timing/performance variations,
we propose CPT, a configurable testbed for quantifying
the predictability in AV’s perception pipeline.

The overview of the CPT testbed is shown in
Figure 5. The general goal of the testbed is to
provide APIs for defining the application, system,
and evaluation pipeline. CPT comprises three main
modules: the application configuration, the system
configuration, and the evaluator. For the application’s
pipeline, CPT allows configurations on the input data,
the DNN model’s structure, and the fusion policy. For
runtime systems, CPT includes interfaces for setting
scheduling and DVFS policies.

4.2 Application Configurations

4.2.1 Data Selection
Data plays an essential role in DNN’s inference

time and performance variations. The data should be
collected from a real environment under various traffic
scenarios. Therefore, CPT provides two datasets: the
Argoverse-HD dataset [45] and the BDD100K [84].
The Argoverse-HD dataset contains high-quality and
temporally dense annotations for high-resolution videos
(1920 x 1200 @ 30 FPS). Overall, there are 70,000
image frames and 1.3 million bounding boxes. The
BDD100K dataset is a diverse dataset for multi-task
learning. It consists of labels for ten tasks including
object detection, semantic segmentation, and lane
detection. It also contains high-resolution images (1280
x 720 @ 30 FPS).

4.2.2 DNN Model Selection
Three DNN-based tasks in the perception pipeline are

shown in Figure 1: object detection, lane detection,
and semantic segmentation. By integrating with the

Table 3 The number of supported DNN models.

Number
of Models

Object
Detection

Semantic
Segmentation

Lane/Drivable
Detection

OpenMMLab 464 602 -
BDD100K 59 53 56

Total 523 655 56

OpenMMLab model zoo and BDD100K model zoo,
we use config files to load the DNN’s structure
and trained weights. Table 3 shows the supported
DNN models for all three tasks. CPT provides 523
DNN models for object detection, 655 for semantic
segmentation, and 56 for lane/drivable detection. These
models almost cover all the designs for DNN’s
structure. Given that the DNN models for these three
tasks are chosen individually, the CPT testbed could
support over 19 million combinations of models in the
perception pipeline.

4.2.3 Fusion Policy
The fusion node combines the information on the

vehicle’s location, object, lanes, and open space from
the perception tasks. The combination is a message
synchronization based on the message timestamp. In
CPT, we use a message filter with the Approximate
Time Synchronizer to manage the fusion process [5].
There are two parameters in the Approximate Time
Synchronizer: the queue size and the slop. The
queue size defines how many messages to cache for
synchronization, while the slop defines the maximum
interval duration. The 100ms slop means the message
with a time difference of less than 100ms is considered
synchronized.

4.3 System Configurations

4.3.1 Scheduling Configurations
Typically, Linux supports four scheduling policies:

SCHED-OTHER, SCHED-FIFO, SCHED-RR,
and SCHED-DEADLINE [7]. SCHED-OTHER is
Linux’s default scheduling policy for supporting user
applications and maximizing processors’ utilization.
SCHED-FIFO schedules in a first-come-first-serve
method, while SCHED-RR schedules in a round-robin
way. SCHED-DEADLINE is a CPU scheduler based
on the Earliest Deadline First (EDF) [73]. For each
perception task, CPT provides configurations of their
scheduling policies, the priority, the nice, and the
interval value.
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In addition, the computing device on AV is usually
equipped with multiple CPU cores and multiple GPU
cards. The CPT testbed also provides the configuration
of the CPU affinity and the GPU affinity for each task.
Each task can be configured to run on a group of CPU
cores and GPU cards.

4.3.2 DVFS Configurations
Dynamic voltage and frequency scaling is a widely

used technique that adjusts power and speed settings
to optimize resource allotment for tasks and maximize
power saving. In some cases, the AV’s runtime system
could have DVFS enabled for power saving [10].
Therefore, CPT also provides configurations to DVFS
drivers to change the DVFS governor, CPU, and GPU
frequency.

4.4 Evaluator

4.4.1 Time Variations
The time variation is measured for each task and the

end-to-end perception task. The CPT testbed collects
the inference time of each DNN model for each image
under one scenario. The end-to-end perception task
is the time from the image publishing until the fusion
finishes. For both cases, we consider the time range
(maximum minus minimum) and the coefficient of
variations. The coefficient of variation (cv) is used
to evaluate the relative variability, and it is calculated
using the standard deviation σ divided by the mean
value µ. cv is a positive value. The higher the value
is, the higher the variations the data has.

4.4.2 Performance Variations
The performance variations are evaluated with

different metrics on two datasets. For the Argoverse-
HD dataset, all three tasks are evaluated with the
COCO annotations, so mean average precision (mAP)
is used to evaluate the performance of object detection,
semantic segmentation, and drivable detection [49].
For the BDD100K dataset, mAP is used to evaluate
the object detection performance. In contrast, mIoU
(mean intersection of the union) is used to evaluate
the performance of semantic segmentation and drivable
area detection [2]. All these metrics are calculated in
one scenario, and we compare the best, the average, and
the worst values among all the scenarios.

We use the fusion ratio to evaluate the performance
of the fusion result. The fusion ratio is the number of
fusion messages divided by all the messages.

5 Implementation

Autonomous vehicles have various applications for
sensing, perception, and decision. As a modular-based
system, the system’s performance is determined not
only by each module but also by the coordination of
several modules. We integrate its implementation into
an AV perception prototype based on ROS in a multi-
card GPU workstation with Linux RT kernel patched.

5.1 Overview of the Perception System

We implement the CPT testbed on top of ROS,
as shown in Figure 6. The pipeline starts with the
/image node, capturing and publishing images from
the cameras. Three ROS nodes subscribe /image raw
messages and execute the DNN inference on the
images, including object detection, lane detection,
and semantic segmentation. Another perception
node is responsible for Simultaneous Localization and
Mapping (SLAM). After perception, four nodes publish
their results, covering the position information, objects,
lanes, and semantics. The /fusion node subscribes to
these four topics. It synchronizes them based on the
timestamp to get the sensor fusion results, giving the
control module the vehicle’s obstacles and open driving
space. Besides, each perception task and the sensor
publisher publish its execution information based on the
process context and intermediate inference results. This
information includes the PIDs, priorities, nice values,
and intermediate results like object proposals and pixel
raw points. The manager node subscribes to this
information and coordinates task execution by updating
the policy parameters accessible by all the tasks. It
also changes DVFS levels, CPU cores, and GPU card
allocations based on the testing configurations.

5.2 ROS Nodes, Topics, and Parameters

In the ROS framework, nodes (represented as figures)
are processes designed for specific computations.
Conversely, topics (depicted as arrows) act as named
channels allowing ROS nodes to exchange information,
as highlighted by the reference [9]. Within the
perception system, we have designed seven ROS nodes
to gather and process sensor data: /image, /object,
/slam, /lane, /segmentation, /fusion, and /manager.
Communication between these nodes relies on a
publish-subscribe model in ROS for message exchange.
Notably, our SLAM algorithm of choice is ORB-
SLAM2, which employs a camera-centric approach for
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Fig. 6 The ROS implementation of the CPT testbed.

pinpointing pixel key points, vehicle localization, and
simultaneous map creation [59]. We’ve incorporated
three DNN models from the model zoo, which contains
thousands of combinations.

Defining ROS topics as message conduits between
ROS nodes, we’ve set up ten such topics to facilitate
communication encompassing image data, positions,
objects, and specialized messages. An overview
of several ROS topics can be found in Table 4.
Two messages, based on the Image type, encompass
components like the header, height, width, encoding,
and data. Every ROS topic’s header is equipped
with a sequence ID, timestamp, and frame ID that
denote a specific message. To ensure synchronization,
which necessitates both the timestamp and sequence
ID, we’ve fashioned the /pose timestamp from /pose,
carrying data about position and orientation. When
it comes to object detection, bounding boxes visually
represent identified objects, based on the minimum
and maximum values on the x and y axes, probability,
and object category. /bounding boxes aggregates these
boxes for an individual image and incorporates an
internal header. The outcome is visualized with
diverse colors within the image, symbolizing varied
segments of semantic segmentation. The /semantic
topic, which is rooted in the Image type, presents these
results alongside its message header. The /lane topic
integrates both a header and a curve, the latter being
constructed from pixels described by three float values.
Finally, the /* status category encompasses four distinct
topics: /slam status, /object status, /lane status, and
/semantic status. This tailor-made topic contains
components like a header, process ID, scheduling
approach, priority level, image sequence, runtime,

proposals, and probability.
CPT leverages ROS parameters to adjust the

application configurations. This global variable-
based makes it possible to do both offline and
online reconfiguring. The online adjustment of
the application configurations could be made at the
/manager node when receiving a status message
through the callback. As shown in Figure 6, eight
ROS parameters are implemented in the perception
system. For system configurations, we implement a
socket called proc manager which takes requests
from the command line to change CPU/GPU affinity,
CPU/GPU frequency, priority, and scheduling policy
for a given process PID.

6 Evaluation

We now show how CPT enables researchers to study:
1) the DNN structure’s impact on the inference time
variations; and 2) the relationship between performance
and scenarios.

Hardware and software setup. The evaluation is
conducted on a GPU workstation. It has 28 Intel®
Core™ i9-9940X CPUs with the highest frequency at
3.3GHz. The platform has 4 NVIDIA GeForce RTX
2080 Ti/PCIe/SSE2 GPU cards, providing 304 TOPS.
Each GPU card has 4352 CUDA cores, supporting 10
Giga Rays/s and 14 Gbps memory speed. The GPU-
shared memory has 11GB GDDR6 with 352 memory
interface widths. In addition, the platform has 64 GB
DDR4 memory. There are four DDR4-based memory
devices, each 16GB with a speed of 2666 MT/s.

6.1 DNN structure’s impact on inference time
variations
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Fig. 7 The range and range/mean for all 464 models in
mmdetection.
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Table 4 ROS topics implemented in the perception system.

ROS Topics Library Type Fields

/image raw sensor msgs Image
header, height, width, encoding,
data, etc.

/pose geometry msgs PoseStamped
header, position (x, y, z float64)
orientation (x, y, z, w, float64)

/bounding boxes darknet ros msgs BoundingBoxes
header, image header,
bounding boxes

/bounding box darknet ros msgs BoundingBox
probability, xmin, ymin, xmax,
ymax, id, class

/semantics sensor msgs Image
header, height, width, encoding,
data, etc.

/lane geometry msgs Points header, curve

/* status process status msgs ProcessStatus
header, pid, priority, image seq,
runtime, proposals, etc.

We measured the inference time of 464 DNN
models in the mmdetection using the same input
images to study the impact of DNN structure on
inference time variations. Figure 7 shows the results
of these models’ inference time range and range/mean
percentage on the GPU workstation. We found that
many models have a variation range exceeding 50ms
and a variation range/mean percentage larger than
50%. We also observed that models with larger than
50ms time variations share the same HTC structure,
which features a skipping design that causes inference
time variations. It also enables effective modeling
of temporal dependencies in sequential data through
its hierarchical architecture with temporal convolutions
and skip connections [67].

6.2 The relationship between the performance and
scenarios

In order to understand the relationship between AP
performance and scenarios, we deployed four object
detection models on all 65 scenarios and collected
their AP results for small, medium, and large objects.
Besides, we collected the ratio of small, medium, and
large objects for each scenario. From the comparison
of scenario 18 and scenario 40 results in Table 1
and Table 2, the breakdown of different object sizes
contributes significantly to the final average AP value.
Next, we calculated the correlation coefficients between
the ratio of small, medium, and large objects and the
results of AP for all scenarios. Table 5 shows the
correlation analysis results. We can observe that both
small and large object ratios have a high impact on the
AP, while the small object ratio has a negative impact,
and the large object ratio has a positive impact.

Table 5 The correlation coefficient between the AP and the
small/medium/large object percentage.

r Mask R-CNN ATSS Faster R-CNN Swin T

small -0.413 -0.398 -0.403 -0.388
medium 0.121 0.101 0.099 0.100

large 0.475 0.471 0.480 0.457

7 Future Work

One significant direction for future work involves the
integration of CPT with Autoware [40], a leading
open-source software for autonomous vehicles. This
integration aims to test and evaluate the end-to-end
autonomous vehicle (AV) pipeline, providing a more
comprehensive assessment of predictability in real-
world scenarios [19, 20].

By incorporating CPT with Autoware, researchers
can delve deeper into the complexities of the entire
AV pipeline, extending beyond the perception module
to include decision-making, path planning, and control
systems. This comprehensive approach will allow for a
holistic evaluation of the predictability of AV systems
in diverse and dynamic driving environments. The
integration will enable researchers to test various DNN
model combinations and system configurations within
the full context of an operational AV, thereby addressing
some of the most pressing challenges in AV safety and
reliability.

Furthermore, this future work will explore the
scalability of CPT in more complex AV scenarios,
including urban driving and adverse weather conditions,
where predictability becomes even more critical. The
findings from these studies are expected to significantly
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contribute to the advancement of AV technology,
ensuring safer and more reliable autonomous driving
solutions.

8 Conclusions

This paper introduces CPT, a testbed designed to
evaluate the predictability of AV’s perception pipeline.
CPT consists of three modules, namely application
configurations, system configurations, and an evaluator.
It offers two image datasets that include over 100
scenarios as sensor data, and it provides more than
19 million DNN model combinations through its
integration with OpenMMLab and BDD100K’s model
zoo. CPT allows for flexible scheduling, fusion, and
DVFS policies. Additionally, CPT defines various
metrics representing time and performance variations
for each task and fusion task.
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