
EdgeCompression: An Integrated Framework for
Compressive Imaging Processing on CAVs

Sidi Lu∗, Xin Yuan† and Weisong Shi∗
∗Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

†Nokia Bell Labs, Murray Hill, NJ 07974, USA
{lu.sidi, weisong}@wayne.edu, xyuan@bell-labs.com

Abstract—Machine vision is the key to the successful de-
ployment of many Advanced Driver Assistant System (ADAS)
/ Automated Driving System (ADS) functions, which require
accurate high-resolution video processing in a real-time manner.
Conventional approaches are either to reduce the frame rate or
reduce the related frame size of the conventional camera videos,
which lead to undesired consequences such as losing informative
high-speed information and/or small objects in the video frames.

Unlike conventional cameras, Compressive Imaging (CI) cam-
eras are the promising implications of Compressive Sensing,
which is an emerging field with the revelation that the optical-
domain compressed signal (a small number of linear projections
of the original video image data) contains sufficient high-speed
information for reconstruction and processing. Yet, CI cameras
usually need complicated algorithms to retrieve the desired signal,
leading to the corresponding high energy consumption. In this
paper, we take a step further to the real applications of CI
cameras in connected and autonomous vehicles (CAVs), with
the primary goal of accelerating accurate video analysis and
decreasing energy consumption. We propose a novel Vehicle-
EdgeServer-Cloud closed-loop framework called EdgeCompres-
sion for CI processing on CAVs. Our comprehensive experiments
with four public datasets demonstrate that the detection accuracy
of the compressed video images (named measurements) generated
by the CI camera is close to the accuracy on reconstructed
videos and comparable to the true value, which paves the
way of applying CI in CAVs. Finally, six important obser-
vations with supporting evidence and analysis are presented
to provide practical implications for researchers and domain
experts. The code to reproduce our results is available at
https://www.thecarlab.org/outcomes/software.

Index Terms—Compressive imaging, Compressive sensing,
Edge computing, Connected and autonomous vehicles, Deep
learning, Convolutional neural networks.

I. INTRODUCTION

The wide deployment of 4G/5G has enabled connected and
autonomous vehicles (CAVs) as the perfect edge computing
platforms [1] for a plethora of new intelligent services which
were impossible before, such as obstacle avoidance and tra-
jectory planning. These advanced services are built on top of
a suite of sensors, including cameras, radars, and LiDARs.
Among these sensors, cameras are one of the most essential
parts because it is the critical component that enables real-time
video frame analysis to detect the surrounding environment for
accurate driver assistance and safe driving guidance. However,
in a CAV, cameras could generate 20-60 MB data per second
[2], and such vast volumes of data inevitably bring the chal-
lenges to the real-time analysis of the high-resolution video

CI Camera

Vehicle

Energy

Efficient DNNs

Measurements

EdgeServer

Measurements

CloudDecompress

DNNs
Advanced DNNs

1 2

Reconstructed 

Video
Measurements

Fig. 1. The Vehicle-EdgeServer-Cloud closed-loop framework (dubbed Edge-
Compression) to integrate compressive imaging (CI) and edge computing
into CAVs systems.”Measurements” refers to the optical-domain compressed
video images. The step of sending measurements from Vehicle to EdgeServer
is asynchronous. A road side unit and cellular tower could both be treated as
the EdgeServer.

from an on-board camera. In this section, we list three main
challenges faced by CAVs in terms of real-time video analysis.

1) Challenges in Imaging System: First, timely visual
data analysis usually requires high-speed video collection
from conventional cameras, which inevitably results in high
bandwidth communication and power consumption. Current
popular solutions to the problems of using conventional cam-
eras are either to reduce the frame rate or reduce the related
frame size. However, these two-fold solutions further lead to
other undesired consequences, such as losing informative high-
speed information and failing in small object detection in the
video images.

2) Challenges in Neural Networks: Second, from the al-
gorithm’s perspective, although the state-of-the-art deep neural
networks (DNNs) could achieve exceptional performance on
image recognition tasks, it is nontrivial to transfer these DNNs
to videos for real-time processing due to the slow per-frame
inference and the high temporal redundancy [3]. Therefore,
how to improve the efficiency of the visual processing for
CAVs with a tolerable accuracy degradation has witnessed a
tremendous amount of attention over the last few years.

3) Challenge in Edge Computing Platforms: Finally, tra-
ditional edge devices are usually resource-constrained with
limited computation power and memory footprint. As a perfect



edge computing platform, although the computation resources
of CAVs are becoming more and more powerful, they are still
facing the challenge of providing accurate real-time services
with stringent latency requirements under a limited energy and
cost budget to process the increasing amounts of data.

Nowadays, there are three popular solutions to address the
above challenges:
i) developing new imaging systems i.e., developing novel

Compressive Imaging (CI) cameras that are able to cap-
ture high-speed video information (described in Sec. I-A),

ii) developing advanced but light-weight algorithms (de-
scribed in Sec. II-C1), and

iii) adopting hardware acceleration solution, such as involv-
ing the field-programmable gate array (FPGA) for video
analysis tasks (described in Sec. II-C2).

While extensive researches in the edge computing field have
been taken based on ii) and iii) [4]–[6], this paper first
introduces CI camera [7], [8] into the edge-computing based
CAV system for the purpose of achieving faster video pro-
cessing, and less energy consumption and communication
bandwidth. Moreover, we take one step further to solve the
limitations of CI camera — requiring complicated algorithms
to retrieve the desired signal and resulting in corresponding
high energy consumption, by undertaking compressed video
(measurement) analysis on the Vehicle directly and transfer
the reconstruction workload to the EdgeServer with an event
trigger to invoke necessary reconstruction.

The concise schematic of our proposed Vehicle-EdgeServer-
Cloud closed-loop framework called EdgeCompression is
shown in Fig. 1, where a compressive imaging camera is
installed on a CAV to captured high dimensional (HD) in-
formation (rather than using a conventional camera). In this
paper, the (raw) measurement refers to the optical-domain
compressed video, i.e., the raw data directly read out from the
sensors. As shown in Fig. 1, the raw measurements captured
by the CI camera is on the one hand sent to the energy-
efficient DNNs on the Vehicle to perform real-time detection
and reaction. On the other hand, the raw measurements are
sent to the EdgeServer to save the data and information. When
it is necessary (e.g., , a triggered event), a decompress DNN [9]
is employed to perform the reconstruction (on the EdgeServer)
to get the HD video and then using an advanced DNN to
perform detection again, but this time on the reconstructed
video. Besides, essential information and videos are sent to the
Cloud for high-level planning and decision making and further
refine the energy-efficient DNNs on the Cloud to update the
DNN model on the Vehicle for accurate detection.

A. Compressive Imaging

Conventional digital imaging, since the invention of Charge-
Coupled Device (CCD) [10], follows the procedure of pro-
jection, analog-to-digital conversion, and quantization to map
the HD continuous information to two-dimensional discrete
measurements. After decades of development, digital imaging
has achieved great success and inspired a series of the re-
lated research field, such as machine vision, digital imaging

processing, etc. This processing line and the associated im-
age processing technologies, such as pattern recognition has
greatly advanced the development of machine vision, which
paves the foundation of CAVs. However, due to the inherent
limitation of this “imaging first and processing afterwards”
scheme, machine vision has encountered bottlenecks in both
imaging and successive processing, especially in real appli-
cations such as CAV systems. The dilemma is mainly due
to the limited information capture capability since during the
imaging (capture), a large amount of information was filtered
out (e.g., spectrum, depth, broad dynamic range, etc.), and the
sequence processing is thus highly ill-posed.

Compressive imaging or more generally computational
imaging, by contrast, integrates the imaging system with
consequent processing. This new scheme blurs the boundary
between optical acquisition and computational processing,
moves the calculation forward to the imaging procedure, i.e., it
introduces computing to design new task-specific systems.
For instance, in some cases, CI changes the illumination
and optical elements (including aperture, light path, sensor,
etc.) to encode the visual information and then decode from
the coded measurements computationally. The encoding can
encode more visual information than conventional imaging
systems or encode task-oriented information for better anal-
ysis.

In this paper, we use the video snapshot compressive
imaging [9], [11]–[13] as an example to show the principle
of our EdgeCompression closed-loop framework and demon-
strate preliminary results considering the applications of CAV
systems.

B. A New Closed-Loop Framework for CI Processing on CAVs

Recalling Fig. 1, the proposed EdgeCompression closed-
loop framework consists of three primary parts: i) an energy-
efficient network performing object detection directly on the
compressed video (named measurement) captured by CI cam-
eras on the Vehicle, to boost inference speed and reduce
bandwidth, memory footprint, and energy consumption, ii)
EdgeServer used to reconstruct the high-dimensional and high-
speed data with a triggered event, instead of undertaking
reconstruction on the Vehicle, so that it can transfer the energy
pressure of reconstruction from the Vehicle to the EdgeServer
and further reduce the unnecessary power consumption on
the Edge Could with the help of the trigger; moreover,
EdgeServer also works to verify the detection results of the
Vehicle and send notifications and feedback to the Vehicle,
and iii) Cloud that aggregates all useful information such as
reconstructed video detection results and saved measurements
from EdgeServer to refine the energy-efficient network on the
Vehicle for model updating purpose. Besides, it also hosts all
reconstructed videos of the vehicle fleets to further works such
as traffic control and path planning.

It is worth noting that the “closed-loop” in our proposed
framework is manifested in the following three aspects: a) the
EdgeServer verifies the detection results from the Vehicle; b)
the Cloud refines the network on the Vehicle, and c) the Cloud



collects all the information for traffic control and path planning
and then sends navigation suggestions to the Vehicle.

C. Energy-Efficient Network

This line of machine vision-related research in the Edge
Computing field is complemented by works of [4]–[6] where
the focus is on either algorithm optimization or hardware
acceleration to process images for object detection in a near
real-time manner. For example, Masmoudi et al. [4] proved
the capability of YOLOv3 (You Only Look Once-V3) [14]
and Q-learning algorithm to handle real-time video frames
processing for the autonomous vehicle-following problem. In
the work of [5], Solovyev et al. implemented a higher number
of convolutional blocks on an FPGA for the speed-up in video
processing. Besides, Wei et al. [6] applied binarized neural
networks on two FPGAs: PYNQ-Z1 and Zynq-Xc7Z010,
which can realize a satisfying result in high analysis speed
and accuracy to recognize pedestrians and some obstacles on
a given road.

However, the valuable information stored in the HD data is
usually overlooked. Thanks to CI, the HD data information
can now be captured, but in a different manner. In this
paper, we focus on accelerating video analysis speed by
taking advantage of CI. Without loss of generality, we choose
vehicle detection as our case study since it lays the foundation
for the vital intelligent services in CAVs. The main idea is
to map continuous multi-frame video images into a single
compressed measurement [15]–[18], so that the application
scenario of deep learning algorithms is transferred from the
dense frames of videos to the informative compressed mea-
surements. Following this method, the redundant computation
could be reduced from the source. As such, the speed of model
inference can be boosted significantly. Besides, it can also save
the communication bandwidth and energy consumption due to
the reduced computation workload. We believe “CI on Edges”
will be the next trend of machine vision for CAVs.

D. Contributions of This Work

Our core contributions are not in the development of ma-
chine learning-based models that are built on top of well-
understood and mature models, such as Faster RCNN [19],
YOLOv3 [14], and Single Shot MultiBox Detector (SSD)
[20]. Instead, the core innovation of our study is in providing
experimental evidence to establish that raw measurements
from CI cameras are effective in capturing the digital rep-
resentation of the intricate features of targets. We also provide
actionable insights on employing DNNs on measurements to
speed up video analysis with high performance for intelligent
services with stringent latency requirements meanwhile saving
the memory, bandwidth, and energy consumption and thus
potentially power and cost. Specific contributions are listed
as follows.

• To the best of our knowledge, this is the first work that
introduces Compressive Imaging into Edge Computing
for CAVs. Our experiment results validate our assumption
that building DNNs based on the measurements of the

Vehicle is an effective solution to machine vision tasks —
the accuracy of the detection on measurements are close
to reconstructed videos, and their evaluation metrics are
both comparable to the true value. Besides, it provides
an alternative approach to speed up high-resolution video
processing by multiple times for CAVs. Most importantly,
this method can coexist with any existing algorithm
optimization and/or hardware acceleration to further ac-
celerate machine vision services. Besides, undertaking
vehicle detection on raw measurements can also save
communication bandwidth, memory, and reduce energy
consumption thanks to the reduced computation tasks.

• We introduce EdgeServer that is responsible for crit-
ical two-fold tasks illustrated in detail in Sec. III-A:
i) reconstructing HD data based on the measurements
sent from Vehicle with a triggered event, instead of
always undertaking reconstruction on the Vehicle. As
such, it can transfer the energy pressure of reconstruction
from the Vehicle to the EdgeServer that has efficient
power and then conduct reconstruction when necessary.
Consequently, it can also reduce the required power
consumption of the Edge Could, ii) providing a complete
verification closed-loop to guide the algorithm and system
design of the Vehicle.

• The EdgeCompression closed-loop framework involves
Cloud, where aggregating all the useful information from
EdgeServer, including saved measurements and recon-
structed video detection results (more accurate results),
to refine the energy-efficient network and refresh it ON
the Vehicle for the model updating purpose. Besides, it
also hosts all reconstructed videos of the vehicle fleets,
so it can further perform tasks which require the global
view, e.g., traffic control, and path planning.

The rest of this paper is organized as follows: Sec. II reviews
related work and building blocks of the EdgeCompression
closed-loop framework, which are detailed in Sec. III. Exten-
sive experimental results are shown in Sec. IV and we present
discussions in Sec. IV-D. Sec. V concludes the entire paper.

II. BACKGROUND AND RELATED WORK

In this section, we review the essential building blocks
of our new framework to integrate compressive imaging to
edge computing with the application of CAVs. In particular,
we describe the basic idea of video compressive imaging,
recent advances of object detection based on deep learning,
and neural networks for video compression. Research gaps
are identified and inspire our own contributions.

A. Video Compressive Imaging

In video compressive imaging as shown in Fig. 2, the high-
speed frames of a video are modulated at a higher speed than
the capture rate of the camera. These modulated frames are
then compressed into a single measurement. With knowledge
of the modulation, multiple frames can be reconstructed from
every single measurement. Therefore, CI was proposed to



capture high-dimensional data using low-dimensional detec-
tors and then employ algorithms to solve such an ill-posed
inversion problem. This leads to a hardware encoder plus
software decoder regime, which is capable of providing us
more information about the scene.

t1 t2 tCrMask

t1 t2 tCrVideo Modulated Frames
t1 t2 tCr



𝑘=1

𝐶𝑟

CI 

Camera

Single 

Measurement

Decompress

DNN
t1 t2 tCr

Reconstructed Video

Reconstruction

Fig. 2. The framework of video compressive imaging (CI). Here, � denotes
the element-wise product.

To be concrete, consider that Cr video frames (top-left in
Fig. 2) are modulated by Cr different modulation patterns
(bottom-left in Fig. 2) and then compressed to a single com-
pressed measurement shown in the top-right of Fig. 2. Note
the modulation patterns can be implemented by a translating
mask [17] or other spatial light modulators [15], [16], [21],
and both random binary patterns and gray-scale patterns can
be used.

Let Xk ∈ RNx×Ny denote the k-th video frame, ∀k =
1, . . . Cr. During the CI capture, within one exposure time,
each frame is modulated by a unique pattern Mk ∈
RNx×Ny ,∀k = 1, . . . , Cr. These modulated frames (top-
middle in Fig. 2) are then summed (integrating the light in
the imaging system) to a single measurement Y ∈ RNx×Ny .
The forward model can thus be modeled as

Y =

Cr∑
k=1

Xk �Mk + G, (1)

where � denotes the element-wise product and G denotes the
measurement noise. After the CI camera captures Y, the next
task usually is to perform the reconstruction, which aims to
estimate Xk from Y given Mk. It has recently been proved
in [22] that, if the signal is structured enough, there exist
reconstruction algorithms with bounded reconstruction error,
even for Cr > 1.

During the past decade, though various algorithms have
been developed [23]–[26], the long-running time of the al-
gorithm [11] precludes wide applications of CI since in some
cases, a real-time visualization is desired. Thanks to recent
advances in deep learning, fast end-to-end reconstruction has
been demonstrated in compressive imaging [12], [27]–[32].
The deep learning approach first learns an approximate inverse
function of the system forward model in training, and then
provides instantaneous reconstruction by directly estimating
outputs from the input measurements during testing.

In a nutshell, CI and deep learning can now lead to an
end-to-end high-speed capture, real-time and flexible recon-
struction, which paves the way for real applications.

Different from the above “compressed capture and then
reconstruction” research line, in this study, we aim to answer
the following questions of using CI cameras in CAVs:

a) Do we need to reconstruct high-quality data in real time
on the vehicle?

b) If the answer to a) is ‘no’, can we still use CI cameras
for real applications especially on CAVs?

In this paper, we answer ‘no’ to a) but ‘yes’ to b). Specifically,
we show that without reconstruction, object detection, which
is essential in the real-world applications of CAVs, can be
conducted directly on the measurements from CI cameras. This
speeds up the detection speed with a comparable performance
of ground truth, meanwhile saves the memory, bandwidth,
and energy consumption. Furthermore, we only perform re-
construction on the EdgeServer when it is necessary such
as surrounding vehicles are detected, rather than conducting
reconstruction all the time on the Vehicle. This saves the
energy on the Vehicle significantly. This new proposal lead
to reals applications of CI to CAVs in an efficient way.

As objection detection is the primary task in CAVs, in
the following, we review the recent advances of objection
detection.

B. Milestones of Object Detection

Currently, the state-of-the-art technologies used for general
object detection can be broadly categorized into three major
classes: RCNN series [19], [33]–[35], SSD series [20], [36],
and YOLO series [14], [37], [38].

1) Region-based Convolution Neural Network (RCNN):
Before 2014, the mainstream method of object detection
was the Deformable Part Model (DPM) [39], but it requires
classifying an abundance of regions from the image. To bypass
this problem, Girshick et al. proposed Regional Convolution
Neural Network (RCNN) [34] that employs selective search
to extract only two thousand regions named Region Proposal
and run CNN on these limited regions — it was this time that
CNN was first introduced to the object detection field, which
greatly improves mean average precision (mAP). Based on
RCNN, Fast RCNN [33] and Faster RCNN [19] were proposed
to reduce the redundant computation for fast object detection
applications.

2) You Only Look Once (YOLO): The YOLO series al-
gorithm was firstly proposed by Redmon et al. in [37],
and it is well known for its fast detection speed caused by
simple and clear algorithm structure — YOLO formulates the
object detection as a regression problem by solving a single
CNN that predicts bounding boxes and category probabilities
directly from images. The YOLO series algorithms have
been continuously improved, and one of the most popular
algorithms is YOLOv3 [14], which automatically selects the
most suitable initial regression frame by incorporating the K-
means clustering approach for a specific input dataset [40],
[41].

3) Single Shot MultiBox Detector (SSD): To achieve a good
balance between speed and accuracy, Liu et al. proposed SSD,
which uses the regression method for object detection. Briefly



speaking, the SSD network was designed to replace the fully
connected layer by the convolutional layer that is running
on the input image only once and calculates a corresponding
feature map.

C. Fast Object Detection

Although the trend of the image recognition tasks has been
to make more complicated networks to achieve higher accu-
racy, these DNNs often required to be carried out in a timely
manner even on resource-constrained devices in various real-
world applications such as the autonomous driving considered
in this work. An abundance of work has been published in this
field to accelerate the inference of current DNNs so far. Next,
we discuss a few prominent and representative approaches.

1) Technical Evolution on Model Optimization: Refer-
ences [42]–[44] aimed to develop light-weight DNNs with
fewer parameters to achieve inference accelerating. For ex-
ample, Iandola et al. [44] introduced SqueezeNet, a small
CNN architecture. It could achieve AlexNet-level accuracy
on ImageNet with 50× fewer parameters and thus speeding
up the inference time. Zhu et al. [45] introduced the deep
feature flow for fast video recognition. In [46], Chen et al.
explored a new method to speed up video recognition speed
while maintaining competitive performance. Liu et al. [47]
combined fast single-image detection with long short term
memory networks to build a new online model for object
detection in videos. Although their model was designed to
run in real-time, the accuracy was much sacrificed.

2) Technical Evolution on Hardware Acceleration: In
the meantime, significant efforts also focused on the efficient
execution of DNNs over a constant stream of input video data.
Most of these work used FPGAs to accelerate the inference
speed since FPGAs could offer attractive solutions for both
performance and power consumption. For example, in the
work of [5], Solovyev et al. implemented a higher number of
convolutional blocks on an FPGA for the acceleration in video
processing. [48] introduced new design methods to speed up
feature extraction algorithms on two types of FPGAs. Wei et
al. [6] applied binarized neural networks on two FPGAs to
realize a satisfying result in high speed and accuracy.

D. Deep Learning Model on Compressed Video

Most of the prior work focused on optimizing model archi-
tectures or involving FPGAs to improve the inference speed of
DNNs. To our best knowledge, only a few prior efforts applied
deep models directly on the compressed videos [47], [49],
[50], [50] (but different from our video CI method). Briefly
described, many multi-channel real-time systems have built-
in VLSI hardware image compressors that can directly store
compressed video data from multiple cameras to the hard disk.
The main reason is that the uncompressed video (raw multi-
channel video data) cannot be used due to the limitations of the
available bus and processor. In the work of [3], [49], the video
data was provided in a wavelet compression format, with the
purpose of storing the image data in the file with as little space
as possible. They utilized signals from compressed video to

generate non-deep features, aiming to improve the speed and
accuracy of video recognition. These studies are different from
our work since they are still limited to conventional cameras
and traditional compression approaches such as MPEG. By
contrast, we employ a new imaging system (CI cameras),
which is an optical (compressive) encoder itself into CAVs.

E. The Gap in Previous Work

Although the state-of-the-art DNNs could achieve outstand-
ing performance on image recognition tasks, it is nontrivial
to transfer these DNNs to videos for real-time processing due
to the slow per-frame inference speed and the high temporal
redundancy [3]. Moreover, all the above algorithms only win
on either faster inference speed or higher recognition accuracy
on a specific benchmark dataset (such as the COCO challenge
[51]). For example, the YOLOv3-Tiny network [52], the fastest
algorithm at present, achieves high inference speed at the
expense of substantially lowered performance compared with
other algorithms — the object detection in complex scenes
is not accurate enough, e.g., pedestrian objects are basically
not detected in the road scene [53]. Moreover, hardware
acceleration approaches could speed up image recognition, but
it usually requires the involvement of specific hardware such
as GPUs and/or FPGAs, which limits the application range
and increases cost.

Bearing the above concerns in mind, we provide an alter-
native methodology to speed up the inference of DNNs for
CAVs, which does not require any special hardware and can
be applied on top of any state-of-the-art object detection algo-
rithms to achieve further multiple times of acceleration based
on the original inference speed. Specifically, we perform real-
time object detection on the measurements directly captured
by the CI cameras, without any further processing.

III. PROPOSED FRAMEWORK AND METHODOLOGY

A. EdgeCompression Closed-Loop Framework Description

Fig. 3 presents the detailed schematic of the designed
EdgeCompression closed-loop framework. As mentioned in
Sec. I-B, EdgeCompression includes three key components:
i) An energy-efficient network i.e., YOLOv3-Tiny [54] per-

forms object detection directly on the raw measurement
captured by CI cameras on the Vehicle, with the effec-
tiveness of boosting inference speed, reducing commu-
nication bandwidth, memory requirements, and energy
consumption.

ii) EdgeServer reconstructs the HD data when the predefined
event (such as vehicle detection) was triggered from
the Vehicle, instead of undertaking reconstruction on the
Vehicle, so that it can transfer the energy pressure of
reconstruction from the Vehicle to the EdgeServer that
possesses sufficient power. Besides, since reconstruction
only occurs when the trigger is on, it will also reduce
the required power consumption on the EdgeServer. Then
EdgeServer leverages advanced network (YOLOv3) for



6/28/2020 Connected and Autonomous dRiving Laboratory 1

CI Camera

Vehicle

Measurements
YOLOv3-Tiny

Local Processing

EdgeServer

Storage

Reconstruction

E2E-CNN

Object Detection

YOLOv3

Measurements

Reconstructed Video 
Detection Results(∆𝑡)

Reconstructed Video

Y

N

Reconstruction Trigger

Verification

Feedback

Notification

<Measurements(∆𝑡), Detection Results (∆𝑡)>

Cloud Refined 

YOLOv3-Tiny

Update YOLOv3-Tiny Model

Vehicle Fleets
Measurement

Detection Results
Object Detection

Fig. 3. The complete EdgeCompression closed-loop framework to integrate CI, Edge Computing, and CAVs. The CI camera is installed on the Vehicle to
capture high-dimensional data, and a light-weight DNN (YOLOv3-Tiny) is employed to perform real-time detection based on raw measurements from the
CI camera. The measurements (compressed thus low bandwidth) are also sent to the EdgeServer to save the information, and when the trigger is on, an
end-to-end CNN (E2E-CNN) is employed to perform the reconstruction, and an advanced detection network (YOLOv3) is used to perform (more accurate)
object detection based on the reconstructed video, which will also be used to verify the result of YOLOv3-Tiny. Meanwhile, these results will be sent to the
Cloud with the saved measurements to refine YOLOv3-Tiny to provide more accurate on-vehicle services continuously. The reconstructed video will also be
sent to the Cloud that received related information from Vehicle Fleets, to conduct decision making such as traffic control and path planning.

vehicle detection based on the reconstructed video. More-
over, EdgeServer also verifies the detection results of the
Vehicle (thus closed-loop).

iii) Cloud aggregates all useful information such as recon-
structed video detection results and saved measurements
from EdgeServer to refine the YOLOv3-Tiny model on
the Vehicle for the model updating purpose (again closed-
loop). Besides, it also hosts all reconstructed videos of
the vehicle fleets so that it can perform traffic control
and path planning.

Vehicle: The installed CI camera of a Vehicle will contin-
uously capture a constant stream of raw measurements of
the surrounding environment. Meanwhile, an energy-efficient
model, YOLOv3-Tiny, is running to detect vehicles based on
the measurements simultaneously. YOLOv3-Tiny [54] is a
light-weight deep learning algorithm designed for resource-
constrained devices, with superior advantages on fast object
detection due to the significantly reduced parameters.

In this EdgeCompression closed-loop framework, we as-
sume one front CI camera is installed on the Vehicle. Without
loss of generality, it is feasible to install multiple CI cameras
to capture front, side, and back views and take place of the
conventional cameras for real-world applications. Furthermore,
as to the compression ratio (Cr), suppose that we collect
20 measurements per second at Cr = 10, we can obtain
high-speed information of 200 HD frames per second after
reconstruction on the EdgeServer, which is usually infeasible
in conventional cameras. The frequency of collecting measure-
ments could also be decreased based on the specific application
requirements, e.g., collecting 10 (or fewer) measurements per
second, to save memory footprint, bandwidth, and energy.
Therefore, employing CI cameras on Vehicles can not only

capture and save high-speed information but also enjoys the
flexibility of balancing bandwidth and energy.
From Vehicle to EdgeServer: There are two types of
data transmission channels from a Vehicle to the EdgeServer.
Firstly, the raw measurements captured by the CI camera will
continuously be uploaded to the EdgeServer via a wireless
network such as 4G or 5G. Secondly, once the surrounding
vehicles are detected by the local YOLOv3-Tiny model, a
reconstruction trigger will be sent to the EdgeServer to invoke
video reconstruction for the stored raw measurements.

It is worth noting that since the CI camera is an optical
encoder, the raw measurement is compressed already and
thus the bandwidth to transmit the measurements to the
EdgeServer will be small. More specifically, given a specific
Cr, the bandwidth requirement of transmitting measurements
from Vehicle to EdgeServer could be reduced to 1

Cr
of the

original bandwidth requirement, making the proposed closed-
loop framework possible using 5G. Also, compared with a
conventional camera, no additional processing such as image
codec is required and thus potentially we can save the power
and energy on the Vehicle. Furthermore, since the CI camera
captures the HD data in a compressed manner, the information
of all Cr frames are included in the measurement. Thus, HD
data can be retrieved anytime when they are needed.
EdgeServer: As shown in Fig. 3, EdgeServer possesses two
networks: E2E-CNN network [9] is responsible for the recon-
struction, and it is able to provide remarkable performance for
CI given sufficient training data. The other advanced network
is working for vehicle detection based on the reconstructed
video generated by E2E-CNN. Inspired by the evaluation
results in [4], [55], which presented the effectiveness and
efficiency of YOLOv3 and its capability to handle real-time



applications for CAVs, we choose YOLOv3 as the vehicle
detection model on the EdgeServer.

Note that both reconstruction and advanced detection are
performed only when surrounding vehicles are detected by the
energy-efficient network (YOLOv3-Tiny) on the Vehicle. This
saves the workload on the EdgeServer. Meanwhile, as men-
tioned above, the raw measurements from the CI cameras are
saved on the EdgeServer, and the video can be reconstructed
whenever it is necessary.

From EdgeServer to Cloud: On the EdgeServer,
the YOLOv3 network takes the reconstructed video as
the input and output vehicle detection results. Here,
〈Measurements(∆t), DetectionResults(∆t)〉 indicates a
pair of input and output of EdgeServer during the time period
of ∆t. As to the data transmission, EdgeServer will contin-
uously send 〈Measurements(∆t), DetectionResults(∆t)〉
to Cloud that possesses much more powerful computation
resources to refine the YOLOv3-Tiny model (updating pa-
rameters for better detection). On the other hand, the re-
constructed video will also be transmitted to Cloud with the
goal of supporting future traffic control or path planning — we
assume every CAV have equipped CI cameras and deployed
our proposed EdgeCompression closed-loop framework, and
following this method, Cloud will store the large-scale recon-
structed video sent from different vehicles capturing diverse
path conditions and traffic scenarios.

From Cloud to Vehicle: After Cloud finishes model refining,
Vehicle will pull the refined YOLOv3-Tiny from EdgeServer
to update the current network and providing more accurate
detection results for the next round of detection.

From EdgeServer to Vehicle: On the EdgeServer side, since
the YOLOv3 network should achieve higher accuracy than
YOLOv3-Tiny with regard to vehicle detection in theory (we
also verified this assumption in the experiment results of Sec-
tion IV), we leverage the output —DetectionResults(∆t) —
as ground truth to verify whether the reconstruction trigger
sent by Vehicle is correct or not. If the trigger is correct, it
will send a related notification to the Vehicle. Otherwise, it
will forward corresponding feedback to the Vehicle for model
update purpose.

In the following, we select public datasets to verify our
proposed EdgeCompression closed-loop framework. Before
presenting the results, we introduce the datasets and hardware
setup below.

B. Dataset Selection

The publicly available datasets have played a key role in
pushing forward the development in many computed vision-
based image analysis tasks by providing problem-specific
examples and the corresponding ground truth [51], [56]. In
the context of autonomous driving, the studies of [57]–[60]
have provided the research community different benchmarks
to evaluate diverse algorithms on the same data and contributed
to closing the gap between the laboratory testing environment
and various real-world problems.

Due to the methodology of mapping multiple images into a
single measurement, the public datasets without a high frame
rate or comprised of images collected at long intervals, such
as Waymo [58] and KITTI [57] dataset, may not serve as an
ideal evaluation benchmark for real-time vehicle detection on
the measurements. In this work, the training and inference
experiments are steered by four datasets, namely, AAU Rain-
Snow Traffic Surveillance Dataset (AAU)1, Berkeley Deep-
Drive BDD100K Video Dataset (BDD100K)2, Public Dataset
of Traffic Video (PDTV)3, and DynTex Database (DynTex)4.
AAU RainSnow dataset: AAU RainSnow dataset [61] con-
tains 22 five-minute challenging sequences captured from
seven traffic intersections in two cities, Aalborg and Vyborg,
in Denmark. These video sequences collected from a conven-
tional RGB camera in rainfall and snowfall under insufficient
lighting conditions, with a resolution of 640 × 480 pixels at 20
frames per second. The glare from car headlights, reflections in
puddles, and blurring of raindrops on the camera lens further
weaken the visibility of the scene. Fig. 4(a) presents two
typical examples of AAU video images.

(a) AAU RainSnow Dataset

(b) DB D100K Dataset

(d) DynTex Dataset(c) PDTV Dataset

Fig. 4. Examples of four public video datasets.

BDD100K dataset: Berkeley DeepDrive BDDV100K dataset
[62] is one of the largest real driving video datasets with 100K
high definition videos over 1,100 hours of driving experience
across different times in a day and weather conditions (shown
in Fig. 4(b)). Each video is about 40 seconds long and with a
resolution of 1280 × 720 pixels at 30 frames per second. The
driving scenarios include highways, cities, and rural areas of
several major cities in the United States.
PDTV dataset: The public dataset of traffic video (PDTV)
[63] provides access to traffic videos of three intersections
with annotations for real transportation applications, such as
tracking road users and pedestrian infractions detection (shown
in Fig. 4(c)). The video dataset was collected at three sites of
Belarus and Canada with a resolution of 640 × 480 pixels
at 20 and 40 frames per second, and the traffic scenes cross
diverse traffic, lighting, and weather conditions.
DynTex dataset: DynTex dataset [64] is the first collection
of high-quality dynamic texture videos that are structured

1https://www.kaggle.com/aalborguniversity/aau-rainsnow
2https://bdd-data.berkeley.edu/
3http://www.tft.lth.se/english/research/video-analysis/co-operation/public-

dataset/
4http://dyntex.univ-lr.fr/database.html



by videos’ underlying physical processes such as waving
motion and discrete units, with the goal of serving as a
standard database for dynamic texture research. More than 650
sequences of dynamic texture are available, and 9 sequences
are related to traffic, with a resolution of 720 × 576 pixels at
25 frames per second (shown in Fig. 4(d)).

C. Hardware Setup

Recall the proposed EdgeCompression closed-loop frame-
work hardware environment consists of the vehicle itself and
an EdgeServer that has more powerful computing capabilities.
In this paper, we adopt two types of hardware in total shown
in Fig. 5 — Intel Fog Reference Design (FRD), and NVIDIA
GPU Workstation. We assume that a CAV is equipped with
an Intel FRD, and the NVIDIA GPU Workstation is working
as the EdgeServer.

(a) (b)

Fig. 5. Two categories of hardware. Subfigure (a)-(b) shows the Intel Fog
Reference Design (FRD), and NVIDIA GPU Workstation, respectively.

TABLE I
CONFIGURATION INFORMATION OF TWO HARDWARE DEVICES.

Intel FRD NVIDIA GPU Workstation
CPU Intel Xeon E3-1275 v5 Intel Xeon E5-2690 v4
GPU NONE 4 × 11 GB GeForce RTX 2080 Ti

Frequency 3.6 GHz 2.6 GHz
Core 4 14

Memory 32 GB 64 GB
OS Ubuntu 16.04.6 LTS Ubuntu 16.04.6 LTS

Intel FRD allows users to configure and program it for
diverse use cases [65], and it is capable of providing a consis-
tent throughput for various workload sizes [66]. In addition,
as the powerful hardware with the high-quality components
(4×GeForce RTX 2080 Ti graphics cards), NVIDIA GPU
Workstation is capable of delivering the cluster-level perfor-
mance for even the demanding applications [67], [68]. We list
detailed information about these edge devices in Table I.

IV. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS

In this section, we present the experimental results of the
proposed EdgeCompression closed-loop framework using the
video CI and hardware described above on the four datasets.

A. Video Compression

Problem Statement. Given a selected CAV video dataset,
e.g., AAU RainSnow, we first compress the ground truth video
to get the corresponding measurements, which is the simulated
output of the CI camera, i.e., mapping every Cr (compression
ratio) frames into a single measurement. To compare the
influence of different Cr’s on the trade-off between detection
accuracy and inference speed, we set Cr = 6, 8, 10, 15 for the
selected four video datasets, respectively.

Recall the measurement model of video CI in Eq. (1), where
the noise is considered. In our simulation, we ignore the noise
term for simplicity, thus each measurement is now

Y =

Cr∑
k=1

Xk �Mk. (2)

The sensing mask {Mk}Cr
k=1 here is matrices comprised of 0

or 1 randomly, and it has the same size as the original video
image. It can be seen that the measurement Y is a weighted
({Mk}Cr

k=1) summation of the high-speed frames {Xk}Cr
k=1.

However, Y is usually a non-energy-normalized image. For
example, some pixels in Y may gather only one- or two-pixel
energy from {Xk}Cr

k=1, while some ones may gather Cr −
1 or Cr. Thus, it is not suitable to directly feed Y into a
network, which motivates us to develop a measurement energy
normalization method described below to make it feasible to
be sent into the network.

To be concrete, we first sum all coding patterns {Mk}Cr
k=1

to achieve the energy normalization matrix M̃ as

M̃ =

Cr∑
k=1

Mk , (3)

where each element in M̃ describes how many corresponding
pixels of {Xk}Cr

k=1 are integrated into the measurement Y.
We then normalize the measurement Y by M̃ to obtain the
energy-normalization measurement Y as

Y = Y � M̃, (4)

where � denotes the matrix dot (element-wise) division. There
is a small chance of some elements in M̃ being zero and
we calibrate them as one. Obviously, Y owns more visual
information than Y. Meanwhile, Y can be regarded as an
approximate average of the original video frames {Xk}Bk=1,
preserving the motionless information such as background and
motion trail information.

This normalized measurement Y can thus be sent to the
network such as the YOLOv3-Tiny on the Vehicle. It is
worth noting that M̃ is fixed a video CI camera with a fixed
Cr and thus it can be calculated in advance; therefore, our
proposed energy normalization method only needs minimal
computation (an element-wise division for each measurement)
on the Vehicle and consumes limited resource.

Note that hereby we only considered the grey-scale video
frames to demonstrate the idea. The RGB images with a Bayer



sensor can also be used but with some processing strategy as
described in [18], [29].

Measurements Generation. Briefly, as to the AAU RainSnow
dataset, we select 7 video segments and five minutes long of
each. For BBD100K, 9 videos are chosen, and each video
segment is about 40 seconds long. We then select 4 videos
from PDTV, with 3.5 minutes collection period of each.
Finally, with regard to DynTex dataset, we select 8 video
segments related to vehicles, and the corresponding collection
period is between 10 seconds and 27 seconds. Then we transfer
these conventional RGB video images to the grey-scale images
and compress these selected grey-scale images based on the
Eq. (2), Eq. (3), and Eq. (4). We set Cr = {6, 8, 10, 15} to test
different compression ratios, and thus we obtain four groups
of measurements for each dataset.

B. Video Reconstruction

Brief Decompress Model Background and Intuitions. Pre-
vious efforts proposed different algorithms to reconstruct high-
speed video frames from a single measurement in the CI
systems [11], [12], [22], [69]. In the latest work [9], Qiao et al.
proposed the well-trained end-to-end convolutional neural net-
work (E2E-CNN), which has led to significant improvements
over existing algorithms — enabling a millisecond-level recon-
struction for CI problems. Different from the conventional
iteration-based algorithms [11] which must implement the it-
eration and computation for each measurement, the E2E-CNN
conducts optimization only on the training phase and recovers
images on the inference phase in an efficient way. Intuitively,
E2E-CNN can provide video-rate high-quality reconstruction.
In this work, we adopt this state-of-the-art algorithm as our
reconstruction model to verify the applicability of vehicle
detection on the measurements, and we train the E2E-CNN
model based on the four selected video datasets.

To be specific, E2E-CNN takes the measurements and
masks as input and outputs the reconstructed video. It con-
sists of a convolutional encoder and decoder with Res-block
connection [70] (Fig. 6(a)). In particular, there are five residual
blocks in the encoder and decoder parts respectively, which are
connected by two convolutional layers. The first convolutional
layer is responsible for multi-dimensional feature extraction
from the input data. After each convolution operation, ReLU
activation and batch normalization are performed (Fig. 6(b)).
In addition, the output of a encoder residual block is added
(⊕ to denote summation) to the input of the mapped decoder
residual block. Moreover, E2E-CNN synthesizes the input
of the network into the final reconstruction by leveraging
large-span residual connection. In the network, it neither used
upsampling nor pooling to avoid losing image details, and
sigmoid was used as the activation function to ensure the
desired scale of the final output.

E2E-CNN Training and Validation Methodology. We com-
bine the compressed video segments from the four video
datasets (described in Section III-B) for the training and
testing purposes. We randomly take 80% of the measurements

as the training dataset and the rest of the measurements
for validation. We fit an E2E-CNN model on the training
dataset and evaluate it on the validation dataset to access
the performance of E2E-CNN on unseen measurements. Since
not all these public datasets provide annotations, we directly
employ open YOLOv3 network on the original public video
dataset to get labels (bounding boxes of vehicles) and treat
these labels as the ground truth.

To further strike the right balance between the compression
ratio and the accuracy of the reconstruction, we have four
experiment groups that compressed from the same video
sets with different compression ratios, i.e., Cr = 6, 8, 10, 15.
Table II presents the change in the value of the loss func-
tions (the mean square error) and PSNR [71] in the training
and validation phases. Here, PSNR refers to the signal-to-
noise ratio between two images, and we use it to evaluate
the performance of E2E-CNN on image reconstruction.Let
X∗ ∈ RNx×Ny×Cr×B denote the ground truth video group,
where B denotes the number of measurements being used, and
X̂ be the reconstructed video from E2E-CNN with the same
size of X∗. The average PSNR of the video group is given
by:

PSNR =

∑B
b=1

∑Cr
k=1

−10 log

∑Nx
nx=1

∑Ny
ny=1(x̂nx,ny,k,b−x∗

nx,ny,k,b)
2

NxNy


B · Cr

,

(5)

where x̂nx,ny,k,b and x∗
nx,ny,k,b

denote the (nx, ny)-th pixel
in the k-th frame of the b-th measurement in the estimated
video and ground truth video, respectively. The higher the
PSNR (less error), the better the quality of the compressed
or reconstructed image.

Table II presents the change in the value of the training and
validation loss functions and PSNR (dB) for four experiment
groups whose Cr = 6, 8, 10, 15. As far as the loss function
concerned, it can be seen that as the value of Cr increases,
the value of loss increases, i.e., the reconstruction accuracy
decreases, which proves our conjecture — there is a trade-
off between Cr (compression ratio) and the reconstruction
accuracy. In addition, as to the PSNR value, we can see that
when Cr = 8 is much closer to the loss value when Cr = 10.
A higher or lower value of Cr leads to a bigger gap of two
neighboring loss values. This indicates that the compression
ratio between 8 and 10 might be a good choice for the selected
video datasets to strike the right balance between compression
ratio and reconstruction performance.

We also calculate the reconstruction time of a single com-
pressed measurement and a single frame for four experiment
groups shown in Fig. 7(a). Since the reconstruction time of a
single measurement at Cr = 10 is less than 30ms, this proves
the applicability of video-rate at 30 frames per second (FPS)
reconstruction. Fig. 7(b) presents the exemplar reconstruction
results with different compression ratios for the same scene.

C. Vehicle Detection Model

YOLOv3-Tiny Trained on Grey-Scale Video (TinyG). So
far we have obtained three types of data i.e.,



Res 

Block
Res 

Block

Res 

Block
Res 

Block

Res 

Block
Res 

Block

Res 

Block

Res 

Block

Res 

Block

Res 

Block

3x3, conv,

64, Relu

3x3, conv,

64, Relu

3x3, conv,

64, Relu

1x1, conv,

Cr, Sigmoid

Measurements

Reconstructed Video

Res Block

3x3, 

conv,

64, 

Relu

3x3, 

conv,

64

Relu

(a) (b)

Fig. 6. E2E-CNN architecture (a) and Res-Block (b) used in E2E-CNN. ⊕ denotes summation.

Cr = 6

Measurement Reconstruction

PSNR: 

34.00 dB

Cr = 8
PSNR: 

32.49 dB

Cr = 10
PSNR: 

32.13 dB

(b)

Cr = 15
PSNR: 

30.46 dB

Measurement Reconstruction

(a)

(b)

Fig. 7. (a): Reconstructed time of a single measurement and a single frame, (b): Reconstruction results with different compression ratio for the same scene.

YOLOv3-Tiny

(trained on grey-scale video)

Grey-Scale Video Measurement Reconstructed Video

YOLOv3-Tiny

(trained on measurements)

Measurement

YOLOv3

(trained on grey-scale video)

Reconstructed Video

Change training dataset of the model

Upgrade model
(a) (b) (c) (d) (e)

Fig. 8. Vehicle detection results on grey-scale video, measurements, and reconstructed video.

• grey-scale images (ground truth of E2E-CNN),
• measurements (input of E2E-CNN),
• the reconstructed video images (output of E2E-CNN).

Next, we aim to verify the effectiveness of measurements
and reconstructed videos on the task of vehicle detection. To
conduct a fair comparison, we plan to train the same model
and employ this model on the above three types of data.
In our proposed EdgeCompression closed-loop framework,
measurements are captured by the CI camera of a Vehicle.
On the Vehicle, apart from the accuracy and inference speed
requirements, the DNN model should also be energy efficient.
For this reason, we train YOLOv3-Tiny, a lightweight network,
to detect vehicles based on the measurements directly (after

the energy-normalization in Eq. (4)). Therefore, we also use
the same trained model i.e., YOLOv3-Tiny to detect vehicles
based on grey-scale images and reconstructed images and treat
the detection results of grey-scale images as the baseline to
evaluate the effectiveness of measurements and reconstructed
images in terms of vehicle detection. Fig. 8 presents the
vehicle detection results on grey-scale video, measurements,
and reconstructed video. In particular, Fig. 8(a)-(c) show the
detection results of YOLOv3-Tiny that are trained on grey-
scale images.

YOLOv3-Tiny Trained on Measurements (TinyM). Com-
pare Fig. 8(b) with Fig. 8(a), the first two vehicles near the
camera cannot be detected (shown in Fig. 8(b)), i.e., the



% %

% %

Fig. 9. Experiment results in terms of mAP. The letter (such as “G”, “M”, and “R”) next to the model name indicates what dataset the model was trained
on, and the letters behind the horizontal line indicate what dataset the trained model is used for vehicle detection.

TABLE II
THE CHANGE IN THE VALUE OF THE TRAINING AND VALIDATION LOSS

FUNCTIONS AND PSNR (dB).

Epoch 0 20 40 60 80 100

Loss

Cr=6 Train 0.106 0.046 0.041 0.039 0.039 0.039
Valid 0.176 0.057 0.047 0.045 0.044 0.043

Cr=8 Train 0.124 0.057 0.049 0.047 0.046 0.047
Valid 0.120 0.073 0.049 0.045 0.045 0.044

Cr=10 Train 0.080 0.054 0.050 0.050 0.050 0.049
Valid 0.148 0.060 0.052 0.051 0.050 0.050

Cr=15 Train 0.089 0.074 0.068 0.066 0.065 0.065
Valid 0.143 0.075 0.067 0.067 0.066 0.065

PSNR
(dB)

Cr=6 Train 25.05 31.95 33.02 33.50 33.76 33.75
Valid 21.79 29.44 32.17 32.63 32.55 32.95

Cr=8 Train 24.33 30.40 31.87 32.25 32.51 32.38
Valid 24.51 28.52 32.32 32.81 33.06 32.99

Cr=10 Train 27.50 31.21 31.86 32.09 32.04 32.19
Valid 20.34 29.69 31.87 31.98 32.27 32.14

Cr=15 Train 27.35 29.17 29.96 30.24 30.38 30.44
Valid 21.12 29.90 30.91 30.67 30.91 31.13

YOLOv3-Tiny model trained on grey-scale image needs to
be improved with regarding the detection accuracy when it is
applied to the measurement. Inspired by this observation, we
train a YOLOv3-Tiny network on the measurements directly.

Briefly, as to the four selected datasets, we have four
sets of measurements due to the four compression ratios
i.e., Cr = 6, 8, 10, 15. Although the compression ratios are
different, these measurements are still essentially images, but
as Cr increases, these images become less and less clear.
In this work, we combine all measurements as the input to
train the YOLOv3-Tiny model, and we have the bounding box
label (ground truth) annotated by the open YOLOv3 network,
which enables model training. After training YOLOv3-Tiny
on measurements, we conduct testing and obtain the new
detection results (shown in Fig. 8(e)) — the first two vehicles
can be detected successfully now.
YOLOv3 Trained on Grey-Scale Video (YOLOG). Simi-
larly, compare Fig. 8(c) with Fig. 8(a), the first vehicle near the
camera cannot be detected neither (shown in Fig. 8(c)). Hence,

we consider upgrading the model i.e., replacing the YOLOv3-
Tiny model by YOLOv3, which usually achieves superior
detection accuracy at the expense of substantially increased
model size and computations. Since the reconstruction happens
on the EdgeServer which has a higher computation capacity,
deploying YOLOv3 on the EdgeServer with the purpose of
detecting vehicles on the EdgeServer is thus a useful solution.
It can be seen that in Fig. 8(d), the front vehicle can now be
detected by YOLOv3, which was failed by YOLOv3-Tiny as
in Fig. 8(c).

Effective Measurements. The detection result on the recon-
structed video in Fig. 8(c) is more accurate than on the
measurement in Fig. 8(b) but less accurate than the results
of the grey-scale images in Fig. 8(a). Therefore, a question
arise — whether measurements and reconstructed video can
enable accurate vehicle detection in the real-time fashion? To
answer this question, we then specifically focus on testing
and evaluating the effectiveness of the raw measurements on
the vehicle and the reconstructed video on the EdgeServer
in a statistic manner. Towards this end, we employ mAP
and FPS as the evaluation metrics. Here, mAP refers to the
mean Average Precision, a widely used indicator to reflect
the wellness of a DNN model in the object detection tasks
[19]. FPS denotes the detection speed (inference speed) of
DNNs, which can reflect the inference speed (the higher the
better). Detailed observations and results are summarized in
the next subsection. One example is shown in Fig. 8(e) that
the front vehicle can be detected by training the YOLOv3-
Tiny on the measurements instead of on the gray-scale video
as in Fig. 8(b).

D. Results and Analysis

We now present and analyze the results of three DNN
models — TinyG, TinyM, and YOLOG, in particular their



sensitivity toward three different inference datasets — grey-
scale video, measurements, and reconstructed video that are
obtained from the four datasets, and their limitations, and ro-
bustness. As far as the TinyG model concerned, i.e., YOLOv3-
Tiny model trained on grey-scale video, if it conducts the
inference tasks on the unseen grey-scale video, we call it
as “TinyG-G”; if it is tested on the measurements, we term
it as “TinyG-M”; Similarly, we use “TinyG-R” to denote
testing TinyG on the reconstructed video images. As far as
the TinyM model concerned, i.e., YOLOv3-Tiny model trained
on measurements, we use “TinyM-M” to indicate testing
TinyM on the measurements. Regarding the YOLOG model,
i.e., YOLOv3 model trained on grey-scale images, we focus
on testing the performance of YOLOG on vehicle detection
based on reconstructed videos, and we use “YOLOG-R” to
denote it. In a nutshell, the letter (such as “G”, “M”, and “R”)
next to the model name indicates what dataset the model was
trained on, and the letter behind the horizontal line indicates
which dataset the trained model is used for vehicle detection.

The testing results are summarized in Fig. 9. First, it
can be seen that the value of mAP is generally higher
than the official testing results of YOLOv3 [14] (reported
at https://pjreddie.com/darknet/yolo/). This is because we use
open YOLOv3 to annotate bounding boxes of vehicles on the
original RGB video dataset and treat these bounding boxes
as the ground truth. Therefore, a portion of the vehicles that
cannot be detected by these models also cannot be detected by
YOLOv3 on the original RGB videos i.e., these fail-to-detect
vehicles have no negative impact on the evaluation accuracy
of these models since they do not provide bounding boxes for
the comparison purposes. We hope the results of the model
detection are close to YOLOv3.

We present the key prediction quality measures for all mod-
els and feature sets (Fig. 9). Some interesting observations are
listed follows, which include supporting evidence and reasons
to explain the observed trends and practical implications for
researchers and domain experts.

Observation 1: As to the vehicle detection from the mea-
surements (TinyG-M and TinyM-M), training the model
specifically on the raw measurement is necessary for the
accurate detection since the mAP score of TinyM-M is
significantly larger (almost double) than that of TinyG-
M. In addition, as far as training the model from the
grey-scale videos and then conducting inference based on
the reconstructed video (TinyG-R and YOLOG-R), a more
powerful model should be considered (YOLOG-R).

Observation 2: The vehicle detection results from the raw
measurements (TinyM-M) achieve comparable detection
results to the reconstructed video (TinyG-R), and they are
close to the detection results from the ground truth video
(TinyG-G) across all compression ratios, which answers the
challenging questions proposed in Section II-A — we do not
need to reconstruct the high-quality data in real-time, and
we can still use CI cameras for real applications in CAVs.

Observation 3: With increasing Cr, the overall mAP across

all application scenario decreases. For example, in DynTex,
the mAP of TinyM-M decreased from 90.03% to 79.34%
with an increase of Cr from 6 to 15. This confirms our
hypothesis that a trade-off between mAP (accuracy) and the
compression ratio should be balanced in real applications.

Observation 4: Comparing the results of these four
datasets, we found that the vehicle detection on PDTV
datasets has the overall lowest mAP (worst detection re-
sults). This is mainly because that the dataset was captured
from the very high traffic cameras, which results in that
vehicles are presented by a limited number of pixels in
a video frame (examples in Fig. 4). In this challenging
scene, the accuracy of vehicle detection would be affected
adversely.

Observation 5: Regarding the AAU dataset with videos
collected in rainfall and snowfall, vehicle detection models
perform pretty well in the inference stage. This demon-
strates the effectiveness of the presented model in terms of
vehicle detection under challenging weather conditions.

Observation 6: As the representative of the video collected
from the front camera of the vehicles i.e., BBDK100, it
achieves a relatively lower mAP than other normal traffic
cameras i.e., AAU and DynTex. The difference between the
video collected from the in-vehicle camera and the traffic
camera is — surrounding vehicles and the camera on the
Vehicle usually move together, and the speed difference
is often small. For the front camera, in addition to the
inevitable shaking, it is highly possible to only see the
rear of the front vehicles instead of the whole body in the
captured video. Sometimes the vehicle in front is too big,
and the in-vehicle camera can only capture a part of the rear
of the vehicle, which increases the difficulty of detecting
vehicles.

TABLE III
FPS OF THREE MODELS ON TWO HETEROGENEOUS HARDWARE

PLATFORMS.

YOLOG TinyG TinyM
NVIDIA GPU Workstation 67.55 336.93 334.11

Intel FRD 2.15 13.89 13.47

Table III shows the detection speed (in FPS) of the three
models i.e., YOLOG, TinyG, and TinyM on the two different
hardware platforms i.e., NVIDIA GPU Workstation and Intel
FRD. It can be seen that the TinyG model has around 6× faster
inference speed than YOLOG, which indicates the importance
of applying a light-weight network to achieve near real-time
detection. Besides, it is clear that in the Intel FRD that does
not have a GPU, the detection speed is significantly lower
than the NVIDIA GPU Workstation, even employing the state-
of-the-art light-weight network YOLOv3-Tiny (TinyG and
TinyM). In this context, the advantage of CI is becoming
essential to speed up the inference of DNNs to achieve a Cr×
acceleration.



E. Things We Tried That Did Not Work

During our experiments, we find some cases that object
detection on the raw measurements fails to achieve high
detection performance in terms of mAP, and we list them
here for discussion. Firstly, as discussed in Sec. IV-D, when
the vehicle is small, the vehicle detection from measurements
suffers from some undesired missing detection. Secondly,
when the color of the surrounding vehicles is close to the
background, the effectiveness of vehicle detection from the
measurements might be weakened. Thirdly, when the relative
velocity between the camera and the targets is high, there is a
probability of failure to detect vehicles on the measurement.
This might due to that the change between the two adjacent
frames will be relatively large, and when we compress the Cr
frames together to generate the measurement, the trajectory
shadow displayed by the vehicle will be longer than usual.
On the other hand, due to the lack of sufficient training data
capturing this special characteristic of long trajectory shadow,
the TinyM model cannot learn this case and therefore cannot
identify the vehicle. This observation indicates the need for
sufficiently large training video sets before conducting the
detection models on measurements.

V. CONCLUDING REMARKS

We have proposed a novel Vehicle-EdgeServer-Cloud
closed-loop framework by integrating CI with edge computing
in the application scenario of CAVs. To the best of our
knowledge, this is the first work that provides an alternative
method to achieve fast object detection by providing actionable
insights on employing the state-of-the-art DNNs on measure-
ments. Most importantly, this method can be employed on
top of the popular fast DNN models and/or the hardware
platforms that could speed up the inference of DNNs, such
as FPGAs [72]. As such, the detection speed could be further
boosted. Besides, both bandwidth, memory footprint, and
energy consumption can be saved effectively due to the usage
of the CI camera and the designed EdgeCompression closed-
loop framework, which sheds the light on the real-world
applications of CI into the CAV systems with edge computing
technologies.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] B. Krzanich, “Data is the new oil in the future of automated driving,”
Intel Editorial, 2016.

[3] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and
P. Krähenbühl, “Compressed video action recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 6026–6035.

[4] M. Masmoudi, H. Ghazzai, M. Frikha, and Y. Massoud, “Autonomous
car-following approach based on real-time video frames processing,” in
2019 IEEE International Conference of Vehicular Electronics and Safety
(ICVES). IEEE, 2019, pp. 1–6.

[5] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov, and A. Kalinin,
“Fixed-point convolutional neural network for real-time video processing
in FPGA,” in 2019 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus). IEEE, 2019, pp.
1605–1611.

[6] K. Wei, K. Honda, and H. Amano, “FPGA design for autonomous
vehicle driving using binarized neural networks,” in 2018 International
Conference on Field-Programmable Technology (FPT). IEEE, 2018,
pp. 425–428.

[7] Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero,
and D. Faccio, “Quantum-inspired computational imaging,” Science, vol.
361, no. 6403, 2018.

[8] J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,”
Adv. Opt. Photon., vol. 10, no. 2, pp. 409–483, Jun 2018.

[9] M. Qiao, Z. Meng, J. Ma, and X. Yuan, “Deep learning for video
compressive sensing,” APL Photonics, vol. 5, no. 3, p. 030801, 2020.

[10] W. S. Boyle and G. E. Smith, “Charge coupled semiconductor devices,”
The Bell System Technical Journal, vol. 49, no. 4, pp. 587–593, 1970.

[11] Y. Liu, X. Yuan, J. Suo, D. J. Brady, and Q. Dai, “Rank minimization for
snapshot compressive imaging,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 12, pp. 2990–3006, 2019.

[12] J. Ma, X.-Y. Liu, Z. Shou, and X. Yuan, “Deep tensor ADMM-
Net for snapshot compressive imaging,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 10 223–10 232.

[13] X. Yuan, D. Brady, and A. K. Katsaggelos, “Snapshot compressive
imaging: Theory, algorithms and applications,” IEEE Signal Processing
Magazine, 2020.

[14] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[15] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video
from a single coded exposure photograph using a learned over-complete
dictionary,” in 2011 International Conference on Computer Vision, Nov
2011, pp. 287–294.

[16] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: programmable
pixel compressive camera for high speed imaging,” in CVPR 2011, June
2011, pp. 329–336.

[17] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro,
and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt.
Express, vol. 21, no. 9, pp. 10 526–10 545, May 2013.

[18] X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin,
“Low-cost compressive sensing for color video and depth,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 3318–3325.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[21] M. Qiao, X. Liu, and X. Yuan, “Snapshot spatial–temporal compressive
imaging,” Opt. Lett., vol. 45, no. 7, pp. 1659–1662, Apr 2020.

[22] S. Jalali and X. Yuan, “Snapshot compressed sensing: Performance
bounds and algorithms,” IEEE Transactions on Information Theory,
vol. 65, no. 12, pp. 8005–8024, Dec 2019.

[23] J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and
L. Carin, “Video compressive sensing using Gaussian mixture models,”
IEEE Transaction on Image Processing, vol. 23, no. 11, pp. 4863–4878,
November 2014.

[24] J. Yang, X. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, and
L. Carin, “Compressive sensing by learning a Gaussian mixture model
from measurements,” IEEE Transaction on Image Processing, vol. 24,
no. 1, pp. 106–119, January 2015.

[25] X. Yuan, “Generalized alternating projection based total variation mini-
mization for compressive sensing,” in 2016 IEEE International Confer-
ence on Image Processing (ICIP), Sept 2016, pp. 2539–2543.

[26] P. Yang, L. Kong, X. Liu, X. Yuan, and G. Chen, “Shearlet enhanced
snapshot compressive imaging,” IEEE Transactions on Image Process-
ing, vol. 29, pp. 6466–6481, 2020.

[27] X. Yuan and Y. Pu, “Parallel lensless compressive imaging via deep
convolutional neural networks,” Optics Express, vol. 26, no. 2, pp. 1962–
1977, Jan 2018.

[28] X. Miao, X. Yuan, Y. Pu, and V. Athitsos, “λ-net: Reconstruct hyper-
spectral images from a snapshot measurement,” in IEEE/CVF Confer-
ence on Computer Vision (ICCV), 2019.

[29] X. Yuan, Y. Liu, J. Suo, and Q. Dai, “Plug-and-Play algorithms for large-
scale snapshot compressive imaging,” in The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[30] Z. Cheng, R. Lu, Z. Wang, H. Zhang, B. Chen, Z. Meng, and X. Yuan,
“BIRNAT: Bidirectional recurrent neural networks with adversarial train-



ing for video snapshot compressive imaging,” in European Conference
on Computer Vision (ECCV), August 2020.

[31] Z. Meng, J. Ma, and X. Yuan, “End-to-end low cost compressive spectral
imaging with spatial-spectral self-attention,” in European Conference on
Computer Vision (ECCV), August 2020.

[32] Z. Meng, M. Qiao, J. Ma, Z. Yu, K. Xu, and X. Yuan, “Snapshot
multispectral endomicroscopy,” Opt. Lett., vol. 45, no. 14, pp. 3897–
3900, Jul 2020.

[33] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[34] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[35] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[36] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD:
deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659,
2017.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[38] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[39] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE transactions on pattern analysis and machine intelligence, vol. 32,
no. 9, pp. 1627–1645, 2009.

[40] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[41] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 2147–
2154.

[42] Z. Wang, Z. Deng, and S. Wang, “Accelerating convolutional neu-
ral networks with dominant convolutional kernel and knowledge pre-
regression,” in European Conference on Computer Vision. Springer,
2016, pp. 533–548.

[43] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[44] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and < 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[45] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, “Deep feature flow for
video recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 2349–2358.

[46] K. Chen, J. Wang, S. Yang, X. Zhang, Y. Xiong, C. Change Loy, and
D. Lin, “Optimizing video object detection via a scale-time lattice,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7814–7823.

[47] M. Liu and M. Zhu, “Mobile video object detection with temporally-
aware feature maps,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 5686–5695.

[48] O. Ulusel, C. Picardo, C. B. Harris, S. Reda, and R. I. Bahar, “Hardware
acceleration of feature detection and description algorithms on low-
power embedded platforms,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2016, pp.
1–9.

[49] B. U. Töreyin, A. E. Cetin, A. Aksay, and M. B. Akhan, “Moving
object detection in wavelet compressed video,” Signal Processing: Image
Communication, vol. 20, no. 3, pp. 255–264, 2005.

[50] S. Wang, H. Lu, and Z. Deng, “Fast object detection in compressed
video,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 2019, pp. 7104–7113.

[51] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[52] D. Xiao, F. Shan, Z. Li, B. T. Le, X. Liu, and X. Li, “A target detection
model based on improved tiny-yolov3 under the environment of mining
truck,” IEEE Access, vol. 7, pp. 123 757–123 764, 2019.

[53] Z. Yi, S. Yongliang, and Z. Jun, “An improved tiny-yolov3 pedestrian
detection algorithm,” Optik, vol. 183, pp. 17–23, 2019.

[54] R. Huang, J. Pedoeem, and C. Chen, “YOLO-LITE: a real-time object
detection algorithm optimized for non-GPU computers,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
2503–2510.

[55] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni,
“Car detection using unmanned aerial vehicles: Comparison between
Faster R-CNN and YOLOv3,” in 2019 1st International Conference on
Unmanned Vehicle Systems-Oman (UVS). IEEE, 2019, pp. 1–6.

[56] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[57] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–
3361.

[58] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” arXiv, pp. arXiv–1912,
2019.

[59] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[60] S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous,
and J. McBride, “Ford multi-AV seasonal dataset,” arXiv preprint
arXiv:2003.07969, 2020.

[61] C. H. Bahnsen and T. B. Moeslund, “Rain removal in traffic surveil-
lance: Does it matter?” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–18, 2018.

[62] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “BDD100K: A diverse driving dataset for heterogeneous
multitask learning,” arXiv: 1805.04687, 2018.

[63] N. Saunier, H. Ardö, J.-P. Jodoin, A. Laureshyn, M. Nilsson, Å. Svens-
son, L. Miranda-Moreno, G.-A. Bilodeau, and K. Åström, “A public
video dataset for road transportation applications,” in Transportation
Research Board Annual Meeting Compendium of Papers, 2014, pp. 14–
2379.

[64] R. Péteri, S. Fazekas, and M. J. Huiskes, “DynTex: A comprehensive
database of dynamic textures,” Pattern Recognition Letters, vol. 31,
no. 12, pp. 1627–1632, 2010.

[65] J. Li, J. Jin, D. Yuan, and H. Zhang, “Virtual fog: A virtualization
enabled fog computing framework for internet of things,” IEEE Internet
of Things Journal, vol. 5, no. 1, pp. 121–131, 2018.

[66] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are FPGAs suitable for edge
computing?” in USENIX Workshop on Hot Topics in Edge Computing
(HotEdge), 2018.

[67] F. Spiga and I. Girotto, “phiGEMM: a CPU-GPU library for port-
ing quantum espresso on hybrid systems,” in 2012 20th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing. IEEE, 2012, pp. 368–375.

[68] I. V. Morozov, A. Kazennov, R. Bystryi, G. E. Norman, V. Pisarev,
and V. V. Stegailov, “Molecular dynamics simulations of the relaxation
processes in the condensed matter on GPUs,” Computer Physics Com-
munications, vol. 182, no. 9, pp. 1974–1978, 2011.

[69] X. Miao, X. Yuan, Y. Pu, and V. Athitsos, “λ-net: Reconstruct hyper-
spectral images from a snapshot measurement,” in IEEE/CVF Confer-
ence on Computer Vision (ICCV), vol. 1, 2019.

[70] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[71] D. Poobathy and R. M. Chezian, “Edge detection operators: Peak
signal to noise ratio based comparison,” IJ Image, Graphics and Signal
Processing, vol. 6, no. 10, pp. 55–61, 2014.

[72] O. Consortium et al., “OpenFog reference architecture for fog comput-
ing,” Architecture Working Group, 2017.


