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Abstract

The rapid growth of heterogeneous devices and diverse networks in our daily life, makes it is very difficult, if not impossible, to build
a one-size-fits-all application or protocol, which can run well in such a dynamic environment. Adaptation has been considered as a general
approach to address the mismatch problem between clients and servers; however, we envision that the missing part, which is also a big
challenge, is how to inject and deploy adaptation functionality into the environment. In this paper we propose a novel application level protocol
adaptation framework, Fractal, which uses the mobile code technology for protocol adaptation and leverages existing content distribution
networks (CDN) for protocol adaptors (mobile codes) deployment. To the best of our knowledge, Fractal is the first application level protocol
adaptation framework that considers the real deployment problem using mobile code and CDN. To evaluate the proposed framework, we
have implemented two case studies: an adaptive message encryption protocol and an adaptive communication optimization protocol. In the
adaptive message encryption protocol, Fractal always chooses a proper encryption algorithm according to different application requirements
and device characteristics. And the adaptive communication optimization protocol is capable of dynamically selecting the best one from
four communication protocols, including Direct sending, Gzip, Bitmap, and Vary-sized blocking, for different hardware and
network configurations. In comparison with other adaptation approaches, evaluation results show the proposed adaptive approach performs
very well on both the client side and server side. For some clients, the total communication overhead reduces 41% compared with no protocol
adaptation mechanism, and 14% compared with the static protocol adaptation approach.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

With the development of computer and communication tech-
nologies, more and more heterogeneous devices, like desktops,
laptops, PocketPCs, and cellular phones are connected to the In-
ternet using diverse networks, like Ethernet, Wi-Fi, Bluetooth,
3G/4G wireless technology. On one hand, different technolo-
gies have different characteristics. On the other hand, a hetero-
geneous environment makes it possible to dynamically change
between different devices and network environments. For in-
stance, a person uses a laptop with a cable modem at home, a
cell phone with 3G/4G or Bluetooth on the way to the office,
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a desktop with Ethernet LAN in the office and a PDA with
Wi-Fi in the meeting room. Diverse network connections and
heterogeneous devices demand the adaptation functionality in
a distributed fashion because no one-size-fits-all single func-
tion or protocol can perform well over all these networks and
devices.

It is difficult, if not impossible, to build a one-size-fit-all
application or protocol which can run well in the dynamic
environment. Adaptation has been considered as a general ap-
proach to address the mismatch problem between clients and
servers [17,27,39,55]. From the perspective of adaptation lo-
cations, some of them propose the in-network adaptation, such
as CANS [17], Active Names [55], Odyssey [39], and Rover
[27], which focus on how to do the adaptation step by step
across an overlay path. Although the functionalities are well
designed, they have not considered the deployment of chosen
components (drivers in CANS [17]) across multiple nodes in
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the path. This is an obstacle for the wide acceptance of these ap-
proaches. Other proposals try to perform the end-to-end adap-
tation, like the static content-based adaptation [36,41], which
does not take the mobility of users and dynamically chang-
ing environment into consideration. From the network OSI
model’s point of view, some of them work in the network
layer [43], which adapts the TCP/IP protocol dynamically ac-
cording to the changing situations on both ends. Although the
results are promising, it is not able to handle the application
level protocol adaptation which makes more sense for many
overlay distributed applications, e.g., streaming multicast on the
Internet.

In this paper we propose Fractal, a dynamic application level
protocol adaptation approach, which uses the mobile code tech-
nology for protocol adaptation and leverages existing content
distribution networks (CDN) for protocol adaptors (PADs) (mo-
bile codes) deployment. The idea of protocol adaptation is based
on the assumption that an application protocol is composed of
a series of components, also called PADs in the Fractal frame-
work. When a protocol needs to be adapted, the application sim-
ply needs to add or remove some PADs into or from it. Before a
mobile client starts an application session with the application
server, it uses the proposed interactive negotiation protocol to
negotiate with the adaptation proxy deployed close to the ap-
plication server. The negotiation manager inside the adaptation
proxy uses the proposed adaptation path search algorithm to
find one or more appropriate PADs that should be used in the
following communication between the client and the applica-
tion server. Metadata about these PADs will be sent to the client
by the adaptation proxy. The client is then able to retrieve the
PADs, which are packaged into mobile code modules, from the
CDN and starts the new protocol. Although a large amount of
research on mobile code and CDN has been done, few studies
have combined the advantage of both of them for the protocol
adaptation purpose. Based on the proposed framework, we have
designed and implemented two case studies: an adaptive mes-
sage encryption protocol and an adaptive communication opti-
mization protocol. Specifically our contributions of this paper
include:

(1) Proposing a general framework for dynamic application
level protocol adaptation: To the best of our knowledge,
Fractal is the first approach on utilization of mobile code
in application level protocol adaptation. With the appear-
ance of more and more application level protocols, such as
SOAP [56], LDAP [31], and Plugins, holding all the pro-
tocol implementations locally is too expensive for some
network-enabled mobile devices. Dynamically retrieving
the necessary protocol module in an on-demand manner is
applicable for mobile hosts.

(2) Dynamically adapting at the application protocol level:
Most of proposed protocol adaptation methods [4,25,40,
43,50] lie in the network layer. Such systems can cope
with localized changes in network conditions but cannot
adapt to variations above the network layer. Moreover,
their transparency hinders composability of multiple adap-
tations. Fractal works in the application level so it has the

overall system level view to overcome this shortcoming
and can maximally adapt application level protocols which
have no way to be implemented in the network layer.

(3) Leveraging CDN edgeservers for protocol adaptor de-
livery: CDN has already been widely deployed on the
Internet to deliver Web content. Fractal extends the uti-
lization of the content distribution network into the field
of protocol adaptation. Considering PAD as a Web object,
many algorithms and approaches designed for content
distribution on CDN can be seamlessly transplanted to
the mobile code distribution scenario. Leveraging existing
CDN platforms to deliver PADs for application servers
makes our approach more compatible, applicable, and
extensible.

(4) Designing and implementing an adaptive message en-
cryption protocol in the context of the Fractal frame-
work: Message encryption for secure communication is
an important issue in building distributed applications.
Many symmetric or asymmetric encryption algorithms
have been proposed. Given their dissimilar computing
characteristics and the heterogeneity of devices, we ar-
gue that it is impossible to ask all applications running
on top of diverse devices to choose one encryption al-
gorithm. The only way to accelerate the deployment
of encryption algorithms is providing the flexibility of
choosing multiple diverse algorithms. We have imple-
mented such an adaptive encryption protocol using Fractal,
which dynamically chooses a proper encryption algorithm
based on application-specific requirements and device
configurations.

(5) Proposing and implementing an adaptive communica-
tion optimization protocol in the context of the Fractal
framework: Many communication optimization tech-
niques are proposed in different contexts. In our previ-
ous work [32], we systematically evaluated four algo-
rithms and found that no single algorithm outperformed
others in all cases. Different approaches have different
performance in terms of different network types, docu-
ment types, and device configurations. Considering these
communication optimization techniques as application
level protocols, we implement Fractal in a real system
that dynamically chooses different communication opti-
mization protocols and generates the application content
for different client devices and network connections.
Results show that using framework greatly improves
both the client side and server side performance, e.g.,
the system capacity, client total delay, and bandwidth
requirements.

The rest of the paper is organized as follows. After a brief
introduction of background in Section 2, Fractal design is
depicted in Section 3. Section 4 evaluates the system ca-
pacity of the Fractal framework. After that, two case studies
about message encryption and communication optimization
are presented and evaluated in Sections 5 and 6. Finally, re-
lated work and conclusions are listed in Sections 7 and 8
respectively.
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2. Background

Our work is inspired by three types of previous work: mobile
code [18,24], content distribution network [2,30], and protocol
adaptation [34,43,49]. In this section, we explain the general
background of each related research field.

2.1. Mobile code

Mobile code [24] is defined as the data that can be executed
as a program. The code can be pre-compiled for immediate ex-
ecution on the recipient’s processor, compiled upon receipt for
subsequent execution or interpreted. The mobile code system
has been used to build a distributed processing environment
that is flexible in the communication abstractions it provides to
applications and to enhance existing distributed applications.
For the benefit of mobile code [18], a major asset provided
by code mobility is that it enables service customization. The
ability to request the remote execution of code helps increase
application server flexibility without permanently affecting the
size or complexity of the server. In Fractal we implement each
protocol adaptor as a mobile code module, which is sent and
executed remotely on the client side to build a new protocol
allowing the client to talk with the application server.

2.2. Content distribution network

CDN [30] is an intermediate layer of infrastructure between
origin servers and clients. CDN can achieve scalable content
delivery by distributing load among its edgeservers, by serving
client requests from edgeservers that are close to requests, and
by bypassing congested network paths. Currently CDNs are
only used to deliver Web-based content. In Fractal framework,
CDN is used to deliver PAD. If we consider the PAD as a Web-
based object, most of the current techniques in CDN can be
leveraged to the delivery of PAD. Fractal framework extends
the utilization of CDNs from traditional Web-based content to
Web-based objects like mobile code and mobile agent.

2.3. Protocol adaptation

Changing protocols to adapt link condition and network en-
vironment is not the new idea, e.g., Reno and Vegas congestion
control in TCP/IP protocol [21] is a kind of adaptation. More
sophisticated protocol adaptation approaches, such as STP pro-
posed in [43], but most of them are in the network layer which
makes them hard to have a general view of the whole system
status. The problem of adapting to a changing network environ-
ment is further complicated because changes in network con-
ditions are usually transparent to higher layers of the protocol
stack. When higher layers, e.g., application layer, are aware of
network variation, protocol adaptation can be done more adap-
tively and intelligently. Based on these observations, Fractal
works entirely in the application layer to adapt the application
protocol according to heterogeneous client environments.

3. Fractal design—an application protocol adaptation
framework

In this section we present the design of Fractal, an applica-
tion protocol adaptation framework using mobile code and con-
tent distribution network edgeservers. After an overview of the
Fractal framework, we in turn cover the adaptation proxy, the
interactive negotiation protocol, the application protocol adap-
tation approach, and finally, the mobile code security mecha-
nism.

3.1. System overview

Fractal works entirely at the application level and has no spe-
cific requirements about underlying network topologies, con-
nection media types, network protocols, and client hardware
configurations. As an general adaptation framework, it focuses
on the protocol adaptation method which uses PADs to describe
the application protocol structure and distributes the PADs to
the client by CDNs for protocol the adaptation purpose. Frac-
tal consists of five components: application servers, adapta-
tion proxies, CDN edgeservers, PADs, and client hosts (e.g.,
desktop, laptop, PocketPC, and so on), as shown in Fig. 1.
The application server is the application service provider. In
order to provide the functionality to heterogeneous clients in
diverse environments, the application server usually communi-
cates with clients through different application protocols. For
the same application, different content (required) generated by
different protocols is called adaptive content. For example, the
content in a Web page can be transmitted or adapted using ei-
ther HTTP protocol or HTTPS protocol, which is a more se-
cure mechanism. The HTTP and HTTPS content are called
adaptive content, as defined earlier. In Fractal, adaptive con-
tent can be generated either reactively or proactively. The for-
mer is suitable for the case in which content keeps changing,
e.g., a stock price web site. In this scenario, memory or hard
disk space requirements are small, but the price of computing
the dynamic adaptive content maybe high. On the contrary, the
latter, where adaptive content is precalculated in advance and
saved in memory or disk consumes less CPU and has large
memory or disk space requirements. The results in Section 6
show the difference between these two approaches in terms of
total time.

Although the application server can talk in many languages,
i.e., protocols, the client may not have the necessary proto-
col to talk with the application server. To help the client talk
with the application server, in Fractal we propose the notion
of PAD, which is a protocol adaptor implemented in a mo-
bile code module and deployed across the CDN edgeservers.
By downloading and deploying one or more PADs, the client
is then capable of starting communication with the applica-
tion server using required protocols. On the server side, we
assume the application server has already deployed all PADs
in advance. An important issue for the client is which PADs
should be used and where to find them. In the Fractal frame-
work, close to the application server, an adaptation proxy is
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Fig. 1. Architecture of application protocol adaptation using mobile code.

set up to handle the issues about PAD negotiations. Before
the initialization of communication between the client and the
application server, the client has to negotiate with the adapta-
tion proxy to find proper PADs. The client will be asked to
provide some metadata about his environments, such as com-
puting ability, memory space, and network configurations to
the adaptation proxy. Having these metadata, the adaptation
proxy will generate the metadata of the proper PADs for the
client and send the metadata of PADs back to the client. Inside
these metadata is enough information for the client to down-
load the PADs from the closest edgeserver of CDNs with which
the application server is associated. We will give more details
about how the adaptation proxy works in the next section. Frac-
tal leverages the wide deployment of CDNs to distribute the
PADs for application servers, as illustrated in Fig. 1. We envi-
sion that using CDN edgeservers for application server-specific
PADs is a natural extension to the well-known Web content
delivery. Note that in this paper we focus on the client/server
model; however, it is straightforward to support the peer-to-peer
model.

3.2. Adaptation proxy

Adaptation proxy plays an important role in the functionali-
ties of the Fractal framework. Usually it is deployed in the same
administration domain as the application server and is respon-
sible for negotiation with the client. A general structure of the
adaptation proxy is shown in Fig. 2, which includes a negotia-
tion manager module and a distribution manager module. Each
module is running as a daemon on the adaptation proxy. Next
we will explain the structure and functionality of each module
respectively.

Adaptation Proxy

AppMeta

Application
Server

DevMeta

NtwkMetaProtocol
Cache

McMeta

Negotiation
Manager

Distribution
Manager

Client

Adaptation
Cache

PAT

Fig. 2. Structure of the adaptation proxy.

Negotiation manager: As shown in Fig. 2, the negotiation
manager is the key in the adaptation proxy which negotiates
with the client. Some application level metadata is needed to be
transmitted between the adaptation proxy and the application
server, and between the adaptation proxy and the client to sup-
port the negotiation function. We define these metadata formats
in Fig. 3. In the rest of the paper, we will use the acronyms
in the parentheses to refer to them. DevMeta and NtwkMeta,
provided by clients, contain the hardware information and
the network environment of the client. The application server
supplies PADMeta to the negotiation manager, who holds the
general information of each PAD. PAD ID is a unique iden-
tification generated by the application server. PAD overhead
consists of the computing overhead at both the client side and
server side, and corresponding traffic overhead, which is hap-
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Fig. 3. Definitions of metadata.

pened in the network. Message digest is computed using the
SHA-1 [13] function and used by clients to verify the integrity
of the PAD. URL is the link to download the PAD. Note that
it is the CDN’s responsibility to find the closest edgeserver
which holds the PAD, and to redirect the request to that edge-
server. Parent link and Child link are used to build the protocol
adaptation topology in the negotiation manager. AppMeta is
comprised of Application ID, which marks different applica-
tions, and some PADMeta, which forms a protocol adaptation
topology. The application server pushes new AppMeta to the
negotiation manager when the protocol adaptation topology
is first created or changed later. Usually the protocol adap-
tation topology is represented by a protocol adaptation tree
(PAT) structure as shown in Fig. 2 in the upper box located in
the negotiation manager in . We will give more details about
why a tree is needed and how to build and use the PAT in
Section 3.4.1.

When the negotiation manager receives a request from a
client, it first checks its adaptation cache, located in the dis-
tribution manager. The cache has entries mapping client side
information to an array of PADMeta that the client needs. Each
mapping entry is structured as follows:

{DevMeta, Application ID, NtwkMeta} ⇒
{PADMeta_1, . . . , PADMeta_n}.

If the adaptation cache does not have the entry corresponding
to the client side metadata, the negotiation manager then will
use the algorithm described in Section 3.4.2 to form a new entry
and transfer it to the distribution manager.

Distribution manager: The distribution manager is in charge
of further processing of these PADMeta received from the
negotiation manager, updating the adaptation cache, and fi-
nally sending PADMeta back to the client. When the dis-
tribution manager receives the PADMeta generated by the
negotiation manager, it inserts message digest and URL data
into the PADMeta and hides the parent and child links since
the exposure to the client is unnecessary. After the negoti-
ation procedure, which will be discussed in the following
section, the distribution manager will update the adaptation
cache so that the negotiation result can be directly retrieved
from the cache if the same client configuration occurs later.
Finally the distribution manager will handle the network
communication details and send these PADMeta back to
the client. Next we will explain the interactive negotiation
protocol.

3.3. Interactive negotiation protocol

In Fractal, an interactive negotiation protocol is proposed for
the interactions among these components, as shown in Fig. 4.
We assume both the client side and server side understand the
protocol definitions. The application server has pre-deployed
PADs in the application context and already pushed the App-
Meta to the adaptation proxy, which has built a PAT inside the
negotiation manager. The PADs have been distributed across
the CDNs edgeservers.

At the beginning of the negotiation, a client first checks its
own protocol cache, which contains some PADMeta saved for
previous requests. If there is an entry of the protocol cache
which matches the current request, the client will directly start
the application communication with the application server. If
not, the client sends INIT_REQ, which contains application
request in payload, to the adaptation proxy 1 to initialize the
protocol negotiation. Each packet has an INP header seg-
ment, which is used to maintain the interactive negotiation
protocol integrity, and we will omit the details in the INP
header. The adaptation proxy then sends INIT_REP as well
as Cli_META_REQ, having empty DevMeta and NtwkMeta
to be filled by the client, to acknowledge the request and ask
some information about the client. After getting the reply,
the client gets the content of DevMeta and NtwkMeta locally
by probing the system using system calls and sends out the
Cli_META_REP. Based on the Cli_META_REP, PADMeta
is computed and sent back to the client in PAD_META_REP
by the adaptation proxy. Next, the client updates his protocol
cache and sends PAD_DOWNLOAD_REQ containing PAD ID
to the URL of the PAD. The CDN will automatically choose
a close CDN edgeserver and send back the PAD code in
PAD_DOWNLOAD_REP. If multiple PADs are required, it is
not necessary that those PADs downloaded from the same
edgeserver. It is up to the CDN to manage the delivery of
PADs. After the security check and PAD(s) deployment, the
client sends out the APP_REQ to the application server. The
APP_REQ contains the application request as well as the ne-
gotiated protocol identifications, which notify the application
server to choose the proper PADs to talk with the client. From
now on the client and the application server continue the appli-
cation session using the negotiated protocol. The formats of all
message types used in INP are listed on the bottom of Fig. 4.

1 Note that the client does not have to realize the existence of the adaptation
proxy. The application server will automatically redirect the request to its
corresponding adaptation proxy.
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Fig. 4. The interactive negotiation protocol.

3.4. Application protocol adaptation

Application protocol adaptation is the major function of Frac-
tal. After introducing the structure and components of Fractal,
we will show how the application protocol adaptation works.
First, we will explain the protocol adaptation topology, the PAT,
which is the main data structure in the procedure of adaptation.
Then we will clarify the adaptation path search algorithm.

3.4.1. PAT
Fig. 5 shows an example of the PAT, which is built by the

negotiation manager based on AppMeta received from the ap-
plication server. Each node of PAT is a protocol adaptor. The
child PAD is an auxiliary component of the parent PAD. In or-
der to run the parent PAD, one and only one of the children
PADs must work together with the parent PAD. For example,
in Fig. 5, if PAD2 is the FTP protocol, PAD7 is the TCP pro-
tocol, and PAD8 is the UDP protocol, the PAD2 can choose
either PAD7 or PAD8, but not both. In the real application, it is
possible that one PAD is needed by multiple PADs, like TCP
protocol is needed by both FTP and HTTP protocols. For the
purpose of maintaining the tree structure, we use a symbolic
copy of the child PAD if it is required by more than one parent
PAD. For instance, in Fig. 5, PAD6 is a symbolic link of PAD7,

which is needed by both PAD1 and PAD2. So in order to sat-
isfy an application protocol, a path should be found from the
root application to one leaf, e.g., the path composed of PAD2
and PAD7 in the dotted line in Fig. 5. Tree structure makes it
flexible enough to extend adaptation protocols by adding new
PAD nodes later. For example, if a new PAD, which supports
PAD3, is needed later, we just add this new PAD as the first
child of PAD3. Adding a new PAD in the middle, instead of
the leaf of the tree, can also be done in reasonable time. From
the knowledge of data structure and graph theory, we know that
the number of possible paths equals the number of leaves in
the tree. Next, we propose an adaptation path search algorithm
to find the path.

3.4.2. Adaptation path search algorithm
The goal of the adaptation path search algorithm is to find

some PADs from PAT to form an adaptation path for a client.
Introducing a new protocol into an existing application will
inevitably have two effects. First is the traffic overhead, which
is either increasing or reducing. Second is the extra computing
overhead on both the server side and client side.

Before we choose the proper PADs for a client, the total over-
head including traffic and computing overhead of each PAD
is the metrics we should quantify. Running each PAD on each
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Fig. 5. The protocol adaptation tree.

client configuration and each network environment to get the
overhead is not a wise solution. Instead, we use a linear model
and a normalized ratio to estimate these overheads. Our linear
model comes from the observation that the computing overhead
of each PAD is roughly proportional to the processor speed,
and the traffic overhead is proportional to the network band-
width. If the computing overhead of a PAD on one processor
speed is known, the computing overhead on another proces-
sor can be deducted from the linear ratio of the speed of these
two processors. Similarly we can get the traffic overhead of a
PAD based on the value of another PAD and the ratio of the
bandwidth of two networks. However, this linear model is not
so accurate because other parameters of the processor and net-
works introduce error into the linear model. For example, a sci-
entific computing module is awkward for a no floating instruc-
tor processor. A media stream application runs fluently in LAN
but not in Dialup. Furthermore, an operating system is also
an influential issue that we have to consider besides the linear
model. For example, Microsoft DCOM can run on Windows
platforms but not Unix environment. In this paper we abstract
normalized ratio parameters about three key properties: proces-
sor types, operating system, and network types as shown in the
normalized ratio matrix in the following context. Note that it is
easy to introduce more parameters if necessary, e.g., the screen
resolution.

As shown in Eq. (1), each application server maintains the
following information. PADtraffic is the traffic overhead of the
PAD based on a standard network bandwidth, Stdbandwidth,
1 Mbp s, and a fixed size of traffic, 1 MB in our implementa-
tion. PADsize is the size vector of each PAD. PADclient

comp is the
computing overhead of PAD on a standard processor speed,
Stdcpu, 500 MHz Pentium IV in our implementation, on the
client side. PADserver

comp is the computing overhead of the PAD on
the server side, which is supposed to be available in advance.
All these metrics can be computed in advance. Later we will
compute the estimated overhead of each PAD (PADtotal) for a
client with specific processor speed and network bandwidth us-
ing the linear model plus the normalized ratio matrix. Specif-

ically, we use normalized ratio matrix A, B, and R, as shown
in Eq. (2), to measure the performance ratios of n number of
PADs on a kinds of processor types, on b number of opera-
tion system types, and in r types of network environments. For
example,

WinCE PalmOS

WinMedia
Kinoma

(
1 ∞
∞ 1

)

the above matrix shows the impacts of two operating sys-
tems (the top line) on two multimedia players (the left most
column). The values in the matrix mean the Windows Media
works fine in the WinCE operating system (WinCE) [59] but
not in PalmOS, while Kinoma player [29] runs well in Pal-
mOS instead of WinCE. The value of ratios does not have
to be an integer. Suppose now we are about to find the bet-
ter one in terms of the computing time from these two play-
ers on WinCE platform. We get the time value using the lin-
ear method as, for instance, 5 s for WinMedia and 2 s for Ki-
noma. Without the normalized matrix, Kinoma will be chosen
as the better player; however, the fact is that Kinoma cannot
run on WinCE at all. To get the correct result, we can use
the first column of this normalized matrix to adjust the lin-
ear results by multiplying 2 s with ratio 1 for WinMedia and
multiplying 5 s with ratio ∞ for Kinoma. Then the computing
time of Kinoma becomes ∞, which immediately disqualifies
itself.
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⎞
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PADtotal = PADsize
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+ PADserver
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⎛
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...
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...
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×

⎛
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...
. . .

...

0 0 . . . �nj

⎞
⎟⎟⎟⎠ PADclient

comp

+Stdbandwidth
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⎛
⎜⎜⎜⎝
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0 �1k . . . 0
...

...
. . .

...

0 0 . . . �nk

⎞
⎟⎟⎟⎠ .

×PADtraff ic. (3)

We abstract Eq. (3) to describe the total overhead for each
PAD in one client environment, PADtotal, in Eq. (1). Clicpu is
the device CPU speed in MHz, Climem is the device memory
size in MB, and Clibandwidth is the client network bandwidth
in Kbps. They come from the DevMeta from the client. On
the right hand side of Eq. (3), the first part is the overhead of
downloading the PAD. The parameter � is used to capture the
available application level bandwidth in a real network deploy-
ment. It is usually between 0.6 and 0.8, depending on different
network types. Based on our observation, we approximate �
as 0.8 in our design. The second part is the computing over-
head on the server side. This matrix can be achieved by pre-
testing each PAD on the application server. The third part is the
computing overhead of running PAD on the client side. Sup-
pose one client uses processor type i, operating system type
j , and network type k, the algorithm finds the correspond-

ing ratio vector
(
�0i �1i . . . �ni

)T,
(
�0j �1j . . . �nj

)T
, and(

�0k �1k . . . �nk

)T from A, B, and R based on its proces-
sor, operating system and network types. Given that we have
only a limited number of consumer-used processors, OSes, and
network types, the vector will be found with high probability.
Otherwise a similar type with close parameters will be chosen
instead. Then these vectors are extended to diagonal matrices,
which are plugged into the Eq. (3) to adjust the linear estima-
tion. The last part of the equation is the transmission overhead
of running the PAD.

After we define the approach to calculate the total overhead
of the PAD, the adaptation path search algorithm starts the first
step by marking each node in the PAT with the total overhead
computed by Eq. (3). An example is shown in Fig. 5. The num-
ber beside each node is the estimated total overhead. Infinity

Fig. 6. The pseudo-code of the adaptation path search algorithm.

means that the PAD is not suitable for this client environment.
Then the algorithm uses the Depth-First-Search-like algorithm
to traverse each path from root to leaves and finds the path
with the least sum of each PAD’s total overhead. The PADs on
this path are the negotiated protocol result for this client. The
pseudo-code of the algorithm is shown in Fig. 6. Take Fig. 5
as an example, after line 3 in the pseudo-code in Fig. 6, the
algorithm finishes marking each node with the total overhead
shown as the number beside each node, the first path it exam-
ines is PAD1 and PAD4 and gets the Least_Totoal_overhead
as 14 in code line 17, which is the selected shortest path so
far, but when the algorithm searches along PAD2 and PAD7
with the Least_Totoal_overhead as 9, this new path becomes
the shortest path and remains until the end of the search.
Finally PAD2 and PAD7 form the final output path of the
algorithm.

3.5. Mobile code security

PAD, the protocol adaptor, is the key element of the Fractal
framework, and is implemented using mobile code. Security is
a serious concern when deploying and running the PADs across
heterogeneous environments, because the executable mobile
code could possibly be written by a malicious user and allow an
attacker to run native code that is subject to neither restrictions
nor access control on the executing machine. In Fractal there
are two techniques for securing PADs. First, sandbox [19], also
known as virtual machine monitor techniques (VMM) [51], is
needed to limit the privileges of PADs. The second technique
used in Fractal is to assure that the source of the PAD is trust-
worthy using code-signing [38], in which the client manages a
list of entities that it trusts. When a PAD is received, the client
verifies that it was signed by an entity on this list. More ad-
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vanced security techniques can be applied here, but it beyond
the scope of this paper.

4. System capacity performance analysis

Now we are in a position to study the general system capacity
of the proposed framework. Two case studies will be presented
in the following two sections. In the Fractal framework, the
adaptation negotiation and PAD downloading are two manda-
tory procedures for any protocol adaptation. Performance of
the Fractal framework is greatly determined by the negotiation
delay and download delay. In Eq. (3), the negotiation delay,
which is the time between INIT_REQ and PAD_META_REP
in Fig. 4 for each client, is not included because the negotia-
tion time is not only related to the PAD itself but also to the
protocol adaptation topology as well as the workload of the
adaptation proxy. The PAD download time is also related to the
CDN edge servers and the PAD size as well.

In this section, we first examine the negotiation time of four
PADs of a one-level PAT as shown in Fig. 12 in Section 6.
Here, all we care about is the downloading time of these four
different PADs. The meaning of each node (i.e., PAD) of the
PAT will be explained in the second case study in Section 6
later. We utilize some nodes from PlanetLab [44], specifically,
the nodes at Wayne State University, New York University,
and University of California at Berkeley, to emulate the CDN
edgeservers as the distributed PAD servers to evaluate the PAD
download time. PlanetLab has been accepted as a good plat-
form to deploy academic-oriented CDNs platforms, such as
CoDeeN [57] and Coral [16]. The adaptation proxy is set up
at Wayne State University. Up to 300 clients access this adap-
tation proxy from the same network domain. Fig. 7(a) shows
the average negotiation time of up to 300 clients sharing one
adaptation proxy, denoted as AP on the y-axis. The x-axis is
the number of clients. The y-axis represents the average ne-
gotiation time. Although some fluctuations occur, most of the
negotiation times are between 20 to 27 ms. We also show the
mean and median line of the measurement data in the figure.
Given the fact that PlanetLab is a real overlay network built
on top of Internet, it is quite normal to see this magnitude
of fluctuation. The overall negotiation time remains in a rela-
tively stable range for two reasons. First is the efficiency of the
adaptation path search algorithm and the topology simplicity
of the examined PAT. Second is that each client only needs one
time negotiation in the same environment and the application
session.

In order to show the benefit of deploying PADs on CDN
edgeservers, we compare the average PAD retrieval time in two
scenarios: the centralized case, in which up to 300 clients con-
nect to a centralized PAD server in the same domain as the
clients to download the PAD concurrently, and the distributed
case, where the request traffic from the same number of clients
is balanced to the three distributed PAD servers on PlanetLab
to emulate the CDN edgeservers. The centralized PAD server is
located at Wayne State University. The distributed PAD servers
are located at New York University and University of Califor-
nia at Berkeley. On each server, there is a full set of PADs.

Table 1
The key length and size of each PAD used in the experiment (Case Study 1)

PAD name Key length (bits) Size (KB)

3DES 64 24
3DES 128 24
3DES 192 24
AES 128 21
AES 192 21
AES 256 21
RC4 64 10

Fig. 7(b) shows the average retrieval time to the number of
clients in two scenarios. We can see clearly that the average
PAD retrieval time rapidly goes up with the increasing num-
ber of clients in the centralized PAD server scenario. While for
the distributed PAD server scenario, the retrieve time climbs up
very slow with the increase of the number of clients. The big-
ger the number of client is, the more advantage can be taken
from the distributed PAD servers in terms of the PAD retrieve
time. To this end, we argue that using existing CDN infras-
tructure for PAD delivery is a very scalable and promising
approach.

5. Case Study 1: adaptive message encryption protocol

After studying the system capacity performance, we im-
plement an adaptive message encryption protocol to evaluate
the effectiveness and efficiency of the proposed Fractal frame-
work. In this case study, we design an adaptive message en-
cryption protocol between two communication parties: a mes-
sage sender and a message receiver. We assume that some re-
ceivers use legacy applications, which support only old encryp-
tion algorithms, while some receivers have more flexibility to
choose different algorithms. Three encryption algorithms, DES
[9], AES [1], RC4 [46] are the candidates of encryption al-
gorithms. We will show how the sender side adopts the Frac-
tal framework to choose proper encryption algorithms based
on their diverse characteristics and different client applications
configurations. Note that this paper focuses on how to choose
different algorithms in the context of symmetric encryption.
The procedure to set up the symmetric key(s) is beyond the
scope of this paper. It is very easy to set up the symmet-
ric keys using the Diffie and Hellman [11] key exchange or
certificate-based authentication. First we will give a brief in-
troduction about the three encryption algorithms used in this
case study.

5.1. Three encryption algorithms

Many symmetric key encryption algorithms have been pro-
posed. DES, AES, and RC4 are three of the most popular
shared-key encryption algorithms.

(1) DES/Triple DES [9] Data Encryption Standard is addressed
in FIPS PUB 46. Data are encrypted in 64-bit blocks us-
ing a 56-bit key. DES transforms 64-bit input in a series
of steps into a 64-bit output. The same steps and the same
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Fig. 7. System capacity analysis: (a) the average negotiation time; (b) the average PAD retrieval time from centralized and distributed PAD servers.

key are used to decrypt the data. With the development
of hardware technology, DES shows potential vulnerabil-
ity to a brute-force attack. Triple DES (3DES) is an alter-
native of traditional DES algorithm. National Institutes of
Standards and Technology (NIST) requires all new appli-
cations should use triple DES or more advanced encryp-
tion algorithms, while DES is still supported for legacy
applications.

(2) AES [1] AES is a relatively new algorithm compared with
DES. Observing that DES is more and more out of date and
3DES is not a long term replacement candidate for widely
used the DES algorithm. NIST called a new Advanced
Encryption Standard (AES). AES is more secure than DES.
It can has key length as long as 256 bits. It also have high
computation efficiency and flexibility to be practical in a
wide range of applications.

(3) RC4 Stream Cipher [46] RC4 is a contemporary variable
key-size stream cipher with byte-oriented operations. It is
based on the use of a random permutation. Key length is
in a range from 1 to 256 bytes. RC4 is easy to be im-
plemented even on resource-constraint devices, such as
Berkeley Motes and smart cards. Adjustment of key length
can achieve a tradeoff between running speed and security
level.

There are several other symmetric algorithms have been pro-
posed; however, we believe these three algorithms are diverse
enough to show the basic idea of adaptive message encryption
in this case study.

5.2. Experimental platform

In our experimental platform, as shown in Fig. 8, three kinds
of client hosts, desktop, laptop, and Pocket PC, use different
message receiver applications, to connect to the message sender
and an adaptation proxy. The hardware and software configu-
rations of the servers and clients are also shown in Fig. 8. The
message sender has 100 messages with size as 100 KB. We im-
plement three encryption algorithms, 3DES, AES and RC4 in
C code as three PADs. The first two encryption algorithms has
three different key length settings. Key length and size of each
algorithm is shown in Table 1. We also implement an adapta-
tion proxy connected with the application server in the same
LAN domain. To emulate the behavior of the real content dis-
tribution network and edgeservers, we utilize three nodes from
PlanetLab [44] as the distributed PAD servers, similar to the
previous section.
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Fig. 9. Protocol adaptation tree of the adaptive message encryption (Case
Study 1).

Table 2
The average download time in milliseconds of each PAD from different
PlanetLab nodes

PAD name Wayne State University New York University UC Berkeley

3DES 2.24 3.22 3.64
AES 2.25 3.12 3.58
RC4 2.23 3.20 3.84

5.3. Experimental adaptation model

Following the Fractal framework, we first define the PADs
used in this application and construct the PAT for this case
study, as shown in Fig. 9. The PAT in this case study is a one-
level tree. Each leaf is an encryption PAD that can be used on
a specific message receiver environment to reduce the total de-
lay overhead between the sender application and receiver ap-
plication. Then we follow Eq. (3) to generate the specific Eq.
(10) for this case study. We use padtotal

3DES−64, pad
svr−comp
3DES−64 and

pad
cli−comp
3DES−64 to represent three parameters of 3DES PAD with

64 bits key: the total time overhead is defined as the time from
the start of downloading the PAD to the end of the application
session, the server side computing overhead, and the client side

computing overhead. For other PADs the definitions are simi-
lar. Table 2 shows the average download time in milliseconds
of each PAD from three PlanetLab nodes in three research in-
stitutions located at middle, east, and west of North America.
The size of those PADs are from 10 to 25 KB. As we can see
from the Table, the downloading time from New York Univer-
sity and UC Berkeley are roughly the same. It is slightly faster
from Wayne State University since we do our experiment in the
same network domain. Given that the instability of the Planet-
Lab, we consider the PAD download time from all distributed
nodes are similar, following the same pattern we found in the
Section 4. On the other hand since the input of these encryption
algorithms has the same size as the output, the traffic overhead
(i.e., the bandwidth requirements) incurred by each algorithm
for different networks are also identical. So in the evaluation
of the total delay time in Eq. (3) we exclude the PAD down-
load time and traffic overhead because they are pretty much the
same. In the next case study, we will examine the impact of the
PAD downloading time and traffic overhead which we do not
analyze in this case study.

For the adaptive message encryption case study we first in-
troduce the normalized ratio matrix A as listed in Eq. (4), based
on the definition of Eq. (2) in the Fractal framework. In Eq. (4),
P, D, and L represent the Intel PXA 255 processor in Pocket
PC, Pentium IV 2.0 GHz processor in Desktop, and Pentium
IV 3.06 GHz processor in Laptop, respectively. Because most
of the operations in these encryption algorithms are bit opera-
tions instead of float-point operations, they have almost same
running efficiency in these client CPU types. We set all values
as 1. Network normalized ratio matrix is not included since we
will not evaluate the network overhead in the case study. In-
stead, we use normalized ratio matrix (B) as listed in Eq. (5) to
demonstrate the different encryption requirements of message
receiver applications. For example, the legacy systems only use
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the DES algorithm while the new applications will utilize the
new encryption algorithms. Correspondingly in the normalized
ratio matrix, we set the ratio as 1 for 3DES algorithm and ∞
for others in legacy systems. In our experimental platform, we
specify the receiver applications on desktop as a legacy system
and that on laptop and PocketPC as a new system. This may
not be always true in reality, but it is enough to show the point
of adaptation in this case study.

For a newcoming request from a message receiver applica-
tion (i.e., a client), Fractal will find the receiver’s processor type
and application type from the device metadata, such as, i (for
processor type) and j (for application type). Then the normal-
ized ratio matrix can be formed by collecting corresponding
columns at A(i) and B(j). Finally with other available receiver
side metadata, the total time overhead of each PAD for this new
receiver can be computed using Eq. (6). After obtaining the to-
tal time overhead of each PAD, we will run the adaptive path
search algorithm against them and choose the most proper en-
cryption algorithm for a specific client. Next, we describe the
performance evaluation results.

A =

P D L

3DES − 64
3DES − 128
3DES − 192
AES − 128
AES − 192
AES − 256
RC4 − 64

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎠

,
(4)

B =

LegacySystem NewSystem

3DES − 64
3DES − 128
3DES − 192
AES − 128
AES − 192
AES − 256
RC4 − 64

⎛
⎜⎜⎜⎜⎜⎝

1 ∞
1 ∞
1 ∞∞ 1∞ 1∞ 1∞ 1

⎞
⎟⎟⎟⎟⎟⎠

,
(5)

⎛
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padtotal
3DES−64

padtotal
3DES−128

padtotal
3DES−192

padtotal
AES−128

padtotal
AES−192

padtotal
AES−256

padtotal
RC4−64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pad
svr−comp
3DES−64

pad
svr−comp
3DES−128

pad
svr−comp
3DES−192

pad
svr−comp
AES−128

pad
svr−comp
AES−192

pad
svr−comp

AES−256

pad
svr−comp
RC4−64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ cpu

Clicpu

×
⎛
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

5.4. Performance evaluation of encryption algorithms
adaptation

We test the total time overhead of each algorithm for mes-
sage receivers on desktop, laptop, and PocketPC, as shown in
Fig. 10. The x-axis lists different encryption algorithms, the
y-axis shows the total time for each algorithm including the
sender encryption time and the receiver decryption time. In Fig.
10(a), since the receiver application of the desktop is a legacy
application in our experimental setup, which accepts only DES
algorithms, the output of the adaptive path selection algorithm
of Fractal will set all other encryption algorithms except DES
algorithms to infinite, which is denoted as N/A in the figure.
However, for comparison purpose, we also show their corre-
sponding computing overhead on the same figure. As a mat-
ter of fact, although AES-class algorithms have less computing
overhead, they will not be chosen as the proper encryption al-
gorithm for the desktop, which runs legacy applications only.
Now only 3DES algorithms are eligible candidates. It is trivial
that 3DES with 64 bits key should run faster than 3DES with
128 bits or 192 bits length key. Usually the Fractal framework
will recommend the receiver to choose 3DES-64 since it has
the fastest running speed with reasonable security enforcement.
But this does not prevent application from choosing 128 or 192
bits 3DES. By introducing more adaptation parameters, like a
normalized matrix for application security requirements, more
secure algorithm could be selected. We believe this is a trivial
task and decide not to dig inside in this paper.

For the applications running on the laptop, 3DES is obviously
not considered because it is out of date (and replaced by AES
algorithms) for new applications. AES-128 which has slightly
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Fig. 10. A comparison of the total time overhead for different message
receivers: (a) Desktop; (b) Laptop; and (c) PocketPC.

less total time overhead than other three algorithms have, as
shown in Fig. 10(b), will be selected by the Fractal framework.
Note that similar to the case for desktop, other AES algorithms
could also be selected for more secure purpose by extending the
total time overhead evaluation formula. Finally, in Fig. 10(c),
we can see that the major part of the total time overhead is
contributed by the receiver decryption time because the hard-
ware of PocketPC on which receiver application executes is not
as powerful as desktop or laptop hardware configurations. Not
surprising, Fractal selects RC4-64 as the most appropriate en-
cryption algorithm, which is much faster than other algorithms.
This is compatible with the fact that RC4 is almost the default
encryption algorithm for small resource-constraint devices. It is
worth noting that the choice made by the Fractal framework is
straightforward in this case study. However, our work is the first
effort to make the choice making in a formal way. We believe
that the Fractal framework will be more useful in complicated
applications in the foreseeable future, as shown in the second
case study. Our future work includes investigating more en-
cryption algorithms in heterogeneous environments, and apply-
ing this technique to the distributed computer-assistant surgery
application [33].

6. Case Study 2: adaptive communication optimization
protocol

We have seen in the previous two sections the system capac-
ity performance and the adaptation effectiveness in the mes-
sage encryption adaptation case study. However, two metrics
are omitted in the first case study: the PAD download time and
traffic overhead. We add these two metrics into the second case
study in which we implement an adaptive communication opti-
mization protocol prototype. The Fractal framework also shows
good performance in this more complicated scenario. The ba-
sic idea of the adaptive communication optimization is to dy-
namically select different communication protocols, including
Direct sending, Gzip, Vary-sized blocking [37],
Bitmap [33], to adapt to different network conditions. This
application is motivated by our recent analysis of four differ-
ent communication optimization algorithms [32], in which we
found that different communication optimization techniques ex-
hibit different performance in different network environments
as well as for different document types. These techniques are
good examples of protocols that reduce the overall communi-
cation overhead, and inspire us to use this case to test Frac-
tal. In the following context, we first briefly introduce each
communication optimization protocol, followed by experiment
platforms, the specific protocol adaptation model, and result
analysis.

6.1. Four communication optimization protocols

Several application-specific optimization techniques have
been proposed in different contexts. Generally, they work
in two fashions to reduce bandwidth requirement. One is to
compress content at the server side and decompress at the
client side. The other is to calculate the difference between
old and new versions of the content on the server side, send
difference to the client and rebuild the new version based
on the difference received by the client and the old ver-
sion that the client already had. In the section, we examine
the four communication optimization protocols used in our
case study.

(1) Direct sending: In this protocol, strictly speaking, there is
no communication optimization technique, client and Web
server just directly send content to each other. In this simple
case, the client still needs to negotiate with the adaptation
proxy at the beginning.

(2) Gzip: In this algorithm, we use gzip to compress the Web
page at the Web server and decompress it at the client side.
Gzip is a popular data compression program [23] which
uses the LZ77 algorithm.

(3) Vary-sized blocking: Proposed in LBFS [37] for reducing
traffic further, the idea of LBFS is that of content-based
chunk identification. Files are divided into chunks, demar-
cated by points where the Rabin fingerprint [45] of the pre-
vious 48 bytes matches a specific polynomial value. This
tends to identify portions even after insertions and deletions
have changed its position in the file. The boundary regions
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Fig. 11. Configurations of the experimental platform (Case Study 2).

Table 3
The functions and implementations of PADs used in the experiments (Case
Study 2)

PAD name Function Implementation

Direct Null Null
Gzip Compression Java class object
Vary-sized blocking Differencing files using Fingerprint Java class object
Bitmap Differencing files bit by bit Java class object

are called breakpoints. The server generates the difference
between two versions of a file by comparing the digest of
each chunks and saves the different chunks. It is power-
ful to reduce the size of the difference but with expensive
computing overhead on both sides. Vary-sized blocking has
been adopted by several projects as well [8,12,35,53].

(4) Bitmap: Proposed in [33], the idea behind Bitmap is that
files are updated by dividing both files into fix-sized
chunks. The client sends digests of each chunk to the
server, and the server responds only with new data chunks.
Based on the old version and the differencing, the new
version can be rebuilt. It has outperforming results com-
pared with other differencing algorithms for some image
formats like DICOM [10], BMP, and so forth.

Basically, our evaluation results in [32] show that no single al-
gorithm outperforms others in all cases. Different approaches
have different performance in terms of different metrics. A
completely different result can be achieved by the same algo-
rithm when it is applied against different types of documents.
Network bandwidth affects the performance of algorithms sub-
stantially as well. The performance can also be influenced by
different parameter settings of the same algorithm. More details
can be found in [32].

6.2. Experimental platform

Fig. 11 shows the experimental platform, where three kinds
of client hosts, desktop, laptop and PocketPC, use three types
of network connections, LAN, Wireless LAN and Bluetooth, to
connect to an application server and an adaptation proxy. Same
as the first case study, the hardware and software configura-
tions of the servers and clients are also shown in Fig. 11. The
application server holds a set of 75 Web pages with the average
size of about 135KB consisting of 5KB text and four images
totalling about 130KB, which is inspired by a typical example
of a medical application server that holds four images of dif-
ferent 3D views [33]. We use Java to implement four commu-
nication optimization techniques as four PADs. The summary
of function and implementation of each PAD is shown in Ta-
ble 3. We also implement an adaptation proxy connected with
the application server in the same LAN domain. To emulate
the behavior of the real content distribution network and edge-
servers, similar as first case study, we still utilize some nodes
from PlanetLab [44] as the distributed PAD servers. We set
up a centralized PAD server which holds all the PADs for the
purpose of performance comparisons between centralized and
distributed PAD servers.

6.3. Experimental adaptation model

Guided by the Fractal framework as before, we first define
the PADs used in this application and construct the PAT for
this case study, as shown in Fig. 12. The PAT in this case study
is also one-level tree. Each leaf is a communication optimiza-
tion PAD that can be used on a specific client environment to
reduce the total communication time between the client and
the application server. Then we base on Eq. (3) to generate the
specific Eq. (10) for this case study. We use padtotal

direct , padsize
direct ,

padsvr−comp
direct , padcli−comp

direct , and padtraffic
direct to represent five parameters
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GzipDirect
Vary-
sized

Bitmap

Web Page

Fig. 12. Protocol adaptation tree of the adaptive communication optimization
(Case Study 2).

of Direct sending PAD: the total time overhead defined as the
time from the start of downloading the PAD to the end of the
application session, the size of the PAD, the server side com-
puting overhead, the client side computing overhead, and the
traffic overhead generated by the PAD. For other PADs the def-
initions are similar. Note that protocols like Vary-sized block-
ing and Bitmap have to compute the difference on the server
side and rebuild a new version on the client side to reduce the
bandwidth requirement. In this case study we use all of the
normalized ratio matrix proposed in Fractal framework, A, B,
and R in Eqs. (7), (8), and (9). In Eq. (7), P, D, and L have
the same meaning as they have in the first case study. Some of
the data (e.g., 1.1) come from the test results, others we set as
1 to follow the linear model.

For a newcoming client, Fractal will find its processor type,
OS type, and network type, such as, i, j , and k. Then the nor-
malized ratio matrix can be formed by collecting corresponding
columns at A(i), B(j), and R(k). Finally with other available
client side metadata, the total time overhead of each PAD for
this new client can be computed using Eq. (10).

A =

P D L

direct
gzip
vary

bitmap

⎛
⎜⎜⎝

1 1 1
1.1 1 1
1.1 1 1
1.1 1 1

⎞
⎟⎟⎠

(7)

B =

WinCE4.2 FedoraCore2

direct
gzip
vary

bitmap

⎛
⎜⎜⎝

1 1
1 1
1 1
1 1

⎞
⎟⎟⎠

(8)

R =

LAN WLAN Bluetooth

direct
gzip
vary

bitmap

⎛
⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎠

(9)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

padtotal
direct

padtotal
gzip

padtotal
vary

padtotal
bitmap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

Clibandwidth�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

padsize
direct

padsize
gzip

padsize
vary

padsize
bitmap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pad
svr−comp
direct

pad
svr−comp
gzip

pad
svr−comp
vary

pad
svr−comp
bitmap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ cpu

Clicpu

×

⎛
⎜⎜⎝

�direct (i) 0
�gzip(i)

�vary(i)

0 �bitmap(i)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

�direct (j) 0
�gzip(j)

�vary(j)

0 �bitmap(j)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pad
cli−comp
direct

pad
cli−comp
gzip

pad
cli−comp
vary

pad
cli−comp
bitmap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ bandwidth

Clibandwidth

×

⎛
⎜⎜⎝

�direct (k) 0
�gzip(k)

�vary(k)

0 �bitmap(k)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pad
traff ic
direct

pad
traff ic
gzip

pad
traff ic
vary

pad
traff ic
bitmap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

6.4. Results of communication protocol adaptation

We test each client configuration in three adaptation scenar-
ios: No protocol adaptation: There is no communication
optimization protocol, the client connects to the Web server and
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Fig. 13. A comparison of computing overhead in different environments: (a) Desktop in LAN with server side computing; (b) Laptop in Wireless LAN with
server side computing; (c) PocketPC in Bluetooth with server side computing; and (d) PocketPC in Bluetooth without server side computing.

directly receives the original Web page; Fixed protocol
adaptation: All clients always use one protocol, Vary-sized
blocking, to talk with the Web server without the negotiation
procedure with the adaptation proxy; Adaptive protocol
adaptation: The full function of Fractal is utilized to do the
protocol adaptation.

Fig. 13 shows the computing overhead in three adaptation
scenarios for different client configurations. The horizontal line
shows three adaptation scenarios with the selected protocol in
the parentheses and the vertical line, representing the comput-
ing overhead, consists of several components respectively. Fig.
14(a) illustrates the bandwidth requirement in KBytes on the
y-axis for each client environment as shown in the x-axis. We
assume different clients perform identical application requests.
The same protocol should generate the same number of bytes
transferred, no matter the kind of client environment. First let us
look at Fig. 13(a)–(c), which include both server side and client
side computing overheads. The server side computing is used
by the application server to dynamically encode the application
content, e.g., compute the difference between two versions of
Web pages. The client side computing overhead is used to de-
code the application content, e.g., rebuilding new version based
on the difference and old version. Vary-sized blocking has huge
server side computing time, which disqualifies it as the adaptive
protocol for any of the client environment even if it generates
the least transfer bytes as shown in Fig. 14(a). Different client
configurations result in different negotiated protocols, such as

Direct sending for desktop in LAN, Gzip for laptop in Wireless
LAN, and Bitmap for PocketPC in Bluetooth.

We can see that Gzip in Fig. 13(b) and Bitmap in Fig. 13(c)
have more or less unbalanced server and client side comput-
ing time. Since the overweighed server side computing time
plays an important role in the total overhead for some proto-
cols, e.g., Vary-sized blocking, different adaptation results may
be observed if getting rid of the server side computing time
from the total overhead. We pre-compute the server side com-
puting tasks for each protocol on each Web page to exclude the
server side computing overhead from the total computing time.
We found that although the negotiated adaptation protocols for
Desktop in LAN and Laptop in Wireless LAN remain the same,
the adaptive protocol for PocketPC in Bluetooth changes from
Bitmap to Vary-sized blocking as shown in Fig. 13(d). Note that
the scale of (c) and (d) are one order of magnitude different.
The difference in negotiation results again shows that our ap-
proach can adapt the protocol according to different application
strategies as well as the client environments.

In Fig. 14(a), Direct sending generates the most traffic bytes
while Vary-sized blocking has the least bytes transferred. Gzip
and Bitmap are in the middle in terms of bytes transferred.
Computing time and bytes transferred are two components of
the total overhead. In fast networks the bytes can be transferred
in small time slots so that the transmission time has a smaller
effect on the total overhead than the computing time. But in
slow networks, bytes transferred will result into a transmission
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time that outweighs the computing time and dominates the total
overhead. So the comprehensive influence from these two fac-
tors forms the different total overhead time performance shown
in Fig. 14(b) and (c). For each client configuration the adap-
tive protocol achieves the least total time, like Gzip for laptop
in wireless, Bitmap for PocketPC in Fig. 14(b). In the same
client configuration, adaptive protocol may vary according to
different server strategies, for example Vary-sized blocking be-
comes the best choice for PocketPC in Bluetooth without server
side computing as shown in Fig. 14(c). The adaptive protocols
pointed by the oval in Fig. 14 are the best choices in different
scenarios, which comply exactly with the negotiation results
from Fractal.

7. Related work and discussions

Fractal shares its goals with some recent efforts that are
aimed at injecting functionality into application for adaptation.
We categorize related research into four groups as distributed
adaptation, protocol adaptation, mobile code and mobile agent,
and communication optimization.

Distributed adaptation: From the Internet topology’s point
of view, adaptation functionality can be introduced either at the
end-points or distributed on intermediate nodes. Odyssey [39],
Rover [27] and InfoPyramid [36] are examples of systems that
support end point adaptation. Conductor [60] and CANS [17]
provide an application transparent adaptation framework that
permits the introduction of arbitrary adaptors in the data path
between applications and end services. While these approaches
provide an extremely general adaptation mechanism, signifi-
cant change to existing infrastructure is required for their de-
ployment. However, Fractal solves the deployment problem by
leveraging the existing CDNs technology to distributed PADs,
which are implemented using mobile code.

From the network structure’s perspective, there are two
issues: whether adaptation functionality is introduced at net-
work layer with application-transparency or at the application
level with application-awareness. Systems such as trans-
former tunnels [49] and protocol boosters [34] are examples
of application-transparent adaptation efforts that work at the
network level. Such systems can cope with localized changes
in network conditions but cannot adapt to behaviors that
differ widely from the norm. Moreover, their transparency
hinders composability of multiple adaptations. More general
are programmable network infrastructures, such as COMET
[6], which supports flow-based adaptation, and Active Net-
works [52,58], which permit special code to be executed for
each packet at each visited network element. While these ap-
proaches provide an extremely general adaptation mechanism,
significant change to existing infrastructure is required for
their deployment. Fractal overcomes this shortcoming because
it works entirely on the application level. Similar efforts also
work at the application level. The cluster-based proxies in
BARWAN/Daedalus [14], TACC [15], and MultiSpace [20] are
examples of systems where application-transparent adaptation
happens in intermediate nodes (typically a small number) in
the network. Active Services [3] extends these systems to a
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Fig. 14. Comparison of three different scenarios: (a) bytes transferred; (b)
total time with server side difference computing; (c) total time without server
side difference computing.

distributed setting by permitting a client application to explic-
itly start one or more services on its behalf that can transform
the data it receives from an end service. Fractal is different
from other application level frameworks in the following ways:
first, it is not using intermediate nodes which may occur with
deployment problems. Second it does not rely on any specific
data stream or client conditions. On the contrary, it is designed
to cope with any applications and client environments as long
as one has the proper protocol adaptor.

Protocol adaptation: There are some research work about the
protocol adaptation. In network level systems such as [43], in
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which communicating end hosts use untrusted mobile code to
remotely upgrade each other with the transport protocols that
they use to communicate. Transformer tunnels [49] and protocol
boosters [34] are doing application-transparent adaptation by
tuning the network protocol according to the change of network
situations. Such systems can deal with localized changes in
network conditions but cannot react to changing environments
outside the network layer. Since Fractal works at the application
layer, it can maximally adapt application level protocols which
have no way to be completed in the network layer. Fractal is
also different from the Web browser plugins, e.g., Realplay,
Flash, and so on. Plugin is an application component which
completes part of the functionality, incapable of doing protocol
adaptation. Although today some Web sites provide multiple
choices of plugins to do the similar function, they still need the
client to manually select one, but maybe not the best. Fractal
is a general framework to adapting the functionality by means
of protocol adaptation which has transparency to the client and
other characteristics, such as flexibility and extendibility, which
plugins do not have.

Mobile code and mobile agent: Mobile code is a good can-
didate for carrying a protocol module since it has long been
known as a mechanism for providing a late binding of func-
tion to systems [5,26,28]. Mobile code and related technologies
also have been proposed and studied as effective means of im-
plementing content adaptation, protocol update, and program
migration in distributed applications. In [42,43] they propose a
system in which communicating end hosts use untrusted mobile
code to remotely upgrade each other with the transport proto-
cols that are used to communicate. Our work is complimentary
to their work because our proposal works in the application
level. A new lightweight, component-based mobile agent sys-
tem that can adapt to diverse devices and features resource sav-
ing is proposed in [7]. In this system, mobile code is brought in
and associated execution states of an application dynamically
after migration. NWSLite [22] provides a sophisticated predict-
ing tools for the remote code execution offloaded from mobile
client to the close server. To our best knowledge, Fractal is the
first framework to use mobile code to do protocol adaptation
that extends the utilization of mobile code technology.

Communication optimization: As far as the communication
optimization techniques go, Fix-sized blocking was used in the
Rsync [54] software to synchronize different versions of the
same data. In this approach, files are updated by dividing both
files into fix-sized chunks. The client sends digests of each
chunk to the server, and the server responds only with new
data chunks. Vary-sized blocking was proposed in LBFS [37]
for further reducing traffic. Recently, several projects such as
CASPER wide-area file system [53], Pond prototype [47], and
Pastiche backup system [8], adopt vary-sized blocking to ei-
ther improve the system performance or reduce the storage re-
quirements. Our work compliments these efforts, and the re-
sult of this paper can be applied in their work directly. Spring
and Wetherall have proposed a protocol independent technique
for eliminating redundant network traffic [48]. When one end
wants to send data that already exists at other end, it instead
sends a token specifying where to find the data at the other end.

A lot of encryption algorithms have been proposed, e.g., DES
[9], AES [1], and RC4 [46], however, the focus of this paper is
on selecting an appropriate encryption algorithm for a specific
client configuration. Therefore, we envision our work comple-
ments to the research of cryptography algorithms very well.
With the emergence of more and more application-level proto-
cols, like encryption algorithms, communication optimization
algorithms, adaptation becomes a necessity because each algo-
rithm has distinct characteristics from others even all of them
are for the same application purpose. Encryption algorithm fam-
ily is a good example. Some of them are very secure but require
more computing power. Some of them are very simple but can
run on tiny devices. Communication optimization algorithms
also justify this fact. We believe that our work makes an initial
step towards using mobile code to support the application-level
protocol adaptation, in which the protocol is composed of a se-
ries of PADs. These are packaged as mobile code modules and
distributed by existing CDNs. Furthermore, Fractal provides a
general framework for other adaptation functionality as well by
extending the PAD into other adaptation functions, e.g., content
adaptation.

8. Conclusions

In this paper, Fractal, a dynamic protocol adaptation frame-
work, is proposed to benefit the application from choosing ap-
propriate protocols according to dynamic client devices and
network environments. To the best of our knowledge, this is
the first effort on protocol adaptation by means of mobile code
and CDNs edgeservers. An adaptive message encryption proto-
col and an adaptive communication optimization protocol have
been built in the context of this framework. For adaptive mes-
sage encryption protocol, the Fractal framework shows great
flexibility in selecting a proper encryption algorithm. For the
adaptive communication optimization protocol, performance
comparison with other protocol adaptation approaches shows
that Fractal has lightweight system overhead, small resource
footprint, and noticeable client performance improvement. Our
next step includes integrating Fractal with end to end service
differentiation and access control in a real pervasive computing
environment, distributed computer-assisted surgery [33].

Acknowledgments

This work was supported in part by Michigan Life Science
Corridor under Grant number MEDC-459 and Wayne State
University Faculty Research Grant.

References

[1] Advanced Dencryption Standard, URL http://csrc.nist.gov/
CryptoToolkit/aes/

[2] Akamai Technologies Inc., Edgesuite services, URLhttp://www.
akamai.com/html/en/sv/edgesuite_over.html

[3] E. Amir, S. McCanne, R. Katz, An active service framework and its
application to real-time multimedia transcoding, in: Proceedings of the
SIGCOMM’98, Vancouver, Canada, 1998.

http://csrc.nist.gov/CryptoToolkit/aes/
http://csrc.nist.gov/CryptoToolkit/aes/
http://www.akamai.com/html/en/sv/edgesuiteprotect LY1	extunderscore over.html
http://www.akamai.com/html/en/sv/edgesuiteprotect LY1	extunderscore over.html


H. Lufei, W. Shi / J. Parallel Distrib. Comput. 66 (2006) 887–906 905

[4] B. Baksi, R. Krishna, N. Vaidya, D. Pradhan, Improving performance
of tcp over wireless networks, in: Proceedings of the 17th ICDCS,
Baltimore, MA, 1997.

[5] A. Birrell, G. Nelson, S. Owicki, E. Wobber, Network objects, Software-
Practice Experience 25 (S4) (1995) 87–130.

[6] A.T. Campbell, et al., A survey of programmable networks, ACM
SIGCOMM Comput. Commun. Rev. 29 (2) (1999) 7–23.

[7] Y. Chow, W. Zhu, C. Wang, F.C. Lau, The state-on-demand execution
for adaptive component-based mobile agent systems, in: Proceedings of
ICPADS, Newport Beach, CA, 2004.

[8] L.P. Cox, C.D. Murray, B.D. Noble, Pastiche: making backup cheap and
easy, in: Proceedings of the Fifth USENIX Symposium on Operating
Systems Design and Implementation, Boston, MA, 2002.

[9] Data Dencryption Standard, URL http://www.itl.nist.gov/
fipspubs/fip46-2.htm/

[10] Dicom standard, URL http://medical.nema.org
[11] W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans.

Inform. Theory 22 (6) (1976) 644–654.
[12] F. Douglis, A. Iyengar, Application-specific delta-encoding via

resemblance detection, in: Proceedings of the USENIX 2003 Annual
Technical Conference, San Antonio, Texas, 2003.

[13] FIPS 180-1, Secure Hash Standard, US Department of Commerce
/N.I.S.T., National Technical Information Service, Springfield, VA, 1995.

[14] A. Fox, S. Gribble, Y. Chawathe, E.A. Brewer, Adapting to network and
client variation using infrastructural proxies: lessons and prespectives,
IEEE Personal Comm. 5 (4) (1998) 10–19.

[15] A. Fox, S. Gribble, Y. Chawathe, E.A. Brewer, P. Gauthier, Cluster-based
scalable network services, in: Proceedings of the 16th ACM Symposium
on Operating Systems Principles, Saint-Malo, France, 1997.

[16] M. Freedman, E. Freudenthal, D. Mazires, Democratizing content
publication with coral, in: Proceedings of the Sixth USENIX Operating
Systems Design and Implementation, San Francisco, CA, 2004.

[17] X. Fu, W. Shi, A. Akkerman, V. Karamcheti, CANS: composable,
adaptive network services infrastructure, in: Proceedings of the third
USENIX Symposium on Internet Technologies and Systems (USITS’01),
San Francisco, CA, 2001, pp. 135–146.

[18] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility, IEEE
Trans. Software Eng. 24 (5) (1998).

[19] L. Gong, et al., Going beyond the sandbox: an overview of the new
security architecture in the java development kit 1.2, in: Proceedings of
the Usenix Symposium on Internet Technologies and Systems, Usenix
Assn., Monterey, CA, 1997.

[20] S.D. Gribble, M. Welsh, E.A. Brewer, D. Culler, The multispace: an
evolutionary platform for infrastructural services, in: Proceedings of the
1999 Usenix Annual Technical Conference, Monterey, CA, 1999.

[21] N.W. Group, Tcp slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms, URL http://rfc.net/rfc2001.html

[22] S. Gurun, C. Krintz, R. Wolski, Nwslite: a light-weight prediction utility
for mobile devices, in: Proceedings of MobiSys’04, Boston, MA, 2004.

[23] Gzip tool. URL http://www.gzip.org
[24] D. Halls, Applying mobile code to distributed systems, Ph.D. Thesis,

University of Cambridge, June 1997. URL http://www.crema.
unimi.it/mirror/scheme/thesis/node6.html

[25] N.C. Hutchinson, L.L. Peterson, The x-kernel: an architecture for
implementing network protocols, IEEE Trans. Software Eng. 17 (1)
(1991) 64–76.

[26] A.D. Joseph, A.F. deLespinasse, J. Tauber, D. Gifford, M.F. Kaashoek,
Rover: a toolkit for mobile information access, in: Proceedings of
the 15th ACM Symposium on Operating Systems Principles, Cooper
Mountain Resort, Colorado, 1995, pp. 156–171.

[27] A.D. Joseph, J.A. Tauber, M.F. Kasshoek, Mobile computing with the
rover toolkit, IEEE Trans. Comput: Special Issue Mobile Comput. 46
(3) (1997) 337–352.

[28] E. Jul, H. Levy, N. Hutchinson, A. Black, Fine-grained mobility in the
emerald system, ACM Trans. Comput. Systems 6 (1) (1988) 109–133.

[29] Kinoma player, URL http://www.kinoma.com/
[30] B. Krishnamurthy, J. Rexford, Web Protocols and Practice: HTTP/1.1,

Networking Protocols, Caching and Traffic Measurement, Addison-
Wesley, Inc, Reading, MA, 2001.

[31] LDAP (v3) revision (2004), URL http://www.ietf.org/
ids.by.wg/ldapbis.html

[32] H. Lufei, W. Shi, L. Zamorano, On the effects of bandwidth reduction
techniques in distributed applications, in: Proceedings of International
Conference on Embedded and Ubiquitous Computing (EUC’04), Aizu,
Japan, 2004.

[33] H. Lufei, W. Shi, L. Zamorano, Communication optimization for image
transmission in computer-assisted surgery, in: Proceedings of 2004
Congress of Neurological Surgeons Annual Meeting (abstract), San
Francisco, CA, 2004.

[34] A. Mallet, J. Chung, J. Smith, Operating system support for protocol
boosters, in: Proceedings of HIPPARCH Workshop, Uppsala Sweden,
1997, pp. 10–15.

[35] U. Manber, Finding similar files in a large file system, in: Proceedings
of the USENIX Winter 1994 Technical Conference, San Francisco, CA,
1994, pp. 1–10.

[36] R. Mohan, J.R. Simth, C. Li, Adapting multimedia internet content for
universal access, IEEE Trans. Multimedia 1 (1) (1999) 104–114.

[37] A. Muthitacharoen, B. Chen, D. Mazières, A low-band width network
file system, in: Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP-18), Banff, Canada, 2001.

[38] P. Neumann (Ed.), Computer Related Risks, Addison Wesley, Reading,
MA, 1995.

[39] B.D. Noble, Mobile data access, Ph.D. Thesis, School of
Computer Science, Carnegie Mellon University, May 1998. URL
http://mobility.eecs.umich.edu/papers/diss.pdf

[40] B.D. Noble, et al., Agile application-aware adaptation for mobility,
in: Proceedings of the 16th ACM Symposium on Operating Systems
Principles SOSP-16, Saint-Malo, France, 1997.

[41] B.D. Noble, M. Price, M. Satyanarayanan, A programming interface for
application-aware adaptation in mobile computing, in: Proceedings 2nd
USENIX Symposium on Mobile and Location-Independent Computing,
Ann Arbor, Michigan, 1995.

[42] P. Patel, D. Wetherall, J. Lepreau, A. Whitake, Tcp meets mobile code,
in: Proceedings of the Ninth Workshop on Hot Topics in Operating
Systems, Lihue, Hawaii, 2003.

[43] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, T. Stack, Upgrading
transport protocols using untrusted mobile code, in: Proceedings of the
19th ACM Symposium on Operating Systems Principles, Bolton Landing,
New York, 2003, pp. 1–14.

[44] Planetlab, URL http://planet-lab.org/
[45] M.O. Rabin, Fingerprinting by random polynomials, Technical Report

TR-15-81, Harvard Aiken Computation Laboratory, 1981.
[46] RC4 RFC3268, URL http://www.faqs.org/rfcs/rfc3268.

html/
[47] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, J. Kubiatowicz,

Pond: the oceanstore prototype, in: Proceedings of the Second USENIX
Conference On File and Storage Technologies, San Francisco, CA, 2003,
pp. 1–14.

[48] N.T. Spring, D. Wetherall, A protocol independent technique for
eliminating redundant network traffic, in: Proceedings of ACM
SIGCOMM’00, Stockholm, Sweden, 2000, pp. 87–95.

[49] P. Sudame, B. Badrinath, Transformer tunnels: a framework for providing
route-specific adaptations, in: Proceedings of the USENIX Technical
Conference, New Orleans, Louisiana, 1998.

[50] P. Sudame, B. Badrinath, On providing support for protocol adaptation
in mobile wireless networks, Mobile Networks Appl. (MONET) 6 (1)
(2001) 43–55.

[51] A. Tanenbaum, Modern Operating Systems, second Ed., Prentice-Hall,
Englewood Cliffs, NJ, 2001.

[52] D. Tennenhouse, D. Wetherall, Towards an active network architecture,
Comput. Comm. Rev. 26(2) 1996.

[53] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, T. Bressoud, A.
Perrig, Opportunistic use of content addressable storage for distributed
file systems, in: Proceedings of the USENIX 2003 Annual Technical
Conference, San Antonio, Texas, 2003.

[54] P. Tridgell, P. Mackerras, The rsync algorithm, Technical Report TR-CS-
96-05, Department of Computer Science, Australian National University,
1996.

http://www.itl.nist.gov/fipspubs/fip46-2.htm/
http://www.itl.nist.gov/fipspubs/fip46-2.htm/
http://medical.nema.org
http://rfc.net/rfc2001.html
http://www.gzip.org
http://www.crema.unimi.it/mirror/scheme/thesis/node6.html
http://www.crema.unimi.it/mirror/scheme/thesis/node6.html
http://www.kinoma.com/
http://www.ietf.org/ids.by.wg/ldapbis.html
http://www.ietf.org/ids.by.wg/ldapbis.html
http://mobility.eecs.umich.edu/papers/diss.pdf
http://planet-lab.org/
http://www.faqs.org/rfcs/rfc3268.html/
http://www.faqs.org/rfcs/rfc3268.html/


906 H. Lufei, W. Shi / J. Parallel Distrib. Comput. 66 (2006) 887–906

[55] A. Vahdat, M. Dahlin, T. Anderson, A. Aggarwal, Active names: flexible
location and transport of wide area resources, in: Proceedings of the 2nd
USENIX Symposium on Internet Technologies and Systems (USITS’99),
Boulder, Colorado, 1999.

[56] W3C Consortium, Simple object access protocol (SOAP) 1.1 (2000),
URL http://www.w3.org/TR/SOAP/

[57] L. Wang, K. Park, R. Pang, V. Pai, L. Peterson, Reliability and security
in the codeen content distribution network, in: Proceedings of USENIX
Annual Conference, Boston, MA, 2004.

[58] D.J. Wethrall, J.V. Guttag, D.L. Tennenhouse, ANTS: a toolkit for
building and dynamically deploying network protocols, in: Proceedings
of Second IEEE OPENARCH, San Francisco, CA, 1998.

[59] Windows CE Operating Systems, URL http://www.microsoft.
com/windowsce/

[60] M. Yarvis, A. Wang, A. Rudenko, P. Reiher, G.J. Popek, Conductor:
distributed adaptation for complex networks, in: Proceedings of the
Seventh Workshop on Hot Topics in Operating Systems, Rio Rico,
Arizona, 1999.

Weisong Shi is an Assistant Professor of Computer Science at Wayne State
University. He received his B.S. from Xidian University in 1995, and Ph.D.

degree from the Chinese Academy of Sciences in 2000, both in Computer
Engineering. His current research focuses on dynamic Web content delivery,
trusted resource sharing in peer-to-peer systems, mobile computing, and
wireless sensor networks. Dr. Shi has published more than 40 peer-reviewed
journal and conference papers in these areas. He is the author of the book
”Performance Optimization of Software Distributed Shared Memory Systems”
(High Education Press, 2004). He has also served on technical program
committees of several international conferences, including the chair of poster
track of WWW 2005. He is a recipient of Microsoft Fellowship in 1999, the
President outstanding award of the Chinese Academy of Sciences in 2000,
one of 100 outstanding Ph.D. dissertations (China) in 2002, ”Faculty Research
Award” of Wayne State University in 2004 and 2005, the ”Best Paper Award”
of ICWE’04 and IPDPS’05. He is a member of ACM, USENIX, and IEEE.

Hanping Lufei is a Ph.D. student of computer science at Wayne State
University. His current research focuses on QoS, systems security, access
control, and trust management in mobile computing environment. He is
also interested in computing enhancement for handheld device and resource
management in distributed systems. He received his Bachelor degree in
1998 and Masters degree in 2001 from Huazhong University of Science and
Technology (HUST) in China and the University of Toledo in USA, both in
Electrical Engineering.

http://www.w3.org/TR/SOAP/
http://www.microsoft.com/windowsce/
http://www.microsoft.com/windowsce/

