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Abstract
The increase in web traffic leads to the deployment of
network intermediaries like caching proxies and content
delivery surrogates between the origin servers and the
end-users. However, recent trends indicate an increasing
demand for deploying content-oriented services along
the data path between end users and content servers.
These services range from dynamic content generation
to support personalization services, security, content fil-
tering and adaptation services. Deploying these services
into the existing end-to-end architecture of the Internet
requires the creation of an environment to host a variety
of services. This suggests extending existing network in-
frastructure such as caching proxies for more than just
their original intended purpose. Extending the network
infrastructure implies equipping intermediary machines
so that they are able to provide content-oriented services
to end-users. This leads to the creation of an environ-
ment that allows execution of these services locally and
remotely.

In this paper we designed, implemented and evaluated
a Service Execution Environment (SEE) in the context
of CONCA proxy cache, and compared the performance
of Simple Object Access Protocol (SOAP) and IETF’s
Internet Content Adaptation Protocol (ICAP) when these
are used as call-out protocols between the SEE and the
service providers.

1 Introduction
The role of the Internet has undergone a transition from
simply being a data repository to one providing access to
a plethora of sophisticated network-accessible services
such as e-mail, banking, on-line shopping and entertain-
ment. Additionally, these services are increasingly be-
ing accessed by mobile consumers using end devices

such as PDAs, Pocket/Handheld PCs, cellular phones and
two-way pagers that connect to the internet using a vari-
ety of wireless networking options ranging from Blue-
tooth [15] to Wireless 3G [29]. The combination of these
two trends holds out the possibility of providing a user
with seamless, ubiquitous access to a service irrespective
of the user’s end device and location. Although com-
pelling, achieving this goal requires coping with the in-
herent mismatch between the low-bandwidth, limited re-
source characteristics of wireless mobile devices and the
high-bandwidth expectations of many content-rich ser-
vices.

Current day applications and services cope with the
above problems essentially by providing differentiated
service for different networks/end-devices. For example,
most popular news, e-mail, and stock trading services to-
day present a different front-end for mobile users. Al-
though adequate in some scenarios, this approach suf-
fers from the limitation that mobile users are classi-
fied into a small number of classes and may not receive
performance commensurate with the capabilities of the
device or network they are using. More importantly,
such an approach cannot adequately cope with dynam-
ically changing environments where there is a big vari-
ation in available bandwidth (e.g., a user on a wireless
LAN who is at different distances from an access point).
More promising are several recently proposed infrastruc-
tures [8, 9, 14, 11, 13, 33], which allow the construction
of network-aware access pathsfrom application-specific
component; these components cope with device and net-
work mismatches by handling activities such as protocol
conversion and content transcoding at sites best suited
for them. Similarly, the OPES initiative [27] proposed by
IETF Open Pluggable Edge Service Workgroup share the
same goal to add third-party value-added services along



the data path between data consumers and data providers.
Although several such infrastructures have been pro-

posed, they have so far not seen widespread use because
of concerns about their deployability, performance, and
scalability. Central to each of these concerns is the ques-
tion of whether it is possible to construct paths that yield
performance benefits over a range of (possibly dynami-
cally changing) network conditions, and where to deploy
these services, and how to integrate with the existing data
flows, and who make the decision of service selection.
Most of the previous work focus on the infrastructure
support for the services, but neglect these questions. In
this paper, we argue that the idea of extending existing
caching proxies to support these services is promising,
the service selection should be separated from the execu-
tion of services, and most importantly, the infrastructure
should allow those value-added services talking with dif-
ferent protocols. Based on these arguments, we design,
implemented, and evaluated a Java-based service execu-
tion environment to support service execution both lo-
cally and remotely. The major contribution of this paper
is:

• A novel design of a Service Execution Environment
(SEE), having several unique features, which in-
cludes (1) a secure interface between the service
provider and SEE for the service provider to regis-
ter the service; (2) no requirement of a language to
configure the rules as it provides a simple web inter-
face that allows authorized parties (clients, network
providers, content providers) to select the services
they desire based on the name of the services (high
level type description). This simplifies the process
of configuring the environment and decouples the
rule generation and rule processing, thus allowing
more flexibility when defining rules.

• To the best of our knowledge, our work is the first
public experimental platform which supports multi-
ple protocol bindings. As such, it is an ideal plat-
form for other colleagues to test different call-out
protocols [5].

• We implement three services and invoke them re-
motely by using the call-out protocols: Internet
Content Adaptation Protocol (ICAP) [16] and Sim-
ple Object Access Protocol (SOAP) [30]. Then,
we compare their performance from the perspec-
tive of performance, codeability, and scalability in

this paper. We have performed a thorough analy-
sis to effectively describe the overheads when using
the service execution environment. The paper ex-
plicitly describes the performance overhead both at
the proxy end as well as at the call-out server when
using ICAP and SOAP as call-out protocols. This
penalty includes the network overhead as well as the
time taken at the ICAP/SOAP server to process the
request. We found that ICAP outperforms SOAP by
a little bit, but it requires more work on both at the
caller and the callee, and it requires service provider
to rewrite all the legacy codes. Therefore, we argue
that SOAP protocol is a better choice as a call-out
protocol.

The rest of the paper is structured as follows: Section 2
provides background information of the architecture of
the CONCA. Section 3 provides the motivation behind
the implementation of SEE and a description of the de-
sign of the SEE. Section 4 describes the implementation
of SEE and the technology used to develop the proto-
type. Section 5 presents the results of the performance
evaluation of SEE, SOAP and ICAP. Related Work and
concluding remarks are listed in section 6 and Section 7.

2 Background
2.1 End-to-End is Not Enough
Since the evolution of Internet lot of the intelligence has
been at the end systems. The rapid proliferation of In-
ternet users and increasing web traffic have led to a lot
of load on the origin servers and thereby led the content-
providers to adopt techniques that disseminate the load
on origin servers. The deployment of caching proxies
and surrogates allow the distribution of content and trans-
port the origin servers closer to the edge of the network.
The rising demand for Internet services induces the idea
of using existing caching proxies for more than simply
accelerating the delivery of Web content. They seem
to provide a viable location to deploy additional client
services. This implies a change in the current Internet
model where the client and the server are the two end-
points of communication and the introduction of “intelli-
gent” networks where intermediaries could process cer-
tain requests and responses [6]. This suggests that the
Internet will no longer be a mere data transfer network,
more and more functionalities can be injected into the
network along the data path, ranging from the network-
layer, such as active networks [26], to application-layer,
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such as CANS infrastructure [11].

2.2 CONCA Proxy Cache

CONCA (COnsistentNomadicContentAccess) [25] is
a proposed edge architecture for the efficient caching and
delivery of dynamic and personalized content to users
who access the content by using diverse devices and con-
nection technologies. CONCA attempts to exploit reuse
at the granularity of individual objects making up a docu-
ment, improving user experience by combining caching,
prefetching, and transcoding operations as appropriate.

To achieve its goals, CONCA relies on additional in-
formation from both servers and users. All content sup-
plied by servers in CONCA architecture is assumed to
be associated with a “document template” which can be
expressed by formatting languages such as XSL-FO [32]
or edge-side include (ESI) [28]. Given this information,
CONCA node can efficiently cache dynamic and per-
sonalized content by storing quasi-static document tem-
plates and reusing sharable objects among multiple users.
Moreover, based on the preference information provided
by users, a CONCA cache node delivers the same content
to different users in a variety of formats using transcod-
ing and reformating.

Figure 1 provides an overview of the CONCA archi-
tecture. CONCA uses a distributed client-side proxy
cache architecture, similar to NSF’s IRcache project [17]
and other recently proposed projects [34, 19]. Such ar-
chitectures, which are complementary to server-side so-
lutions such as reverse proxy caches and content deliv-
ery networks [1, 7], attempt to reduce network traffic
associated with a miss in the local cache; ideally, such
schemes would service the miss from a “near” proxy as
opposed to requesting the object from the original server.
In CONCA, as we shall see below, distributed proxy
caches are the key to providing scalability.

Each CONCA node consists of cache storage and three
modules—remote control unit, local control unitandre-
source management unit—which manage the node’s in-
teraction with other cache nodes, users, and internal stor-
age policies respectively. Each CONCA node leverages
the document templates provided by server and user pref-
erences provided by user to provide two broad kinds
of support: (a) consistent caching of dynamic person-
alized content, even when some of the content needs to
be transcoded prior to delivery to the client; and (b) sup-
port for nomadic users, by enabling efficient recreation
of per-user cache state.
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Figure 1: CONCA architecture: distributed proxy caches
receive data from multiple server replica (R).

3 Service Execution Environment
3.1 Motivation
The Service Execution Environment(SEE) is a part of
the ongoing development of CONCA project, an edge-
computing platform. The architecture of CONCA is
modeled on two recent trends: (a) Increasing amounts of
dynamic and personalized content, and (b) A significant
growth in “on-the-move” access using various mobile
resource-constrained devices. The delivery of personal-
ized content requires the deployment of an environment
that generates content dynamically. An extension of this
idea is the ability to support other value-added services.
Typically third party vendors provide these services and
hence the platform must allow dynamic addition and re-
moval of services. It is proposed that this environment be
deployed as a part of the CONCA node to aid in reducing
the load on origin servers by allowing code to be down-
loaded and executed on the CONCA platform. Our exe-
cution environment is designed to deliver content that is
tailored to the preferences of both the end-user as well as
the content provider. This allows the end-user to enable
services that allow personalization, as well as guarantee
privacy and security for all communication. At the same
time, it presents a business opportunity for ISP’s and con-
tent provider’s to provide these value-added services to
their clients. These services could include access control
to block inappropriate sites, virus scanning, anonymiza-
tion services to protect privacy, language translation, ad-
dition of region-specific information, image resizing and
image filtering to reduce the quality of images to shorten
download time.

Current design proposals for an execution environment
proposed the OPES workgroup [27] have limited ability
to handle service registration and security issues. Fur-
ther they require that the client, content-provider and the
network provider configure complex rules in order to se-
lect the services. In this paper , we argue that the ser-
vice selection should be separated from the execution of
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services, and most importantly, the infrastructure should
support different protocols for the environment to talk to
the value-added services.

3.2 Objectives

Our service execution environment is designed with
the following features in mind: secure, scalable, high-
performance and ease-of-use. We demonstrate these re-
quirements by describing how existing architecture [3,
27] do not prove to be as efficient as intended. First,
OPES framework forces both content providers and con-
tent consumers to use IRML [4] to specify the rules to
determine if a service should be invoked on certain con-
tent. Although it provides a standard interface, it is un-
realistic to ask content providers or end users to write
such sort of complex rules to employ some personalized
services. Furthermore, because of the prevalence of web
services, it is impossible to ask service providers to sup-
port one protocol only, i.e., Internet Content Adaptation
Protocol (ICAP) proposed by OPES framework. Finally,
they did not consider the secure interaction between ser-
vice providers and proxy cache, and the mechanism for
content integrity check from both client-side and server-
side.

Our approach to address the above problems depends
on the following five components: (1) A secure inter-
face between service provider and the service execution
environment that allows the service provider to register
their services, and update their service information later.
This is handled by theservice managermodule on the
left side of Figure 2; (2) A simple Web interface that al-
lows authorized parties (clients, network providers, con-
tent providers) to select the services they desire as well
as choose providers for the selected services (some ser-
vices may be provided by many providers). The decision
of where the services are executed is left to service exe-
cution environment. When multiple services are chosen
by one client, the composition of these services is done
automatically after he or she finishes the configuration
online by using the type-based service composition tech-
nique proposed in [11]. This ensures that they will be
executed in correct order and further helps to improve
the performance of SEE since this composition is done
offline; (3) Supporting multiple protocol bindings, such
as ICAP and W3C’s SOAP to make the execution en-
vironment more flexible. (4) A protected local service
execution environment for secure execution of injecting
code. We plan to design a set of application programming

interfaces (APIs) between proxy cache and protected ex-
ecution environment, and use virtual memory monitors
(VMMs) technique to provide process isolation and pro-
tection within the environment, which has been recently
shown to be very useful in [31]; (5) Providing feedback-
based content integrity mechanisms to allow both client
and content provider to check the correctness of content
after applying the content-oriented services. In this paper
we plan to discuss the former three points.
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Figure 2: The architecture of service execution environ-
ment.

3.3 User Interface
The most important feature of our design is the simplicity
with which the environment can be configured. We cre-
ate a web login for user’s that would authenticate them
and then present a webpage outlining the current services
available and the names of all service providers, as shown
in Figure 3. We ensure that this webpage accurately re-
flects the most recent list of active services by creating it
dynamically when the user logs in. This provides flexi-
bility and allows users to select and configure how they
prefer the content be delivered to them. But more impor-
tantly it allows them to decide who should provide them
these services. This addresses an increasingly important
issue; privacy, that dictates who should be allowed access
to your web content and your details. The user can also
specify the service and the rules for it through the web
interface by using regular expressions. For example, if
user A wants Image Resizing to be done over jpeg files
then the expression can be “*.jpg, IR”.
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(a) (b)

Figure 3: A snapshot of (a) login session, and (b) service selection screen.

3.4 Service Manager

To handle different services with vastly differing param-
eters it is important that the task of managing services be
assigned to a dedicated module. This is done by the ser-
vice manager. It is used to handle the details of all the ser-
vices that are currently deployed. It ensures that the back
end always accurately reflects the services that are cur-
rently active. TheServiceRegistry handles the reg-
istration of services by the service provider through RMI.
The entire service registration process between SEE and
the service providers is done securely.

3.5 Processing Flow

When the client logs in, he is presented with a screen that
reflects the services that are currently registered with the
network/content provider. When the user selects prefer-
ences these are logged. We term the services selected by
the user as “user-specific services”. We also assume that
the network provider may also wish to configure services
that would be applied to all requests irrespective of user.
We name these services “general services”. Each request
from a user would be serviced for all general services as
well as user-specific services, if any.

For every request that comes in, a HTTP Object is cre-
ated by SEE. This object represents all the information
about the request at any point during processing and so
forms the basis of communication between all the mod-
ules of SEE. As requests come in, the Rule Engine is in-
voked for each one of them. The Class Loader loads the
rule file of each service present in the properties file of
the user. The Rule class of a service determines whether
the request satisfies the rules of the service or not, if it
does then further processing is handed over to the Re-

quest Handler. The Request Handler handles the process-
ing for different protocols. It passes the protocol spe-
cific requests created by the ICAP/SOAP client to the
ICAP/SOAP server and retrieves the responses, which
are then passed back to the Rule Engine through the Rule
class. This is important since the decision to invoke fur-
ther rules is based on the modified request/response ob-
tained by the processing of earlier rules. Once all the
rules are processed the final modified response is sent to
the client. The left part of Figure 2 shows the overview
of the six logical modules of SEE.

4 Implementation
Our prototype implementation of SEE is based on the ar-
chitecture described in the earlier sections. We have de-
ployed three services on the proposed architecture and
used a basic proxy server that has no caching capability.
We support two protocols that serve as call-out protocols,
ICAP and SOAP. Also our testing environment involves
locally as well as remotely deployed service modules.
However, all our local services are invoked using a “local
host” URL which means that although we have support
for local service execution we treat them as remote ser-
vices by using a URL to access them. The proxy server
and all the architectural modules have been implemented
in the Java programming language. The following sub-
sections provide a detail explanation of the implementa-
tion of the modules.

4.1 Service Manager Implementation

The service manager maintains a data structure that
records the details of all services and providers. This in-
cludes the following details: the service name, if it is
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Image ProviderA,www.a.com , ICAP, Remote
Resizer ProviderB, localhost:8080 , SOAP, Local, ImageResizer

ProviderC, www.c.net , ICAP, Remote
Virus ProviderA, www.a.com , ICAP, Remote, arguments(optional)

Scanning ProviderC, www.c.net , ICAP, Remote
ProviderD, www.d.com , SOAP, Remote, checkandremove()

Table 1: An example structure of service management in SEE.

a remote service then the URL where the service will
be invoked, the protocol through which the request han-
dler should communicate with the service, and a method
name if the protocol is SOAP. These are stored such that
they can be indexed by the service name. The data struc-
ture looks as shown in Table 1. To populate this data
structure it is required that service providers register their
services. This is implemented using Java RMI over SSL.
This allows us to ensure secure communication between
the service provider and the proxy server. Further more
the issue of authentication is solved using asymmetric
key cryptography. We assume that the proxy server and
the service provider share a trust relationship and the ser-
vice provider has been assigned a username and pass-
word offline. To register their service the providers call
the RegisterService() method. The signature of
the method is given below:

public boolean RegisterService(
String username,
byte[] EncryptedPassword,
String servicename,
String serviceURL,
String protocol,
String location,
String method);

4.2 Rule Engine Implementation
The user preferences are recorded by writing the choices
of each user into a properties file and using the cookie
(login name) for that user to name the properties file. The
recording of user preferences is done using Java servlets.
The rule engine reads the properties file at run time. For
each service selected SEE loads a Rule class through the
class loader. If a request satisfies the rules that have been
set by the service provider for the service then it is sent to
the request handler for further processing. If the request
doesn’t satisfy the rules for any of the services present in
the properties file then the response for the request is sent
to the user without any modification. For the efficient

loading of the rule classes and uniform processing of all
requests we require that all rules implement theRule
Interface, which is:

public interface Rule {
boolean check(HTTPObj hobject);
Message getModifiedMessage(HTTPObj h);}

Thecheck method indicates whether a given request
satisfies a rule. It is the only method that would be exe-
cuted for all requests and thus presents the real overhead
of the Rule Engine. ThegetModifiedResponse
method closely ties the rules and the services associated
with those rule. It indicates that once a request satisfies
a rule it can be retrieved using that rule thus eliminating
the need for “rule processing points” specified in OPES.

4.3 Request Handler Implementation
The Request Handler gets requests (only those which
satisfy the rules of a service) from the Rule Class. The
ICAP and SOAP clients have been implemented in this
module.

4.4 ICAP and SOAP Client Implementation
The ICAP client creates the ICAP request and sends it
to ICAP server for service invocation on the contents
encapsulated in the request. On receiving the response
from the server it removes the ICAP headers and
sends the processed content to the Rule class. It sends
ICAP requests for two modes: REQMOD (Request
Modication) and RESPMOD (Response Modification).
The SOAP client has been implemented by using the
Apache Axis 1.0 engine. It creates a call to the SOAP
server using the end-point address of the machine on
which the service is present and the contents to be send
to the service for processing. On getting the processed
contents it sends it to the Rule class.

6



4.5 ICAP and SOAP Server Implementation
The ICAP servers are run using three java files,
ServiceProvider A, ServiceProvider B
and ServiceProvider C which corresponds to
image resizing, language translation and virus scanning
respectively. The service providers listen to incoming
requests on port numbers 1344, 1345 and 1346. They
parse the ICAP request, invoke the service on the content
and then serve the ICAP client with an ICAP response
containing the processed content.
The SOAP server is deployed using aTOMCAT 3.2.4
server from Jakarta initiative [2]. The implementation of
the service modules is in Java. A jws (Java web services)
version of the service are deployed at the webapps/axis
directory of the TOMCAT Server. The SOAP client
creates a call to the SOAP server and then invokes it.

5 Performance Evaluation
5.1 Environment Setup
The performance evaluation was done by setting up an
emulated environment consisting of three machines, in-
cluding a web server, on a Ultra-Sparc2 200MHz with
512MB memory; The SEE, on a Pentium-IV (2.2GHz)
Desktop with 512MB memory; The service providers,
on a Pentium-IV (2.2GHz) Desktop with 512MB mem-
ory. In order to avoid the effects of a Web browser and
the Internet traffic on our evaluation, all the requests to
the SEE is generated by a client program running locally,
implemented in Java. The client program records all the
requests for a fixed web page, which consists of one html
file (29KBytes) and five images (34KBytes each). The
ICAP and the SOAP servers, and the SEE are based in
the same LAN. This is to avoid the effects of the external
traffic and to avoid network congestion during the perfor-
mance evaluation. We have also placed our test page at
a node on the same LAN to perform our experiment in a
restricted environment.

Figure 4 lists the detailed timeline of a request and
reply between a client, origin web server and service
provider. Based on the this figure, the overhead that we
are interested in are defined as follows:

T(Response) = T16 - T1

T(Rule Engine) = (T15 - T14)+(T5 - T4)+(T3 - T2)
T(Origin Server) = T4 - T3

T(ICAP/SOAP Client) = (T7 - T6)+(T13 - T12)
T(ICAP/SOAP Server) = (T9 - T8)+(T11 - T10)
T(Service) = T10 - T9

T(Network) = (T8 - T7)+(T12 - T11)

Client

Proxy with SEE

Server

Service Provider

Rule
Processing

ICAP/SOAP

ICAP/SOAP

Service

T1

T16

T2

T5

T3

T4T15

T6

T7

T8

T9T10

T11

T12

T13

T14

Figure 4: The detailed timeline of a request and reply.

5.2 Three Services

We are using three services,ImageResizer,
Language Translation andVirus Scanning ,
to do the performance evaluation of ICAP, SOAP and
our SEE. TheImageResizer(IR) processes the
image bytes and reduces the image size by scaling
its height and width. It has been implemented in
Java. It is aimed at the users having limited band-
width, those who have hand-held devices and to
shorten the download time for large JPEG images.
The Language Translation(LT) has been im-
plemented by a wrapper, which uses the language
translation service provided by free translation [10].
The Virus Scanning (VS) service has been
implemented using the virus scanning service available
on www.openantivirus.com . It checks for the
presence of a virus on the requested document. The
reason we choose these three services is the diversity
of their input/output ratio. The input ofLT is a URL
but its response is almost of the same size as that of the
original content, the input ofVS is the original content
but its response is either ‘yes’ or ‘no’, if the response is
‘yes’ then SEE generates a error page and sends it to the
client and if its ‘no’ then the original content is sent to
the client, and the input ofIR is the original image but
its response is a reduced form the original image. Our
IR reduced the testing images we used for performance
evaluation by 87%.

The execution time of these three services on the fixed
web page is listed in Table 2. Note that the execution
time of Language Translation is out of our control as it is
dependent on the Internet speed and the free translation
server.
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IR VS (html) VS (image) LT
345.0 177.3 133.0 7858.5

Table 2: Execution time of three services.

5.3 Overhead of SEE
We first evaluated the overhead of our Service Execution
Environment. Figure 5 compares the overhead of SEE
in five different cases. The readings are independent
the call-out protocol being used to send the request. In
the figure, No-SEE represents the case when SEE is not
enabled, SEE-0 represents the case when there are no
services in the user’s properties file i.e the properties
file of the user is empty, SEE-IR represents the case
when IR service is invoked on the Request, SEE-VS
represents the case when VS is invoked on the Request,
and SEE-IR-VS represents the case when IR and VS
services are invoked on the same request.

From the Figure 5 we can say that the overhead of
SEE is acceptable when compared to the total response
time for one client in Figure 7, it is less than 16% in case
of the IR service and less than 18% in case of the VS
service.
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Figure 5: The execution overhead of Service Execution
Environment.

5.4 Overhead of ICAP and SOAP Clients
The bars of each group (based on the three services) in
Figure 6 shows the breakdown of the overhead of pro-
cessing and communication within SEE, whereTr is the
processing overhead of the Rule Engine,Ts is the re-
quest and reply time between the proxy cache and origin
server,Tp represents the ICAP/SOAP Client overhead,
andTn is the ICAP/SOAP Server overhead. The left bars
in each group is for ICAP and the right ones of SOAP. We
found that the overhead of rule engine is independent of

the call-out protocol and the service which reflects that
the design of our SEE is stable. However we found a
large overhead due to the ICAP/SOAP client and also a
large variation in their overhead for different services.-
On comparing the overheads of ICAP and SOAP clients
we found that in most cases ICAP client out performs the
SOAP client.
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Figure 6: Breakdown of overhead of ICAP (left) and
SOAP (right).

5.5 Benefit of ICAP and SOAP
After finding out the overhead of SEE and the overhead
of ICAP and SOAP clients, we now provide the user-
perceived latency in Table 3 when single and combina-
tion of services are invoked over ICAP and SOAP. The
latency is defined as the difference betweenT16 andT1.
‘No’ depicts the case when the properties file of the use
is empty. We compared the latencies obtains for each ser-
vice and combination of services with the ‘No’ case, and
made the following conclusion: First, third party services
may not always be good for us and second, if the service
is running far away from the data flow, the performance
may become 7 times slower. Here we argue that to ob-
tain a good performance the service running on a remote
machine should be as near as possible to the service exe-
cution environment.

After comparing the latencies obtained for ICAP and
SOAP we find that there is not much difference in their
performance but deploying a service over SOAP is more
easier than doing it over ICAP, this is true especially in
case of the legacy services. Based on the performance
of ICAP and SOAP we believe that a service should be
invoked remotely only if its a proprietary of someone or
computing intensive, else its best to invoke it locally.

To compare the effort of implementing an ICAP or
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Protocol No IR VS (html) VS (image) IR+VS LT LT + VS
ICAP 387.7 990.2 665.6 772.2 1362.9 8180.8 8321.6
SOAP 387.8 1220.1 942.2 1046.6 1311.2 11062.2 7802.4

Table 3: Benefit of ICAP and SOAP

IR VS LT
Protocol Client Server Client Server Client Server
ICAP 175 331 175 284 175 224
SOAP 101 110 101 153 101 68

Table 4: The lines of codes for each service in the two
protocols.

a SOAP client, we list the number of lines of code for
ICAP and SOAP clients/servers in Table 4. We see that
the implementation of a SOAP client/server requires less
amount of coding work than the implementation of an
ICAP client/server.

5.6 Scalability Analysis
Our last concern of the service execution environment is
its scalability. We use a multithreaded client in Java, to
create 1,2,4 or 8 clients and send requests to the SEE.
The results of our evaluation are shown in Figure 7. Our
observation from the figure is: First, the user-perceived
latency is dominated by the service implementation and
also on it being executed locally or remotely (as can be
seen from the graph for LT) and, second the overhead of
SEE is independent of the number of clients and the data
to prove this will be provided in the final version of this
paper.

5.7 Limitations
Currently, our service execution environment handles
multiple services that are applied to the same data flow
sequentially, therefore, the SEE overhead is proportional
to the number of executed services, as shown in Figure 5.
Obviously, this overhead can be optimized if the remote
call-out protocol supports the combination of multiple re-
quests or pipeline of multiple services. We argue that
this is a necessary requirement for the call-out protocols
and should be included in the OPES documents [5]. Sec-
ondly, the cooperation of multiple service execution en-
vironments is not discussed in this paper. However, in
some circumstances the decision of executing some ser-
vices in the downstream points along the data path, is
dependent on the results of executing the services in the
upstream points. Therefore, we plan to extend our exe-
cution environment to support the cooperation, such as

information sharing, in the next step.

6 Related Work and Discussion
Our work in this paper was motivated by the two related
research areas: open pluggable edge servies (OPES) [27]
and distributed content adaptation [33, 12]. So, we dis-
cuss the related work in these two fields as follows.

In [27], IETF’s Open Pluggable Edge Service working
group proposes an environment to provide value-added
services to the end-users, which motivates our work in
this paper, but this paper focuses on the implementation
of a service execution environment and the performance
evaluation of ICAP and SOAP. Beck and Hofmann in [4]
talked about a rule specification language for interme-
diary services i.e the IRML which can be used by the
clients and/or content providers to configure the rules.
But in this paper we argue that the service execution en-
vironment should provide a simple web interface that al-
lows authorized parties (clients, network providers, con-
tent providers) to select the services they desire based
on the name of the services (high level type description).
This simplifies the process of configuring the environ-
ment and decouples the rule generation and rule process-
ing, thus allowing more flexibility. In [3], Bell Lab has
implemented a service execution environment prototype
based on Apache Proxy Server and performed some pre-
liminary analysis of the performance of their prototype.
However, in their implementation the rule engine pro-
cesses all the rules for each web transaction, our rule en-
gine processes for each web transaction, the rules of only
those services which are present in the properties file of
the user made the web transaction, thereby optimizing
the rule engine and decreasing its overhead.

There is a large amount of prior work on transcod-
ing architectures [8, 13, 20, 22, 33], infrastructures for
their effective deployment [11, 18, 21, 23, 24]. Those
infrastructure allows the construction ofnetwork-aware
access pathsfrom application-specific component; these
components cope with device and network mismatches
by handling activities such as protocol conversion and
content transcoding at sites best suited for them. Which
share the same goal of the work in this paper. However,
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Figure 7: Scalability of the see execution environment (a) ICAP, (b) SOAP.

most of previous work in content adaptation are focus on
infrastructure issues along the data path, and the adap-
tation functionality is conducted inside the proxy caches
or edge. In this paper, we beleive that with the prolif-
eration of Internet services, some of these services are
computing intensive or proprietary code, which require
to be executed in specific places. Therefore, our work fo-
cus on the execution environment that support different
remote call-out protocols, which complements the previ-
ous work on content adaptation.

In summary, to the best of our knowledge, the per-
formance evaluation presented in this paper is the first
public results on comparing of ICAP and SOAP proto-
col for edge services. The service execution environment
proposed in this project distinguishes itself from previ-
ous work by its ability to support multiple protocol bind-
ings between service providers and proxy servers, scal-
able service management, efficient service composition
support, as well as provides a simple interface to allow
authorized clients to configure preferences.

7 Conclusions and Future Work
The paper proposes a novel service execution environ-
ment, which distinguishes itself from other work by its
ability to support multiple protocol bindings (SOAP and
ICAP) and the ease of rule specification. Further it al-
lows secure registration of services, as well as provides a
simple interface to allow authorized clients to configure
preferences.

We have performed a thorough analysis to effectively
describe the overheads when using the service execution
environment. After comparing the latencies obtained for
ICAP and SOAP we find that there is not much differ-

ence in their performance but deploying a service over
SOAP is more easier than doing it over ICAP, this is true
especially in case of the legacy services. Based on the
performance of ICAP and SOAP we believe that a ser-
vice should be invoked remotely only if its a proprietary
of someone or computing intensive, else its best to invoke
it locally.

Our future work includes integrating SEE into our on-
going CONCA proxy caches, extending our work to op-
timize the execution of multiple services within one ex-
ecution environment, providing support for distributed
service composition among multiple SEEs. The code of
SEE will be public available soon athttp://mist.
cs.wayne.edu .
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