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ABSTRACT
Given the number of platforms and apps with similar func-
tionalities, this paper describes the challenges and identifies
the gaps toward comparing mobile platforms and apps for
energy efficiency. In addition, based on case studies that
focus on energy efficiency comparison of different app cat-
egories on the most popular platforms, the paper discusses
insights related to the major platform providers, energy-
efficient app design, and app developers common practices.

1. INTRODUCTION
Today’s mobile users face choices of platforms and apps

with similar functionalities. Therefore, it is important to
understand their relative energy efficiencies. However, com-
paring platforms and apps from an energy efficiency perspec-
tive is a challenging task given the lack of appropriate tools
and technologies, possible measurement errors, and design-
ing sound case studies. Despite the challenges, we collected
power related metrics on different mobile platforms in order
to achieve the following: 1) to quantify the energy efficiency
gain of native apps vs. their web counterparts. 2) to quan-
tify the difference in energy efficiency of same app categories
on different platforms. The contributions of this paper are:

• We discussed the challenges and identified gaps toward
comparing the energy efficiency of platforms and apps.

• Using case studies which focused on energy efficiency
comparison of different app categories on the most
popular platforms, we derived a list of insights related
to the major platform providers, energy-efficient app
design, and common practices of app developers.

The paper is organized as follows. We first discuss the
challenges toward comparing platforms and apps for energy
efficiency in Section 2. We present our experimental ap-
proach in Section 3 followed by detailed case studies in Sec-
tion 4 and a list of insights in Section 5. Next, we present
some related work in Section 6 and conclude in Section 7.
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2. CHALLENGES
Given the large number of choices available for users in

terms of platforms and apps, then comparing and ranking
the energy efficiency of both can create some sort of com-
petitive advantage. However, such a comparison is not a
straight forward task. It is very challenging at best due but
not limited to the following:

- Purely comparing the energy efficiency of different plat-
forms is a hard task due to the fact that each platform re-
quires different tools each of which can have distinct capabil-
ities, different accuracy rates, and introduces varying energy
consumption overhead. Given the tools’ limitation, we do
not directly compare the energy efficiency of platforms. In-
stead, we select a set of apps for each platform and then
compare their relative energy efficiency.

- The test environment, if not kept constant, may impact
the accuracy of the data. For instance, some devices utilize
ambient light sensors that adjust the display backlight based
on the surrounding light. As a result, during our data col-
lection, we strived at keeping the lighting consistent across
all scenarios. Another factor which can impact the accuracy
is the Wi-Fi signal strength. Therefore, we made an effort
to perform all tests at consistent Wi-Fi signal strength.

- Eliminating activities of background apps and services
was challenging as well. For instance, even after killing Spo-
tify from Task Manager on Android, we still periodically
observed some related running processes. As a result, we
uninstalled from the platform under test all apps that were
not installed by default. Despite all our efforts, there were
still some services that we were not able to stop. For in-
stance, on Android, we failed at stopping the activities of
Search Application Provider and Google Account Manager.
Similarly, on Windows, we were not able to stop many sys-
tem processes. On the other hand, on iOS, we were unable
to identify background processes, not because they did not
exist, but because we didn’t have the appropriate tools.

- The energy efficiency of an app with dynamic content
may significantly differ from one experiment to another. For
example, since the energy consumption of Facebook depends
on the number of status updates of friends, then login into
an uncontrolled account may introduce measurement errors
based on inconsistent activities during the experiment. As a
result, for our case studies, we created an account which was
controlled and used solely for the experiment purpose where
friends posted identical updates during the experiment.

- Many apps have logic in the cloud which may impact
their power consumption. Since our testing model cannot
enable us to compare platforms and apps fairly if they use



Table 1: List of devices
Device OS Processor Memory Storage

Nexus 7 Android 4.3 Qualcomm Snap-
dragon S4

1 GB 16 GB

iPad Air iOS 7.0.6 A7 chip with 64-bit 1 GB 16 GB

Surface 2 Pro Windows 8.1 Intel(R) i5-4200U 4 GB 64 GB

the cloud, we refrained from comparing such scenarios. For
example, the latest Chrome browser for Android and iOS
can significantly reduce cellular data usage by using proxy
servers hosted at Google to optimize website content [1].
For the purpose of our experiments, we did not enable this
feature. Another example is streaming music using iTunes.
At various time intervals, iTunes stops streaming music for
commercials which are accompanied by graphical updates.
When we encountered this case, we discarded the results.

Based on the above list of challenges, it is evident that
comparing the energy-efficiency of mobile platforms/apps is
a useful but challenging task. Therefore, new cross plat-
form tools are needed in order to increase the accuracy of
such comparison. In addition, an exhaustive list of rules for
accurate data collection and procedure for energy-efficiency
comparison is needed in order to avoid measurement errors.

3. EXPERIMENTAL APPROACH
Toward achieving our goal of comparing the energy effi-

ciency of platforms and apps, we employ devices of various
form factors from all three major mobile platforms, namely,
Windows, iOS, and Android, for energy characterization as
shown in Table 1. This section summaries the tools we use
for energy characterization for these devices.

3.1 Windows
We used Intel SoC Watch for Windows [2]. We collected

the following: 1) CPU idle sleep states for the package and
cores. 2) CPU frequency. 3) Number of wakeups. 4) Timer
resolution intervals. 5) Number of threads per application.

EnergyMeter: An Energy Profiling Tool for Win-
dows. We developed EnergyMeter which takes as an input
the test duration and outputs the energy consumed by the
platform, package, cores, and GPU in joules. For platform
energy consumption, we relied on Windows API to get a
handler to the battery in order to collect the delta of the
battery capacity changes for the test duration.
In order to collect package, core, and GPU energy con-
sumption, we relied on hardware counters. The proces-
sor supports four Machine Specific Registers (MSRs) for
Running Average Power Limit [3]. RAPL POWER UNIT reports
power, energy status, and time units. PKG ENERGY STATUS,
PPO ENERGY STATUS, and PP1 ENERGY STATUS, report package, core,
and graphics energy consumption. In order to calculate the
energy used by each component, we calculate the ∆EMSR

and multiply it by the energy unit obtained from RAPL POWER UNIT.

3.2 Android
In order to power profile our Android device, we used the

Trepn profiler [4]. We were able to collect the following
metrics: 1) CPU utilization per app. 2) Average power
consumption and 3) virtual memory utilization per app. 4)
Number of wakelocks, wifilocks, and threads per app. Due to
the extensive overhead of Trepn, we used SoftPowerMon [5]
to collect the CPU’s idle sleep states and frequency. Please
note that the overhead observed by Trepn did not impact
the above metrics because the data collected are per app.
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Figure 1: Timer resolution on Surface 2 Pro.

3.3 iOS
We used the Energy Profiler Instrument tool provided by

Apple [6] and collected the following: 1) Energy consump-
tion on an ascending scale from 0 to 20. 2) CPU utilization.
3) GPU utilization. 4) Total number of packets sent and
received along with the total size in bytes for all packets.

Despite the fact that the above presented tools were capa-
ble of collecting some common metrics, however, each had
different capabilities. SoC Watch and Trepn are capable of
collecting a comprehensive list of metrics with fine grain pre-
cision. They are both capable of reporting per app values for
several metrics such as CPU utilization. On the other hand,
SoftPowerMon and the Energy Profiler Instrument are only
capable of collecting a limited number of metrics with high
coarse grain precision. They are also both incapable of re-
porting per app values for all of their metrics. Moreover,
in terms of overhead, SoC Watch introduces 2% overhead
which can reach up to 5% when the platform is highly active.
Likewise, SoftPowerMon introduces 1-2% overhead. On the
other hand, Trepen introduces ∼40% overhead even with
small subset of metrics. Unfortunately, we were not able to
measure the overhead introduced by Energy Instrument.

4. CASE STUDIES
Because comparing platforms and apps for energy effi-

ciency in general is hard, if possible at all, we chose to use
case studies as the first step to gain insights into comparing
their relative energy efficiency. We selected four app cate-
gories and the corresponding list of most popular apps for
each platform as shown in Table 2. Where applicable, we
profiled the native and web-based app (Chrome was used
for all web-based apps due to its availability on all three).

4.1 Browsers Scenario
We started profiling along a 3-minute timer, launched the

browser (set to default webpage). Then upon the timer ex-
piration, we stopped profiling and saved the results.

4.1.1 Surface 2 Pro Browsers

We profiled Chrome (1 and 3 tabs), IE (metro, 1 and 3
tabs), and Firefox (1 and 3 tabs) and ranked them as fol-
lows: Chrome, Chrome 3-tabs, IE, Firefox, IE 3-tabs, Fire-
fox 3-tabs, IE Metro. Firefox 3-tabs vs. Chrome (Case



Table 2: List of apps and corresponding version.
Scenario Platform App Version

Browsers

Surface 2 Pro
Chrome 33.0.1750.146

Internet Explorer 11 11.0.9600.16518
Mozilla Firefox 24.0

iPad Air
Chrome 32.1700.20
Bing 2.0.2
Safari 7.0.6

Nexus 7
Chrome 33.0.1750.136
Bing 4.2.3.20140303

Mozilla Firefox 27.0

Video

Surface 2 Pro

Amazon Ubox Video 2.2.0.153
Amazon (browser) Feb 8, 14

Netflix 2.3.0.12
Netflix (browser) Feb 8, 14

YouTube (browser) Feb 8, 14

iPad Air

Amazon Instant Video 2.4
Netflix 5.1.2

Streaming YouTube 2.2.0
YouTube (browser) Feb 8, 14

Nexus 7
YouTube 5.3.32

YouTube (browser) Feb 8, 14
Netflix 3.2.1 build 1346

Music

Surface 2 Pro
Pandora (browser) Feb 9, 14

Spotify 0.9.7.16.g4b197456
XBOX Music 2.2.444.0

iPad Air
Spotify 0.9.3
iTunes 7.0.6

Streaming Pandora 5.2

Nexus 7
Spotify 0.7.6.357
Pandora 5.2

Xbox Music 2.0.40226

Social

Surface 2 Pro

LinkedIn HD 1.0.0.0

LinkedIn (browser) Feb 15, 141

Facebook 1.2.0.12

Facebook (browser) Feb 15, 142

iPad Air

LinkedIn 86

LinkedIn (browser) Feb 15, 143

Networking Facebook 7.0

Facebook (browser) Feb 15, 144

Nexus 7

Facebook 6.0.0.28.28

Facebook (browser) Feb 15, 145

LinkedIn 3.3.1
LinkedIn (browser) Feb 15, 14

Table 3: Energy in joules on Surface Pro 2

Scenario Application Platform Package Core GPU

Chrome 734 148 22 0.69
Chrome 3-tabs 763 165 34 1.2

IE 824 177 36 4
Browsers IE 3-tabs 853 247 111 0.89

IE Metro 882 548 279 5.28
Firefox 828 181 32 7.77

Firefox 3-tabs 878 532 280 7.31

Amazon Desk. 2023 635 135 39.83
Video Amazon Browser 3063 1873 866 225.82

Streaming Netflix Metro 1836 589 147 29.72
Netflix Browser 3009 1493 496 259.14

YouTube Browser 2476 1290 487 130.93

Music Pandora Browser 1757 650 149 31.98
Streaming Spotify Desk. 1598 404 65 0.3

XBOX Metro 1465 332 57 3.5

Social
Facebook Browser 853 165 23 1.37
Facebook Metro 770 201 59 2.35

Networking
LinkedIn Browser 799 160 32 1.17
LinkedIn Metro 745 149 26 2.26

1): Chrome spent 99.8% in 1 ms timer resolution as shown
in figure 1 significantly higher than Firefox 3-tabs causing
the highest percentage of wakeups while having the same
active duration as shown in Table 2. However, Chrome (1
and 3 tabs) still had a lower percentage of active cores and
package compared to Firefox 3-tabs as shown in Figure 2.
Thus, it was much more energy efficient. These counter in-
tuitive results were justified once we examined the number
of threads. Chrome had distributed its activities to seven
threads, whereas Firefox only had one thread. As a result,
Chrome took advantage of concurrency, which enabled both
cores to go to sleep for longer duration and thus enabled the
package to remain in idle sleep states for a long duration.

4.1.2 iPad Air Browsers

We profiled Chrome (1 and 3 tabs), Bing, Safari (1 and
3 tabs). The average energy levels are 3.87, 6.27, 2.65,
1.22, and 1.29 and CPU activities are 3.16%, 3.38%, 7.55%,
2.94%, and 3.29% for Chrome, Chrome 3-tabs, Bing, Safari,

Table 4: Metrics collected on Surface Pro 2.
Active Average Average

Scenario Application Duration Package Core
in ms. Wakeups Wakeups

Chome 6,371 1015 1507
Chrome 3-tabs 10,736 1061 1595

IE 15,786 208 754
Browsers IE 3-tabs 5,386 145 363

IE Metro 10,647 316 1319
Firefox 7,996 118 457

Firefox 3-tabs 6,260 600 1141

Amazon Desktop 75,638 1,094 1,900
Amazon Browser 379,754 575 2,648

Video Netflix Metro 28,750 393 1,019
Streaming Netflix Browser 346,010 611 2,019

YouTube Browser 361,663 622 1,628

Pandora Browser 111,995 1,079 1,956
Music Spotify Desktop 24,633 1,287 1,892

Streaming XBOX Metro 18,774 286 567

Facebook Browser 9098 1,011 1,451
Social Facebook Metro 19,618 260 551

Networking LinkedIn Browser 10,911 1,067 1,584
LinkedIn Metro 15,420 232 569

Table 5: Metrics collected on Nexus 7.
App Ave. Ave. Ave. Thr- Total

Scenario Name Power CPU Virtual ead wake-
in mW Percent Memory Count locks

Chrome 237 0.68 2966.63 88 1171
Chrome
3-tabs 374 1.99 1989 66 1401

Browsers Bing 745 7.04 912 20 0
Firefox 235 0.09 1943 53 0
Firefox
3-tabs 221 0.31 1955 52 0

YouTube
App 1,280 1.91 1003.22 65 0

Video YouTube
Stream- Browser 1,468 1.17 2146 77 1515

ing Netflix
App 1,387 3.04 1023.78 65 0

Music Pandora 705 0.59 973.38 42 1714
Stream- Spotify 683 4.01 1860.03 107 1646

ing XBOX 483 2.08 981.23 45 1550

Facebook
Browser 965 1.35 2089.94 72 1023
Facebook

Social App 1,211 1.74 1817.81 49 4
Network- LinkedIn

ing Browser 640 0.55 2131.36 70 1024
LinkedIn

App 426 0.04 946.38 31 0

and Safari 3-tabs, respectively. They rank as follows: Sa-
fari, Safari 3-tabs, Bing, Chrome, and Chrome 3-tabs. One
noteworthy observation is that Chrome consumed 62% more
energy when we added two extra tabs, whereas Safari only
consumed 5% more. Bing vs. Chrome (Case 2): Bing
had the highest CPU utilization even though it is the sec-
ond most efficient. By examining the network activities,
we noticed the differences in communication patterns. In
particular, Chrome received and sent large network packets
after launching the browser 11,790.31, 4.91, and 12.18 KB
in and 885.49, 3.23, and 3.56 KB out. Then, it sent and re-
ceived small 80 bytes packets at an approximate 30-second
intervals. On the other hand, Bing sent and received rel-
atively smaller packets after launching the browser 260.9,
194.7, and 90.19 KB in and 11.79, 16.38, and 11.02 KB
out. Then, received 60 bytes packets at an approximate 2-
second interval. This example is counter intuitive because
we expect that frequent communication reduces the energy
efficiency of the platform. Unfortunately, the tool did not
offer extra details in order to explain our observation.

4.1.3 Nexus 7 Browsers

We profiled Chrome, Chrome 3-tabs, Bing, Firefox, and
Firefox 3-tabs. We can rank them as follows: Firefox 3-tabs,
Firefox, Chrome, Chrome 3-tabs, and Bing. Firefox 3-tabs
vs. Firefox 1-tab (Case 3): It is odd to encounter this
case where Firefox 3-tabs is more energy-efficient than 1-tab.
One possible explanation is that the average CPU utilization
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Figure 2: CPU idle sleep states on Surface 2 Pro.

increased in the case of 3-tabs as shown in Table 5, leading
to an increase in CPU frequency as shown in Figure 5 which
lead to an increase in performance, which was translated to
less core active duration as shown in Figure 4. Chrome
vs. Bing (Case 4): Bing consumed more than triple the
amount of power than Chrome as shown in Table 5. It may
be attributed to the fact that Chrome has a higher multi-
threading index than Bing.

4.2 Video Streaming Scenario
We started profiling along a 5-minute timer then played

the video in full-screen mode until the timer expired. For
the web-based case, we launched the browser and typed the
credentials. Then, started profiling along a 5-minute timer.
Next, we launched the browser and signed in. Then, we
played the video in full-screen until the timer expired.

4.2.1 iPad Air Video Streaming

We profiled Amazon instant movies, Netflix, and YouTube
(app and browser). The average energy levels are 10.73,
10.38, 10.47, and 10.71 for Amazon, Netflix, YouTube app,
and YouTube browser, respectively. They rank as follows:
Netflix, YouTube app, YouTube browser, and Amazon.
YouTube app vs. browser (Case 5): Even though stream-
ing the same video using the app was more energy-efficient,
however, using a browser had less percentage of CPU and
graphics utilization. By examining the network activities,
we noticed that YouTube app was constantly receiving pack-
ets. On the other hand, using a browser, led to much larger
size of packets received at the beginning of the run (due to
large buffering of the video), then throughout the test, there
were long duration of 0 packet transmissions (20 seconds)
followed by 5 seconds of activities. In theory, this method
should enable the Wi-Fi radio to go to low-power states for
an extended duration, thus reducing the energy consump-
tion of the platform. However, buffering a large size of data
led to more memory utilization, which nullified the savings
from the sleep states of Wi-Fi radio and instead lead to an
increase in energy consumption of the platform.

4.3 Music Streaming Scenario
We started streaming using an app (or browser). Then,

we started the profiling tool with a 5-minute timer. Next,
we relaunched the app (or browser) until the timer expired.
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Figure 3: CPU frequency in MHz on Surface 2 Pro.

4.3.1 iPad Air Music Streaming

We profiled Spotify, iTunes, and Pandora and ranked them
as iTunes, Spotify, and Pandora because the average energy
levels are 5.35, 3.50, and 8.77 and CPU activities are 9.22%,
13.01%, and 9.18% for Spotify, iTunes, and Pandora respec-
tively. Pandora vs. iTunes (Case 6): We noticed a re-
verse order of CPU utilization compared to the app energy-
efficiency where the least energy-efficient app (Pandora) had
the least CPU utilization, whereas, the most energy-efficient
app (iTunes) had the most CPU utilization. Examining the
network activity revealed that iTunes had sent and received
during long time intervals large packets while at 2-second
intervals received a small packet of 60 bytes. On the other
hand, Pandora, sent out at regular 1-second intervals 166
bytes while sending and receiving during long time intervals
large packets. Therefore, we can conclude that Pandora con-
sumed more energy than iTunes because it kept the Wi-Fi
radio at high power state for most of the test duration.

4.3.2 Nexus 7 Music Streaming

We profiled Pandora, Spotify, and XBOX music. XBOX
vs. Spotify (Case 7): XBOX was the most energy-efficient
but music streaming had many interrupts due to poor buffer-
ing. Therefore, XBOX sacrificed the user experience either
to optimize the energy efficiency or due to poor app design.

4.4 Social Networking Scenario
We started profiling with a 3-minute timer. Launched the

app. Upon the timer expiration, we stopped the collection.
For the web-based app, we launched the browser and typed
the credentials. Then, we started profiling along a 3-minutes
timer. Next, we launched the browser and signed in. Upon
the expiration of the timer, we stopped the collection.

4.4.1 Surface 2 Pro Social Networking

We profiled Facebook (browser and Metro), and LinkedIn
(browser and Metro) and ranked them as follows: LinkedIn
Metro, Facebook Metro, LinkedIn browser, and Facebook
browser. Facebook Metro vs. browser (Case 8): The
web-based version was slightly less active than the Metro
version as shown in Figure 2 consuming less package and
core energy as shown in Table 3. The platform energy con-
sumption contradicted with package and core because the
timer resolution was changed to 1 ms in the web based as
shown in Figure 1. Thus, the average number of wakeups
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Figure 4: CPU idle sleep states on Nexus 7.

was much larger than to Metro case as shown in Table 2. In
addition, since the web-based version had lower resolution,
the site got updated more frequently which kept the Wi-Fi
radio active for longer duration and consumed more energy.

4.4.2 Nexus 7 Social Networking

We profiled Facebook (app and browser), and LinkedIn
(app and browser) and ranked them as follows: LinkedIn
app, LinkedIn browser, Facebook browser, and Facebook
app. Facebook App vs. browser (Case 9): Unlike pre-
vious observations comparing app vs. web-based, the app
consumed 25.5% more power than the web-based version as
shown in Table 5. The possible cause may be attributed to
the fact that the app had a sophisticated interface leading
to 17% more GPU utilization than the web-based version.

5. INSIGHTS
Based on our analysis of the results, we deduced a list of

insights and grouped them into the following four categories:
1- Power profiling mobile platforms and apps.
Designing and performing energy-efficiency comparison of
platforms and apps are challenging tasks.

- Based on Section 2, new tools are needed in order to
increase the accuracy of energy efficiency comparison of mo-
bile platforms and apps. In addition, an exhaustive list of
rules for accurate data collection and defined procedure are
needed in order to avoid measurement errors.

- Debugging the energy efficiency of mobile platforms/apps
is a complicated process where a particular power metric in
a specific context can have a different meaning in another
one. For instance, the higher the average wakeups value, the
lower the energy-efficiency. However, that is not particularly
true in the case where the average wakeups value is low but
the percentage of CPU active duration is high. Therefore,
creating a relationship model for correlating different met-
rics can significantly improve the debugging process.

2- The major three platform providers.
We observed that the three major platforms favor different
tradeoffs between performance and energy efficiency.
- We noticed that apps released by Apple are more energy
efficient compared to third party apps of the same category.
One possible reason is that Apple’s Energy Instrument had
the least precise data collection options compared to other
tools available on other platforms. As a result, we recom-
mend enhancing the power profiling tool to collect additional
power metrics with greater precision.
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Figure 5: CPU frequency in MHz on Nexus 7.

- We noticed that apps released by Google disregarded
some of the energy-efficient principles in favor of perfor-
mance. For example, Chrome browser on Windows changed
the timer resolution to 1ms causing higher wakeups as shown
in Case 1. In addition, Chrome browser on Android acquired
high number of wakelocks as shown in Table 5.

- Based on our experiments, it seems that apps released by
Microsoft were more concerned with energy efficiency than
performance as shown in Case 8.

3- Energy-efficient app design.
We observed some app design strategies which are more
energy-efficient than others.

- In general, native apps consume less energy than the
web-based version as shown in Cases 5 and 8 reaching up
to ∼11% in Case 8. Based on our data, we attribute the
cause to the fact that native apps tend to have higher CPU
utilization and lower memory utilization compared to the
web-based counterpart. Charland et al. [7] discussed the
strength and weaknesses of adopting both models. Com-
bining their findings with the information presented in this
paper can further help companies make educated decisions
on the model to adopt. Moreover, based on our results, it
seems that Google Chrome platform may be inherently at a
disadvantage since it relies on web apps. Therefore, further
related research is strongly needed.

- Despite the fact that buffering large data at a time can
enable the Wi-Fi radio to go to an idle state, but it can also
result in an increase of the power consumption as shown in
Cases 2, 4 and 5. As a result, the size of the buffer needs to
be balanced between the energy savings from enabling the
Wi-Fi radio to go to an idle sleep state and the extra energy
consumption due to the increase in memory usage.

- Multi threading increases the energy efficiency of an app
if the execution is balanced across cores as shown in Cases
1 and 4. Sabharwal et al. [8] showed that if an app is multi
threaded and balanced across the cores, then it enables the
cores to work hard for a short duration, then enter a sleep
state leading to improvement of energy efficiency. In addi-
tion, Carroll et al. [9] investigated how core offlining and
DVFS can be used together in order to reduce energy con-
sumption and developed Medusa, an offline-aware governor.

- Apps with low resource utilization (e.g., CPU utiliza-
tion) but with high average wakeups can negatively impact
the energy-efficiency of the platform as shown in Cases 6 and
8. High average wakeups of the platform’s idle components



(e.g., CPU or Wi-Fi) results in switching the component
from idle to active state leading to higher power consump-
tion. For instance, in Case 6, iTunes average energy level
was 3.5 whereas Pandora was 8.77 with network communi-
cation pattern being the obvious variable. As a result, timed
interrupts and network communication should be coalescent
in order to prevent unnecessary wakeups [10].

4- App developers practices.
Despite the vast number of tools and literature focusing
on energy efficiency, we identified potential energy-efficiency
improvements of some popular apps on all three platforms.

- We noticed that apps with the same functionality that
are running on the same platform can vary vastly in terms
of energy consumption (more than 50% in some cases as
shown in Case 4). There are already several tools available
for developers in order to power profile their apps. For in-
stance, Kansal et al. [11] introduced an energy profiler which
lets developers make power-aware design choices and trade
off between energy consumption and performance of their
apps. Another example is WattsOn [12] that estimates an
app’s energy consumption on the basis of empirically derived
power models made available by either the smartphone man-
ufacturer or mobile OS platform developers. These types of
tools are very useful but there is also a need for power bench-
mark for each category of apps to be used as a baseline to
compare the power consumption of apps instead of simply
using the device’s idle power consumption as the baseline.

- Changing the timer on Windows and holding wakelocks
on Android seems to be common practices due to either lack
of awareness of their power consumption overhead or a con-
scious decision to sacrifice efficiency in favor of performance.

The above list of insights summarizes our observations
from comparing the energy efficiency of our categorized apps
on all three platforms.

6. RELATED WORK
Jindal et al. [13] developed a taxonomy of sleep bugs

in Android smartphones and categorized their root causes.
Then, they used their model in order to evaluate 3596 APIs
used in a set of 889 apps. Chen et al. [14] measured the
energy drainage of the top 100 free apss in Google Play in
order to determine the energy savings from prefetching ads.
Wang et al. [15] used a collaborative approach to estimate
the power consumption of mobile apps. They collected data
from 120,000 Android users. Then, they used the data to
build their power estimation model for mobile apps. These
work focused on evaluating multiple single apps in order to
energy profile them. We used the knowledge provided by
their work in order to compare the relative energy-efficiency
of apps belonging to the same category on multiple plat-
forms. We also presented the challenges of such a compari-
son and showed that despite the research focusing on energy
efficiency, still some of the popular apps on the three most
popular platforms did not take full advantage of the avail-
able resources to improve the energy efficiency of their apps.

7. CONCLUSION
Energy efficiency comparison of mobile platforms and apps

is a hard task due to possible measurement errors and chal-
lenges in designing case studies. Despite of the challenges,
we compared the energy efficiency of four app categories:

browsers, video and music streaming, and social networking
on Windows, iOS, and Android. Based on the results, we
derived a list of insights. In the future, we are planning on
developing a power profiling analytical framework for devel-
opers in order to effectively power profile their apps.
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