Toward Waste-Free Cloud Computing

Tung Nguyen and Weisong Shi
Department of Computer Science
Wayne State University
{nttung, weisong}@wayne.edu

Abstract

Many previous efforts focus on improving the utlization
of data centers. We argue that even highly utilized sys-
tems can still waste the resource because of failures and
maintenance. Therefore, in this position paper, we call
on a new direction of research on waste-free computing.
We start with a workable definition of efficiency, then in-
troduce a new efficiency metric called usage efficiency,
show how to compute it and propose some possible ap-
proaches to improve this type of efficiency. We also cal-
culate the metric through the simulation on real failure
traces and diverse workflow applications. While the ef-
ficiency computed from the traditional method is 100%,
it is less than 44% with our new metric which suggests
that the current metrics are inadequate to capture the ef-
ficiency of a system.

1 Introduction

We have witnessed the fast growing of large-scale data
centers because of the promise of cloud computing, run-
ning either publicly or privately. In this position paper,
we argue that computing resources in those facilities are
not being used efficiently. They are either under-utilized
or doing meaningless work. Next we will use four exam-
ples to support this argument.

Observation 1: Schroeder and Gibson [22] envision
that, by 2013, the utilization of a top500 computer
(top500.0rg) may drop to 0% based on their assumption
about the growth in number of cores per socket and the
checkpoint overhead. This is because the only job that a
future system would be busy with is checkpointing due
to the fact that the number of failures in future computers
would increase proportionally to the number of cores.

Observation 2: In a typical industrial data center, the
average utilization is only 20 to 30 percent [4, 6] (due
to the QoS guarantee for example). However, such
low utilized or idle servers still draw 60% of the peak

power [4, 14, 11]. The average CPU utilization of 5000
Google servers in 6 months is in the 10-50% range which
is in the most energy inefficient region [3].

Observation 3: In systems that offer infrastructure as a
service (IaaS), the virtualization may lead to low utiliza-
tion too. Basically, virtualization techniques allow us to
“cut” a physical machine into isolated virtual machines.
The inefficiency comes not only from the overhead of
the splitting process itself but also from the mismatching
between virtual and real resources especially in heteroge-
neous systems. For example, an old machine with only
1.5GHz processor can only offer one EC2-like standard
instance(1-1.2GHz) and the rest is wasted.

Observation 4: Together with the rapid penetration of
multicore architectures, the utilization of these cores be-
comes a big issue. It’s quite common to see that one core
is very busy while the other ones are pretty idle. For ex-
ample, when executing the serial part of a program, only
one core is needed and others are idle [12]. Furthermore,
the issues of maintaining consistency, synchronization,
communication, scheduling between many cores might
introduce considerable overhead too.

Based on these observations, we categorize the wasted
resources into two types: wasted under-utilized resource
and wasted utilized resource. The first type, wasted
under-utilized resource, is the difference between the
available (physical) resources and the consumed re-
sources. It is caused by the low utilization as in the “Ob-
servations 2, 3 and 4”. It is used to answer the question:
how many percentages of the available resources are uti-
lized? The second type, wasted utilized resource, is the
difference between the consumed resources and the use-
ful resources (spent on users’ jobs). It is often caused by
the administrative or maintenance tasks as in the “Obser-
vation 1 and 4”. It is used to answer the question: Among
utilized resources, how many percentages are spent on
doing useful work?

In addition, the need for resources such as energy is
substantially increasing as the time of utility computing

is approaching. Most data, applications and computa-
tion are moving into Cloud. This trend will obviously
increase the need of more powerful data centers which
are energy hungry. Silicon Valley Leadership Group has
also forecasted this increasing trend in the data center en-
ergy use based on the Environmental Protection Agency
(EPA) reported earlier in 2007 [2, 10].

As aresult, using resource efficiently or minimizing the
waste is becoming a very important issue. Minimizing
the wasted under-utilized resources, i.e. maximizing the
utilization of resources, has been a hot topic in both aca-
demic and industrials, such as data center designs and
cloud vendors, in order to improve their sustainability.
In this paper, we argue that improving the resource uti-
lization is useful, however, is not enough. We also need
to reduce the resource wasted for other purposes such as
failures and maintenance (wasted utilized resources). For
example, if during its execution, one critical task fails re-
sulting the start-over of the whole job, the resources have
been used before the failure are wasted. We envision that
those types of resource waste, which are the root of the
lower efficiency of computing, should be eliminated sig-
nificantly. Therefore we introduce waste-free comput-
ing which considers the efficiency from different angles.

2 Efficiency Computation

Essentially, efficiency is a multi-objective problem. Un-
like the traditional systems dealing with single-objective
optimization problems such as minimizing the execu-
tion time, minimizing power consumption or maximiz-
ing throughput, etc, efficient systems try to “do more
with less”. It is obvious that there is a trade-off between
objectives. The trade-off between benefits and cost is en-
capsulated in one metric called efficiency. In this section,
we will go over some widely used formulas to calculate
the efficiency before deriving our own formula.
Generally, efficiency is defined as follows

Return

Ef ficiency = Cost
0s

ey

The Return can be profit, the number of work done, im-
provement of performance (execution time), throughput,
bandwidth, availability, queries per second etc. The C'ost
is what we spend to obtain the Return such as money,
energy consumption, CPU time, storage space, etc.

Depending on specific Return and Cost, there are
different types of efficiency. Let’s consider some exam-
ples:

Example 1: in term of CPU time, the CPU efficiency is
defined as the CPU time spent on doing useful work, di-
vided by the total CPU time. Assume T is the processing
time for each process before context switch could occur

and S is the overhead for each content switch. For round
robin scheduling with quantum Q seconds:

T
CPU Efficiency = TS itQ>T

= TJrSTxg ifS<@Q<T 2)

Example 2: in term of energy, there are many levels of
efficiency ranging from chip to data center. At proces-
sor level, CPU efficiency is defined as the performance
(MIPS) per joule or watt [20]. At storage level, stor-
age efficiency is define as number of queries per second
(QPS) per joule or watt [23].

At datacenter level, recent work [8, 9] has defined
two widely used metrics (Power Usage Effectiveness
(PUE) and Data Center Infrastructure Efficiency(DCiE))
to measure the data center infrastructure efficiency and
compare the energy efficiency between data centers.

_ Total Facility Power

PUE 3)

~ IT Equipment Power

IT Equipment Power
Total Facility Power

DCiE = x 100% “4)

Arguing that PUE and DCiE “do not allow for mon-
itoring the effective use of the power supplied — just
the differences between power supplied and power con-
sumed,” Gartner [7, 18] proposed a new metric called
Power to Performance Effectiveness (PPE).

Useful Work
PPE = ——— 0 O)
Total Facility Power

Moreover, there is work that considers the combina-
tion of efficiency at different levels. For example, in [3],
Barroso and Holzle factorized the Green Grid’s Datacen-
ter Performance Efficiency (DCPE) into 3 components to
capture different types of energy efficiency such as facil-
ity, server energy conversion, and electronic components
(from large scale to small scale). They defined energy
efficiency metric as (detail computation can be found in
(9, 3,8])

Computation

Energy EfﬁCienCy = Wl’mgy (6)

B (pzle>) <SP1UE>)

< Computation)

Total Energy to Electronic Comp.

The inefficiency is caused by the waste. Where does
waste come from? In the first example, the waste is in
CPU time. It comes from the context switch time and
the scheduling algorithm. In the second example, the

waste is in energy. It comes from unsuitable, inefficient
design, architecture, cooling, power conversion and dis-
pensation, etc.

Apart from the previous types of efficiency, we intro-
duce another type of efficiency called usage efficiency.
With this type, failure is the cause of inefficiency and re-
source waste. For example, if users submit a job to the
system, and it is assigned to unreliable nodes. If some
of the nodes fail while executing their job (which is very
likely with unreliable nodes), all resources consumed or
cost spent on execution before failure are useless. This
not only reduces the performance (increase the total exe-
cution time) but also increases the total cost. Even worse,
this can also affect the schedule of other jobs. Therefore,
we introduce a new efficiency metric as the following.

Required R
Usage efficiency = cquired Resottee

7
Actual Resource Used 7

The objective is to minimize the number of job re-
execution or, more precisely, reduce the probability to
execute the job again.

3 Usage Efficiency Computation

In this section, we are going to compute the proposed
usage efficiency. First we need to identify clearly what
are Required Resource and Actual Resource
Used.

In our case, the Required Resource is the total
execution time of a job without failure and the Actual
Resource Used is the actual execution time. The ex-
ecution time is considered as a resource. The more time
the job is executed, the more resource it consumes. In
the perfect system, i.e. there is no failure, this type of
efficiency has value of 1. The general equation (7) is
rewritten as

Total exec time w/o failure

Usage Efficiency = ®)

Real total exec time

In the problem, a job is composed of k£ tasks. A
job is executed on NN processing instances (PI) which are
either virtual or physical machines.

Let P;, (i = 1,N) be the probability that the i** PI
fails during the job execution time.

Each task has execution time ¢; (j = 1, k)

For simplicity, we assume that N > £ and each PI
executes one thread. Therefore, if the PI fails, so does
the task running on it. Also, we assume that the failure is
of the type fail stop only.

For a job, if one task of a job fails, do we need to re-
execute the whole job from the beginning, part of the job
or just that task only? Can we reuse the results of the
successful, completed tasks? This essentially depends
on the dependencies among tasks. With the extremely

| tasks

Time to fail t;

Figure 1: The real execution time of a job.

scale map-reduce like jobs, if one task fails, the system
only needs to re-execute it. Unfortunately, not all appli-
cations fall into such type. Many of them follow work-
flow model and there are tasks that are correlated. In
such model, we may need to replicate the execution of a
task to mask the failure or store the intermediate data to
avoid re-execution of the job from the beginning.

Assuming that we know the “critical execution path”
of the job which the tasks on it decide the total execution
time of the job (Figure 1). If any of them is delayed, so
does the job. We consider two cases if any of such tasks
fail: (1) the execution starts over from the beginning; (2)
the execution just restarts the failing tasks. We don’t con-
sider replicated execution here. Let [be the length of the
path (1 <1 < k). It’s also the number of tasks on that
path.

3.1 Macro-rescheduling: Re-execute the

whole job

The probability that all [critical nodes/tasks don’t fail
during their execution is II!_, (1 — P;).

Let Y be a random variable denotes the number of
times that the job is re-executed. If task j is re-executed
on the same node after failure, and the failure probabil-
ity P; of the ith PI doesn’t change among executions,
Y follows Geometric distribution, and therefore has the
expectation as the following.

1

EBlY]= m_,(1-P)

Without failure, the total execution time of the job is
the sum of all tasks on the critical path which is T' =
St

With failure, in this case, the job is start-over from the
beginning as shown in Figure 1. The probability that at
least one critical task fails equals to the probability that
the job is re-executed

P,

!
at least 1 fail — Pre—executed =1-1_4(1 - P)

It is noteworthy that although the time to fail is uni-
formly distributed within ¢; for individual critical task j,
it is different across tasks.

= the expected time to fail for each execution before

1
Zj:l tj

the first success of the job is =43

Let T be the real execution time of the job, and ¢y, be
the time to fail at the n*" execution of the job.

Y
!
T = Pyt least 1 fail X thn + i (1 = P) % th

n=1 j=1

= the expected execution time of the job is

22‘:1 tj
E[T] = Py jeast 1 fail X | E[Y] % D)

HIT_ (1= P) x > t;
j=1

3.2 Micro-rescheduling: Re-execute the

failing tasks

In this case, the real execution time of the job is simply
the sum of that of its individual tasks on the critical path.
Let X, be arandom variable denotes the number of times
that task i‘" is re-executed.

l

l X
ij=1 n=1

3,5=1
and we have

l

E[T] = Y (pz- X (E[Xi] X 2) + (1 —pi) x fj)

i,j=1
The usage efficiency for both rescheduling schemes is

1
Usage Efficiency = Z t;/ET]

Jj=1

For each job, t; are fixed, but p; vary among machines,
and their values even change over the time. These p; can
be obtained by failure prediction algorithms like [21, 16].
It is noteworthy that we made two very strong assump-
tions about the re-execution mechanism and the failure
probability. In reality, when a task fails, the scheduler
can assign another PI, which has a different failure prob-
ability, to take care of it. Also, even the failure probabil-
ity of the same PI may change over the time. Relaxing
these assumptions certainly complicates the above com-
putation.

4 Usage Efficiency with Real Traces

After showing the computation of the usage efficiency
in theory, in this section, we will use the real failure
traces and varied workflows to derive the usage effi-
ciency through simulation.

The failure in the simulation includes 10 two-month
traces extracted from the real failure trace in [1]. It’s
done by randomly selecting 32 nodes in the Cluster 2 and
randomly choosing two-month periods between calendar
year 2001 and 2002.

We simulated the execution of 50 different ran-
dom weight, communication, height, width DAGs
or workflows (extracted from [13]) on 32 process-
ing instances under 4 configurations: No Failure,
Recoverl_without_lost, Recoverl_lost and
RecoverAll. In the No Failure, we didn’t apply
failure traces. Recoverl and RecoverAll are equiv-
alent to the micro- and macro-rescheduling, respectively.
After finishing its assigned task, while waiting for the
new task from the scheduler, a node may fail. In this
situation, the “lost” means that all data generated by the
node is lost, and that finished task needs to be resched-
uled. The “without_lost” means all generated data has
been saved to a reliable server, and there’s no need to
reschedule the task once it’s done.

—8—No Failure Recover]_without_lost ~ ——Recoverl_lost ——RecoverAll

140000
o W«X“\MW
10000
000

o000 \W/\/’\MMJ/\[‘

40000

Execution time

n » "y e -
e Pun paep n petfeg pptotoeg P a a A
20000 L B fxia 't

0
13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Workflows

Figure 2: The performance of 50 workflows on 32 nodes.

Figure 2 shows the execution time of each work-
flow under 4 configurations. We only use the aver-
age of 10 failure traces in the figure for clarity. It’s
easy to see that the macro-rescheduling and the “lost”
configurations take more time to run than the micro-
rescheduling and the “without_lost” configurations. The
differences between Recoverl without_lost and
‘No Failure are negligible.

From these results, by averaging all 50 workflows we
derived that the usage efficiency of this system is 44%
and 23% for the micro and macro-rescheduling, respec-
tively. Actually, in this computation, we consider the
execution time of the “No Failure” configuration as the
”Required Resource”. This value is different if it is com-
puted barely from the graph of the workflow because the
value from the graph doesn’t account for the scheduler.
In other words, it doesn’t account for the resources that
consumed by the nodes while waiting for the scheduler.
Therefore, our computation isn’t affected by the sched-

uler.

If we consider that the idle time spending on waiting
for tasks from the scheduler is also useful (which is true
in the Cloud since we have to pay for it even if we don’t
use it), the efficiency of the system is 100% even with
failures since a node is always either busy executing a
task or waiting for a task. However, with our computa-
tion it’s less than 44%.

S Improving Usage Efficiency in Hostile
Environments

Failure is an important reason of inefficiency. System de-
signers often apply fault-tolerant techniques in their de-
sign process such as checkpointing and temporal or spa-
tial redundancy. However, such techniques are often the
root of resource waste. Depending on the model of reac-
tion to failures, there are different approaches to improve
the efficiency.

With spatial redundancy approach, it wastes the re-
sources in executing replicas. Hence the problem of this
approach is to identify suitable number of replicas for
each task [5] and their execution locations.

With temporal redundancy approach, the execution is
restarted from the beginning in case of failure (macro-
rescheduling). One way to improve usage efficiency is
to minimize the actual execution time of the job or re-
duce the number of its re-execution. This can be done by
choosing appropriate nodes to assign tasks [24, 17].

With checkpointing approach, the execution is
restarted from the checkpoint in case of failure. It poten-
tially creates wasted utilized resources as in the “Obser-
vation 1”. To address this, one can compress checkpoints
or employ process pairs as suggested in [22] or leverage
the non-volatile memory such as phase change memory
(PCM) to avoid the checkpointing overhead.

References

[1] Los alamos national laboratory. operational data to sup-
port and enable computer science research.

[2] Data center energy forecast, 7 2008.

[3] L. A. Barroso and U. Holzle. The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale
Machines, volume Lecture #6.

[4] L. A. Barroso and U. Holzle. The case for energy-
proportional computing. Computer, 40(12):33-37, 2007.

[5] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M.
Voelker. Total recall: System support for automated
availability management. In Proc. of NSDI’04, pages 25—
25, Berkeley, CA, USA, 2004. USENIX Association.

[6] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Le-
furgy, C. McDowell, and R. Rajamony. The case for
power management in web servers. pages 261-289,
2002.

[7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

D. Cappuccio. Data center efficiency beyond pue and
dcie.

J. P. CHRISTIAN BELADY, ANDY RAWSON and
T. CADER. Green grid data center power efficiency met-
rics: Pue and dcie. www.thegreengrid.org, 2008.

J. C. M. M. P. L. Dan Azevedo, Jon Haas. How to mea-
sure and report pue and dcie. www.thegreengrid.org,
2008.

EPA. Epa report to congress on server and data center
energy efficiency. Technical report, U.S. Environmental
Protection Agency, 2007.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provi-
sioning for a warehouse-sized computer. In ISCA ’07:
Proceedings of the 34th annual international symposium
on Computer architecture, pages 13-23, New York, NY,
USA, 2007. ACM.

M. Hill. Amdahl’s law in the multicore era, Jan 2010.
U.H

“onig and W. Schiffmann. A comprehensive test bench
for the evaluation of scheduling heuristics. In Proc. of
the 16th International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS04), Cambridge,
USA, 2004.

C. Lefurgy, X. Wang, and M. Ware. Server-level power
control. In Autonomic Computing, 2007. ICAC ’07.
Fourth International Conference on, pages 4—4, June
2007.

X. Li, Z. Li, P. Zhou, Y. Zhou, S. V. Adve, and S. Ku-
mar. Performance-directed energy management for stor-
age systems. /[EEE Micro, 24(6):38-49, 2004.

Y. Li and Z. Lan. Exploit failure prediction for adaptive
fault-tolerance in cluster computing. Cluster Computing
and the Grid, IEEE International Symposium on, 0:531—
538, 2006.

Z. Liang and W. Shi. A reputation-driven scheduler
for autonomic and sustainable resource sharing in grid
computing. J. Parallel Distrib. Comput., 70(2):111-125,
2010.

R. Paquet. Technology trends you cant afford to ignore.
Gartner Webinar, December 2009.

S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing
energy-performance tradeoffs for multithreaded applica-
tions on multiprocessor architectures. SIGMETRICS Per-

form. Eval. Rev., 35(1):169-180, 2007.

S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakis,
and J. Meza. Models and metrics to enable energy-
efficiency optimizations. Computer, 40:39-48, 2007.

F. Salfner, M. Schieschke, and M. Malek. Predicting fail-
ures of computer systems: a case study for a telecom-
munication system. In Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International,
pages 8 pp.—, April 2006.

B. Schroeder and G. Gibson. Understanding failures in
petascale computers. 78:012022, 2007.

V. Vasudevan, J. Franklin, D. Andersen, A. Phanishayee,
L. Tan, M. Kaminsky, and I. Moraru. FAWNdamen-
tally power-efficient clusters. In Proc. HotOS XII, Monte
Verita, Switzerland, May 2009.

[24] C. Yu, Zhifeng Wang and W. Shi. Flaw: Failure-aware
workflow scheduling in high performance computing en-
vironments. Technical report mist-tr-2007-010, Waye
State University, Nov 2007.

