
S

I
s

T
D

a

A
R
R
A

K
R
E
W

1

c
i
1
t
e
“
r
s
l

1

o
s
i

G

2
d

ARTICLE IN PRESSG Model
USCOM-37; No. of Pages 13

Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al h om epage: www.elsev ier .com/ locate /suscom

mproving resource efficiency in data centers using reputation-based resource
election�

ung Nguyen ∗, Weisong Shi
epartment of Computer Science, Wayne State University, United States

 r t i c l e i n f o

rticle history:
eceived 6 February 2011
eceived in revised form 13 August 2011
ccepted 12 March 2012

eywords:
eputation
nergy efficiency
aste

a b s t r a c t

Today data centers are consuming a lot of energy but not very efficiently. Much of energy is wasted. There
are several types of energy waste at different levels including infrastructure-, machine- and system-level
waste. The former two levels have been improved significantly in the last few years, however, few efforts
have been put on the last level, especially the resource waste caused by failures in a data center. In this
paper, we attack the problem proactively by leveraging a reputation-based resource selection scheme
to reduce the number of resubmissions of tasks, resulting from the failure during the course of their
execution. To capture the characteristics of resources, we introduce Opera, an OPEn ReputAtion model.
Opera characterizes itself with two important novelties: a vector representation of the reputation and
the just-in-time feature that represents the real-time system status, which, to our knowledge, has never

been considered in conventional reputation systems. To demonstrate the effectiveness of Opera, we have
integrated the Opera trust model into the scheduler of Hadoop. The experimental results showed that
Opera enables the scheduler to select appropriate nodes which helped to reduce not only the number of
re-executed tasks but also the execution time of Hadoop’s jobs under the presence of failures and heavy
workload up to 59% and 32%, respectively. This improvements, in turn, can improve the energy efficiency
of the whole system and the network by 16.17% and 53.32% for the sort application respectively.
. Introduction

With the increasing demand in computing, the number of data
enters is also increasing [16]. However, according to the EPA report
n 2007 [20], the data centers are going to consume more than
00 billion kWh by 2011 and account for 23% of global informa-
ion and communications technology (ICT) CO2 emissions to the
nvironment [4]. As a result, making the operation of data centers
greener” has become the main focus of many research activities
ecently. The main idea is to consume energy in an efficient way
ince current systems are efficiently [11,12,10]. First, let us take a
ook the resource inefficiency in current systems.

.1. Resource inefficiency

The inefficiency is caused by the waste. There are several types
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

f waste at different levels such as infrastructure-, machine- and
ystem-level. At the infrastructure level, one half of energy is spend-
ng on cooling [24]. At the machine level, 50% energy is used

� This work is in part supported by the US National Science Foundation CAREER
rant No. CCF-0643521.
∗ Corresponding author.

E-mail addresses: nttung@wayne.edu (T. Nguyen), weisong@wayne.edu (W. Shi).

210-5379/$ – see front matter © 2012 Published by Elsevier Inc.
oi:10.1016/j.suscom.2012.03.001
© 2012 Published by Elsevier Inc.

during the idle [11]. At the system level, the system could be use-
less because of checkpointing [38] or context switching [23]. To
improve resource efficiency, we have to minimize these waste.

To measure the data center energy efficiency, some metrics have
been proposed. Essentially, energy efficiency of a data center is
defined as the amount of computational work performed divided
by the total energy used in the process:

Energy efficiency = Computation
Total energy

Recent work [15,18] has defined two widely used metrics (power
usage effectiveness (PUE) and data center infrastructure efficiency
(DCiE)):

PUE = Total facility power
IT equipment power

(1)

However, these metrics only capture the efficiency in data center
at infrastructure level. Therefore, Barroso and Hölzle [10] have pro-
posed another way to compute efficiency which takes into account
different levels of efficiency as shown in Eq. (2). In the formula,
energy efficiency is factorized into three parts. The first two factors
urce efficiency in data centers using reputation-based resource
.2012.03.001

account for the efficiency of power dissipation to electronic com-
ponents in a system. SPUE is server PUE which is calculated in the
same way as PUE (see Eq. (1)), but its denominator only accounts for
power consumed by the electronic components directly involved

dx.doi.org/10.1016/j.suscom.2012.03.001
dx.doi.org/10.1016/j.suscom.2012.03.001
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:nttung@wayne.edu
mailto:weisong@wayne.edu
dx.doi.org/10.1016/j.suscom.2012.03.001

 ING Model
S

2 g: Info

i
T
t

E

E

W
l
a
(
h
t
E
d
(

b
[
c
i
m
B
t
n
d
t

1

t
r
t
p
b
[

r
t
o
q
t
f
t
c
i
o
a
r
s

r
p
i
m
a
(

ARTICLEUSCOM-37; No. of Pages 13

 T. Nguyen, W. Shi / Sustainable Computin

n the computation such as motherboard, CPU, memory and so on.
he last factor represents the efficiency when running workload in
he data centers:

nergy efficiency = Computation
Total energy

=
(

1
PUE

)
×

(
1

SPUE

)

×
(

Computation
Total energy to electronic comp.

)
(2)

nergy efficiency′ =
(

1
PUE

)
×

(
1

SPUE

)

×
(

Computation
Total energy to electronic comp.

)
×

(
Required resource

Actual resource used

)
(3)

hile this definition is good enough to characterize the first two
evels of waste, i.e., infrastructure- and machine-level waste, we
rgue that it is not the end of the story since the execution of a job
i.e., run-time efficiency) is not considered. For example, a job will
ave to be rescheduled or resubmitted if it fails in the middle of
he execution, which will cause system-level waste. We augment
q. (2) by adding another definition of usage efficiency, which is
efined as required resource/actual resource used as shown in Eq.
3).

Our work focuses on reducing the waste caused by failures
ecause future systems will be expected to have higher failure rate
38]. We will show that the failure does cause increasing in energy
onsumption and that reducing the failure indeed helps to reduce
t. Hence, our objective is to minimize the number of job resub-

ission, i.e. re-execution, while still maintaining the performance.
asically, this type of waste comes from inefficient resource alloca-
ion. For example, if the resource allocator assigns slow, unreliable
odes to handle critical tasks, the whole application can easily be
elayed or even fail. As a result, we need to choose proper resources
o execute our tasks to achieve the goal.

.2. Our approach

Selecting appropriate resources is not new. In commercial sys-
ems, the consumers choose the service providers (SPs) by their
eputation. In computational systems, resource selection selects
he slow-progress node for speculative execution based on their
rogress score [43], a group of nodes for computational replication
ased on their reputation [39], or the locations to store replicas
27].

However, in general, the existing methods rely on a single-value
eputation to capture the differences (the heterogeneity) between
he service providers in terms of a property such as performance
r availability. However, this single value representation is inade-
uate for the multi-property based selection criteria. For example,
here are conflictions, such as the one between data locality and
airness as shown in [42], that make it unsuitable to apply conven-
ional single value based scheduling. In addition, the reputation
omputed from the existing models is generally based on the past
nformation, which may be inconsistent with the current status
f the system. For example, if a node has had a good record for

 long time and now it becomes unreliable because of a virus or
ecent compromise, the history-based computation model would
till return a high reputation.

As a result, we use a vector instead of a scalar to represent the
eputation and capture different concerned properties. For exam-
le, with a reliability concern, an SP has a higher reputation if
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

t has more successful transactions than others. With the perfor-
ance concern, the higher the reputation, the higher performance

 resource has. We developed a new trust model called Opera
OPen ReputAtion Model) that allows users to query the reputation
 PRESS
rmatics and Systems xxx (2012) xxx–xxx

vector of any registered component. Opera also allows the addi-
tion of new elements to the reputation vector, which expresses
its openness. To reduce management intervention, Opera employs
a popular, open-source monitoring tool to capture the changes of
the system and dynamically update the reputation vectors accord-
ingly. Based on the reputation vectors, the system can easily select
resources that conform to the users’ requests.

To illustrate our idea, we modified an existing scheduler, which
can be considered as a resource allocator, to leverage Opera. The
chosen scheduler is the default scheduler of Hadoop, a popu-
lar framework for running MapReduce [19] applications on large
scale clusters of commodity machines [2]. We conducted the
experiments by executing different MapReduce applications with
different configuration requirements on our local cluster, under the
presence of failure and heavy-load nodes. The results show that the
original Hadoop, although built with failure toleration, can still suf-
fer from failures and increases the execution time to 50%. Moreover,
the energy consumption of the whole system can increase 17%, too.
The results also confirm that our modified scheduler actually selects
appropriate nodes and, therefore, improves the performance up to
32%, reduced up to 59% of the number of failed/killed tasks as well
as improve the (energy) usage efficiency by up to 53.32%.

The contributions of this paper are three-fold: (1) a new reputa-
tion model including vector representation and just-in-time feature
(JR); (2) the design and implementation of Opera; and (3) the incor-
poration of it with Hadoop and comprehensive experiments.

The remainder of the paper is organized as follows. Section 2
introduces the reputation background with related work, followed
by the analysis and design of Opera in Section 3. Section 4 describes
the details of the implementation of Opera and the modification
of Hadoop. Evaluation results are presented in Sections 5 and 6.
Finally, the conclusion will be given in Section 7.

2. Background and related work

Reputation systems give information about the past behavior
of an entity, helping one to decide which entities to trust. Often
reputation is used in commercial systems in which the entities are
SPs and customers, and in P2P systems where peers are the entities.
As a customer wants to do her business in new environments where
she has no prior experience with the SPs, a conventional way is to
rely on the reputation of the SPs or their history behaviors. Next,
we will give a brief overview of how reputation has been calculated
and used in scheduling in previous work.

2.1. Reputation computation

In this subsection, based on the previous work of Sonnek [40]
and Liang [31], we briefly review some existing reputation mod-
els before introducing their applications. For convenience, let R be
the reputation of a node. It is worth noting, to our knowledge, R
that has been always defined as a scalar in previous work. Differ-
ent approaches focus on how to calculate this value from multiple
inputs. In this paper, as we will see in Section 4, we propose to use
a vector to represent reputation.

Ebay’s rating mechanism: Ebay, a popular online auction and
shopping company [3], uses a simple yet efficient feedback mech-
anism to compute reputation. Their model is considered the most
popular and successful to date. In their model, after using a ser-
vice or finishing a transaction, users are allowed to rate the SP. In
particular, for the ith transaction, a user’s rate can be calculated as
urce efficiency in data centers using reputation-based resource
.2012.03.001

follows:

ri =
{
+1 if she is satisfied
−1 otherwise

dx.doi.org/10.1016/j.suscom.2012.03.001

 ING Model
S

g: Info

a

R

B
i
˛
t

ϕ

i
o
e

R

I
h
F
i

M
c
w
p

R

w
c
t
o

[
m

2

o
t
S
M
[
n
t
p
t
w
t
d
a
g
i
p
r
u
t
p
d
i

t
s
t

ARTICLEUSCOM-37; No. of Pages 13

T. Nguyen, W. Shi / Sustainable Computin

nd the reputation of the corresponding SP is

 =
total executed tasks∑

i=1

ri

eta rating: This model was proposed by Jøsang and Ismail [17]. It
s based on the beta density function governed by two parameters,

 and ˇ. The feedback of client X giving to the SP T is expressed by
he function:

(p | rX
T , sX

T)

n which rX
T and sX

T are the degree of satisfaction and dissatisfaction
f X about T, respectively. The reputation of T is also the probability
xpectation value:

 = E (ϕ) = r + 1
r + s + 2

(4)

n the bootstrap state, both r and s are equal to 0; therefore, we
ave R = 0.5. Note that r + s is the total amount of feedback so far.
rom Eq. (4), we can see that as the amount of satisfied feedback
ncreases, the reputation increases, which is intuitively reasonable.

Weighted rating: This method was proposed by Azzedin and
aheswaran [9]. In this method, they differentiate two important

oncepts: direct experience and reputation. Each of them has a
eight in the reputation formula. The reputation value R is com-
uted as follows:

 = ˛S + ˇF(˛, ̌ are the weight values)

here S = r/(r + s): the self experience of a node when it communi-
ates with the SP (r and s are the number of satisfied and dissatisfied
ransactions, respectively). F =

∑
r/(

∑
r +

∑
s): the experiences of

ther clients when using that SP’s service.
In addition, there are other models that take into account risks

30], employ recommendations [25], and filter bad raters or abnor-
al ratings [6], and so on.

.2. Reputation-based scheduling

There are many applications for reputation, but we only focus
n applications regarding scheduling. Our study was inspired by
he recent work of Matei et al. [43], Ananthanarayanan et al. [8] and
onnek et al. [39] in the sense of using reputation-based scheduling.
atei et al. showed that the MapReduce implementation of Hadoop

2] suffered a significant decrease in performance in heteroge-
eous environments; therefore, they proposed a LATE scheduler
hat is based on a new progress score computation method. These
rogress scores, which are only valid within a specific job execu-
ion, can also be considered as the reputation of a node. Like Matei’s
ork, Ananthanarayanan [8] (Mantri) also focused on improving

he accuracy of the progress. It used real-time progress reports to
etect outliers earlier and act accordingly. We also chose Hadoop
s our evaluation framework because we want to tame the hetero-
eneity that it is suffering from. Apart from their work, we modify
ts scheduler to leverage Opera instead of proposing a new com-
utation of the progress scores. Another important difference over
elated work in MapReduce scheduling such as [43,8] is that Opera
ses information captured about the cluster “before” executing
he job to make scheduling decisions, rather than reacting to poor
erformance “during” the job execution. Doing this enables us to
ecide whether to assign small tasks to slow or failure-prone nodes

n the cases of executing time-consuming jobs.
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

Sonek et al.[39] also adopted reputation-based scheduling, but
hey exploited reputation to decide the size of a group in that if we
chedule the same task to each member of that group, we are likely
o obtain the correct result thanks to the majority vote. Intuitively,
 PRESS
rmatics and Systems xxx (2012) xxx–xxx 3

the group size should be small if its members have high reputation
and verse versa.

Another closely related work is that of Alunkal et al. [7]. They
also proposed a reputation-based resource selection service for
Grid, which was based on [26,9], but they did not have any real
implementation for the proposed service. Generally, it is difficult
to evaluate a work based on trust or reputation because of the lack
of real feedback data from users.

Besides, as a resource selector, our work is also similar to
Nimrod/G [13], Condor-G [21] and Matchmaker [36]. However,
Nimrod/G employed computational economy which used one-
value (cost) to represent the resource. Users specify price and
deadline, Nimrod finds resource based on the matching between
cost and price. It does not care about the quality of the resources
and the reputation of resource providers/sellers. All three of them
focus on how to match the resource requirement to resource status
before the execution of jobs. They did not mention about during the
execution time of the jobs. In addition, Opera considers from both
the systems and application perspective (e.g. data locality), while
Matchmaker focuses on the system perspective.

To detect the failing nodes, our system uses heartbeat as GFS
[22] and Hadoop [2]. However, as shown later in Section 4, we
are also employing a monitoring tool, Ganglia [1], to provide more
information about the behavior of the cluster to the user. Beside
Ganglia, there are many network monitoring software such as
Zenoss (zenoss.com), Nagios (www.nagios.org), etc. In addition, we
share the idea of using load to drive the scheduling decision with
other works such as [14,41]. However, the goal of [14] is to improve
the grid load balancing, and that of [41] is to improve the utilization
of the network.

3. Opera design

In this paper, we argue that it is insufficient to assess an entity
via only a scalar value as in previous methods. Existing reputation
systems such as eBay[3] use this successfully because they are only
concerned about one behavior (successful buy/sell transactions) of
an entity. As long as users have many successful transactions, they
will have a high reputation in the “eBay world”. It does not matter
how good or bad they are in the other worlds (or contexts). The more
information we have about the entities, the better decision we can
make when selecting them. In addition, as we focus on scheduling
systems, in which the entities are nodes and scheduler, by capturing
many different aspects of a node, the system can offer different
types of services to users, such as highly available service, powerful
computation service, secure service, and trust service, to name a
few. Moreover, mapping many components into one value as used
in beta or weighted rating does not provide enough flexibility in the
selection criteria. Therefore, in our new Opera model, each entity
or node has a vector of reputation instead of a single scalar value.
Actually, this representation is somewhat similar to the ClassAd
[36] in the Grid Computing world.

In this section, we give a general design of such a model by
answering three questions: (1) Who is going to use our model?
(2) What services will our model provide or what are the function-
alities of our model? and (3) How can we leverage it?

3.1. Opera users

Three types of users are involved in the operation of Opera,
including ratees, usual clients and reputation system designers. Ratees
urce efficiency in data centers using reputation-based resource
.2012.03.001

are those who need to be rated or for whom the reputation is com-
puted. They can be a machine, a service or a service provider. The
usual clients are the customers of the ratees. They may be called
raters if they provide rating information or feedback to the system.

dx.doi.org/10.1016/j.suscom.2012.03.001
http://www.nagios.org

 IN PRESSG Model
S

4 g: Informatics and Systems xxx (2012) xxx–xxx

T
t
t
i
m
s
r

3

s
t
a
t
u

t
t
o
i
c
t
W
s
e
a
B
t
c
m
t
i
t
t
e
m

t
i
f
c
n
a
a
l
e

v
t
m
o
a
w
s
m
t
i
J
t
a
t
e
p
t
w

Table 1
The Opera’s APIs.

Application programming
interfaces

Description

set time window size(duration) Set the size of the time window in
which we calculate the reputation

register(host,port) Register newly joined service
providers (SPs)

subscribe(host,port) Subscribe by usual clients or raters
rate(rater id,ratee id,trans id,

time, value)

Rate a transaction of a SP

getReputationLength() Get the current length (number of
dimensions) of the reputation
vector

getRateesList() Get list of ratees or SPs
addNewDimension(startupValue) Add a new element to the

reputation vector
getReputation(rateeID,dim) Get the specific reputation of a
ARTICLEUSCOM-37; No. of Pages 13

 T. Nguyen, W. Shi / Sustainable Computin

he usual clients can also be the end-user or other components in
he system such as the scheduler or resource manager. For example,
he scheduler may use Opera to choose suitable nodes in order to
mprove the performance or the throughput. The resource manager

ay use Opera to improve the utilization of the system. Reputation
ystem designers are researchers who define how to compute the
eputation.

.2. Opera objectives and approach

Ultimately, Opera provides a service that helps clients select a
et of suitable candidates, among available resources or services
hat meet their requirements. In order to do that, Opera first gathers
s much information about the ratees as possible, then calculates
he reputation vectors, and finally selects candidates that have rep-
tation elements agreeable to the user’s criteria.

The information about the ratees is obtained either from inside
he system or the feedback provided by the raters. In other words,
he judgment is enabled from both the system and the user’s point
f view. The information inside the system is collected by agents
nstalled at each component. With coarse granularity, these agents
an be the user-developed software or built-in services such as
he “SNMP” (simple network management protocol) on a machine.

ith finer granularity, these agents can be the sensors attached on
pecific components of the machine. Consequently, Opera needs to
mploy an extensible monitoring tool as an internal rater and have
ppropriate APIs to receive rating information from external raters.
y doing this, Opera is equipped with self-adaptability, meaning
hat it does not need any management intervention, which is cru-
ial in unsupervised open environments. For example, a resource
anager is capable of feeding the monitored information to statis-

ical machine learning algorithms to achieve self-optimizing [35]
n resource utilization. Further, since the extensible monitoring
ool can dynamically add new monitoring metrics, it also con-
ributes to the openness of Opera by facilitating the Opera users,
.g., researchers in the reputation community, to collect any infor-
ation they want.
Users can either provide feedback (rating information) to Opera

o use reputation built from these feedback or simply use the rating
nformation provided by agents. If users are ratees, i.e. they provide
eedback, there are many known issues, such as selfishness, mali-
iousness, collusion, badmouthing or ballot-stuffing clients, that
eed to be solved but are out of the scope of this paper. However,
s users also need to register with Opera to receive service, they are
ble to use this information to support models that deal with these
isted issues. For example, one can weigh the clients to decide their
ffect on the reputation of SPs [32].

Using the collected information, Opera calculates the reputation
alues based on both predefined and user-defined models of compu-
ation. The predefined models are built in as a part of Opera and are

ainly used by usual clients. The user-defined models are devel-
ped by reputation system designers, and this feature is another
spect of the openness of Opera. To enable this extendibility as
ell as to capture the heterogeneity of ratees, Opera uses a vector

tructure to store the reputation elements calculated by different
odels. Each reputation value is an element of the reputation vec-

or and represents a specific point of view about the ratees. For
nstance, as seen in Section 4, we define the reputation R as 〈Japp,
sys, Happ, Hsys〉, in which J and H represent the current (just-in-
ime) and past behaviors of the system; app and sys denote the
pplication and system point of view, respectively. When reputa-
ion system designers want to develop a new model, they add a new
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

lement to this reputation vector and provide a method to com-
ute it. The usual clients most likely choose a predefined model
hat best fits their needs. One may ask these questions: Why do
e need to calculate reputation? Why do not we use the collected
specific node
setReputation(rateeID,dim) Define new model of computation

information directly to select resource? This is because some mod-
els may require more than single monitoring information in their
computation.

After getting the reputation of each ratee, the users (either usual
clients or reputation system designers) specify the criteria to select
the resources or use the predefined ones. It is this ability that
enables the diversity of a service. The criteria may be based on only
one reputation model (an element of the reputation vector) or a
combination of many elements. In addition, they also have differ-
ent types of constraint. For example, a criterion may be choosing
“top three nodes that have the highest availability,” “nodes that have
availability greater than or equal to 3 nines,” “nodes that have avail-
ability higher than the average availability,” “nodes that have above
average availability and below average load” or “two nodes that have
the smallest number of failed tasks,” etc. Note that in these exam-
ples of criteria, availability, load, or the number of failed tasks is
considered as a model of reputation.

To summarize, Opera collects the information both from inside
and outside of the system, calculates the reputation of the system
from it based on predefined and user-defined computation models,
and selects candidates based on predefined or user-defined criteria.
The main (not all) APIs of Opera are listed in Table 1. It is the user’s
responsibility to choose which model and criterion are suitable for
them as usual clients, or they can define their new model to com-
pute reputation as reputation system designers. This also means
that we do not provide solutions to the traditional problems such
as how to know if a rating is correct, how to force a client to provide
rating information, how to avoid the fact that an SP performs very
well at first to obtain high reputation and then turns bad or mali-
cious, how to maintain fairness between newly joined SPs and the
old ones, and so on. We envision that the answers to most of these
questions are domain-specific and need to have domain knowledge
to address them. Resilient reputation management is still an open
problem [34].

3.3. System architecture

The overall architecture of the system is shown in Fig. 1. From the
figure, we can see how Opera communicates with the existing sys-
tem. Opera applies the client/server model in which the server (the
circle named Opera) communicates with 2 clients represented by 2
circles named Service Providers and Clients/Rater. However, Opera
urce efficiency in data centers using reputation-based resource
.2012.03.001

only manages the reputation of the registered SPs only. This model
was chosen because it is simple and provides a global and consis-
tent view of the system. Applying this centralized approach, one
may challenge Opera’s scalability and availability. Actually, they

dx.doi.org/10.1016/j.suscom.2012.03.001

ARTICLE ING Model
SUSCOM-37; No. of Pages 13

T. Nguyen, W. Shi / Sustainable Computing: Info

d
i

3

a

b
f
m

r
t
T
c
a
c

4

i
i
t
w
a
d
t

t
N
s
i
a
s
c

t
b
d

t
n

i

Fig. 1. Opera system design.

epend on the implementation; therefore, it will be discussed later
n Section 4.

.4. Assumptions

Before going to the implementation, it is useful to clarify all the
ssumptions we made.

The first assumption is that the future behaviors of a node can
e inferred from the past behaviors, which is the basic assumption
or many other research fields such as machine learning and data

ining.
The second assumption is that the Opera server, which is

esponsible to calculate and store the reputation values of all par-
icipating nodes, is secure and trustworthy to simplify the design.
his assumption is reasonable given the fact that data-intensive
omputing systems like Hadoop (which will be used as a specific
pplication scenario in our implementation) often reside in data
enters which are highly secure.

. Materialization and implementation

To evaluate Opera, we implemented Opera using Java and mod-
fied the existing scheduler in Hadoop (version 0.20.0) to leverage
t. However, we focus only on selecting nodes, not the time, to assign
asks because the scheduler of Hadoop is using the pulling model,
hich means as soon as a worker is free, it contacts the master to

sk for tasks periodically. The time to assign the tasks cannot be
ecided by the scheduler. In this case, the usual client of Opera is
he Hadoop scheduler, and the ratees (SPs) are nodes in the cluster.

Normally, reputation is often used in the world where par-
icipants can cooperate without knowing each other in advance.
evertheless, in this paper, we chose Hadoop, which is an open-

ource platform being widely used in data intensive computing, to
nteract with OPERA because we would like to demonstrate OPERA
pplicability in different scenarios. As another reason, we want to
how that although Hadoop is a highly fault-tolerant system, we
an still improve its robustness with OPERA.

As in the design part, Opera also needs to employ a monitoring
ool to observe the internal system behaviors (beside the feed-
ack of raters), and we chose Ganglia [1], an open-source scalable
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

istributed monitoring system, to fulfil this task.
Generally, in manipulating the reputation data, Opera applies

he Share Memory model with the Producer-Consumer mecha-
ism. The producers are the threads that implement the predefined
 PRESS
rmatics and Systems xxx (2012) xxx–xxx 5

or user-defined reputation computation models. Each thread corre-
sponds to one model. It computes the reputation and periodically
updates the corresponding element in the reputation vector. The
consumers are usual clients who use reputation elements in their
criteria to select candidate SPs.

In this section, we are going to show the detailed computation
of each element in the reputation vector of Opera, the selection cri-
teria, what modifications we did on Hadoop to connect with Opera,
and the scalability as well as the availability of the model.

4.1. Reputation calculation

After setting up the system, we are now able to define the repu-
tation vector quantitatively. As mentioned in the design section, we
recommended a four-element vector for the reputation. Let vector
R = 〈Japp, Jsys, Happ, Hsys〉 be the reputation of a node. The first part,
Japp, is computed based on the requirements of the tasks/jobs that
are going to be processed such as the resource type (32 or 64 bits),
the OS (Windows, Linux, AIX, Mac), and the data required. For con-
sistency, from now on, we define that a job is composed of many
tasks. In Hadoop, there are two types of tasks: map and reduce.
Within a job, all map tasks are the same, and so are all reduce tasks.
The second part, Jsys, is computed based on the current system sta-
tus such as CPU usage, network activities, free memory percentage.
The third part, Happ, is the reputation of the node from the applica-
tion aspect or the usual client (scheduler) point of view. Apparently,
Happ is calculated based on the feedback of the usual client (sched-
uler) over a long time. The last part, Hsys, denotes the long-term
system characteristics such as the reliability or availability of the
node.

Japp and Jsys can be categorized as just-in-time reputation (JR)
of a node, which describes its current status or recent behav-
iors within a small time window. Happ and Hsys are history-based
reputation used to capture the past behaviors of a node. This clas-
sification arises from the observation that sometimes a reputation
of a node can be affected temporarily. For example, if node A has a
good reputation so far, the scheduler very likely assigns the task to
it. Unfortunately, as we prefer to schedule tasks to A, it starts get-
ting a heavier workload and, hence, processes the tasks very slowly.
In fact, the reputation of that node at that particular time should be
low so that our reputation-based scheduler does not assign tasks
to it. Another observation is from the data locality point of view.
Despite the fact that node A has had a high reputation so far, if it
does not host the data required by the task, the scheduler should
not choose it. In general, there are two dimensions of this JR. One
relates to the task requirements, and the other relates to the current
status of the nodes. To show the openness of Opera, we implemented
JR (Japp and Jsys) as the predefined components and history-based
reputation (Happ and Hsys) as user-defined components. The next
step is how to quantitatively calculate them.

Let vector R = 〈Japp, Jsys, Happ, Hsys〉 be the reputation of a node
within [t0, t] and n be the number of node.

As mentioned above, Japp is computed from the job description.
There are many requirements in a job description. Some of them
are single-value, and the others are multi-value. For example, while
the required OS belongs to the single-value type, the required data
blocks belong to the multi-value type. Let xi be the indicator vari-
able of a single-value requirement and the target node be the node
we want to calculate the reputation for:

x =
{

1 if the target node fits the requirement ith
urce efficiency in data centers using reputation-based resource
.2012.03.001

0 otherwise.

In certain circumstances, it is critical to meet multiple require-
ments simultaneously. For example, if a job requires running on a

dx.doi.org/10.1016/j.suscom.2012.03.001

 IN PRESSG Model
S

6 g: Informatics and Systems xxx (2012) xxx–xxx

6
w

p

m

b
a

p

J

a
i
H
1
S
m
a

J

I
h
g
o

u
H

H

F
t
i
o
a
t
a

u

H

n

i

t

F

t
t

H

F
f

Table 2
The summary of reputation computation.

Japp pcritical × pdata

Jsys the idle CPU percentage × free memory
ARTICLEUSCOM-37; No. of Pages 13

 T. Nguyen, W. Shi / Sustainable Computin

4-bit system, we cannot assign it to the 32-bit. If that is the case
e compute:

critical =
The total critical requirements∏

i=1

xi

Note that pcritical is equal to 1 only if all critical requirements are
et; otherwise, its value is 0.
Another important multi-value requirement is the data required

y the task. If a node has the data the task requires, it should have
 high reputation toward that specific task. We capture this as:

data =
The # of blocks stored on the target node
The total # of required blocks of the task

At the end, the first part, Japp, is computed as the following:

app = pcritical × pdata

The second part, Jsys, demonstrates the current system status of
 node. By current status, we mean in the short time [t0

′, t1
′] which

s much smaller than the window size [t0, t] in the computation of
sys and Happ. In Ganglia, for example, these short periods are 5,
0 and 15 min. Basically, Jsys is computed from Ganglia’s metrics.
ince there are many metrics available in Ganglia, we can derive
any ways to compute Jsys. One simple example, which takes into

ccount both CPU and memory, is

sys = the idle CPU percentage × free memory

f the CPU of a node is too busy and has less free memory, it should
ave a low reputation. It is worth noting that Opera can easily inte-
rate other methods of computing Jsys, but that is beyond the scope
f this paper.

The third part, Happ, is the history-based reputation from the
ser point of view. We utilized the information in the log files of
adoop to calculate it as followings:

app = 1 − total number of failed/killed tasks
total assigned tasks

rom the scheduler point of view, a node that has more failed/killed
asks over its total given tasks should have a lower reputation. As
nitializing, Opera reads this information from the history directory
f Hadoop and calculates the start-up reputation of all nodes. Then,
fter finishing each job, it reads the Hadoop log file and updates this
ype of reputation accordingly. This type of reputation is augmented
fter each job execution.

The last part, Hsys, is a purely system-related reputation. We can
se either the availability or reliability of a node for this value:

sys = availability(t) = actual up time
t − t0

= total replies
total heartbeats sent

For the reliability, let f(t) be the unconditional failure rate of a
ode

f(t) = the probability that a node will fail between t and t + dt (f(t)
s a probability density function.)

Let F(t) be the cumulative probability that a node has failed by
he time t:

(t) =
∫ t

t0

f (t)dt

The cumulative probability that the node has not failed from t0
o t, given the fact that the node was up at t0, is the reliability of
hat node during [t0, t]:
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

sys = reliability(t) = 1 − F(t)

rom this formula, if we know the distribution of the failure rate
unction, we can easily compute the reliability of a node. With the
Happ 1 − total number of failed/killed tasks
total assigned tasks

Hsys e−(t/MTTF)

assumption of memoryless failures, we may apply another simpler
formula:

Hsys = reliability(t) = e−(t/MTTF)

in which MTTF is the mean time for the node to fail.
Table 2 summarized the computation of the reputation vector.

4.2. The selection criteria

We implemented three selection criteria “above average”, “top
one-third” and “mixed”. The first two were implemented as part
of Opera representing predefined criteria. The last one was imple-
mented in Hadoop as user-defined criteria.

The “above average” criterion return nodes that has the repu-
tation greater than or equal to the average reputation of available
nodes. The reputation here refers to a specific dimension of the
reputation vector.

The “top one-third” criterion first ranks all candidates according
to a specific dimension of the reputation vector and chooses nodes
among the top one-third of the candidate set.

While the first and second criteria consider only one element of
the reputation vector, the third one takes two of them into account.
Since this is the user-defined criterion, it depends on the specific
situation.

4.3. Hadoop modification

After implementing Opera, we need to modify Hadoop to use
it. In this subsection, we first discuss the Hadoop scheduler briefly
then explain how to change it. The modification in the speculative
execution is explained last.

Hadoop has two main parts: the file system (HDFS) and the
MapReduce framework [19]. In Hadoop, a MapReduce job contains
many tasks of two types: map or reduce. Hadoop uses a mas-
ter/slave model and a polling mechanism (pull model) to schedule
tasks. Every time a worker (Tasktracker) has available execution
slots, it contacts the master (Jobtracker) to ask for a task period-
ically. After performing certain checks such as is-blacklisted,
the master finds a task to assign to it.

To use Opera in such a model, the idea is that when a node
comes to ask for tasks, the master asks Opera for its reputation,
evaluates it against a selected criteria, and assigns tasks to it accord-
ingly. To implement this, we developed an additional method called
shouldAssignTasks(tasktracker), which is invoked when a
tasktracker comes to ask for tasks, and it returns true if the repu-
tation of the tasktracker meets the criteria. Actually, we can either
specify new customized criteria right in this method or choose the
predefined ones from Opera.

It is noteworthy that if we apply certain selection criterion to
a fixed list of workers, we may decrease the system utilization.
For example, among 10 workers, if our criterion is “choosing above
median reputation nodes”, the scheduler can never assign tasks to
more than 5 workers. This is because we also include the nodes
which already received tasks in the candidates list to assign new
urce efficiency in data centers using reputation-based resource
.2012.03.001

tasks. We should instead assign tasks to available candidates only.
As a result, we maintained a list of available workers called candi-
datesList and applied the selected criteria to this list only. Before
executing any job, candidatesList contains all workers in the

dx.doi.org/10.1016/j.suscom.2012.03.001

 IN PRESSG Model
S

g: Informatics and Systems xxx (2012) xxx–xxx 7

s
r
k
T

A
R

)

e

e
r

e
l
n
h
t

4

h
C
t
r
d
s

o
p
s
a
u
m
c
s
a
s
s

Table 3
The Opera’s testbed.

Type Machines # CPU Memory OS

Server 1 4 × 2 GHz 4 GB RHEL5 x86 64
ARTICLEUSCOM-37; No. of Pages 13

T. Nguyen, W. Shi / Sustainable Computin

ystem. In executing a job, it shrinks as the number of nodes that
eceive tasks increases, and grows as they finish tasks. Since the list
eeps changing over time, we can always select nodes successfully.
he detail algorithm is shown in Algorithm 1

lgorithm 1 (The modified shouldAssignTasks).
equire: taskTracker, candidates, reputationType
reputationVvalue ← OPERA.getReputation(tasktracker, reputationType)
if criteria is “above average” then

reputationThreshold ← OPERA.computeThreshold(candidates, reputationType
if reputationValue < reputationThreshold then

return false
end if

else
if criteria is “mixed” then

candidateSet1 = OPERA.computeThreshold2(candidates,dim2)
candidateSet2 = OPERA.computeThreshold2(candidates,dim3)
if (candidateSet1

⋂
candidateSet2) /= ø then

if tasktracker ∈ (candidateSet1
⋂

candidateSet2) then
return true

else
return false

end if
else

if candidateSet2 /= ø and tasktracker ∈ candidateSet2 then
return true

else
return false

end if
end if

end if
lse [criteria is “top one-third”]
sortedMap = OPERA.ranking(candidates, reputationType
tail = sortedMap.tailMap(tasktracker)
if tail.size() ≤ (candidates.size()/3) then

return true
else

return false
end if

nd if
eturn true

In our implementation, Opera is also used in the speculative
xecution of Hadoop in which slow progress tasks are specu-
atively executed on other nodes. We used Opera to find such
odes. Basically, the new chosen nodes should be “better” (i.e.
as higher reputation) than the current hosts of the slow progress
asks.

.4. Scalability and availability

For internal system information, we employed Ganglia, which
as been widely used and can handle a cluster of 2000 nodes.
onsequently, we have scalability in collecting system informa-
ion. For user-provide information such as feedback, since most
ating messages from raters are often small in size, Opera can han-
le many of them easily. As a result, it is safe to claim Opera is
calable.

To increase the availability of the system, we can have a sec-
ndary Opera server as a backup plan. This secondary server
eriodically backs up the reputation vector from the ordinary
erver. In case of failure, since the history-based reputation isn’t
ffected much in missing short-period information, we can still
se the “out-of-date” historical reputation. For the JR, since Ganglia
ulticasts monitor information to a channel, the secondary server

an easily obtain information from it and compute the JR them-
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

elves; hence, it always has up-to-date JR. In addition, Ganglia also
llows the user to define their own metric; therefore, it is exten-
ible and fits best to our Opera design described in the previous
ection.
Server 1 1 × 2.34 GHz 1 GB Fedora 8
Workstation 21 2 × 1 GHz 512 MB Ubuntu 8.04

5. Performance evaluation

5.1. Experiment setup

Since Opera is used to aid resource selection based on multi-
property criteria, we need to create a heterogeneous systems to
evaluate it. However, our available testbed is homogeneous in term
of hardware because as most local institute clusters, it was built at
the same time with the same hardware configuration. As a result,
we created two types of heterogeneity, which are availability and
workload, instead of heterogeneity in the hardware. Some nodes
in the system are configured to fail during certain periods to pro-
vide the differences in availability. Since we focus on fail-stop only,
we simulated a failure by disabling the network connection to that
node (turn off the network interface) during predefined periods.
The differences in workload were created by scripts that recompile
the newest Linux kernel at a certain time to keep the CPUs busy and
the memory full, and “ping” the local host heavily to pollute the net-
work. As our previous assumptions, we configured the experiments
so that they run only on half of the available resources.

5.1.1. Testbed
Our testbed cluster has a total of 23 machines including 2 servers

and is described in detail in Table 3. One server is the namenode
of Hadoop. The others contain both the Opera server and Job-
Tracker. It also runs Ganglia meta data daemon -gmetad- to collect
information from monitor daemons - gmond. All other nodes are
tasktrackers/datanodes and installed gmond (agents that collect
information). The number of replicas in Hadoop is 3. The moni-
toring metrics are collected, sent and updated at different rates.
For example, the CPU-related metrics are collected every 20 s by
gmond at each worker. They are sent to the gmetad every 90 s, and
the gmetad updates its own RRD database every 15 s. In addition,
these rates are different between metrics.

5.1.2. Applications
The applications we used are packaged together with the

Hadoop distribution. They are all in Hadoop’s example package and
are MapReduce programs. We utilized three programs: Sort, Grep
and WordCount. Their functionalities are self-described by their
name. The Grep and WordCount input is a 7.7 GB text file gen-
erated from log files and a Shakespeare play. Grep finds a given
pattern in a given input file. The search pattern is written as a reg-
ular expression, and the matched results are stored in an output
file. WordCount counts the number of occurrences of each word
in a given input set. The input of Sort is 3.9 GB and is generated
randomly by the Randomwriter – another built-in application of
Hadoop.

5.2. Metrics

We used two main metrics in this evaluation: execution time
and the number of failed/killed tasks of a job. The execution time,
as usual, represents the performance of the system. The number
urce efficiency in data centers using reputation-based resource
.2012.03.001

of failed/killed tasks expresses the usage efficiency of the system.
Intuitively, the higher this value, the lower the efficiency is because
we spend resources such as energy, computation, network band-
width on executing these failed/killed tasks but receive nothing.

dx.doi.org/10.1016/j.suscom.2012.03.001

ARTICLE ING Model
SUSCOM-37; No. of Pages 13

8 T. Nguyen, W. Shi / Sustainable Computing: Info

2 5
Original Hadoop With failures With heavy workload

2

2.5
Original Hadoop With failure s With heav y workload

1.5

2

2.5

ti
on

�
m
e

Original Hadoop With failure s With heav y workload

1

1.5

2

2.5

iz
ed

Ex
ec
u�

on
�
m
e

Original Hadoop With failure s With heav y workload

0.5

1

1.5

2

2.5

N
or
m
al
iz
ed

Ex
ec
u�

on
�
m
e

Original Hadoop With failure s With heav y workload

0

0.5

1

1.5

2

2.5

Grep WordCount Sort

N
or
m
al
iz
ed

Ex
ec
u�

on
�
m
e

Original Hadoop With failure s With heav y workload

0

0.5

1

1.5

2

2.5

Grep WordCount Sort

N
or
m
al
iz
ed

Ex
ec
u�

on
�
m
e

Original Hadoop With failure s With heav y workload

W
i
o
w

5

a
[
e
a
n
t
n
u

c
t
c
n
b
1
9
I
1
f
h
O

Fig. 2. The effects of heterogeneity on Hadoop performance.

e should calculate the usage efficiency explicitly here, but since
ts computation requires information about the resource (CPU time
r energy) each failed/killed task has spent before it fails or is killed,
e do not have it at this moment.

.3. Heterogeneity analysis

We first show that our two heterogeneous types, availability
nd workload, also affect Hadoop performance as Matei’s work on
43] although we used different methods. Figs. 2 and 3 show the
xecution time and the total number of failed/killed tasks of three
pplications in Hadoop under failures and other workloads. The
umber of failed nodes and high workload nodes are nearly half of
he system (8/21 and 9/21, respectively). In these experiments, we
ormalize the measurement to the healthy system which has spec-
lative execution enabled yet has no failures or heavy workload.

The failure periods are chosen so that the whole job is still suc-
essful because as we extend these periods, the number of failed
ask attempts increases and so does the job execution time. At a
ertain level, if we keep extending them, the whole job fails as the
umber of task failures of any task reaches its limitation, which is 4
y default. In the systems with failures, the executed time increases
9%, 131% and 89%, and the number of failed/killed tasks increases
4.73%, 77.78% and 267% for wordcount, grep, and sort, respectively.
n the systems with heavy workloads, the executed time increases
2%, 42% and 96%, and the waste increases 5.26%, 44.45% and 103%
or wordcount, grep, sort, respectively. With these defects caused by
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

eterogeneity, the next subsection will detail the improvement by
pera.

Fig. 3. The effects of heterogeneity on Hadoop number of failed/killed tasks.
 PRESS
rmatics and Systems xxx (2012) xxx–xxx

5.4. Improvements

Our goal in this section is to illustrate that with the help of Opera,
the scheduler can avoid nodes with either low availability or high
workload, or both. The Sort benchmark is going to be used as the
primary workload from now on because it is popular and also used
as the main benchmark for evaluating Hadoop at Yahoo [43].

There are two factors that affect the selection process and,
hence, are considered here: the reputation element and the selec-
tion criteria. While the reputation element factor represents which
dimension(s) we consider, the criteria is the policy that is applied
on it(them). For instance, the selection policy “choosing the nodes
that have Jsys above the average” means the “above average” cri-
terion is applied to the element, Jsys, of the reputation vector. As a
result, to study the effects of each of these two factors, we run the
experiments with different values for one while keeping the other
fixed. The following two subsections describe in detail the effect
of the reputation elements, which in fact represent many differ-
ent aspects of the heterogeneity and the selection criteria. The last
subsection is comparing OPERA with the LATE scheduling [43].

5.4.1. The heterogeneity
Each aspect of the heterogeneity is captured by an element in

the reputation vector. In the previous section, we mentioned two
types of heterogeneity: availability (failures) and load. Essentially,
they are the two aspects of the heterogeneity that we consider and
are captured by Hsys and Jsys, respectively. In this part, we are going
to do the experiments with each single aspect of the heterogeneity
first and then with both. The selection criterion factor applied in
these experiments is fixed. It is the “above average”. Tables 4 and 5
contain the results of running Sort with and without Opera on a
system with heterogeneity in availability and load, respectively.
Since the results vary greatly among executions, the tables list the
worst, best and average values of the results to give an idea of their
range.

From Table 4, one can see that the execution time and the num-
ber of failed/killed tasks are reduced by 23% and 41% on average,
respectively, when using Opera under the presence of failure. Sim-
ilarly, under the presence of other workload, the execution time
and the number of failed/killed tasks can be improved on average
by 11% and 59%, respectively, as shown in Table 5.

Finally, we did the experiments with four configurations as
depicted in Fig. 4 under an environment that has both failure and
heavyloaded nodes. It is worth noting that this environment dif-
fers from that of the two previous experiments. From the figure,
we can see that the last configuration, which took into account
both availability and workload, outperformed the others. Its per-
formance was improved 26% in comparison to the original Hadoop.
It demonstrates the ability to handle criteria built on more than
one element of the reputation vector. This makes Opera unique,
separating it from other previous work.

It is worth to note that tasks of a job in Hadoop fail independently
which means that only the failed tasks need to be re-executed. If
OPERA is used in the models in which task failures are highly cor-
related and require the whole job to be re-executed, the efficiency
improvement would be much more significant.

5.4.2. The selection criteria
Now we are in a position to study the effects of the selection

criteria. We run the Sort again on Hadoop with different selection
criteria yet under the same, ideal environment (no failures, no other
workload). Obviously, in such an environment, Opera brings no
urce efficiency in data centers using reputation-based resource
.2012.03.001

benefits but overhead since it is designed for heterogeneous envi-
ronments. Consequently, with this experiment design, we cannot
study only the effects of different selection criteria but also the
overhead of Opera.

dx.doi.org/10.1016/j.suscom.2012.03.001

ARTICLE IN PRESSG Model
SUSCOM-37; No. of Pages 13

T. Nguyen, W. Shi / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx 9

Table 4
The results of using different availability.

Original Hadoop Opera

Worst Best Average Worst Best Average

Execution time (s) 706 652 678 538 507 523
Number of failed/killed tasks 27 17 23 16 12 13

Table 5
The results of using different workloads.

Original Hadoop Opera

worst best average worst best average

Execution time (s) 662 546 606 563 499 539
Number of failed/killed tasks 22 11 18 9 5 7

t way

a
T
n

c
m
I
t
a
s
s
t
t
k
t
a

c
t

(a) Ex ecution time

Fig. 4. A comparison of three differen

The Sort was run at least 5 times for each configuration. There
re a total of 4 configurations. The first one is the original Hadoop.
he rest three use the three criteria defined in Section 4 to select
odes.

Intuitively, one can tell that the execution time increases as the
riteria become more complicated. Moreover, in the ideal environ-
ent, Opera should expose its overhead over the original Hadoop.

n other words, the execution time should increase from the first to
he fourth configuration. Fig. 5 consolidates this intuition. On aver-
ge, the execution times of the first 3 configurations are almost the
ame while the last one introduces a 25% additional delay. The rea-
on is that the last (use-defined) criterion is more complicated than
he other two. Furthermore, the selection code is executed every
ime a worker asks for tasks which is quite often. The number of
illed/failed tasks varies greatly among executions. For example,
he worst case in the original Hadoop is 9, and the best one is 3. On
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

verage, Opera has about 2 extra killed/failed tasks.
One may wonder why the performance of the two dimension

riteria is worse in this part than the others while it is better in
he previous part. This is because the previous experiments were

Execution time

Fig. 5. Study of three different s
(b) The number of failed/killed tasks

s of using two heterogeneous types.

done in a hostile environment which contains both failures and
other load. To reduce this overhead, one possible approach is to
use feedback control mechanism to select suitable criteria since
we have a lot of monitoring information.

5.4.3. Opera and LATE
As mentioned earlier in Section 2, LATE [43] also improve the

performance of Hadoop in heterogeneous environments. Although
this is not exactly the same goal with us, our approaches are some-
what related. Therefore, we would like to compare the performance
of Opera and LATE here.

There are four configurations in this experiment. For each of
them, we ran the sort application on the same input of 1 GB of data
three times. The first two configurations are LATE with and without
failure. Since LATE has been integrated into Hadoop version 0.21.0,
urce efficiency in data centers using reputation-based resource
.2012.03.001

we used that version as LATE configuration in the experiment. The
remaining two configurations are Opera with and without failure.
The criterion we applied here for Opera is of the type “above aver-
age”, and there was no other workload in the system.

Number of failed/killed tasks
election criteria on Opera.

dx.doi.org/10.1016/j.suscom.2012.03.001

ARTICLE IN PRESSG Model
SUSCOM-37; No. of Pages 13

10 T. Nguyen, W. Shi / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx

o
b
a
r
f
a
t
e

5

c
t
s
i
t
o
t
o
s
i
c

h
t
t
p
b
F
n
n

Fig. 6. The performance of Opera and LATE.

Fig. 6 shows the results of the experiment. In the figure, we can
bserve the outperform of Opera over LATE. This improvement can
e explained as the result of the difference in the time of scheduling
nd the way to select the tasktrackers. While Opera is performed
ight at the beginning of the job execution, for every tasks, LATE
ocuses on the speculative tasks and is only trigger when stragglers
re detected. While Opera tries to select “good” candidates for every
ask assignment, LATE focuses on which tasks should be speculative
xecuted but it does not care who will take care of such tasks.

.5. Effects of sampling rate

In this section, since we used a monitoring tool polling the
lients to capture the behavior of the system, we would like to study
he effects of changing the sampling rates to the performance of the
ystem. However, we only focus on changing rate in the JR because
t does not make much sense in the history-based part. Basically,
he history-based reputations are used to predict the future based
n the past information, which is expressed in traces such as failure
race. The past information is often measured during a long period
f time, which is much longer than the execution time of a job. The
ampling intervals in this situation are often long; therefore, dur-
ng the execution of a job, only a few data are sampled. These data
learly cannot affect the history-based reputation severely.

Fig. 7 shows the results of sorting 10.5 GB of data under the same
eavy load distribution with different sampling rates. Intuitively,
he higher the rates, the more accurate the monitor is but the higher
raffic in the network. As we can see, when we increase the sam-
ling interval, the monitor loses the sensitivity of capturing the
ehavior of the system and, hence, produces worse performance.
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

urther, we notice that increasing the sampling rate too high is
ot good because the benefit in performance improvement can-
ot outweigh the network overhead at some point. For example, in

Fig. 7. The performance of Opera with different sampling rates.
Fig. 8. The effects predictor’s accuracy on Opera.

Fig. 7 the performances at the sampling intervals of 20 and 30 s are
essentially the same.

5.6. Effects of the predictors

Since our system depends on a predictor to speculate bad rep-
utations entities in the future based on the past behaviors, it is
good to see how such predictor’s accuracy may affect our sys-
tem. To answer this question, we conducted another experiment.
In this experiment, we ran the Sort application on our modified
Hadoop with 20 reduce tasks. The selection criterion was the “above
average” on the Hsys with the present of failures. The failure trace
configuration (time, machine and duration) was the same as other
experiments. The execution time and the number of failed/killed
task of this test are shown in Fig. 8. The x axis is the false posi-
tive percentage of the predictor. For example, 25% means that one
of every four guess from the predictor is false. A general observa-
tion from the figure is that as the percentage of false positives (the
inaccuracy) of the predictor increases, our system performance is
getting worse. However, it’s not so bad since the performance is
reduced only approximately 25% and the number of failed/killed
tasks increases about 20% with the very inaccurate predictor (1
guess is wrong out of 2). It’s worth to note that with this exper-
iment, the original Hadoop did not even finish the job successfully.
Also, as other experiments, the figure shows the average of several
executions only.

5.7. Discussion

Although we implemented the calculation of all 4 elements rep-
utation vector, the above evaluation only used 2 of them (Jsys and
Hsys). We did not use Japp, which represents the job requirements
and data locality, because of two reasons corresponding to its two
constituents. The first one is related to the critical requirements.
It is trivial to avoid nodes that do not meet them because these
nodes all have the reputation of 0. It make no sense if we put, for
example, some Windows or Mac machines to the systems, set the
job description files, and show that Opera does not choose them.
The second reason relates to the data locality. We ignored this too
because Hadoop claims that it already took into account the data
locality as it schedules map tasks.

For Happ, actually, it represents the traditional reputation sys-
tems in which the customer is the Hadoop’s master node and
the service providers are the workers. After each transaction (job)
the customer (master) rates the service providers (workers). We
introduce Happ to demonstrate that Opera can easily cover the
urce efficiency in data centers using reputation-based resource
.2012.03.001

traditional reputation. We skipped Happ because,unlike the com-
mercial systems, our specific system does not assume the malicious
behavior of nodes. All service providers are objective and try
to behave correctly. Therefore, even if a node has had a high

dx.doi.org/10.1016/j.suscom.2012.03.001

 IN PRESSG Model
S

g: Informatics and Systems xxx (2012) xxx–xxx 11

n
t
o

n
r
i
a
b
a

6

u
m
t
2
m
c
a

a
i
d
s
i

6

a
m
8
c
r
c
t
t
m
r
t
t
a

i
H
n
e
t
1
a

i
f
H
t
m
t

a
t
c
f
1

Fig. 9. Energy consumption of machines in the cluster.

Table 6
Comparison of energy usage efficiency of machines in the cluster.

Grep WordCount Sort

No Opera, no failure 100% 100% 100%
ARTICLEUSCOM-37; No. of Pages 13

T. Nguyen, W. Shi / Sustainable Computin

umber of killed/failed tasks, we shouldn’t punish it again because
hey were done unintentionally. We used “again” because the
bjective behaviors were already considered in other dimensions.

In these experiments, we assumed that the future behavior of
odes can be obtained exactly from their reputation vectors. In
eality, this assumption is too strong. We can only predict such
nformation with a certain probability. Fortunately, the research
bout such prediction is well studied [29,28,37,33], and the node
ehavior estimation, especially in the near future [44], is actually
ccurate enough.

. Energy efficiency evaluation

In this section, we will evaluate the (energy) usage efficacy of
sing Opera. We are going to measure the energy of both compute
achines and the network switches using wattsup meters [5]. This

ime, for the sake of simplicity, our Hadoop system includes only
0 slave machines. We did not measure the master node since they
ostly did the same job for all configurations. In addition, the actual

omputation happens in the slaves, and the data is also stored in
nd transferred between them.

The power dissipation was measured at the finest granularity
vailable of wattsup devices which is 1 second. At this granular-
ty, the reading software sometimes could not read info from the
evices. There are several missing values and, therefore, we only
how here the average of the remaining power values over the
nterested time periods.

.1. Energy of the cluster

We used 4 wattsup meters to measure the power dissipation to
ll compute machines in the system. Three of them were used to
easure the power of 4 machines each, and one measured the rest

 machines. The time of all machines was guaranteed to be syn-
hronized during all experiments. Since the wattsup devices kept
ecording data to files during the experiment and the time is syn-
hronized, we only need to mark the periods of interest to compute
he average power in such periods later. For example, to measure
he base line power (no applications but the OS), after starting all

achines in the system and waiting for them to be stabilized, we
ecorded the time start, wait 5 min and recorded the time end of
his period. Then after the whole experiment finished, we compute
he average power during this recorded period for each wattsup
nd add them up to have the average power of the whole system.

In this experiment, we measured the power in different scenar-
os: there is no application except the OS (base line); running only
adoop; and running Hadoop with three MapReduce applications
amely grep, wordcount and sort (with different configurations
ach). The base line power of the cluster is 1713.16 W, and
he power of running Hadoop (without any job execution) is
718.59 W. We can see that running Hadoop itself raises the aver-
ge power to 5.43 W in comparison to the base line.

There are three configurations for each application. This first one
s running the applications with the original Hadoop without any
ailure. The second one is executing them with failure using original
adoop. We did not include heavy load here because we only want

o measure the energy of our job. Using our current measurement
ethod, we can’t exclude energy consumption of such load. The

hird configuration is using Opera with failure.
For the Hadoop with application configurations, we run the

pplication several times, compute the average power as well as
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

he execution time of each configuration. From these values, we
an derive the average energy consumption of the whole system
or each configuration and the usage efficiency (defined in Section
). More details will be described as follows.
No Opera, failure 83% 99.43% 85.90%
Opera, failure 91.20% 102.76% 99.79%
Improvement 9.87% 3.35% 16.17%

Fig. 9 illustrates that running applications in Hadoop increased
the energy consumption significantly (in comparison to the base
line). The figure also points out that, with failure, the energy con-
sumption of the original Hadoop is increased in all cases, but it
is decreased when employing Opera. The improvement is not sig-
nificant in the Grep and WordCount applications because such
applications has only one reduce, and the reduce phase dominates
the execution time of the whole job. While the benefit of Opera
comes from selecting good candidates, this selection only happens
once in the reduce phase of such applications and therefore, they
are not benefit much from Opera unless the original Hadoop selects
a “bad” node for the reduce task.

Table 6 details the usage efficiency of the whole system with dif-
ferent applications and configurations. In general, Opera is always
more efficient than the original Hadoop with failure. It’s worth to
note that although the usage efficiency of the WordCount almost
does not hurt from failure (they have one time-consumed reduce
task), it is still improved by Opera. Opera can even be more efficient
than the ideal case (no failure) thank to the significant reduction in
the number of failed/killed tasks.

6.2. Energy of the network

In this part, we did the same experiments as the previous part
(the same system, applications, configurations, etc.), but we used
2 wattsup to connect to two 16-port switches to measure their
power. One switch connects 13 nodes, and the other connects 7
nodes. After doing the experiments, we observed that the power
dissipation of the switches, in general, did not change too much
among applications as well as configurations. Particularly, the 13-
node switch has the average power of 68.2 W with the standard
deviation � = 0.14, and the 7-node switch has the average power of
63.94 W with the standard deviation � = 0.07.

Fig. 10 and Table 7 are interpreted as the previous part except
that they report the energy consumptions of the network switches.
Fig. 10 again supports the general trend: the failure does increase
urce efficiency in data centers using reputation-based resource
.2012.03.001

the energy consumption (of the switches), and Opera does help
to soothe the negative effect of failure. However, the amount of
benefit depends heavily on the application computation models.
Generally, Opera is helpful for applications that need to make many

dx.doi.org/10.1016/j.suscom.2012.03.001

ARTICLE ING Model
SUSCOM-37; No. of Pages 13

12 T. Nguyen, W. Shi / Sustainable Computing: Info

No Opera, no failure No Opera, with failure Opera, with failure

120

140

No Opera, no failure No Opera, with failure Opera, with failure

80

100

120

140

y
(K
J)

No Opera, no failure No Opera, with failure Opera, with failure

40

60

80

100

120

140

En
er
gy

(K
J)

No Opera, no failure No Opera, with failure Opera, with failure

0

20

40

60

80

100

120

140

En
er
gy

(K
J)

No Opera, no failure No Opera, with failure Opera, with failure

0

20

40

60

80

100

120

140

Grep WordCount Sort

En
er
gy

(K
J)

No Opera, no failure No Opera, with failure Opera, with failure

0

20

40

60

80

100

120

140

Grep WordCount Sort

En
er
gy

(K
J)

No Opera, no failure No Opera, with failure Opera, with failure

Fig. 10. Energy consumption of network switches.

Table 7
Comparison of energy usage efficiency of network switches.

Grep WordCount Sort

No Opera, no failure 100% 100% 100%
No Opera, failure 73.26% 97.75% 78.22%
Opera, failure 99.60% 103.28% 119.93%
Improvement 35.96% 5.66% 53.32%

t
b

w
i
a

7

n
w
i
d
f
T
u
a
r

m
h
w
B
m
o
r

A

r
a
t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

ask assignments and in the cases where the probability to select
ad nodes is high.

Table 7 detailed the improvement of Opera in term of the net-
ork energy usage efficiency. While the efficiency improvement

s only 5.66% for the WordCount, it jumps to 53.32% for the Sort
pplication.

. Conclusions

To improve the efficacy in using resources, such as energy, we
eed to reduce the resource waste. Particularly, in this work, we
ould like to lower the number of task re-execution, by choos-

ng appropriate machines to execute the tasks. We successfully
esigned and developed Opera, which is used to select machines
rom a candidate set in the systems based on their reputations.
he system not only allows us to reduce the waste caused by fail-
re but also enables users to select service providers by predefined
s well as user-defined selection criteria and enables reputation
esearchers to develop their own reputation computation models.

We proposed using vectors to represent reputation and experi-
ent results proved that it is a suitable approach to deal with the

eterogeneity and energy efficiency. We set up a specific scenario
hich is using Opera to aid Hadoop scheduler to select workers.
ased on the scenario, we developed four reputation computation
odels. Two of these models are built-in and the others are defined

utside Opera to show the extendibility of Opera. The experiment
esults expressed both the benefits and cost of using Opera.

cknowledgements

We would like to thank our system integrator, Andrew Mur-
ell, for his help in measuring the energy of the whole system and
nonymous reviewer who gave us invaluable comments to improve
his manuscript.
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

eferences

[1] http://ganglia.info/.
[2] http://wiki.apache.org/hadoop/.

[

 PRESS
rmatics and Systems xxx (2012) xxx–xxx

[3] http://www.ebay.com/.
[4] http://www.gartner.com.
[5] http://www.wattsupmeters.com.
[6] A.J.A. Whitby, J. Indulska, Filtering out unfair ratings in bayesian reputation

systems, in: The Icfain Journal of Management Research, vol. 4, February 2003,
pp. 48–64.

[7] B.K. Alunkal, I. Veljkovic, G.V. Laszewski, K. Amin, Reputation-based grid
resource selection, in: Workshop on Adaptive Grid Middleware, 2003,
p. 28.

[8] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
E. Harris, Reining in the outliers in Map-Reduce Clusters using Mantri,
in: OSDI’10: Proceedings of the 1st USENIX Conference on Operating Sys-
tems Design and Implementation, USENIX Association, Berkeley, CA, USA,
2010.

[9] F. Azzedin, M. Maheswaran, Evolving and managing trust in grid computing
systems, in: Proceedings of IEEE Canadian Conference on Electrical & Computer
Engineering, May 2002, pp. 1424–1429.

10] L.A. Barroso, U. Hölzle, The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, volume Lecture #6.

11] L.A. Barroso, U. Hölzle, The case for energy-proportional computing, Computer
40 (12) (2007) 33–37.

12] P. Bohrer, E.N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell,
R. Rajamony, The Case for Power Management in Web Servers, 2002,
pp. 261–289.

13] R. Buyya, D. Abramson, J. Giddy, Nimrod-G: an architecture for a resource man-
agement and scheduling system in a global computational grid, in: HPCAsia
2000, May 2000.

14] J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, Gridflow: workflow management for grid
computing, in: CCGRID’03: Proceedings of the 3st International Symposium on
Cluster Computing and the Grid, IEEE Computer Society, Washington, DC, USA,
2003, p. 198.

15] C. Belady, A. Rawson, J. Pfleuger, T. Cader, Green Grid Data Center Power Effi-
ciency Metrics: Pue and Dcie, 2008, www.thegreengrid.org.

16] J. Clark, US government to consolidate data centers? The Data Center Journal
(2010).

17] B.E. Commerce, A. Jøsang, R. Ismail, The beta reputation system, in: Proceedings
of the 15th Bled Electronic Commerce Conference, 2002.

18] D. Azevedo, J. Haas, J. Cooley, M. Monroe, P. Lembke, How to Measure and Report
Pue and Dcie, 2008, www.thegreengrid.org.

19] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Communications of the ACM 51 (1) (2008) 107–113.

20] EPA, EPA Report to Congress on Server and Data Center Energy Efficiency, Tech-
nical Report, U.S. Environmental Protection Agency, 2007.

21] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-g: a computation
management agent for multi-institutional grids., in: Proc. of the 10th Inter-
national Symposium on High Performance Distributed Computing (HPDC-10),
August 2001.

22] S. Ghemawat, H. Gobioff, S. Leung, The google file system, in: Proceedings of
SOSP’03, Lake George, NY, October 2003.

23] M. Hill, Amdahl’s Law in the Multicore Era, January 2010.
24] M.H. Jed Scaramella, Service-based approaches to improving data center ther-

mal and power efficiencies, IDC White Paper, May 2007.
25] M.A. Jøsang, E. Gray, Analysing topologies of transitive trust, in: Proceed-

ings of the Workshop of Formal Aspects of Security and Trust (FAST),
September 2003.

26] S. Kamvar, M.T. Schlosser, H. Gacia-Molina, The eigentrust algorithm for repu-
tation management in p2p networks, in: Proc. of the 12th International World
Wide Web Conference, May 2003.

27] E. Kotsovinos, D. Mcilwraith, replic8: location-aware data replication
for high availability in ubiquitous environments, in: Wired/Wireless
Internet Communications, vol. 3510, Springer, Berlin/Heidelberg, 2005,
pp. 32–41.

28] Y. Li, Z. Lan, Exploit failure prediction for adaptive fault-tolerance in cluster
computing, in: IEEE International Symposium on Cluster Computing and the
Grid, 2006, pp. 531–538.

29] Y. Liang, Y. Zhang, A. Sivasubramaniam, R.K. Sahoo, J. Moreira, M. Gupta, Fil-
tering Failure Logs for a Bluegene/l Prototype, IEEE Computer Society, Los
Alamitos, CA, USA, 2005, pp. 476–485.

30] Z. Liang, W. Shi, Analysis of recommendations on trust inference in the open
environment, Technical Report MIST-TR-2005-002, Department of Computer
Science, Wayne State University, February 2005.

31] Z. Liang, W. Shi, Enforcing cooperative resource sharing in untrusted peer-to-
peer environment, ACM Journal of Mobile Networks and Applications (MONET)
special issue on Non-cooperative Wireless Networking and Computing 10 (6)
(December 2005) 771–783.

32] Z. Liang, W. Shi, Analysis of ratings on trust inference in open envi-
ronments, Elsevier Performance Evaluation 65 (2) (February 2008)
99–128.

33] Z. Liang, W. Shi, A reputation-driven scheduler for autonomic and sustain-
able resource sharing in grid computing, Journal of Parallel and Distributed
Computing 70 (2) (2010) 111–125.
urce efficiency in data centers using reputation-based resource
.2012.03.001

34] L. Liu, H. Wang, X. Liu, X. Jin, W.B. He, Q.B. Wang, Y. Chen, Greencloud: a
new architecture for green data center, in: ICAC-INDST’09: Proceedings of
the 6th International Conference Industry Session on Autonomic Comput-
ing and Communications Industry Session, ACM, New York, NY, USA, 2009,
pp. 29–38.

dx.doi.org/10.1016/j.suscom.2012.03.001
http://ganglia.info/
http://wiki.apache.org/hadoop/
http://www.ebay.com/
http://www.gartner.com
http://www.wattsupmeters.com
http://www.thegreengrid.org
http://www.thegreengrid.org

 ING Model
S

g: Info

[

[

[

[

[

[

[

[

[

[

ARTICLEUSCOM-37; No. of Pages 13

T. Nguyen, W. Shi / Sustainable Computin

35] M. Parashar, S. Hariri, Autonomic computing: an overview, in: Proceedings
of the Intl Workshop on Unconventional Programming Paradigms (UPP’04),
Springer Berlin-Heidelberg, 2005, pp. 257–269.

36] R. Raman, M. Livny, M. Solomon, Matchmaking: distributed resource
management for high throughput computing, in: International
Symposium on High-Performance Distributed Computing, 1998,
p. 140.

37] X. Ren, S. Lee, R. Eigenmann, S. Bagchi, Prediction of resource availability in fine-
grained cycle sharing systems empirical evaluation, Journal of Grid Computing
5 (2007) 173–195, doi:10.1007/s10723-007-9077-5.

38] B. Schroeder, G.A. Gibson, Disk failures in the real world: what does an mttf
of 1,000,000 hours mean to you? in: Proc. of the 5th USENIX Conf. on File and
Storage Technologies, February 2007, pp. 1–9.

39] J. Sonnek, A. Chandra, J. Weissman, Adaptive reputation-based scheduling on
unreliable distributed infrastructures IEEE Transactions on Parallel and Dis-
tributed Systems 18 (11) (2007) 1551–1564.

40] J. Sonnek, J. Weissman, A quantitative comparison of reputation systems in
the grid, in: IEEE/ACM International Workshop on Grid Computing, 2005, pp.
242–249.

41] H. Wei, S. Ganguly, R. Izmailov, Z. Haas, Interference-aware ieee 802.16 wimax
mesh networks, in: Vehicular Technology Conference, VTC 2005-Spring, 2005
IEEE 61st, vol. 5, IEEE, 2005, pp. 3102–3106.

42] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, I. Stoica, Delay
scheduling: a simple technique for achieving locality and fairness in cluster
scheduling, in: EuroSys 2010, EuroSys, 2010.

43] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, Improving mapre-
Please cite this article in press as: T. Nguyen, W. Shi, Improving reso
selection, Sustain. Comput.: Inform. Syst. (2012), doi:10.1016/j.suscom

duce performance in heterogeneous environments, in: Proceedings of the 8th
Symposium on Operating Systems Design and Implementation, USENIX Asso-
ciation, OSDI, San Diego, CA, 12/2008, 2008, pp. 29–42.

44] C.W. Zhifeng Yu, W. Shi, Failure-aware workflow scheduling in cluster envi-
ronments, Cluster Computing Journal 13 (2010) 421–434.
 PRESS
rmatics and Systems xxx (2012) xxx–xxx 13

Tung Nguyen is currently a Ph.D. candidate at Wayne
State University. He received his bachelor and mas-
ter degrees in computer science and engineering from
HoChiMinh City University of Technology, Vietnam in
2001 and 2006, respectively. His research interests
include Green Computing, Cloud Computing, Data Inten-
sive Computing, and application of Cloud Computing to
life science. He has published several papers in workshops,
conferences and journal in both Computer Science and
Bioinformatics such as OSDI, NPC, SUSCOM, BMC, Fron-
tiers Genetics, etc. He has also served as a peer reviewer
for many conferences such as euro-par, CollaborateCom,
etc. More information can be found on his homepage at

http://www.cs.wayne.edu/tung/ or with Google.

Dr. Weisong Shi is an associate professor of com-
puter science at Wayne State University. He received his
B.S. from Xidian University in 1995, and Ph.D. degree
from the Chinese Academy of Sciences in 2000, both in
Computer Engineering. His current research focuses on
computer systems, mobile and cloud computing. Dr. Shi
has published more than 100 peer reviewed journal and
conference papers. He is the author of the book “Per-
formance Optimization of Software Distributed Shared
Memory Systems” (High Education Press, 2004). He has
urce efficiency in data centers using reputation-based resource
.2012.03.001

served the program chairs and technical program commit-
tee members of several international conferences. He is a
recipient of the NSF CAREER award, one of 100 outstand-

ing Ph.D. dissertations (China) in 2002, Career Development Chair Award of Wayne
State University in 2009, and the “Best Paper Award” of ICWE’04 and IPDPS’05.

dx.doi.org/10.1016/j.suscom.2012.03.001
dx.doi.org/10.1007/s10723-007-9077-5
http://www.cs.wayne.edu/tung/

	Improving resource efficiency in data centers using reputation-based resource selection
	1 Introduction
	1.1 Resource inefficiency
	1.2 Our approach

	2 Background and related work
	2.1 Reputation computation
	2.2 Reputation-based scheduling

	3 Opera design
	3.1 Opera users
	3.2 Opera objectives and approach
	3.3 System architecture
	3.4 Assumptions

	4 Materialization and implementation
	4.1 Reputation calculation
	4.2 The selection criteria
	4.3 Hadoop modification
	4.4 Scalability and availability

	5 Performance evaluation
	5.1 Experiment setup
	5.1.1 Testbed
	5.1.2 Applications

	5.2 Metrics
	5.3 Heterogeneity analysis
	5.4 Improvements
	5.4.1 The heterogeneity
	5.4.2 The selection criteria
	5.4.3 Opera and LATE

	5.5 Effects of sampling rate
	5.6 Effects of the predictors
	5.7 Discussion

	6 Energy efficiency evaluation
	6.1 Energy of the cluster
	6.2 Energy of the network

	7 Conclusions
	Acknowledgements
	References

