
Score: A Sensor Core Framework for Cross-Layer Design

Safwan Al-Omari
somari@wayne.edu

Junzhao Du
dujunzhao@hotmail.com

Weisong Shi
weisong@wayne.edu

ABSTRACT
We present Score, a sensor core framework for cross-layer de-
sign in wireless sensor networks. Network components run-
ning in the context of Score have the ability to collaborate
without the need for pair-wise interfaces. This collaboration
promotes protocol optimization in the resource constrained
wireless sensor networks, a technique widely known as cross-
layer design. We also demonstrate the advantage of Score
through three example network components.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

1. MOTIVATION
The Internet protocol stack is widely known for its modu-

lar layered design, in which cross-layer interface is confined
to adjacent layers, where a higher layer uses services pro-
vided by the layer immediately beneath it in the stack. Re-
searchers think that this will not be the case in the future
wireless sensor network (WSN) communication stack due to
several reasons including limited energy supply, limited com-
putational power, and unreliable wireless communication [2,
4]. These limitations make the need for more optimal solu-
tions another primary requirement besides modularity. Pro-
tocol optimizations are usually possible by allowing layers to
collaborate more closely when performing their functions,
this technique is widely known as cross-layer design.

Typically, in cross-layer design, some pieces of informa-
tion at one layer are used to improve the performance of
another layer in the communication stack. For example, a
routing protocol can consider link quality provided by a link
quality service when selecting a path from a source to a des-
tination to improve end-to-end delivery rate. Likewise, a
topology management protocol can take advantage of the
node’s duty schedule maintained by the application to put
the node into a full sleep mode –when idle– and save en-
ergy. The former example represents a traditional top-down

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QShine’06,August 7-9, 2006, Waterloo, Ontario, Canada.
Copyright 2006 ACM ...$5.00.

Neighbor
Discovery &
Maintenance

Asymmetric-aware
Link Quality Service

Topology Discovery
Service

Sensor Core
(Score)

Trust
Model

Flooding protocol
(RAC)

Dependable
Routing Protocols

Neighbor
List

SLEEP

Operational
State

Figure 1: Score vision as a baby frog. Score is de-
picted as the body, neighbor discovery as the head,
terminals as different network components.

interface, while the latter represents an unusual bottom-up
interface. An effective cross-layer design framework should
allow for arbitrary interface between any two protocol com-
ponents, yet maintains enough degree of modularity among
the different communication stack components. In this pa-
per, we present Score, a framework to facilitate cross-layer
design and maintain network components modularity.

2. SCORE FRAMEWORK VISION
We envision Score as a framework that facilitates other

network components to collaborate in an arbitrary fash-
ion while maintaining a modular communication stack. As
a core module, Score provides other components with the
means to maintain and access the neighbor set and the op-
erational state, which are the fundamental pieces of infor-
mation that all the network components base their actions
and optimization. Fig. 1 depicts this vision as a baby frog.
The body represents Score module including the neighbor list
and the operational state. The head represents a neighbor
discovery component that maintains the neighbor list using
interfaces provided by Score. Each one of the bay frog termi-
nals represents a network component in the communication
stack that have access to the neighbor list and monitors the
operational state. Note that any interface between any of
the network components (i.e., terminals) has to go through
Score (i.e., the body). Arrows differentiate provider from

consumer services. For example, the topology discovery ser-
vice inserts parameters into Score, whereas, the dependable
routing read them out to perform dependable routing.

score

interface SCore{
 // Sequential Access Iterator commands
 command result_t first();
 command result_t next();
 event result_t nextDone(uint16_t neighborID);

 // Ramdom Access Iterator command
 command result_t seek(uint16_t n_id);
 event result_t seekDone(result_t success);

 // SCore Reader
 command result_t read(uint8_t *neighbor);
 event result_t readDone(uint8_t *neighbor);

 // SCore Writer
 command result_t write(uint8_t *neighbor);
 event result_t writeDone(result_t result);
}

Page 1

(a)
state

interface State{

 // To change the node's current state
 command result_t change(uint8_t newState)

 // Fired whenever the node's state changed
 event result_t changed(uint8_t newState);

}

Page 1

(b)

Figure 2: Score APIs, (a) neighbor set abstraction
API and (b) state interface.

3. SCORE FRAMEWORK FEATURES
Score provides three basic mechanisms and interfaces to

facilitate network components collaboration. First, a uni-
fied neighbor set abstraction. Second, a modular cross-layer
interface. Third, a cross-layer coordination mechanism.

3.1 Neighbor Set Abstraction API
Using Score access interface (Fig. 2(a)) a network compo-

nent can read or write any neighbor record simply by point-
ing at the required record and performing a read or a write.
Moving the pointer can be done in two ways, sequentially
using the first and next commands, or randomly using the
seek command (Fig. 2(a)). Following nesC/TinyOS philoso-
phy, Score provides split-phase operations to keep the sensor
node responsive to external events [3]. Score does not im-
pose any limitations and is not involved in deciding which
nodes are included in the neighbor set. In other words, Score
only provides the mechanism and not the policy. Refer to [1]
for an example neighbor discovery service implementation.

3.2 Cross-layer Interface
Score plays a significant role in decoupling network com-

ponents, by providing a mechanism for them to interface
and communicate without the need for pair-wise interfaces.
Score defines a global neighbor record structure, in this
structure, each network component is allocated a number of
bytes. The network components can use these bytes to anno-
tate the neighbors with useful information that other com-
ponents wish to access. For example, A trust network com-
ponent can rank the neighbors based on some trust criteria,
and annotate the neighbors with this value. Another com-
ponent, the routing protocol for example, can access these
trust values through Score and exclude untrussed neighbors
while building a routing tree.

To keep the Score access interface simple and general,
Score does not provide individual read and write commands
to read and write specific fields in the neighbor record, it
only supports reading and writing entire records. By doing
so, Score is not severely involved and dependent on a partic-
ular neighbor record structure, which we think can change
in different WSN applications. Reading and writing entire
records raises the need for Score to prevent network compo-
nents unintentionally or intentionally (malicious component
implementations) from overwriting each other’s information
in the neighbor record. Therefore, each network component
is assigned a writing mask, This mask (for short) is statically
defined in Score according to the current neighbor record
structure. Each time a network service writes a neighbor
record, Score will first apply the mask, on the new record,
which sets all the unrelated bits to zeros, and then per-
form a bit-wise OR operation with the old neighbor record.
The masking process does not only provide inter-protocol
overwrite protection, it also allows for multiple writers at
the same time with no need for inter-component synchro-
nization (each component writes its own bytes only in the
shared neighbor record).

3.3 Cross-layer Coordination
Score supports cross-layer coordination by maintaining a

sensor node operational state, this state (e.g., DISCOVERY,
BOOTED, SLEEP, and ACTIVE) describes the current sensor
node operational status. Each network protocol can react
in its own way when a new state is announced by Score.
For example, a neighbor discovery service will send neigh-
bor probing messages if the node state change to DISCOVERY

(a DISCOVERY state means there are no enough neighbors in
Score), while a routing service will hold its protocol mes-
sages as there are no enough neighbors to maintain a rout-
ing tree, and so save the precious node’s energy from being
wasted for nothing. Score provides a state interface (Shown
in Fig. 2(b)), which provides a command to change the
node’s current state and uses an event to announce state
changes. Any network component wishes to react to state
changes must provide implementation of the changed event,
in which the component can take the appropriate action.

4. CASE STUDIES
In this section we show some examples on network com-

ponents running in the context of Score and how these com-
ponents can interface through Score without the need for
pair-wise interfaces, to achieve better performance.

4.1 Topology Discovery Service
On its own, the topology discovery service does not map

into any of the OSI reference model layers and it represents a
typical network service that solely supports cross-layer de-
sign. Other traditional network layers, such as MAC and
routing layers, use the topology parameters maintained by
the topology discovery service in order to improve their per-
formance. In order to build and maintain these parameters,
the topology discovery service actively sends and receives
protocol messages, for example, neighboring nodes exchange
their neighbor lists to find communication redundancy and
freshness. At node x with neighbor list (NSx), communica-
tion redundancy and freshness are defined for each node (y ∈
NSx) as the cardinality of (NSx ∩NSy), and (NSy \NSx)
respectively. Fig. 3 shows two nodes x and y with their re-

X
R

Y
R

4

3

5

1

2

Redundant
node

Fresh
node

Figure 3: Several nodes with their respective com-
munication ranges (R) are shown. X has a commu-
nication redundancy and freshness values of 2 and 3
with node Y respectively. Nodes 1 and 2 are redun-
dant, while nodes 3 , 4, and 5 are fresh.

spective communication ranges and neighbor lists. Node x
has a communication redundancy and freshness of 2 and 3
respectively with node y. Fig 4 shows the skeleton of the
topology discovery service in Score.

4.2 Redundancy-Aware Controlled Flooding
The topology discovery network component acts as a ser-

vice provider in Score. To complete the picture, we present
a controlled flooding network component that acts as a con-
sumer service in Score, we refer to this component as Redundancy-
Aware Controlled flooding (denoted as RAC). RAC ex-
ploits topology redundancy information provided by the topol-
ogy discovery service in order to reduce the total number of
transmissions required to disseminate a data message.

In a basic flooding protocol (denoted as Blind), the sink
starts the process by broadcasting the message to its neigh-
bors, which in their turn, re-broadcast the message again.
The broadcast/re-broadcast process is repeated recursively
until all the nodes in the network receives the message. Mak-
ing all the receiving nodes to re-broadcast results in many
unnecessary transmissions. In contrast, among the receiving
nodes in RAC, only the node that has the least communica-
tion redundancy with the sender re-broadcasts the message.
This increases the chance that the data message will reach
more nodes that have never seen the message before, and so,
reduces the required number of transmissions overall. We
also compare RAC to Random Controlled flooding proto-
col (denoted as RC), in which, the forwarder node is chosen
randomly. We refer to RAC and RC together as controlled
flooding protocols.

4.2.1 Controlled flooding protocols
Based on who (i.e., sender versus receivers) decide(s) the

node that should re-broadcast a message, we can differenti-
ate two approaches to controlled flooding (i.e., sender-based
and receiver-based). In sender-based flooding, the sender
node chooses the node that should pick up the flooding
process, while in the receiver-based flooding, receiver nodes
decide among themselves a single node to pickup the flood-
ing.

The sender-based controlled flooding approach maintains
a single thread of flooding in the network at any time, which
potentially keeps the total number of transmissions as low as
possible. However, if the selected node to re-broadcast has

module TopologyDiscoveryM{
 uses interface Score;
 ...
}
implementation{
 // pointer to the current neighbor record
 NeighborRecordPtr p;
 int16_t redundancy, freshness;
 ...
 event TOS_MsgPtr Receive.receive(TOS_MsgPtr m){
 // Receive message from y and
 // save neighbor list into NS(y)
 ...
 // Start calculating redundancy and freshness
 Score.first()
 }
 event result_t nextDone(uint16_t neigborID){
 // Got the next neighbor in my neighbor list
 ...
 for all e in NS(y){
 if (e == neighborID)
 redundancy++;
 }
 // move to next neighbor in my neighbor list
 if (!call Score.next()){
 // end of neighbor list, then find freshness
 freshness = |NS(y)| - redundancy;
 //put the pointer at y's record
 call Score.seek(y);
 }
 }
 event result_t seekDone(result_t suc){
 // update values of y's record
 p->redundancy = redundancy;
 p->freshness = freshness;
 call Score.write(p);
 ...
 }
}

Figure 4: Topology discovery skeleton implementa-
tion in Score. Upon receiving a neighbor list from
node y, current node loops over the neighbor set us-
ing Score and calculates communication redundancy
and freshness. Finally, current node updates rele-
vant bytes in y’s neighbor record.

already seen a copy of the message, it will not be interested
to re-broadcast, and therefore, the only thread of flooding
will vanish leaving some nodes in the network unaware of
the message. Therefore, sender-based approach does not
provide enough guarantee that all nodes get the message.

After receiving a message in the receiver-based controlled
flooding approach, each one of the receiver nodes backs off
for a specific amount of time before re-broadcasting. During
the back off period, a node suppresses its transmission once
the node gets another copy of the message from another
node in the vicinity. It is clear that several flooding threads
may exist in the network at the same time; however, this
approach makes sure that at least one node eventually picks
up the flooding process and so, all nodes in the network get
at least one copy of the message. The remaining question
is how the receiver nodes calculate their back off time? this
is where we differentiate RAC from RC. In RAC, each
receiver node sets the back off time proportionally to its
communication redundancy with the sender node, so that
receiver nodes with least communication redundancy with
the sender re-broadcast first, as a result, more new nodes get
the message. In RC, back off times are chosen randomly.

4.2.2 Simulation Setup and Evaluation
We implement Blind, RC, and RAC using Score, Fig. 6

shows the skeleton of RAC implementation. Note that
RAC has access to the communication redundancy infor-

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Total number of transmissions

(%
)

N
od

es
 r

ec
ei

ve
d

fr
es

h
m

es
sa

ge

Blind
RC
RAC

Figure 5: Comparing the performance of Blind,
RAC, and RC protocols.

mation through Score Access interface. To show the ulti-
mate advantage of RAC cross-layer design, we compare its
performance to that of Blind and RC protocols in terms of
the number of nodes that receive a fresh message copy for
each message transmission per flooded message.

Using each flooding protocol, we disseminate 100 messages
from the sink in a wireless network of 300 nodes distributed
randomly over a (100x100) units squared sensor field. The
nodes’ nominal communication range is 15 units. We take
average over the 100 message floodings and present the data
in Fig. 5. The Figure shows the cumulative number of fresh
messages received, shown as the y-axis, for each message
transmission in the network, shown as the x-axis. We ob-
serve two important results. First, RAC outperforms RC
and Blind as for each transmission, there are always some
nodes that receive the message for the first time (i.e., the
line consistently increasing), while, in RC and Blind, many
transmissions are useless, shown when the line moves hor-
izontally. Second, RAC requires around 70 transmissions
in total to disseminate a message compared to over 150 and
300 for RC and Blind respectively.

4.3 Link Quality Service
As another example on a service provider in Score, we

present asymmetry-aware link quality service. This compo-
nent basically measures and estimates the packet reception
rate with the neighbors and the timelessness link quality in-
formation and annotates the corresponding neighbor records
for other components in Score.

In lossy wireless sensor network, if a node, A, can receive
packets from a neighbor, B, node B will be identified as an
inbound neighbor of node A. If node A can send packets to
a neighbor, C, node C should be identified as an outbound
neighbor of node A. However, to identify node C as its out-
bound neighbor, node A should receive acknowledgement
from node C. Due to asymmetric links, if node A can not
receive acknowledgement from node C, then node A can not
identify node C as its outbound neighbor. Furthermore, the
link quality, in term of packet reception rate, from node A
to node B is different from that from node B to node A.
Therefore, every node should distinguish inbound neighbors
and outbound neighbors.

This service makes use of the combination of active prob-
ing and passive listening techniques to measure the link qual-
ity. Passive listening technique intercepts incoming mes-

module RACM{
 uses interface Score;
 ...
}
implementation{
 // pointer to the current neighbor record
 NeighborRecordPtr p;
 ...
 event TOS_MsgPtr Receive.receive(TOS_MsgPtr m){
 // Receive message m from y
 if (m is never been received before){
 // use Score to find out redundancy with y
 //and use it as backoff time
 call Score.seek(y)
 }else{// need to suppress forwarding
 call BackoffTimer.stop();
 }
 }
 event result_t seekDone(result_t suc){
 // y’s record is found, read record to find
 // redundancy with y
 call Score.read_full_record(p);
 ...
 }
 event result_t read_full_record(p){
 // backoff proportionally to redundancy
 call BackoffTimer.start(p->redundancy);
 }
 event result_t BackoffTimer.fired(){
 // re-broadcast the m
 }
}

Figure 6: RAC skeleton implementation in Score.
Upon receiving a message, current nodes finds re-
dundancy with the sender and backoff accordingly.

sages to update the measurement results and the estimated
link quality to outbound neighbors. Active Probing sends
link quality measurement messages to probe the neighbor-
hood and the estimated link quality for the inbound neigh-
bors. It leverages Window Mean Exponentially Weighted
Moving Average Estimator (WMEWMA) to estimate the
link quality based on current and history measured results.
WMEWMA uses a time window to observe the received
packet and it adjusts the estimation result using latest av-
erage value of packet reception rate.

The asymmetry-aware link quality service can be lever-
aged by several higher-level protocols. For example, a rout-
ing protocol could consider the link quality of neighbors
when building a routing tree to improve delivery rate. A
MAC protocol, on the other hand, could treat inbound and
outbound neighbors differently.

5. REFERENCES
[1] S. Al-Omari and W. Shi. Rat: Redundancy-aware

topology control in wireless sensor networks. Technical
Report MIST-TR-2005-012, Wayne State University,
Nov. 2005.

[2] M. Chiang. To layer or not to layer: Balancing
transport and physical layers in wireless multihop
networks. In Proc. of INFOCOM’04, Mar. 2004.

[3] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to
networked embedded systems. In Proc. of PLDI’03,
June 2003.

[4] U. Kozat, I. Koutsopoulos, and L. Tassiulas. A
framework for cross-layer design of energy-efficient
communication with qos provisioning in multi-hop
wireless networks. In Proc. of INFOCOM’04, Mar.
2004.

