
Availability Modeling and Analysis of Autonomous In-Door WSNs

Safwan Al-Omari and Weisong Shi
Wayne State University

{somari, weisong}@wayne.edu

Abstract

Availability analysis and modeling in autonomous and
remotely administered systems composed of cheap and
failure-prone components is vital to redundancy man-
agement including the prediction of the required num-
ber of components and the way these components are
scheduledONand OFF. Targeting the application of
Wireless Sensor Networks (WSN) for the monitoring of
elder people living in their apartments, we use tech-
niques from reliability theory to model the WSN as a
κ-out-of-m system with independent components. In
addition to predicting the required node redundancy to
meet desired availability behavior early in the plan-
ning phase, we use our modeling to show that schedul-
ing these nodesON and OFF later on in the opera-
tional phase does indeed improve the availability be-
havior over the entire system lifetime. To validate our
model, we design and implement a simulator using
nesC/TOSSIM, a well-known simulator for WSN.

1. Introduction

Node redundancy has been shown useful in extend-
ing the lifetime of WSNs from the power consumption
point of view, in this paper we show that redundancy is
also a useful technique to extend the lifetime of WSNs
from the reliability point of view. By lifetime, we mean
the expected lifetime of the WSN given its reliability
function.

By reliability we mean the probability that the
WSNs lifetime will extend beyond some value (t) given
a specific failure model of individual sensor nodes. The
remaining question is how to manage this redundancy
(how to schedule nodes on and off).

We prefer to use redundancy management rather
than topology management to refer to the node schedul-
ing process, since in our problem setup the topology is
fixed.

Fixed topology in which a sensor nodes are pre-
associated with a cluster head is proven successful as

discussed in (cite Tenet paper).
Managing node redundancy is a vital factor of the

overall WSNs performance from the reliability point of
view. Making all the nodes to stay active from the be-
ginning does not achieve the best reliability possible.

WSN applications are envisioned to operate for
long period of times without close maintenance and su-
pervision, this makes modeling and predicting WSN
availability and reliability a very important issue, first,
in planning the deployment of sensor nodes and, sec-
ond, controlling the way these nodes are turned on and
off later on.

Self-management WSN has been stressed by many
people due to the infeasibility of human intervention
and replacement of individual nodes.

In order to enable the WSN to perform self-
management and recover from node failures, sensor
node redundancy is a key factor.

1.1. Motivation

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compare scheme1 and scheme2 scheduling

t (cluster lifetime in hrs)

r(
t)

 =
 P

r{
lif

et
im

e
>

 t}

No schduling

Queue scheduling

Figure 1. Comparing cluster reliability under
All active and Queue scheduling.

As shown in Fig. 1, dividing the nodes into groups
of κ nodes each and making these groups to become
active in a queue like schedule exhibits more desirable

availability behavior over the system lifetime than mak-
ing all the nodes to become active since the beginning.
We differentiate four aspects to describe the more de-
sirable behavior. First, queue-like scheduling exhibits
higher average availability, which means that at an arbi-
trary time, queue-like scheduling has higher probability
that the system will be available on average. Second,
queue-like scheduling exhibits higher minimum avail-
ability. Third, queue-like scheduling results in higher
expected total uptime, which means that the expected
total time in which the system will be available is larger.
Fourth, queue-like scheduling exhibits less variation in
the system’s availability at different stages of the sys-
tem lifetime, in other words, the system is more stable.
In mission-critical systems it is undesirable to have a
highly available system in an early stage, while having
poor availability in a later stage of the system lifetime
as theno schedulingscheme does.

2. Application Context and Background

It is expected that Adults age 65 years and older
will account for more than 20% of the U.S population
by the year 2050. Despite several initiatives, the num-
bers of elders with one or more physical disabilities due
to lack of tools to monitor the elders’ physical activi-
ties, who are livening in their apartments, is still on the
rise [].

In this paper, we target the use of Wireless Sensor
Networks (WSN) for the monitoring of elder people liv-
ing in their own apartments. In this application, sensor
nodes are deployed in each room to allow for remote
and non-obtrusive monitoring and detection of any life-
threatening accidents such as falling of elder people.

There are several unique requirements of the ap-
plication and unprecedented limitations and features of
WSN technology that mandate novel approach to net-
work management. First, remote administration and
unattended WSN operation, which brings in the need
for autonomous, self-managing, and self-healing capa-
bilities. Second, events that need to be detected tend
to have short time duration (e.g., falling), which makes
availability to take precedence over reliability. By avail-
ability, we mean the probability that the WSN will be
functioning at any point of time, whereas, reliability
means the probability of having longer continues and
uninterrupted operation time duration. In this applica-
tion, high availability of the WSN is very important to
detect potential events, however, high reliability is not.
Third, fixed topology since nodes that are deployed in
the same room can be considered to form one cluster,
in which any node is able to do what any other node
can do. Fourth, mild operational environment, which

makes usage-based sensor node failure model a very
reasonable assumption. Fifth, Wireless sensor nodes
are envisioned as power-limited, resource-limited, and
failure-prone devices [?], however, these sensor nodes
are expected to be very cheap, which makes it feasi-
ble to deploy them in large numbers. These characteris-
tics make the use of node redundancy to overcome these
limitations an attractive solution [1, 4,?, 5].

Designing systems that are highly available on one
hand, and autonomous and self-healing on the other
hand, puts more demand on developing tools and sys-
tem models that capture node failure behavior and fa-
cilitate the prediction of the required number of nodes
that are needed to empower the system to withstand fail-
ures and maintain availability and autonomy. In other
words, an autonomous system should be designed to
sustain failures on its own without external intervention.
Therefore, we focus in this paper at developing analyt-
ical models to help answer two fundamental questions:
how many nodes are required and the way these nodes
should be scheduled to obtain best availability behavior
in terms of either minimum availability, average avail-
ability, expected total uptime, or stability. Rather than
using the term topology management as in previous re-
search [], we refer to these two problems as redundancy
management as the topology aspect in this application
does not have primal effect as the topology is fixed.

We can differentiate two types of node failure mod-
els; deployment-based and usage-based. The latter ac-
counts for failures due to normal wear and tear and so
the probability of failure is related to the time the node
spent inONmode. Whereas, the former accounts for
harsh environmental conditions and so once the nodes
are deployed they become susceptible to the same fail-
ure probability regardless whether the node isONor
OFF. In our in-door application, it is more reasonable
to employ usage-based failure model to mimic real-life
sensor node failure behavior.

We assume that all the sensor nodes have similar
initial power and perform similar workload, which en-
able them to function for an identical maximum period
of time Tmax. We further assume that all the nodes in-
dependently follow the same failure model and once a
node fails, it never becomes available again (i.e., fail
stop).

3. Problem Setup

The sole purpose of our work is to model the avail-
ability of the sensor cluster (denoted asA(t)) in terms of
the availability of the underlying components (denoted
as ai(t)) under two scheduling schemes;no schedul-
ing andqueue schedulingschemes, formalize the re-

dundancy management problems in each scheduling
scheme, and finally to compare their performance in
terms of either minimum availability, average availabil-
ity, stability, or expected total uptime. We use tech-
niques from reliability theory [] to develop these analyt-
ical models and to formalize and solve the redundancy
management problems. We consider the sensor nodes
of each room to form one cluster, out of which at least
κ sensor nodes have to be available in order to have an
available cluster.κ sensor nodes are needed instead of
only one node to rule out sensor reading errors due to
faulty sensors and noisy environment []. Deciding the
value ofκ is out the scope of this work and is consid-
ered as input to our model. We usem to represent the
number of nodes in each cluster. Basically, we model
the availability of the system as aκ-out-of-m system.
In the rest of the paper, we use the terms system and
cluster interchangeably.

We formally define our performance metrics as fol-
lows. Minimum availability (denoted as minA(t)) is de-

fined as minTmax
t=0 A(t). Average availability (denoted as

avgA(t)) is defined as∑Tmax
t=0 A(t)
Tmax+1 . Stability (denoted as

σA(t)) is defined as
√

1
Tmax+1 ∑t=Tmax

t=0 (A(t) − avgA(t))2.

Total uptime time and expected total uptime are de-
noted as U andE[U] respectively and their definitions
are given and explained in their corresponding schedul-
ing schemes.

The redundancy management problems have
slightly different settings in each scheduling scheme.
In the no schedulingscheme, all the nodes are made
ONsince the beginning and so, we are only left of find-
ing the required number of nodes (i.e.,m) to meet some
availability requirements (i.e., either minA(t), avgA(t),
σA(t), or E[U]). Whereas in thequeue scheduling
scheme, themnodes are divided into groups ofκ ′ nodes
each, and madeONin a queue-like manner, therefore,
we have two problems to solve. First, findm and cor-
respondingκ ′ to meet some availability requirements.
Second, givenm, find κ ′ that optimizes availability in
terms of either minA(t), avgA(t), σA(t), or E[U]. Note
that no schedulingscheme is indeed a special case of
thequeue schedulingscheme (i.e., makeκ ′ = 1), how-
ever, we prefer to model theno schedulingscheme sep-
arately for two reasons. First, modeling theno schedul-
ing scheme is easy as a classicalκ-out-of-m system.
Second, this scheme needs no scheduling management
at all, which makes the implementation different than
thequeue schedulingat the cluster head.

The first step toward building our models is to as-
sume a sensor node failure model. Typically, the life-
time of usage-based components is divided into three
periods, each with a different failure rate. First, an early

period that exhibits decreasing failure rate, these fail-
ures are due to design and manufacturing faults. Sec-
ond, a stable period known as the ’useful life’ that ex-
hibits a very low and stable failure rate. Third, a wear-
out period at the end of the component lifetime that ex-
hibits increasing failure rate, these failures are due to
normal tear and wear out.

A widely known and accepted approach to model
this behavior is to use a bathtub-shapedfailure rate
function, denoted as (λi(t)). λi(t) represents the con-
ditional probability intensity that nodei will fail in the
next moment, given that it has survived until timet
(i.e., λi(t) = Pr{Xi ∈ [t + dt]|Xi > t} = −Si(t)′

Si(t)
), where

X ∈ [0,Tmax] represents nodei lifetime and Si(t) is
known as the survival function and represents the un-
conditional probability that nodei has no failures by
time t and so survives beyond timet. It is known that
Si(t) = exp{−

∫ t
0 λ (τ)dτ} []

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

����� � � ���	�
���������

F
ai

lu
re

 r
at

e
h(

t)

������� ������������� �������

Figure 2. Comparing cluster reliability under
All active and Queue scheduling.

In this paper, we use a failure rate function pro-
posed lately in [].λi(t) and the correspondingSi(t) are
defined as follows:

λi(t) = ab(at)b−1 + (
a
b
)(at)

1
b−1 + h◦ (3.1)

Si(t) = exp{−(at)b − (at)
1
b − h◦t} (3.2)

Fig. ?? and Fig.?? depict λ (t) and Si(t) respec-
tively with assumed values fora, b, andh◦.

Based on our assumption that once a node dies it
never become available again (i.e., fail-stop), we may
think ofSi(t) as the availability of nodei at timet, which
equals toPr{node i is available at time t}.

4. Model

We use reliability theory to model availability of
the sensor cluster as a parallel system with independent

components (i.e., sensor nodes). The model answers
two fundamental questions. First, how many redundant
nodes (i.e.,m) are needed to meet desired availability
behavior (i.e., minA(t), avgA(t), σA(t), or E[U]). Second,
the model guides the process of scheduling these nodes
to achieve optimal average reliability or maximize the
minimum reliability and maximizing the expected life-
time.

We formally define these problems in the following
two sections.

4.1. No scheduling scheme

In this scheduling scheme, all the nodes become
ONsince the beginning. Therefore, we simply model
the availability of the cluster as a classicalκ-out-of-m
system. We say that the sensor cluster is available at
time t (i.e., Ano(t)) if and only if there exits at leastκ
nodes available at timet, put formally as follows:

Ano(t) =
m

∑
i=κ

(
m
i

)
ai(t)i · (1−ai(t))(m−i) (4.1)

Fig. ?? shows an Ano(t) with m = 12 and κ =
1,3, and 6.

To find textrmE[U], Note that the system as a
whole exhibits a fail-stop behavior following its fail-
stop components (i.e., sensor nodes). In other words,
once there are less thanκ sensor nodes available, the
system fails and never become available again. There-
fore,U is equivalent to a random variable representing
the time until first failure (denoted asτ) with Pr{τ >
t} = Ano(t). Note that the random variableτ ≥ 0, and
so the expected time until first failure and hence E[U]
can be defined as follows:

E[U] =
Tmax

∑
t=0

Ano(t) (4.2)

As there is no scheduling in this scheme (i.e., all
nodes areONall the time, we are left with one question
that hope the model to answer:

PROBLEM 1: GIVEN A VALUE OF κ , FIND LOW-
EST m NEEDED TO MEET EITHER minA(t), avgA(t),
σA(t), or E[U].

PROBLEM 1 is a simple optimization problem that
can be solved iteratively overmstarting withm= κ, in-
crementingm by one each time, and checking whether
the current value ofm meets the requirements (i.e.,
minA(t), avgA(t), σA(t), or E[U]).

To find minAno(t) for a givenm, simply substitute
(t = Tmax) in equation 4.1. Note thatAno(t) is con-
sistently decreasing with time as we can observe from
Fig. ??, hence,minAno(t) = Ano(Tmax). For avgA(t) and

σA(t), we simply follow the definition to calculate them
for a givenm value. From the definition of avgA(t) in

Section??, we get(Tmax+1) ·avgAno(t) = ∑Tmax
t=0 Ano(t),

by substituting in equation 4.2, we get:

E[U] = avgAno(t) · (Tmax+1) (4.3)

Thus, the value ofm needed to meet avgA(t) re-
quirement, is the samem that is needed to meet E[U].

4.2. Queue scheduling scheme

Unlike theno schedulingscheme,queue schedul-
ing divides them nodes intoη = m

κ ′ groups (denoted
asgi , wherei = 1, . . . ,η). Each group,gi , consists of
κ ′ nodes, where (κ ≤ κ ′ ≤ m). Given theseη groups,
the time is divided intoη epoches with equal periods
denoted as∆. Each groupgi is switchedON, in a queue-
like scheduling, at the beginning of its corresponding
epoch (denoted asεi).

Tmax

5κ’

τ3
∆

m=ηκ’

3κ’
κ’

g3 “on”

g5 “on”

gη “on”

° of “on”
nodes

τ2τ1 τη
ε1 ε2 ε3 εη

Figure 3.

Fig. 3 depicts a queue scheduling time line. The
x-axis represents time, while the y-axis represents the
total number ofONnodes shown as discrete values mul-
tiple of κ ′.

Perhaps the first thing that comes to mind when
trying to model the availability of queue scheduling
is the renewal process model []. Unfortunately, the
fact that renewals (i.e., bringing node groups (gi) ON),
are asynchronous to failures causes two major incom-
pliances with the classical renewal process model as-
sumptions. First, lack of instantaneous repair, in other
words, should the system fail during epochi (i.e.,
ηi), it will not be available until the beginning of the
next time epoch (i.e.,ηi+1). Recall that in our usage-
based failure model assumption??, nodes has to be in
SLEEPmode to avoid failures, which makes them un-
responsive to external events and therefore can not be
asked to become active in case of failures. On the other
hand, in un-attended and remotely administered WSNs,
human intervention is infeasible and violates the key
non-obtrusive application requirement. Second, non-
homogeneity of the availability probability distributions

during different time epoches, in other words,τi ran-
dom variables in Fig. 3 are not identically distributed.
non-homogeneity results from having different number
of ONnodes and even different groups being in different
times of their lifetime during different epoches.

In light of the above queue scheduling algorithm
complications, we use recursive numerical function to
model the system availability at an arbitrary time in-
stance (i.e.,AQ(t)). Let Q(t,e, i, p) be the probability
that there are exactlyi nodesONat timet, then:

AQ(t) =
κ ′·e

∑
i=κ

Q(t,e, i,1.0) , where

e= b t
∆
c+1

1. function result=Q(t, e, i, p)
2. t’ = t – (e - 1) * ∆
3. if (e == 1){ // base case
4. if (i > k’){
5. return 0 // no enough nodes to choose from
6. }
7. return * S(t’)i * (1 - S(t’))(k’- i) * p
8. }else{
9. minJ = max(0, i - (e - 1) * k’)
10. if (min > k’){
11. return 0 // no enough nodes to choose from
12. }
13. maxJ = min(i, k’)
14. tmpP = 0
15. for (j = minJ; j <= maxJ; j++){
16. current_p = p * * S(t’)j * (1 - S(t’))(k’ - j)

17. tmpP = tmpP + Q(t, e - 1, i - j, current_p)
18. }
19. return tmpP
20. }}

(i
k’)f

)(i
k’

k’()j

Figure 4.

The functionQ finds the probability of havingκ
nodes available out ofe groups each one consists of
κ ′ nodes by considering all possibleκ node combina-
tion out of thee node groups and summing their corre-
sponding probabilities. In line 2 of Fig. 4,t ′ represents
the current groupONtime. t ′ is used in lines 5 and 16
to find the availability probability of the current group
nodes using the survival function (i.e.,S(t ′)). At each
recursive call,

Line 7 of Fig. 4, which is the base case with a single
node group, marks the end of one possible node com-
bination in the recursive who’s probability is calculated
as the

Each recursive call inQ is equivalent to asking
PROBLEM 2: GIVEN κ , FIND LOWEST m AND

CORRESPONDING κ ′ NEEDED TO MEET EITHER

minAQ(t), avgAQ(t), OR E[U].
PROBLEM 3: GIVEN m AND κ , FIND κ ′ THAT

MAXIMIZES minAQ(t), avgAQ(t), OR E[U].

5. Simulation

We use TOSSIM simulator

5.1. simulation setup

To verify our modeling results, we build a simula-
tion in nesC/TOSSIM. nesC is a well-known program-
ming language for WSN applications and TOSSIM is a
simulator that can simulate nesC applications.

Fig. ??depicts an overview of the simulation com-
ponents and the way they interact. Fig.??(a) depicts a
cluster with acluster head, sensor nodes, simulation
clock on the left, and aglobal tracefile on the right.

The cluster head is aware of the total number of
nodes in the cluster (m) and the required number for a
functioning system (k). As we discussed earlier,m is
determined in the planning phase using the our model,
whereask is an input to the simulator and made avail-
able at the cluster head as a booting parameter. Upon
starting the simulation, the cluster head find the opti-
mal k′ (i.e., either formin[a(t)] or avg[a(t)]), divide the
m sensor nodes into groups and assign each a starting
time (i.e.αi relative the global simulation clock).

The global simulation clock in its turn is responsi-
ble to advance the simulation time (i.e.,T and to fire
an event (i.e., new hour) at the sensor nodes every time
unit. The global clock uses a TinyOSTimer to imple-
ment this. Simulation time starts at zero and ends at
Tmax.

Each sensor node is responsible to write two evens
on the global simulation trace,start time andfail time .
At the end of the simulation, we parse and analyze the
global trace to find our results.

As shown in Fig.??(b), each sensor node consists
of three major modules:local time, failure rate , and
top-level control modules. Thelocal time module acts
as a switch and keeps track of the node local time,
which advances only when the switch isON(i.e., node
is turned on).failure rate module simply implements
the failure rate function and decides whether the node
should fail in the next hour or not. Since the failure time
of the node is not decided at the beginning of the sim-
ulation, we use the failure rate function to calculate the
probability of failure, which represents the conditional
failure probability, rather than survival function. The
rand() function generates a value distributed uniformly
between zero and one. Once the a node fails, it writes

1 2 3 4 5 6 7 8 9 10
1

2
k=1

m

K
_

th
at

 m
ax

im
iz

es
 m

in
(r

)

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

11

K

K
_

th
at

 m
ax

im
iz

es
 m

in
(r

)

m = 10

1 2 3 4 5 6 7 8 9 10

1

2

m

K
_

th
at

 m
ax

im
iz

es
 a

ve
ra

ge
(r

)

k=1

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

11

k

K
_

th
at

 m
ax

im
iz

es
 A

vg
(r

)

m=10

its failure time on theglobal trace and turns thelocal
time switch backOFF. Since theglobal tracemaintains
global time,start time (i.e., αi) is added to the local
failure time before being written to theglobal trace.
The top control module simply writes down the start
time and turns thelocal time switch ONwhen global
simulation time equals its start time.

we simulate a single cluster with severalm andk
values.

0 15 30 45 60 75 90 105 120 135 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(t) node lifetime in hrs

no
de

 r
el

ia
bi

lit
y

=
 P

r{
lif

et
im

e
>

 t}

model
simulation, 20,000 runs

Figure 6. Comparing cluster reliability under
All active and Queue scheduling.

In Fig. 6, we show that our simulator can regener-
ate experimentally the same single node survival func-
tion (i.e.,S(t)) ??, which is very important to show the

validity of our system model later on. The x-axis repre-
sents time (t), y-axis represents single node availability
at time (t). We perform a thousand single-node sim-
ulation runs and record the failure times. Each point
represents the ratio of the number of runs in which the
node was available to the total number of runs at timet.
We can notice an excellent match.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compare scheme1 and scheme2 scheduling

t (cluster lifetime in hrs)

r(
t)

 =
 P

r{
lif

et
im

e
>

 t}

No sched, model
Queue sched, model
No sched, simulation
Que sched, simulation

Figure 7. Comparing cluster reliability under
All active and Queue scheduling.

In Fig. 7 we move on to validate our simula-
tor against the two scheduling scheme models, theno
scheduling scheme model?? and Queue scheduling
scheme mode??. As in Fig. 6, x-axis represents time,

G
lo

ba
l s

im
ul

at
io

n
tim

e
cluster
head

find k’
assign

start time

m, k

T

α1sensor
node 1 sensor

node m

T

αm

start/fail time

T & T=αi : w(T)

T & T≠ αi

T & r ≥ λ(ti): ti ++

T & r < λ(ti) :
w(T)

Initial state

FAIL

Final state
r : random value in [0,1]
w: write to trace file
T : simulation timeti : local time

ON

OFF
ti = 0 T

(a) (b)

Figure 5.

y-axis represents the availability of the system. For each
scheduling scheme we perform a thousand runs, record
single-node failure times, and calculate system avail-
ability at timet as the ratio of runs in which more than
κ nodes are available, at timet, to the total number of
runs (i.e., 1000 runs). There are two important observa-
tions that need further explanation. First, the mismatch
between the model and the simulator is larger than that
of the single node scenario, Fig. 6. Second, the mis-
match in theNo schedulingscheme is larger than that
of Queue schedulingscheme. Larger mismatch in both
cases is due to the same reason, which is mismatch ac-
cumulation resulted from the several nodes in the sys-
tem. This is easy to understand in the first case. In the
second scenario, note that the number of nodes that are
turnedONin the no schedulingscheme is larger than
that of thequeue schedulingscheme, which results in
larger mismatch accumulation. This explanation is also
supported by the observation that mismatch becomes
greater as more and more nodes are turnedONas time
passes in thequeue scheduling.

6. Evaluation

We validate our model results through simula-
tion. Furthermore, We show the advantage ofQueue
schedulingscheme over theNo schedulingscheme in
terms of four performance metrics.

We compare the performance ofno schedulingand
queue schedulingschemes in terms of minimum avail-
ability, average availability, stability, and expected total
uptime as node redundancy increases. We show that
queue schedulingindeed exhibits better node redun-
dancy leverage. We control node redundancy by chang-
ing bothm andκ. For thequeue schedulingscheme,
κ ′ is chosen to optimize the corresponding performance
metric under study.

Fig. 8 shows analytical as well as experimen-
tal minimum availability comparison results asm in-
creases, Fig. 8(a), and asκ increases, Fig. 8(b). Analyt-
ically, we discussed how to obtain minimum availabil-
ity in Section??. Experimentally, we perform a thou-
sand runs for eachmandκ values, calculate the system
availability as we did in Fig. 7 for allt ∈ [0,Tmax], and
finally find corresponding minimum availability. We
can observe thatqueue schedulingexhibits consistent
and larger increase in the minimum availability com-
pared tono scheduling. Also, note that asm andκ get
closer (i.e., less redundancy), the performance ofqueue
schedulingandno schedulingbecomes closer, which
is simply becausequeue schedulingconverges tono
scheduling. In other words, ifm andκ are the same,
the only way to schedule the nodes is to make all of
themONsince the beginning, which is the same asno
scheduling.

Like in Fig. 8, in Fig. 9 we perform a thousand runs
for eachm andκ values, calculate the system availabil-
ity as we did in Fig. 7, and finally find corresponding av-
erage availability overt ∈ [0,Tmax]. Again, we observe
that queue schedulingoutperformsno scheduling, in
particular for high node redundancy.

In Fig. 10, we move on to compareno schedul-
ing andqueue schedulingin terms of stability. As we
mentioned, we use standard deviation as a measure of
stability (i.e., y-axis), note that unlike Fig 9 and Fig. 8,
lower values on the y-axis means better stability. Again,
we observe better stability in case ofqueue schedul-
ing, furthermore, we observe thatqueue scheduling
achieves better and better stability as redundancy in-
creases, whereas,no schedulingkeeps on getting worse
stability as redundancy increases.

7. Related Work

Sensor node redundancy and node scheduling have
been extensively studied in the wireless sensor network
research community [1, 2, 3, 6]. The basic idea in their
work is to use node redundancy and scheduling pri-
marily to work around the battery lifetime limitation
of the sensor nodes and extend the network lifetime
while maintaining coverage and connectivity. Our work
complements their work by adding a new dimension
(i.e., availability) in the node redundancy and schedul-
ing protocols design space and exploring more sensor
node failure models, namely usage-based, in addition
to the trivial running-out-of-battery sensor node failure.
Furthermore, coverage and connectivity are minor ob-
jectives when performing the node scheduling process
in our application as all the nodes in the same cluster
can communicate directly to the cluster head and can
provide the same coverage. This setting has been also
supported in the latest wireless sensor network architec-
ture (i.e., Tenet) proposed in []. The authors in [] argue,
based on their experience with real-life deployments,
that the WSN should be arranged into clusters with pre-
determined cluster head, which makes our modeling
analysis even applicable in more application contexts.

DADA [], the authors proposes two adaptive sleep-
ing schedules of redundant nodes based on both appli-
cation demand and network conditions. The primary
goal of their work is the association of coverage and
routing backup sets with each active node, these sets
are made active regularly to take over in case an ac-
tive node failure is detected. They considered two node
failure modes; aging failure model and catastrophic
event failure model which correspond to our usage-
based and deployment-based failure models. Our work
differs from theirs in two aspects. First, they adopt
a re-active failure detection and recovery approach in
contrast to our pro-active approach, in which we op-
timize for the best possible scheduling scheme in ad-
vance given a specific failure model. Second, we tried
to solve a more fundamental problem, which is pre-
dicting the required node redundancy to reach a desired
fault tolerance behavior, using our analytical model. In
a sense, their adaptive scheduling protocol can be inte-
grated in our solution framework, which may result in
more efficient scheduling schemes in different applica-
tion contexts. PEAS, proposed in [?], leverages node
redundancy and scheduling to overcome harsh deploy-
ment environments, which causes frequent node fail-
ures, in other words, they target deployment-based fail-
ure model. Like DADA [], their approach is re-active in
contrast to our pro-active approach.

Autonomous WSN and self-*

Reliability and Availability

8. Conclusion

Address assumptions
Our model can be easily adapted to incorporate any

sensor node failure model. (lack of real deployment
failure trace).

Usage-based failure model and how it can be
adapted to deployment-based failure model.

References

[1] Alberto Cerpa and Deborah Estrin. Ascent: Adaptive
self-configuring sensor networks topologies.IEEE Trans-
actions on Mobile Computing Special Issue on Mission-
Oriented Sensor Networks, 3(3), July-September 2004.

[2] B. Chen, K. Jamieson, H. Balakrishnan, and R. Mor-
ris. SPAN: An energy-efficient coordination algorithm
for topology maintenance in ad-hoc wireless networks. In
Proc. of MobiCom’01, July 2001.

[3] W. Steven Conner, Jasmeet Chhabra, Mark Yarvis, and
Lakshman Krishnamurthy. Experimental evaluation of
synchronization and topology control for in-building sen-
sor network applications. InProc. of WSNA’03, 2003.

[4] R. H. Katz, J. M. Kahn, and K. J. Pister. Mobile net-
working for smart dust. InProceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Comput-
ing and Networking (MobiCom’99), Seattle, WA, August
1999.

[5] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Proto-
cols for self-organization of a wireless sensor network.
IEEE Personal Communications, 7(5):16–27, October
2000.

[6] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed
energy conservation for ad hoc routing. InProc. of Mobi-
Com’01, July 2001.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Min reliability over the entire lifetime as m increases. k=1

m (total number of nodes)

M
in

 R
el

ia
bi

lit
y

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Min reliability over the entire lifetime as K increases. m=10

K (required number of functioning nodes)

M
in

 R
el

ia
bi

lit
y

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) (b)

Figure 8. Comparing min cluster availability under no scheduling and queue scheduling, (a) as m
increases, (b) as κ increases.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average reliability over the entire lifetime as m increases. k=1

m (total number of nodes)

A
ve

ra
ge

 R
el

ia
bi

lit
y

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average reliability over the entire lifetime as K increases. m=10

K (required number of functioning nodes)

A
ve

ra
ge

 R
el

ia
bi

lit
y

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) (b)

Figure 9. Comparing average cluster availability under no scheduling and queue scheduling, (a) as
m increases, (b) as κ increases.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Standard deviation of reliability over the entire lifetime as m increases. κ =1

m (total number of nodes)

st
ab

ili
ty

 (σ
(A

x(t
))

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average reliability over the entire lifetime as κ increases. m=10

κ (required number of functioning nodes)

st
ab

ili
ty

 (σ
(A

x(t
))

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) (b)

Figure 10. Comparing stability of cluster availability under no scheduling and queue scheduling, (a)
as m increases, (b) as κ increases.

1 2 3 4 5 6 7 8 9 10
0

15

30

45

60

75

90

105

120

135

150
Average reliability over the entire lifetime as m increases. k=1

m (total number of nodes)

E
xp

ec
te

d
lif

et
im

e

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4 5
0

50

100

150
Average reliability over the entire lifetime as K increases. m=10

K (required number of functioning nodes)

E
xp

ec
te

d
lif

et
im

e
in

 h
ou

rs
No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) (b)

Figure 11. Comparing expected total uptime of the cluster under no scheduling and queue schedul-
ing, (a) as m increases, (b) as κ increases.

