
PETRA: TOWARD DEPENDABLE AND AUTONOMIC NETWORKED SENSOR
SYSTEMS

by

SAFWAN AL-OMARI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2008

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

c©COPYRIGHT BY

Safwan Al-Omari

2008

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank all of the people whose inspiration, support and continuous encouragement

help me reach the finish line of this long and tough journey. My advisor, Dr. Weisong Shi, is at the

top of this list. He always act as a live example of a consistent, hard-working, and optimistic leader

whose support and guidance inspired me to overcome all of the difficult times. I would like also to

thank all of the committee members, Dr. Loren Schwiebert, Dr. Hongwei Zhang, and Dr. Nabil

Sarhan, for their constructive discussion and criticism. Special thanks to my youngest brother Raja

for his helpful occasional research discussions. My sincere thanks also to my MIST Lab fellow

members and alumni, Kewei, Sean, Harry, James, Junzhao, Yong, Zhifeng, Brandon, Tung, Hui,

Chenjia, Kevin, and all of the other new members, whose discussions and input helped me refine

and articulate my thoughts and ideas. I am also thankful to the support and help of our collaborators

from the Department of Civil Engineering, Dr. Carol Miller and Tim.

Finally, I would like to convey my endless appreciation of my parents, to whom I will be always

in debt for their inspiration, help, and support. I would like also to thank my wife for her continuous

support, Amr and Jad (my kids) from whom I will always find inspiration and energy.

ii

TABLE OF CONTENTS

Chapter Page

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 Introduction . 1

1.1 WSN Dependability . 3

1.2 System Support . 4

1.3 Contribution . 5

1.4 Organization . 6

CHAPTER 2 Background . 8

2.1 Overview of Wireless Sensor Networks . 8

2.2 Node Scheduling Protocols . 10

2.2.1 Node scheduling algorithm details . 11

2.2.2 Other work related to node scheduling . 24

2.3 Reliability Theory . 25

CHAPTER 3 Target Applications . 28

3.1 Environmental Monitoring . 28

iii

3.2 SAIL: Sensor-Assisted Independent Living . 29

3.3 Bridge Scour . 31

3.4 Summary . 32

CHAPTER 4 Highly Available and Low Cost WSNs . 34

4.1 Introduction . 35

4.2 Deployment Problem . 37

4.3 Model . 39

4.3.1 WSN structure . 39

4.3.2 Node failure model . 40

4.3.3 Incremental deployment and cost ratio . 41

4.3.4 Availability and cost model . 42

4.3.5 User requirement . 44

4.4 Pro-active Strategy . 44

4.4.1 Optimization . 48

4.4.2 Cost-benefit analysis . 51

4.5 Ad-hoc deployment strategies . 53

4.5.1 At-front deployment strategy . 53

4.5.2 On-demand deployment strategy . 54

4.6 Simulation and Evaluation . 55

4.6.1 Performance metrics . 55

4.6.2 Simulation setup . 55

4.6.3 Evaluation results . 58

4.7 Related Work . 63
iv

4.8 Summary . 64

CHAPTER 5 Modeling the Availability of Autonomous In-door WSN 65

5.1 Introduction . 65

5.1.1 Motivation of Node Scheduling . 66

5.1.2 Our Contribution . 67

5.2 Application Context and Background . 68

5.3 Problem Statement and Metrics . 69

5.4 Availability Modeling . 72

5.4.1 The No Scheduling Scheme . 72

5.4.2 Queue Scheduling Scheme . 73

5.5 Simulation and Evaluation . 78

5.5.1 Simulation Setup . 78

5.5.2 Model Verification . 80

5.5.3 Evaluation Results . 81

5.6 Related Work . 84

5.7 Summary . 85

CHAPTER 6 Failure Analysis . 87

6.1 Sensing System Setup . 87

6.2 Failure Analysis . 88

6.2.1 Methodology . 89

6.2.2 Failure Analysis by Type . 90

6.2.3 Failure Analysis by Location . 92

v

6.2.4 Summary and Implications . 93

6.3 Related Work . 93

6.4 Summary . 94

CHAPTER 7 Systems support . 95

7.1 Score . 95

7.1.1 Score Framework Vision . 96

7.1.2 Score Framework Features . 98

7.2 Neighbor Discovery Service . 99

7.2.1 Active Probing . 100

7.2.2 Passive Listening . 101

7.3 Topology Discovery Service . 101

7.3.1 The Topology Discovery Service in the Score Framework 102

7.3.2 Topology Parameters . 103

7.4 Redundancy-Aware Controlled Flooding . 106

7.4.1 Controlled Flooding Protocols . 107

7.4.2 Simulation Setup and Evaluation . 108

7.5 Routing In Irregular Topologies . 109

7.5.1 Network Model . 110

7.5.2 MAC Protocol . 111

7.5.3 DA-GPSR . 112

7.5.4 Evaluation . 113

7.6 Related Work . 119

7.7 Summary . 120
vi

CHAPTER 8 Redundancy-Aware Topology Management in Environmental Monitoring . 121

8.1 Introduction . 121

8.2 RAT Algorithm Design . 123

8.2.1 Basic Definitions and Notations . 123

8.2.2 Example Scenario . 125

8.2.3 Redundancy-Aware Topology Management (RAT) 125

8.3 Implementation Details . 128

8.3.1 Building Shared Neighbor Sets . 128

8.4 Evaluation . 129

8.4.1 Evaluation Setup and Metrics . 129

8.4.2 Simulation Results . 130

8.5 Related Work and Discussion . 136

8.6 Summary . 137

CHAPTER 9 Conclusion and Future Work . 138

Appendix A Publication List . 140

A.1 Published . 140

A.2 Under Submission . 141

REFERENCES . 142

AUTOBIOGRAPHICAL STATEMENT . 156

vii

LIST OF TABLES

Table Page

2.1 Comparing node scheduling protocols. n is the average number of neighbors in a

single-hop communication range. 23

4.1 The tuning parameters of different evaluation scenarios. 60

6.1 Failure types and their description. 90

viii

LIST OF FIGURES

Figure Page

2.1 Virtual Grid Example: node 2 and node 5 can communicate with each other. 11

2.2 State transition diagram in GAF. 12

2.3 Example relay backbone selected by ReOrg in a 70 node network, requiring 19% of

nodes to be relays. 15

2.4 Example ReOrg backbone selection. Cases requiring no secondary relays (a), one

secondary relay to directly connect primary relays (b), and two secondary relays to

connect primary relays (c). (Relay metric indicated in each node) 16

2.5 ASCENT active node selection example: (a) communication hole (b) intermediate

ASCENT state (c) final ASCENT adaptation. 17

2.6 ASCENT state transition:Tt, Tp, and Ts denote test, passive, and sleep timers re-

spectively. NT denotes neighbor threshold, LT denotes loss threshold. Loss at T0

is the loss rate before the node entered the test state. 17

2.7 Example of token passing in CCANS. 22

2.8 Typical bathtub-shaped failure rate function. 26

3.1 Schematic of sensor node deployment in SAIL. 30

3.2 Schematic of the bridge scour project sensor node deployment. 32

4.1 Reliability block diagram of a WSN. 40

4.2 Availability of WSN. The x-axis represents time in months, the y-axis represents the

probability of having a functioning WSN at that time. 46

ix

4.3 Clarifying WSN availability as function of deployment plan, minA in (a), avgA in

(b). 48

4.4 Solution space, each point represents one deployment plan that achieves minA. . . 49

4.5 Illustrating the pro-active strategy adaption to different Ctrip : Csensor cost ratio

assignments. A cost ratio of 1:1 is used in (a) and a cost ratio of 100:1 is used in (b). 50

4.6 The pseudo code for finding the optimal deployment plan that meets avgA with

minimum total cost. 51

4.7 Understanding cost-benefit for pro-active deployment strategy, x-axis can be trans-

formed into benefit for a particular business model, y-axis represents cost. User

requirement is expressed as minA in (a), avgA in (b), and total uptime in (c). . . . 52

4.8 Comparing pro-active, on-demand, and at-front deployment strategies as environ-

ment hostility increases (i.e., increasing λ). (a) total cost per minA, (b) total cost

per avgA, and (c) total cost per total uptime. 56

4.9 Comparing pro-active, on-demand, and at-front deployment strategies as the cost

ratio changes (i.e., Ctrip : Csensor gets larger). (a) total cost perminA, (b) total cost

per avgA, and (c) total cost per total uptime. 57

4.10 Comparing pro-active, on-demand, and at-front deployment strategies as the WSN

number of clusters increases (i.e., N increases). (a) total cost per minA, (b) total

cost per avgA, and (c) total cost per total uptime. 58

4.11 Comparing pro-active, on-demand, and at-front deployment strategies as deploy-

ment time increases (i.e., Tmax increases). (a) total cost per minA, (b) total cost per

avgA, and (c) total cost per total uptime. 59

5.1 Effect of node scheduling on the availability of WSN. 67

5.2 Sensor node failure-rate function. 70

5.3 No scheduling availability. 72
x

5.4 Timeline of queue scheduling. 74

5.5 Q: finds recursively the probability of having exactly i nodes available. 75

5.6 Queue scheduling availability. 76

5.7 The solutions of the PROBLEM 3: (a) for minA(t), (b) for avgA(t), and (c) for σA(t). 77

5.8 The state-transition diagram. 79

5.9 Generating S using the simulator and validating it against the formula. 80

5.10 Matching model and simulation. 81

5.11 Comparing minA(t) under no scheduling and queue scheduling. 82

5.12 Comparing avgA(t) under no scheduling and queue scheduling. 82

5.13 Comparing σA(t) under no scheduling and queue scheduling. 83

5.14 Comparing E[U] under no scheduling and queue scheduling. 83

6.1 Map of gauge location. (a) Lake Winnebago Watershed. (b) St. Clair River and

Detroit River . 88

6.2 Understanding relative importance of different failure types. (a) shows their relative fre-

quency (b) shows their contribution to system total downtime. 91

6.3 Understanding effect of external environment on inflicting failures. 92

7.1 Score vision as a baby frog. Score is depicted as the body, neighbor discovery as the

head, terminals as different network components. 96

7.2 Score APIs, (a) neighbor set abstraction API and (b) state interface. 97

7.3 Score and the neighbor discovery service in the TinyOS communication stack. Our

components are shown as shaded boxes. 100

xi

7.4 Topology discovery skeleton implementation in Score. Upon receiving a neighbor

list from node y, current node loops over the neighbor set using Score and calculates

communication redundancy and freshness. Finally, current node updates relevant

bytes in y’s neighbor record. 103

7.5 Illustrating topology parameters: (a) shows a sensor node at the center of its nomi-

nal communication area, which is divided into four directional areas. (b) depicts a

sensor field with a communication hole (i.e., shaded area), node X located on the

boundary exhibits zero dN and dE . Node Y also exhibits very low dW which sug-

gests a communication hole in that direction. (c) depicts several nodes as red dots

with their respective communication range R. X has communication redundancy and

freshness values of 2 and 3 with node Y, respectively. Nodes 1 and 2 are redundant,

while nodes 3 , 4, and 5 are fresh. 104

7.6 Comparing the performance of Blind, RAC, and RC protocols. 108

7.7 TOSSIM snapshot of routes chosen by GPSR compared to routes chosen by DA-

GPSR. In both (a) and (b), data messages goes from node 6 to node 70. 109

7.8 Comparing the effect of MAX RET on the performance of GPSR and DA-GPSR. S

is fixed to 24. 115

7.9 Comparing the effect of number of transmission slots (S) on the performance of

GPSR and DA-GPSR. MAX RET is fixed to 7. 116

7.10 Combining MAX RET and S into E2E delivery rate and comparing GPSR and DA-

GPSR. 118

8.1 An example scenario with a Tcc value of 80%: (a) communication graph, (b) corre-

sponding NSi and di, and (c) DoCRi, j, NSCi(Tcc) and corresponding CDi(Tcc) . 124

8.2 Functional components: shaded boxes represent our modules, PMsg, PRMsg, and

DMsg represent Probe, Probe reply, and Data messages respectively. 127

xii

8.3 Building shared neighbor sets at node k. 128

8.4 Choosing appropriate Tcc values: (a) B-RAT, and (b) E-RAT value. 130

8.5 The average active node degree of different topologies in B-RAT and E-RAT. . . . 131

8.6 Active node degree distribution: (a) Top 7 (b) Top 21 (c) Top 30, n is the total

number of nodes. 132

8.7 The percentage of decided nodes vs time: (a) Top 7 (b) Top 21 (c) Top 30. 133

8.8 Energy saving potential. 134

8.9 Sleeping node duty cycle. 134

8.10 Total energy consumption per data message: (a) One-to-many routing and (b) Many-

to-one routing. 135

xiii

1

CHAPTER 1

INTRODUCTION

Since its conception, Wireless Sensor Networks (WSNs) have been envisioned to operate au-

tonomously for long period of time and without close supervision and human intervention. This key

requirement demands that WSNs incorporate features such self-configuration, self-organization, as

well as dependability. Self-configuration and self-organization requires the development of ade-

quate system-level support that enables the sensor nodes to automatically and continuously discover

its surroundings, including its neighbors and topology information, and to organize into a connected

network. On the other hand, node failures, which are the norm rather than the exception in WSNs,

should not render the WSN unoperational. In other words, the WSN should be able to withstand

node failures and heal on its own and without external intervention. In this thesis, we propose to

develop analytical models, system-level support, and network protocols that move WSNs forward

toward implementing this vision (i.e., autonomous dependable WSNs).

Our work falls into two major categories. First, we use analytical models from classical re-

liability theory to formalize and quantify WSN dependability characteristics, these models allow

for the systematic integration of WSN dependability as a primary dimension in the design space

of the communication stack protocols and algorithms as well as the deployment problem. Perhaps

the most prevalent node failures are those caused by harsh environmental conditions. Therefore,

we consider non-malicious fail-stop node failures and focus on WSNs reliability and availability

aspects of dependability. In order to support some of the assumptions this category, we took the

opportunity to analyze failure traces of sensing units. These traces are made available to us from a

real-world water system surveillance application. Second, we propose a novel structure of the WSN

communication stack based on our Sensor Core (Score). In the context of Score, we propose and

develop fundamental network services that perform automatic low-level discovery services such as

2

neighbor and topology discovery. Score along with discovery services provide a framework that

hosts our protocols and provide them with system-level support to collaborate and coordinate with

each other in a cross-layer approach.

We utilize our WSN reliability models in attacking two important WSN problems: the deploy-

ment problem and the node scheduling problem. The deployment problem is concerned with finding

an optimal plan that meets user-defined WSN availability requirement with least total cost. A partic-

ular deployment strategy may stipulate an incremental deployment of 10 sensor nodes every month,

another deployment strategy, may perform node deployments re-actively whenever a sensor node

fails. Each strategy results in different WSN availability and total cost including cost of sensor

nodes and cost of conducting the field trips to deploy these nodes. The optimal deployment strategy

is driven, in large, by the ratio of the sensor node cost to the field trip cost. In other words, a particu-

lar deployment strategy could be the optimal one in a particular application, however, in a different

application with different cost ratio, the same strategy may fail to yield the best results (i.e., meets

availability requirement with minimum total cost).

Node scheduling protocols have been proven efficient in leveraging high node redundancy to

extend the lifetime of the WSN beyond the limited lifetime of a single sensor node. Two nodes are

called redundant if both nodes are equivalent in terms of some specific functionality (e.g., connec-

tivity, coverage, etc). A typical node scheduling protocol identifies node redundancy in terms of

some functionality and schedule these nodes ON and OFF to save energy. We argue that in addition

to connectivity and coverage, WSN availability/reliability should be considered as a primary factor

when scheduling nodes ON and OFF. After all, turning some nodes OFF, decreases the WSN reli-

ability. The first step in introducing WSNs reliability/availability into the design space of the node

scheduling protocols is the quantification of WSN reliablity/availability in terms of the reliability of

the underlying sensor nodes.

WSNs are believed to be application-specific. Different applications impose different require-

ments and even different research challenges. Furthermore, different WSN application environments

3

yield different sensor node failure models, which imply different WSN reliability behavior and man-

date different algorithms from the reliability point of view. Therefore, we follow an application-

driven approach in our protocol design targeting three different applications; large-scale environ-

mental applications with irregular and random sensor node placement, in-door mission-critical ap-

plications, and environmental application with uniform linear sensor node placement. We refer to

the first application simply as environmental, the second as SAIL, which stands for Sensor-Assisted

Independent Living Laboratory, and the third as Bridge Scour. A brief introduction to these ap-

plications is presented in Chapter 3. For example, in the environmental application, connectivity

is an important requirement. On the contrary, in the SAIL and Bridge Scour applications, where

the sensor nodes are deployed in a much smaller area with controlled node placement, connectivity

does not pose a big challenge as the network topology is relatively fixed. Therefore, different node

scheduling protocols are required in each application context. In the following two sections, we

present a brief introduction to our approach.

1.1 WSN Dependability

Motivated by the fact that sensor nodes are cheap and unreliable devices, we argue that WSN

dependability including reliability and availability should play a central role in shaping the WSN

protocol stack design and the design and implementation of these protocols. Rather than focusing

on failure detection and recovery and proposing arbitrary fault-tolerant protocols, we follow a more

systematic approach in addressing WSN dependability issues by formalizing and quantifying WSN

reliability in terms of the reliability of the underlying sensor nodes. This approach not only helps in

our protocol design, but also allows us to answer more fundamental questions concerning deploy-

ment parameters such as deciding the number of nodes required to meet some reliability goals.

In classical reliability theory, a system is viewed as a set of independent components that are

connected serially, in parallel, or as compromise (i.e., κ−out−of −m system). In a serial system,

the system is functioning if and only if all of its components are functioning. In a parallel system, the

system is functioning as long as at least one component is functioning. In a κ−out−of−m system,

at least κ components are required to be functioning for the system to be considered functioning.

4

A parallel system can be easily mapped into sensor node cluster, the set of clusters can be mapped

into a serial system, therefore, the overall WSN can be mapped into a κ − out − of −m system.

The natural analogy between WSNs and classical systems is the fundamental motivation behind our

approach of using classical reliability theory techniques in our work. In addition to this analogy,

we have three more important reasons for using classical reliability theory in addressing WSN de-

pendability. First, WSN are deeply embedded in the physical world, which makes them susceptible

to the same environmental conditions and suffer similar wear and tear effects to those components

of classical systems. Second, using component redundancy is a well-accepted and well-developed

approach in boosting overall system reliability in classical systems. Likewise, sensor node redun-

dancy is a well-accepted and promising solution to overcome resource limitations including sensor

node unreliability. Third, the failure of one sensor node does not cause the failure of other nodes in

WSNs (i.e., independent sensor node failures). Nonetheless, all sensor nodes are expected to follow

the same failure model as they suffer the same environmental conditions.

1.2 System Support

Unlike our top-down approach in the first category, in the second category, we follow a bottom-

up approach by proposing a novel communication stack structure based on the Score framework

and implementing low-level system components to support and host protocols developed in the first

category.

Contrary to the current Internet protocol stack structure, in which a cross-layer interface is

confined to adjacent layers, researchers believe that the communication stack of WSN should be

loosely structured in order to allow for an arbitrary interface between the different protocol com-

ponents. This interface helps in achieving more optimal operation in the resource-limited sensor

nodes. Protocol optimizations are usually possible by allowing layers to collaborate more closely

when performing their functions, this technique is widely known as cross-layer design. We propose

Score as a framework that facilitates an arbitrary interface while maintaining a modular communi-

cation stack. As a core module, Score provides other components with the means to maintain and

access the neighbor set and the operational state, which are the fundamental pieces of information

5

on which all the network components base their actions and optimization. A primary component

in the Score framework is the neighbor discovery service, which probes the nodes in the vicinity

to populate Score with neighboring nodes. In addition to active probing, the neighbor discovery

service passively intercepts all incoming messages to maintain the neighbor set. Passive neighbor

discovery mode helps to reduce probe messages and as a result save energy.

1.3 Contribution

In this section we summarize our contributions:

1. Availability modeling: we model the availability of WSN in the context of two applications;

in-door and large-scale environmental applications. Using these models, we prove that avail-

ability/reliability can be introduced successfully into the design space of the node schedul-

ing protocols in a systematic way. This work also serves as a motivation of the need for

node scheduling as far as availability/reliability is concerned. we build upon our availability

models to tackle two very important WSN problems; WSN deployment problem and node

scheduling.

2. WSN deployment problem: we define the deployment problem as the problem of deciding

the number of sensor nodes and the way these nodes deployed in order to meet user-defined

availability requirement with minimum total cost. We formulate WSN deployment problem

as an optimization problem, whose solution yields the best deployment strategy including the

number of nodes and the number of field trips required over the WSN lifetime.

3. Node scheduling: we employ similar availability models to attack the node scheduling prob-

lem for in-door WSN applications. Unlike in the deployment problem, we adopt usage-based

sensor node failure patterns to capture aging and increasing failure rates. Our analytical and

simulation results prove that node scheduling, indeed, improves availability behavior.

4. Sensor failure traces analysis: we take an initial step and analyze a one-month sensor failure

traces collected from a real-world water system surveillance application. We believe that

6

this work represents a small step, however, an important one in the right direction toward

understanding sensor failure patterns in environmental applications. This experimental-driven

approach helps us build more practical protocols and realistic models. In this application,

we found that external harsh environmental conditions may be the most important factor on

inflicting failures. Furthermore, communication failures, mainly caused by the lack of time

synchronization, contribute the largest portion among all failure types.

5. Redundancy-Aware Topology Control (RAT): unlike in the SAIL and Bridge Scour application

contexts, in the environmental with random deployment application, network connectivity is

a major factor that imposes limitations on the node scheduling design space in addition to

reliability. Therefore, we address connectivity in the RAT protocol, which is discussed in

Chapter 8.

6. Score: a novel framework that facilitates other network components to collaborate in an ar-

bitrary fashion while maintaining a modular communication stack. A core service in the

context of Score is the neighbor discovery service. This service performs passive as well as

active probing and populates Score with the neighbor set for other protocols’ benefit.

7. Topology discovery service: maintains several topology parameters to support cross-layer

design. The topology parameters are accessible by other protocol components through Score.

As a demonstration of the benefits of this service, we propose Redundancy-Aware Controlled

flooding (RAC) and Density-Aware GPSR (DA-GPSR) protocols.

1.4 Organization

In Chapter 2, we briefly introduce wireless sensor networks with emphasis on node scheduling

protocols; Chapter 3 presents three target applications including research challenges, assumptions,

and adequate solutions; In Chapter 4, we tackle the deployment problem and discuss optimal solu-

tion from the availability and total cost perspectives; Chapter 5 presents our work of modeling the

availability of WSNs in the context of the SAIL application; Our real-world sensing failure traces

7

are presented in Chapter 6; In Chapter 7, we present our Score framework including the negihbor

discovery service, the topology discovery service, and finally the RAC and DA-GPSR protocols as a

demonstration of the benefits of the topology discovery service. We address connectivity in the con-

text of the environmental application through the RAT protocol in Chapter 8. Finally, we conclude

our work and discuss future research directions in Chapter 9.

8

CHAPTER 2

BACKGROUND

We dedicate this chapter to present some background material including overview of Wireless

Sensor Networks (WSNs), node scheduling protocols, and basic concepts in reliability theory.

2.1 Overview of Wireless Sensor Networks

The recent development of small wireless sensing devices has opened the door for several new

applications. These applications have the potential in changing the way we perceive, monitor, and

interact with the physical world. Many application domains have already been mentioned in the

literature [3, 18, 73, 76, 79, 98]. For example, sensor nodes can be deployed in the battlefield to

monitor and track the enemy’s troop movement (i.e., military applications). Sensor nodes can also

provide attractive solutions for challenging medical problems; for example, small bio-sensors can

function as an artificial retina that replaces a damaged one [73] when deployed inside the human

body. Environmental monitoring is another promising application domain for wireless sensor net-

works. For example, wireless sensor networks can be used to monitor pollution levels in water

resources and soil. Also, wireless sensor networks can be used to track and monitor volcanic and

earthquake activities, this allows for the early detection of any activities, which helps in avoiding

or at least mitigating disasters. Like in out-door applications, WSNs have many promising in-door

applications. For example, WSNs can be deployed in the apartments of elderly people providing an

innovative non-obtrusive tool to better monitor the activities of elders living in their apartments. In

this capacity, WSNs facilitate connecting seniors to their caregivers and the communication of any

emergency conditions such as falling of the elder.

Environmental monitoring is one of the earliest envisioned applications of wireless sensor net-

works. Therefore, research challenges of this particular application caught the attention of many

9

researchers, which resulted in a large body of work. In this application, researchers envision large-

scale deployment, where a large number of sensor nodes are scattered in the sensor field. After

deployment, these nodes should organize among themselves and form a multi-hop network and

should remain functional for long time periods, several years in some applications [3, 76]. By func-

tional, we mean that the network should be able to perform the original job the network is supposed

to do, e.g., sensing the environment and sending the results back to some base station. Since the

lifetime of individual sensor nodes is usually on the order of a few months, and that it is infeasible

to re-power individual nodes by simply changing their battery, techniques to save the power con-

sumption and so extend the lifetime of wireless sensor networks is vital in real life applications and

have been extensively studied in the literature.

Researchers have considered several techniques to decrease power consumption at the different

layers. At the application level, aggregation [19, 59, 63], where multiple data messages are dif-

fused and integrated into a single data message, is one of the techniques used to lower the power

consumption spent on transmitting redundant data messages from the data sources back to the sink.

Several energy-aware routing protocols [33, 72, 74, 75, 95] have been discussed in the literature. In

these protocols the current power level of the sensor node is considered by the routing protocol as

a criteria in choosing routes between sources and destinations. Trading off network delay to power

consumption was leveraged by MAC protocols to introduce low duty cycle operation modes, where

nodes turn their radios off if not actively transmitting or receiving [38, 71, 94, 100].

Like other network protocols, topology control was used as yet another attempt to extend the

network lifetime and reduce power consumption. The term “topology control” has been used in the

literature in two contexts, some people [6, 56, 32, 52, 54, 57, 69] use the term to refer to the problem

of adjusting the transmission power of the sensor nodes and so adjusting the network topology, while

others [4, 12, 13, 15, 18, 30, 71, 80, 92, 104] use the term to describe the process of turning the

sensor nodes radio on and off consequently controlling the network topology and decrease total

power consumption. We refer to the latter as the node scheduling technique.

10

In node scheduling protocols [4, 12, 13, 15, 18, 30, 71, 80, 92, 104], node redundancy was

exploited to extend the network lifetime. The key idea in this class of protocols is to identify

node redundancy in terms of some functionality (usually communication), cluster redundant nodes

together, and finally schedule nodes in the clusters for active or sleep modes in such a way the

network is able to perform the original function adequately. Although all topology control protocols

that fall in this category share the basic idea, the exact node redundancy definition and criteria for a

node to stay active or switch to sleep are still the property of a specific node scheduling protocol.

2.2 Node Scheduling Protocols

Work on node scheduling protocols is widely diverse; we divide its evolution over the last five

to six years into three stages. The bulk of the work in the first stage is pure theoretical analysis of

the minimum connected dominating set problem. Centralized optimization algorithms are proposed

to select the minimum connected dominating set [24, 83, 86], which is known to be an NP-hard

problem. This work lacked the practicality which prevented its applicability in real life sensor

network deployments. The reported sensor node wireless transceiver module power consumption

profile made the node scheduling approach, among others, more appealing in extending the network

lifetime, therefore it triggered new interest in the topic. In the second stage, researchers shifted their

efforts to address the more practical issues of wireless communication links and investigate localized

fully distributed algorithms to select the active node set [4, 12, 13, 15, 18, 30, 71, 80, 92, 104]. The

primary goal of the node scheduling protocols in this stage is to select the optimal active node

set that most extends the network lifetime, other network properties such as reliability, network

capacity, and coverage are ignored. Proposing new node scheduling algorithms was not the primary

concern in the third stage. Instead, researchers shifted their efforts again to study and investigate

assumptions made in the second stage, such as the assumption that sparse networks improve network

capacity. Furthermore, fault tolerance and coverage are considered as important network properties

in addition to bare connectivity [6, 8, 21, 25, 66, 85, 91]. In the following subsection, we present

several node scheduling protocols in more detail.

11

2.2.1 Node scheduling algorithm details

In this section, we elaborate on the protocol details of five representative state-of-the-art node

scheduling algorithms including GAF, SPAN, ASCENT, ReOrg, and CCANS. Although these pro-

tocols share the same basic idea of identifying node redundancy and assigning redundant nodes

active and sleep modes, the exact node redundancy definition and scheduling technique is different

from one protocol to another.

Figure 2.1: Virtual Grid Example: node 2 and node 5 can communicate with each other.

GAF

Based on the physical location and the assumed perfect disc communication range, GAF, in [92],

divides nodes into non-overlapping virtual grid cells in such a way any two nodes from adjacent cells

can communicate with each other and so only one active node in each cell is enough to maintain a

connected network. This definition of virtual grids requires that distance between the furthest two

nodes in any adjacent virtual cells be at most R, where R is the communication range. Figure 2.1

depicts three virtual cells: A, B, and C. In cells B and C, we can see that node 2 and node 5 can

communicate with each other and so satisfy the definition.

After assigned virtual cells, nodes need to decide which node should remain active and handle

routing and which nodes should go to sleep and save energy in each virtual cell. Initially, all nodes

start in the discovery state, in which the nodes send hello messages to become familiar with

nodes in the same virtual cell. To select only one node in each virtual grid, each node sets up a timer

12

for Td, once the timer fires, the node switches to active and broadcasts a message telling others that it

will take over routing for this virtual cell. If the node receives an active message from another node

in the same virtual cell, the node cancels its timer and switches to sleep immediately. Figure 2.2

shows the detailed state transition diagram.

Figure 2.2: State transition diagram in GAF.

From Figure 2.2, we can see that enat (Estimated Node Active Time), Td (discovery message

interval), Ta (node active duration), and Ts (node ranking) can be tuned and adapted to target dif-

ferent requirements of different applications. For example, enat can be set in such a way to balance

power consumption among all nodes, or it can be set to make an active node stay active until it

drains all of its power. In applications, where nodes can move from virtual cell to another, GAF

considers another factor in determining enat. GAF uses estimated node grid time, which is the time

a node will stay in the same virtual cell (denoted as engt), as the enat value. Therefore, before

a node moves out of the virtual cell, other nodes will switch from sleep to discovery to take over

routing in that virtual cell.

The attractive feature of GAF is that it does not incur high overhead as the virtual grid can be

built statically once the communication range is known. The key idea in GAF is that the length of

the diagonal crossing any two adjacent cells is less than or equal to the communication range. This

accounts for the furthest possible distance between two sensor nodes located at opposite corners

of any adjacent cells. Obviously, any two nodes located in the same cluster can communicate with

13

each other as the dimensions of a single cell has to be less than the communication range. Therefore,

having a single active node in each cell is enough to maintain a connected network.

SPAN

SPAN [15] selects a set of coordinator nodes, which stay active all the time and act as a back-

bone for the network, all other nodes can go to sleep. To maintain connectivity, the coordinator

nodes have to form a connected backbone, and every non-coordinator node has to be connected (i.e.,

within the communication range) to at least one coordinator. To select the set of coordinators, all the

nodes in the network periodically broadcast “HELLO” messages. The “HELLO” messages consist

of the node status (whether a coordinator or not), the node’s current set of coordinators, and the

node’s set of neighbors. In addition to the neighbor set, each node has to maintain two-hop coor-

dinator information (direct coordinators and coordinators of its neighbors). Exchanging “HELLO”

messages prepares nodes for the second stage of selecting the set of connected coordinators.

The coordinator eligibility rule at any node i simply states that if node i has any two of its

neighbors (nodes k and j), which can not communicate through existing coordinators, then i needs

to become a coordinator. Since node i is only aware of coordinators in its two-hop communication

range, that means node k and node j can not reach other in at most 2 coordinator hops (i.e., could

reach each other through three or more hop coordinators). Before making node i simply become

a coordinator if eligible for that, SPAN uses random back off time to delay the decision. During

the delay, if the node receives a coordinator announcement, the node re-evaluates its eligibility as a

coordinator, otherwise it becomes a coordinator and sends a coordinator announcement.

The random back off time allows SPAN to minimize the total number of coordinators and

achieves load balancing among nodes. The back off time minimizes the total number of coordi-

nator nodes for two reasons: first, because it does not allow two nodes to become coordinators at

the same time so there are no redundant coordinators in the network. Second, the delay considers

the node utility, the more the node’s utility is, the less the back off delay. Node i utility simply

is the number of nodes that will be connected as a result of node i becoming a coordinator. The

14

back off time achieves load balancing by considering the remaining power of the node as a factor

in the random back off time; nodes with higher remaining power have higher priority to become

coordinators. The following formula represents the delay.

delay =

((
1− Er

Em

)
+

(
1− Ci(

Ni
2

))+R

)
×Ni × T

Ni is the number of nodes neighbors to node i. Ci represents the additional number of node

pairs that node i will connect if becomes a coordinator. Therefore, a node with higher Ci becomes

coordinator first, and so, fewer coordinator nodes are needed. To avoid collisions, a random value

R proportional to Ni and T is used, T is the round trip time of a small packet over the wireless

link. Er and Em represent the remaining and maximum energy (in Joules) at the node, respectively.

Consequently, a node with smaller 1− Er
Em

will become a coordinator first.

Node i can withdraw from being a coordinator once all of its neighbors can communicate di-

rectly or indirectly (through two-hop coordinators) without the help of node i. This gives the op-

portunity to other nodes to become coordinators. However, to prevent temporary disconnection in

the network, before a node switches to sleep if it decided to withdraw as a coordinator, it waits for

a while until other nodes assess the situation and suitable node(s) become coordinator(s).

ReOrg

The authors in [18] propose two protocols, ReOrg and ReSync. The former is a node scheduling

protocol, while the latter is an energy-saving MAC protocol. These protocols are combined to

achieve a higher level of energy saving. As our focus is node scheduling protocols, we present

ReOrg in more detail.

ReOrg first builds a relay backbone by choosing primary relay nodes, the criteria for becoming

a primary relay node are remaining energy and node degree. These metrics measure the suitability

of a node to become a router (i.e., primary relay node). To fill the gaps between relay nodes (if any),

non-relay nodes become relay nodes based on their ability to bridge primary relay nodes. Figure 2.3

depicts a set of relay nodes selected by ReOrg.

15

Figure 2.3: Example relay backbone selected by ReOrg in a 70 node network, requiring 19% of
nodes to be relays.

The ReOrg protocol proceeds in two phases. In the first phase, nodes exchange “OrgHello”

messages in order for each node to identify its immediate neighbors and select the neighbor with

the best relay metric (remaining energy and node degree) as its primary relay. A node is considered

a neighbor only when the pair-wise link quality is equal to or higher than 80%. Nodes inform their

chosen primary relays using a field in the “OrgHello” messages. After primary relays have been

chosen, there may be some gaps in the backbone, so non-relay nodes go further with phase II to fill

any existing gaps.

In the second phase of ReOrg, each node identifies relays in its two-hop neighborhood and learns

whether these relays are connected or not, either directly or through neighboring relays. In order to

do that, each non-relay node has to maintain a soft state list of all the primary relays within two hops,

and tags each whether it is reachable or not. To minimize the number of selected secondary relay

nodes, ReOrg uses the number of primary relays that will be connected by the node, in addition to

the normalized relay metric used in the first phase (i.e., remaining energy and node degree). ReOrg

resorts to timers to select best secondary relays. Each node sets a timer inversely proportional to the

weighted average of the number of disconnected primary relays in its 2 hop neighborhood and the

16

Figure 2.4: Example ReOrg backbone selection. Cases requiring no secondary relays (a), one sec-
ondary relay to directly connect primary relays (b), and two secondary relays to connect primary
relays (c). (Relay metric indicated in each node)

normalized relay metric (remaining energy and node degree). Figure 2.4 shows an example scenario

of ReOrg selecting primary and secondary relays.

In Figure 2.4(a), ReOrg selects two nodes as primary relays. As the primary relays are con-

nected, there is no need for secondary relays. In Figure 2.4(b), one secondary relay is enough to

connect the two primary relays. Finally, two secondary relays are required in Figure 2.4(c) to bridge

the two-hop gap between primary relays.

The rate at which nodes send “ReOrgHello” messages is an important parameter that trades off

overhead versus resilience to topology changes. Sending “ReOrgHello” messages at a high rate

allows ReOrg to adapt to node failures very quickly, but incurs high protocol overhead, which may

limit ReOrg’s potential in saving energy. Unlike SPAN, where nodes need to exchange and store the

entire neighbor tables in their two-hop neighborhood, ReOrg requires nodes to exchange and store

only primary relays. In highly dense topologies, the number of two-hop primary relays tends to be

much smaller than the number of immediate neighbors; this limits ReOrg overhead to o (n).

ASCENT

Nodes in ASCENT [12, 13] independently assess the current network performance based on the

node density and packet loss rates. If a node experiences high loss rates due to collisions, then it

may decide to go to sleep to lower the contention in the network. On the other hand, if the node

density drops below some threshold, the node joins the network by switching its radio on.

17

(a) (b) (c)

Figure 2.5: ASCENT active node selection example: (a) communication hole (b) intermediate AS-
CENT state (c) final ASCENT adaptation.

Figure 2.5 shows a complete ASCENT example scenario, in Figure 2.5(a) a set of nodes are

shown where a communication hole exists between the source and destination. As the sink node

experiences high loss rate when receiving messages from the source node, it asks nodes in the

vicinity to join the set of active nodes and so improve communication quality. Figure 2.5(b) shows an

intermediate state where some nodes start to switch to active to compensate for the communication

hole. When switching to active, a node broadcasts neighbor announcement messages to inform other

nodes that it became active. Finally, Figure 2.5(c) shows the final state after the network stabilizes

and a set of active nodes are selected by ASCENT.

Figure 2.6: ASCENT state transition:Tt, Tp, and Ts denote test, passive, and sleep timers respec-
tively. NT denotes neighbor threshold, LT denotes loss threshold. Loss at T0 is the loss rate before
the node entered the test state.

18

Nodes in ASCENT could be in one of four states: sleep, passive, test, and active.

Figure 2.6 shows the detailed state transition diagram. All nodes start in the test state, in

which a node exchanges data and control messages for a time period of Tt. If the number of nodes

reaches some threshold (NT) or the average data loss (DL) is higher than before the node enters

the test state before Tt expires, the node switch back to the passive state. Otherwise, the node

enters the active state. The intuition behind the test state is to give nodes an opportunity to

probe the network to see if the addition of new nodes improves connectivity (i.e., decreases loss

rate).

While in the passive state, the node passively listens on the wireless channel to keep track of

the number of active nodes and the loss rate (DL), but the node does not send any data or control

messages. A node stays in the passive state for Tp. The node switches back to the test state if

one of two conditions happens, otherwise after Tp expires, the node switches to sleep. The two

conditions are: the number of active neighbors is less than LT and either the loss rate is greater than

DL or the loss rate is less than DL but there is a help announcement.

It is only upon entering the sleep state that a node can turn its radio completely off and save

energy. A node in the sleep state remains asleep for Ts before it wakes up again and switches back

to the passive state. Making sleeping nodes wake up and switch to passive state regularly is

important to keep the network responsive to node failures, which results in a disconnected graph.

Note that a node in the active state stays active until running out of energy.

Timers and thresholds discussed in the previous state transition diagram enrich ASCENT with

the ability to tune its behavior and adapt to different application requirements. ASCENT tuning

basically allows it to trade off power saving to network agility. For example, the loss threshold (LT)

can be set to high values in applications that do not demand high connectivity, while set to low

values in applications that are sensitive to packet loss. LT is the maximum loss rate an application

can tolerate before a node asks for help from neighboring nodes. Note that high LT increases

energy savings, whereas low LT decreases energy saving. Current ASCENT configuration assigns

19

the following values for the tuning parameters: NT is set to 4, LT is set to 20%, Tp and Tt are set

to 2 and 4 minutes respectively.

Nodes in the test and passive states need to keep track of the number of neighbor nodes and

the loss rate. A node is considered a neighbor if we receive a certain percentage of messages over

time window. Therefore, ASCENT defines two new concepts, a history window function (CW)

and a neighbor loss threshold (NLS). The CW represents the number of lost messages from a

certain node over time, while, NLS is the maximum loss rate that a node can reach in order to be

considered as a neighbor. The loss rate is maintained as an exponentially weighted moving average

(EWMA) in the following form:

EWMAcurrent = ρ.ĊW + (1− ρ) · EMWAprevious

The value of the constant filter ρ is set to 0.3. The number of neighbor nodes (N) is defined as

the number of nodes with loss rate less than NLS. The NLS threshold in calculated as follows:

NLS = NLS − 1
N

N represents the number of neighbors in the previous cycle. The intuition behind this formula

is that highly congested channels (i.e., N is big) have high loss rates, and so, the NLS value should

be more lenient (i.e., less value) than less congested channels. In other words, the larger the number

of neighbors is, the higher NLS is, and so the higher the maximum allowed loss rate, and the more

lenient the neighbor eligibility condition.

Maintaining the loss rate and node density in the case of transient node failures and high wireless

channel quality variation may incur high communication overhead and adversely affect the integrity

of a node’s decision of going to sleep or active. Also, the lack of an interface between ASCENT

and the routing layer may incur extra delays and overhead at the routing layer as the routing layer

needs to recover broken routes if a node decided to switch to sleep in ASCENT.

20

CCANS

[104] selects a set of active nodes that guarantee sensing coverage and connectivity. The au-

thors considered a two-dimensional sensor field of grid points. The following is some important

terminology.

• G = {g1, g2, ..., gm} denotes the set of all grid points in the sensor field.

• S = {s1, s2, ..., sn} denotes the set of sensor nodes.

• Assume Si is the set of nodes that can sense grid point gi, then the probability of detection at

point gi is defined as:

pi (Si) = 1−
∏
sk∈Si

(
1− pki

)
where pki denotes the detection probability of point gi by node sk.

The CCANS (Coverage-Centric Active Node Selection) protocol has two major phases. In the

first phase coverage redundancy is evaluated. Based on this redundancy, the set of active nodes that

provide sensing coverage is selected. The following formula defines point coverage redundancy of

node sk for point gi. Si denotes the set of nodes that provide sensing coverage of point gi.

ξki =
pi (Si \ {sk})
pi ({sk})

A ξki value of zero means that no node other than sk can provide sensing coverage for point gi,

while a value of one or greater, means that node sk is completely redundant with respect to sensing

coverage of point gi. From the point of view of node sk, if for all grid points within its sensing

coverage can be covered by other nodes (i.e., {Si \ {sk}}), then node sk can go to sleep without

affecting sensing coverage. This is the basic idea behind the CCANS.

To maintain some fault tolerance in sensing coverage, CCANS keeps some degree of redun-

dancy, which is referred to as the threshold coverage redundancy, denoted as ξth. So a node (sk) is

required to be active based on the following condition:

21

sk turns

 off, if ξki ≥ ξth

on, otherwise

It is obvious that the higher ξth is, the more nodes are needed to provide the required sensing

coverage redundancy, and so, ξth can be used to trade off power saving to sensing coverage fault

tolerance.

Nodes in CCANS could be in one of three states, ACTIVE, SLEEP, or UNSET. an ACTIVE

node turns its radio and/or sensing units on, a SLEEP node turns both off, while an UNSET node is

still undecided and may switch to ACTIVE or SLEEP. CCANS proceeds in two stages, in the first

stage, nodes evaluate sensing coverage, while in stage two, nodes assess connectivity. CCANS is

a token-based protocol, where the token is assigned to one node at a time (referred to as the token

node). Only the token node can turn on or off, therefore, only one node switches ACTIVE or SLEEP

at a time and no conflicts happen. Nodes first forward the token until no UNSET node exists in the

network, and then nodes pass the token in the backward direction, until the token reaches the first

node (sink).

During the first stage, the token node switches to ACTIVE or SLEEP based on its sensing

coverage redundancy using the previous two formulas. However, this decision is not final as the

node may have UNSET neighbors, which have been assumed to be ACTIVE. After that, the token

node chooses one of its neighbors to pass the token to, the new token node does the same thing and

passes the token until the token reaches all UNSET nodes in the network.

In the second stage, only SLEEP nodes check their state and connectivity, the state checking is

the same as in stage one, except that no UNSET nodes exist in the network, which makes the node’s

decision final. After that, the node checks for connectivity. It is important to note that nodes execute

the second stage while the token is being passed in the backward direction.

Figure 2.7 depicts an example scenario of several nodes passing the token back and forth until

all the nodes are decided (i.e., no UNSET nodes). Figure 2.7(a) starts with all the nodes are UNSET,

and Figure 2.7(h) ends with all nodes decided.

22

Figure 2.7: Example of token passing in CCANS.

In [30, 80], the authors consider sensing coverage instead of communication connectivity to

dispatch nodes to active and sleep modes. Node i can switch to sleep once it can find a set

of its neighbors, who’s sensing area collectively covers the sensing area of node i. [80] considered

symmetric as well as asymmetric sensing radii. However, unless the communication radius (rc) and

the sensing radius (rs) have some relationship (rc ≥ 2 · rs), using the same off-duty eligibility rule

for both sensing and radio module may result in a disconnected network. In the context of query

execution, [30] finds an optimal set of nodes to execute the query (least number of active nodes).

The selected nodes have to provide coverage as well as connectivity.

We can see that all previous protocols share the same basic idea to turn nodes off and on. First,

these protocols identify node redundancy, and then require only one node in each set of redundant

nodes to stay active, while allowing others to switch to sleep. Table 2.1 summarizes the different

node scheduling protocols. Some researchers use the sensing coverage to identify node redundancy,

while others use communication coverage to identify redundancy. Also, the exact way the nodes

switch to active or sleep after becoming aware of node redundancy is different. Some papers

23

Table 2.1: Comparing node scheduling protocols. n is the average number of neighbors in a single-
hop communication range.

Protocol Redundancy Metric Node Scheduling Message
overhead

Storage
overhead

Evaluation

GAF Physical location and
perfect disc model to
define communication
equivalence.

Nodes within virtual
cell exchange hello
messages to turn one
node on.

constant constant Simulation
only.

SPAN Uses two-hop neigh-
borhood lists to explic-
itly define communi-
cation communication
redundancy.

Nodes decide to be-
come active or sleep
based on the con-
nectivity of the co-
ordinator set + num-
ber of nodes that will
be connected if the
node awake + remain-
ing energy.

All nodes
announce
state
changes.

o
(
n2
)
. Simulation

only.

ASCENT Uses loss rate and
node density to select
active node set.

Nodes turn on and off
independently based
on current loss rate
and node density,
node scheduling
does not guarantee
connectivity.

All nodes
announce
state
changes.

o (n). Simulation
and exper-
imental
testbed.

ReOrg Uses single-hop neigh-
bor lists to explicitly
define communication
redundancy.

Nodes exchange hello
messages to choose
active nodes. Nodes
with high node de-
gree and most remain-
ing energy are chosen
first.

All nodes
announce
state
changes.

o (n). Simulation
and exper-
imental
testbed.

CCANS Physical location and
perfect disc model to
define sensing redun-
dancy.

A token passed back
and forth in the net-
work to make only
one node turn on or off
at a time.

All nodes
announce
state
changes.

- Simulation
only.

24

make nodes decide on and off duty cycles using back-off times to break ties, while others allow only

one node to change on or off at a time by means of tokens. Since the radio and the sensing modules

are independent (i.e., modules can be turned on and off independently), using either connectivity or

sensing coverage to define node redundancy are completely independent and both techniques can

be applied concurrently in the same network. Connectivity redundancy results in network topology,

and coverage redundancy results in sensing topology. Therefore, trying to find an optimal active

node set that achieves connectivity and coverage at the same time is not a big advantage. On the

contrary, an optimal active node set for connectivity may conflict with an optimal active node set for

coverage.

2.2.2 Other work related to node scheduling

STEM in [71] exploits setup latency to save energy by making nodes aggressively go to sleep,

while waking up frequently to see if other nodes wish to communicate with them. On its own,

STEM is more comparable to energy saving MAC-layer protocols, such as S-MAC [94]. It is the

fact that the authors combined STEM with GAF for higher levels of energy saving which makes this

work related to the topic of this survey.

In [85] and their later work [91], the authors present theoretical analysis to study the relationship

between coverage and connectivity, and to answer the question; does coverage implies connectivity?

or vice versa. This work is important for the design of new node scheduling protocols; it allows the

designers to focus on one problem (i.e., targeting connectivity or sensing coverage). The authors

prove that if sensing radius is at least twice the communication radius, then sensing coverage implies

connectivity. The assumption that the communication and coverage is a perfect disc limits the

applicability of this kind of results in real life applications.

The authors in [8] presented extensive analysis to study the node scheduling approach in ex-

tending the network lifetime and to what degree this approach can leverage node density. This study

considered one and two dimensional deployments with nodes uniformly distributed over the sen-

sor deployment area. Three interesting results are drawn in the paper. First, in two dimensional

25

deployments, the best possible lifetime extension is 80%. Second, node scheduling techniques

show a linear lifetime extension relationship to increasing node density. Third, overhead of the node

scheduling protocol can severely decrease the protocol’s potential in saving energy and so extending

the network lifetime. These results provide some guidelines for designing node scheduling proto-

cols. For example, SPAN does not show increasing lifetime extension with increasing node density,

this due to the fact that SPAN overhead outweighs its advantage.

In [6], the authors consider a slightly different problem, which is concerned with network con-

nectivity and its relation to node degree. Node degree can be adjusted either by adjusting the trans-

mission power, or by turning nodes on and off. This problem is interesting in the context of node

scheduling approach as it gives hints on the minimum node degree that a node scheduling protocol

needs to maintain in order to have a connected network. For example, the minimum node degree

can provide some insight to the ASCENT number of neighbors threshold value.

The allocation of the Base Station (BS) is considered in [66] in a two-tier topology. In the 1st

tier, Small Nodes (SN) are grouped into clusters. Each cluster has at least one Application Node

(AN) that is reachable by all the SNs in the same cluster. ANs can adjust their transmission power

to reach one of the BSs (2nd tier) in a single-hop transmission. An optimal allocation of the BSs

minimizes the total power drained at the ANs.

The authors in [21, 11] raise three important aspects of the node scheduling protocol, which

conflicts with what previous work intuitively agreed on. First, it is not-necessarily that lower node

density decreases interference. Second, lower node densities increase the average path length, which

eventually makes the network draw more energy. Third, it discusses the relationship between over-

head and node density. Based on their theoretical analysis, if only 10% of the nodes are active,

then the average hop length is doubled. If 30% of the nodes are active, then the average path length

increases by 30%.

2.3 Reliability Theory

Reliability theory has its origins in probability and statistics. It was originally used as a tool to

help life insurance companies decide profitable premiums to charge their customers. The failure of

26

other systems such as cars, spaceships, and electronic devices resembles life and death events of

humans. Therefore, reliability theory was applied to model the lifetime of such devices. Reliability

and the lifetime distribution of a particular device is usually drawn using statistical techniques by

observing failure times of an identical large population of the device. Furthermore, the reliability of

individual devices (components) are used to express the reliability of complex systems consisting

of several components connected either in serially or in parallel. In the following two subsections,

we discuss basic ideas of component and system reliability.

Component reliability

LetX be a random variable representing the lifetime of a particular component. We defineR(t),

the reliability of the component, as the probability that the component survives until time t. Thus,

R(t) = Pr{X > t} = 1 − F (t), where F(t) is the distribution function of the component lifetime

(X).

Figure 2.8: Typical bathtub-shaped failure rate function.

A localized version of the reliability function (R(t)) is the failure-rate function (λ(t) = f(t)
R(t)),

where f(t) is the probability intensity function of the component lifetime (X). λ(t) represents

the probability that a component, which survived until time t, fails in the next moment (∆t). In a

typical environment, components follow a bathtub-shaped failure rate function. The bathtub-shaped

failure rate function consists of three major periods. First, an initial period that exhibits a high and

decreasing failure rate in the early stage of the component lifetime. In this period, the failure rate

27

captures early design and manufacturing defects. Second, a stable period that exhibits a relative

constant failure rate. Third, wear and tear period that exhibits an increasing failure rate. Fig. 2.8

depicts a typical failure rate function.

System reliability

The reliability of large systems consisting of several components are usually expressed in terms

of the reliability of the underlying components. In a particular system, components are either con-

nected serially, in parallel or combination. Let a system s consist of n components, each with

identical reliability r. The system reliability (R(t)) is represented in Formula 2.1, Formula 2.2, and

Formula 2.3 for serial, parallel, and κ− out− of − n composition of the components.

Rseries(t) = rn (2.1)

R(t)parallel = 1− (1− r)n (2.2)

R(t)κ−out−of−n =
n∑
i=κ

ri · (1− r)(n−i) (2.3)

28

CHAPTER 3

TARGET APPLICATIONS

In this chapter, we present a brief background about our target WSN applications including envi-

ronmental, SAIL, and Bridge Scour applications. This background helps identify research problems,

requirements, and adequate assumptions and solutions.

3.1 Environmental Monitoring

Environmental monitoring is one of the earliest envisioned applications of wireless sensor net-

works [60, 76]. Many of the research assumptions and challenges tackled in the early research body

of work stem from this class of applications. Large-scale deployment (i.e., on the order of several

hundred nodes), large environmental area (i.e., the need for multi-hop networks), high node redun-

dancy, and long lifetime requirement (i.e., much longer than the lifetime of a single node) are typical

assumptions.

In a typical environmental application, the sensor nodes are scattered randomly in a large en-

vironmental area (i.e., sensor field). After deployed, the sensor nodes should self-configure and

self-organize into a connected multi-hop network. Furthermore, every point in this field needs to be

covered by at least one active sensor node (i.e., within the sensing range of the node). The preva-

lent communication patterns in this application are data dissemination (i.e., one-to-many) and data

collection (i.e., many-to-one). The latter is typically used in collecting application-specific data,

whereas the former is typically used to re-task the sensor nodes with new queries such as differ-

ent sampling rates and different sensing parameters. Therefore, coverage and connectivity enjoyed

being the primary requirements, in particular, topology management protocols. The requirement

of long lifetime and the assumed high node redundancy made the topology management protocols,

which leverage node redundancy to schedule nodes ON and OFF, an attractive solution in extending

29

the WSN lifetime among other techniques, in particular, given the fact that putting the node’s radio

into full sleep mode is the only feasible way in saving energy.

In light of these requirements and assumptions, most of the proposed topology management

protocols (i.e., node scheduling protocols) focused on working around the power limitation and

extending the network lifetime while achieving connectivity and coverage. On the other hand, little

attention is given to consider node failures. We believe that the unreliability limitation of sensor

nodes is as important as that of power limitation. Therefore, reliability-driven topology management

protocols are of parallel importance.

3.2 SAIL: Sensor-Assisted Independent Living

It is expected that Adults age 65 years and older will account for more than 20% of the U.S

population by the year 2050. As a response to that, in 1991, DHHS created the Healthy People 2000

project, which is the first national effort targeted at reducing disability and promoting physical health

in older adults. Despite this initiative, the number of elderly with one or more physical disabilities is

increasing. In collaboration with the nursing school at Wayne State University, we propose to apply

the technology of wireless sensor networks as a non-obtrusive tool to better monitor the activities of

elders in their apartments, providing an innovative approach to connect seniors to their caregivers

that facilitates the communication of any emergency conditions such as falling.

Daily physical activity is closely related to the health of senior citizens. Thus daily activity

information on a senior citizen, e.g., the distance the person walks in one day, is very difficult to

collect in conventional and non-obtrusive ways. This is especially true for long-term activity data,

which could be very useful for medical professionals in helping to evaluate health behaviors and

design health plans. Emergency conditions detection is also a very important function that wireless

sensor networks can provide. Perhaps the most important emergency condition to which elders

are susceptible is falling. According to the Centers for Disease Control and Prevention, falls are

the leading cause of injury deaths and the most common cause of nonfatal injuries and hospital

admissions for trauma. More than one third of adults age 65 and older fall each year, and more

than 60% of the people who die from falls are 75 years of age and older. Thus, detecting falls and

30

Figure 3.1: Schematic of sensor node deployment in SAIL.

responding quickly is critical. If falls are detected and responded to immediately, more lives will be

saved.

In this application, sensor nodes are deployed in each room to provide the required coverage

(Fig. 3.1). These sensor nodes are responsible for detecting life-threatening events and communi-

cating them to a base station. The base station alerts caregivers over the Internet. Since the typical

communication range of a sensor node is long enough to form a single-hop network between the sen-

sor nodes and the base station, connectivity does not pose a big challenge. However, since the target

events are life-threatening, the WSN need to be highly dependable and resilient to node failures.

Target events tend to be short in duration, however, these events are life-threatening and it is

vital that the wireless sensor network be available for their detection. Therefore, the reliability of the

wireless sensor network takes a secondary priority to availability. Reliability means the probability

31

of having long continuous and uninterrupted operation of the wireless sensor network. Availability

means the probability that the wireless sensor network will be available (i.e., functioning) at an

arbitrary point of time over its lifetime.

3.3 Bridge Scour

The significance of this project is driven by the financial and human losses attributed to scour

related bridge collapse, nationally and internationally. In the United States, approximately 60%

of all U.S. highway bridge failures are due to bridge scour [46]. In 1993 alone, more than 2500

bridges were destroyed or severely damaged due to scour caused by severe flooding [62]. How-

ever, scour due to severe flooding is not the only concern. The high profile catastrophic collapse

of the Schoharie Creek Bridge in New York in 1997 in which 10 people died was caused more by

the cumulative effect of pier scour of glacial till than the severe flood which ultimately caused its

collapse [64, 46]. In another high profile case that caused seven deaths, I-5 over Los Gatos Creek

in California collapsed due to local pier scour during a flood event, but the underlying cause was

channel degradation from the previous 28 years of service [46]. In addition to the unacceptable

human loss of life and the direct costs associated with bridge repair, the Federal Highway Admin-

istration (FHWA) estimates that indirect costs suffered by the public and local business because of

long detours and lost production are five times greater than the direct costs of bridge repair [46]. As

such, a reliable and effective means for monitoring and predicting scour is necessary.

The project seeks a reliable method for the determination of local scour at bridge piers to im-

prove the safety and reliability of critical infrastructure components. The proposed technique uti-

lizes a networked sensor system relying on thermal, optic, and pressure measurements. This sensor

system will be used to assess cumulative scour progress, alert decision makers when scour pro-

tection measures are necessary for infrastructure protection, provide a warning system for scour

related failure to improve safety on scour susceptible bridges, and provide necessary information

for continuously updated predictive scour models.

As indicated in the schematic of Fig. 3.2, bridge scour is characterized by the loss of soil in the

vicinity of the bridge support (pier, abutment, embankment). The soil loss results in reduced support

32

Water flow

Pier
footing

Original streambed

Streambed after
scour

P
ie

r

Water level

Figure 3.2: Schematic of the bridge scour project sensor node deployment.

for the bridge structure and loads; ultimately, bridge scour can lead to bridge collapse. In response

to these issues, the FHWA established a national scour evaluation program as a component of the

National Bridge Inspection Program, resulting in the development of the National Bridge Inspection

Standards (NBIS). The NBIS requires more than 588,000 U.S. bridges to be inspected every two

years for scour and structural stability, and with divers every five years if underwater members are

not visible [65, 46]. In addition, the FHWA has published (and updated in 2001) three reports

that define bridge scour technology and provide guidance to state DOTs -“Hydraulic Engineering

Circular No. 18 (HEC-18) Evaluating Scour at Bridges” [67],“HEC-20 Stream Stability at Highway

Structures” [47], and “HEC-23 Bridge Scour and Stream Instability Countermeasures” [48].

As depicted in Fig. 3.2, the sensor nodes will be placed in a linear topology over the the pier

of the bridge with very small displacement (i.e., on the order of few centimeters). Based on the

scour conditions, some sensors will be submerged in soil, in water, or in the open air. It is the

responsibility of each sensor node to decide whether the node is submerged in soil or the scour

process caused the sensor to be in water based on observed temperature and light sensor readings.

Using this information, the streambed can be recovered with high accuracy.

3.4 Summary

WSNs in all of the application classes are expected to operate autonomously without close ad-

ministration or maintenance. Therefore, low-level services that provide system-level support and

33

enable self-* behavior are of particular importance in moving WSNs forward toward real deploy-

ment. Services such as neighbor discovery and topology discovery services are typical examples.

Similarly, working around power as well as unreliability limitations of wireless sensor nodes is

unavoidable. Leveraging node redundancy to develop node scheduling protocols is an attractive

solution. However, the requirements and assumptions that the node scheduling protocol need to

consider are different in each application. For example, coverage and connectivity plays a major

factor in turning nodes ON and OFF in the environmental application, whereas, in the SAIL project

it does not.

In the following chapter, we introduce our availability modeling of WSN for environmental ap-

plications, we use these models to formulate and solve the deployment problem seeking an optimal

deployment strategy that meets user-defined availability requirement with least total cost.

34

CHAPTER 4

HIGHLY AVAILABLE AND LOW COST WSNS

In this chapter, we attack the sensor network deployment problem. We believe that the deploy-

ment problem shapes the capabilities and limitations of all WSN protocols and algorithms including

localization, MAC, and so on. We define the deployment problem as the problem of deciding how

many sensor nodes should be deployed in the sensor field over how many phases over it’s life-

time. In this chapter, we seek the optimal deployment strategy that meets user-defined availability

requirement with minimum total cost taking into consideration node failures resulted from harsh

environmental conditions and changing field trip to sensor node cost ratio. We, first, model WSN

and total cost as functions of the deployment plan, then, we formalize the deployment problem as a

2-dimensional optimization problem and provide iterative numerical solutions that target minimum

and average availability. Our modeling and optimization enable us to explore cost-benefit tradeoffs,

we believe, this is a solid step toward bringing the cost as an explicit dimension in the design space

of WSN protocols. We compare the performance of the optimized solution (denoted as pro-active)

to two other solutions: on-demand deployment solution (denoted as on-demand) and a single-visit

solution (denoted as at-front). The former strategy, represents a solution that does not plan for node

failures in advance, on the contrary, it schedules for future deployments on an on-demand basis only.

The latter strategy, accounts for node failures, however, it deploys all the nodes at front with no later

field trips. Unlike the pro-active, on-demand and at-front can not adapt to a changing field trip

to sensor node cost ratio due to their inherit limitations, pro-active adapts its plan and maintains

lower total cost and achieve comparable WSN availability. We show that pro-active outperforms

at-front and on-demand in terms of the total cost per availability unit in all application scenarios.

35

For example, using pro-active costs $7 compared to $40 and $280 per total uptime in case of on-

demand and at-front respectively. We further found that at-front is by far the worst among the

three strategies.

4.1 Introduction

WSN application deployment and lifetime can be divided into two major stages: planning stage

and operational stage. Operational stage is concerned with the development of network and ap-

plication protocols. On the other hand, the planning stage, which is usually referred to as the

deployment problem, pertains to deciding network parameters. Network parameters include how

many nodes should be deployed, how and where to place them, and how to structure them (e.g., flat,

two-tier, etc), and others [27, 82]. Hereafter, we refer to these three questions as the key aspects of

the deployment problem. Deciding these parameters is typically driven by coverage and connectiv-

ity [6, 9, 45, 68]. We believe that the deployment problem occupies a very unique and inherit central

role in WSN as careful estimation of the deployment parameters is essential to the proper operation

of later protocols in the operational phase.

There have been several papers addressing the deployment problem [35, 37, 102], in particular,

the sensor placement aspect [37, 49]. In these efforts, the authors studied the problem of deciding

the number of nodes and where to place them in order to guarantee coverage and connectivity. They

considered various application contexts that constraint the way node deployment is conducted. Our

work complements existing work by looking at the deployment problem from availability and to-

tal cost point of views and addressing the how many and how (i.e., single or multiple deployment

phases) aspects of the problem. In this chapter, we use the term deployment problem to refer to

the problem of deciding how many sensor nodes should be deployed in the sensor field over how

many incremental deployments. We aim at meeting user-defined WSN availability requirement with

minimum total cost taking into consideration node failures resulting from external harsh environ-

mental conditions and changing field trip to sensor node cost ratio. In spite of the vision that sensor

nodes will be very cheap in the near future, we believe that field trip to sensor node cost ratio will

not always be in favor of the field trip. For example, in developing countries, technology is more

36

expensive than labor. Therefore, it is expected that sensor cost will be considerable compared to

field trip cost. On the contrary, consider a home application scenario, where sensors are deployed

in the home and within the reach of the end-user, deployment cost will be minimal as the end-user

himself may be in a position to perform incremental deployments. WSN availability is defined as

the probability of having a functioning WSN at any point of time. Total cost, on the other hand,

accounts for the cost of all the sensor nodes to be deployed and the cost of conducting the field trips

(i.e., incremental deployment). A simple deployment strategy may stipulates the deployment of all

sensor nodes at once, with no further deployments, another strategy may perform extra deployments

on an on-demand basis only (i.e., whenever a node fails). These deployment strategies result in

different WSN availability and total cost. We assume that node placement (i.e., the where aspect of

the deployment problem) is decided by other means [14, 37, 49], furthermore, we adopt a two-tier

WSN structure, in which the sensor nodes are grouped into clusters. A two-tier WSN structure has

been supported by existing work such as in GAF [92] and the latter Tenet architecture [27]. WSN

availability is defined by the availability of having at least κ nodes in each cluster.

We propose three deployment strategies: at-front, on-demand, and pro-active strategies. at-

front represents a deployment strategy that considers the hostility of the environment and the re-

quired WSN lifetime to estimate the number of nodes required to be deployed at front to achieve

the target availability without any further deployment visits. Having only a single deployment visit

prevents at-front from adapting to a variable field trip to sensor node cost ratio. The on-demand

strategy, represents an optimistic strategy in which no planning is conducted at all to account for

future node failures, on the contrary, further deployment visits are scheduled on an on-demand ba-

sis only whenever the number of available sensor nodes in a particular cluster drops below some

user-defined threshold.

The pro-active strategy, on the other hand, plans for for future node failures and considers

different cost ratios. In the pro-active strategy, we formalize the deployment problem as a two-

dimensional optimization problem and provide iterative numerical solutions that satisfy user-defined

minimum and average availability requirements with minimum total cost. We perform extensive

37

simulations and compare the performance of the different deployment strategies in terms of total

cost per availability unit in changing application settings. In general, we observe that pro-active

outperforms the other two strategies, at-front and on-demand in all settings, we also find that

the at-front deployment strategy is by far the worst. We find that pro-active adapts very well to

a changing cost ratio and maintains lower cost per availability unit. For example, adopting pro-

active costs $10 compared to $70 and $300 per total uptime in case of on-demand and at-front

respectively.

Our contribution in this work is four-fold. First, we provide a general definition of the deploy-

ment problem as time-of-deployment vector and number-of-nodes-to-deploy matrix, this definition

accommodates the expression of any deployment strategy. Second, model WSN availability and

total cost as functions of the deployment strategy, which facilitates the investigation of different

deployment strategies in the availability-cost design space. Third, we use these models to formulate

a confined and practical version of the deployment problem into a two-dimensional optimization

problem, solving which, results in a deployment plan that achieves user-defined availability with

least cost. Fourth, we move one step, albeit an initial step, closer toward understanding and explor-

ing the cost-benefit tradeoffs of the deployment problem in the context of a particular application

and business model.

The rest of the chapter is organized as follows. Section 4.2 discusses the deployment problem

and its components. In Section 4.3, we illustrate the big picture of our modeling and present our

definitions and assumptions. We discuss the pro-active strategy in Section 4.4, and the at-front,

and on-demand deployment strategies in Section 4.5. Our simulation and evaluation results are dis-

cussed in Section 4.6. Finally, we compare to existing literature, conclude our chapter in Section 6.3

and Section 6.4 respectively.

4.2 Deployment Problem

The deployment problem is concerned with deciding how many sensor nodes we need for a

particular WSN application, as well as, how and where these sensor nodes should be deployed in

order to achieve connectivity, coverage, reliability, availability, and many other characteristics [44].

38

The how many component of the deployment problem is concerned with deciding the number of

sensor nodes that must be deployed to meet user and systems requirement [6]. The where component

pertains to deciding the location of the sensor nodes relative to each other and in the sensor field [22,

37, 61, 103]. Finally, the how component is concerned with the question whether these nodes should

be deployed at once, or incrementally over multiple field trips.

The deployment problem shapes the capabilities and restrictions of all operational WSNs pro-

tocol and algorithms including localization, MAC, topology control, routing, and data aggregation

protocols. For example, the where component of the deployment problem may stipulates the place-

ment of a few beacon sensor nodes in a pre-determined locations to assist the localization protocol in

its mission [10]. Therefore, we believe that the deployment problem enjoys an inherit fundamental

role in WSNs research.

Deciding how many nodes we need to overcome node failures resulting from hostile environ-

ment, perhaps, is trivial to justify. This may not be the case when it comes to justifying why do we

need to decide how these nodes should be deployed (i.e., incremental deployment). There are many

scenarios where incremental deployment brings advantages and alleviates challenges. For example,

when we face uncertainty about the application environment that domain experts cannot predict,

early deployment phases of the incremental deployment can play an exploratory role to unveil these

uncertain elements such that latter deployment phases can be conducted with more certainty. These

exploratory phases, not only help improving WSN efficiency and performance, but also alleviates

the pressure on the WSN designer to get the deployment right in one step.

Like other WSN design options, the deployment problem window of feasible solutions is con-

fined by the specific application. For example, in military applications, accurate placement of the

sensor nodes is not possible, therefore, the where component of the deployment problem must take

into consideration the uncertainty of the ultimate sensor node locations in the battle field [103]. Fur-

thermore, incremental deployment in such applications may not be an option due to the short term

mission of the WSN and severe fatality of the application environment.

39

In this work, we attack the how many and how components of the deployment problem and

assume sensor placement is decided by other means. We use the term deployment problem to refer

to the problem of deciding how many sensor nodes should be deployed in the sensor field over how

many incremental deployments. A simple deployment strategy may stipulates the deployment of all

sensor nodes at once, with no further deployments. We aim at finding the optimal deployment plan

that meets user-defined availability requirement with minimum total cost taking into consideration

node failures resulted from harsh environment conditions and changing field trip to sensor node cost

ratio. As a first step in formalizing this optimization problem, we define both WSN availability and

total cost as functions of the deployment strategy. WSN availability is defined as the probability of

having a functioning WSN at any point of time. Total cost, on the other hand, accounts for the cost

of all the sensor nodes to be deployed and the cost of conducting the field trips during the operational

stage.

4.3 Model

Given a user-defined availability requirement, our modeling and optimization finds the optimal

deployment plan that minimizes total cost. WSN availability at time t is defined by the number

of nodes deployed in the field by that time, the way these nodes are clustered together, and the

sensor node failure model. The total cost, on the other hand, is defined by the total number of nodes

deployed, the total number of field trips, cost of the sensor node, and the cost of the field trip. Before

we can proceed with formalizing availability and total cost in terms of the deployment strategy, it is

vital to discuss a few preliminaries.

4.3.1 WSN structure

The sensor nodes of a WSN are arranged into N clusters, each cluster j consists of a set of ηj(t)

sensor nodes, ηj(t) represents the number of nodes deployed in cluster j by the time t, note that

ηj(t) is a function of the deployment strategy. This structure is similar to GAF [92] and Tenet [27].

In this well-known and accepted WSN structure strategy, it is assumed that all the sensor nodes that

belong to the same cluster are redundant in the sense that any κ set of nodes out of the deployed

40

η(t) nodes are enough to maintain a functioning cluster and WSN. Therefore, the availability of

each cluster, denoted as Ac(t) can be modeled as a parallel structure, whereas, the availability of the

WSN, denoted asAwsn(t) can be modeled as a serial structure. Since the number of deployed nodes

in each cluster ηj(t) is a function of the deployment plan, the availability of the WSN becomes a

function of the deployment plan. Figure 4.1 depicts the reliability block diagram of the WSN. Each

dotted-box represents a single cluster, which consists of several nodes connected in parallel. The set

of clusters collectively are connected serially and form the WSN.

Legends:

n
no

de
s

sensor node

sensor cell

parallel structure

serial structure

N cells

Figure 4.1: Reliability block diagram of a WSN.

4.3.2 Node failure model

Accounting for node failures dictates the assumption of sensor node failure model. In this

work, we target deployment-based failures. Deployment-based failures account for failures resulted

from harsh environmental conditions. For example, severe wind storms that will destroy the sensor

node(s), falling objects such as trees, and wild animals that could step over the sensor node or even

could eat it. We believe that such harsh environmental conditions will, in most cases, render the

sensor node totaly dead, therefore, we adopt a fail-stop failure pattern. Deployment-based failures

are independent of the time a sensor node spend active. In contrast, usage-based failures depends

on the time a sensor node spends in the active mode, the more a sensor node is in the active mode,

the more the probability that the node fails.

41

To model such sensor node failures, we adopt the exponential distribution to model the lifetime

of sensor nodes. The exponential distribution exhibits a constant failure rate, which implies that a

sensor node that has just been deployed has the same probability of failing as a node deployed long

time ago. We believe this memoryless feature of the exponential distribution allows us to capture

the type of node failures we are targeting and model the environment hostility. In other words, it

does not matter whether the node has been deployed for several months or has just been deployed

to be eaten by an animal for example, and therefore, fail. Since all the nodes are deployed in the

same environmental region, we further assume that all sensor nodes independently follow the same

failure model.

In fail-stop failure pattern, the probability that a sensor node is available at any time t, equals

to the probability that the lifetime (i.e., τ) of the sensor node is greater than t. This cumulative

probability distribution function is known as the survival function and defined as Si(t) = e−λt

in the case of exponential lifetime distribution [28]. The survival function, Si(t), represents the

unconditional probability that the sensor node will survive beyond time t, whereas, failure rate, λ,

represents the conditional probability intensity that node i will fail in the next moment, given that

it has survived until time t (i.e., λ = Pr{τi ∈ [t + dt]|τi > t}), where τi is the lifetime of node

i. Note also that the mean node lifetime (i.e., E[τ]) equals to 1
λ . Given the fail-stop failure pattern,

sensor node availability at time t (i.e., the probability of having a functioning sensor node at time t)

has a cumulative probability distribution of S(t).

4.3.3 Incremental deployment and cost ratio

As we have discussed in Section 4.1, any solution to the deployment problem is confined by the

limitations imposed by the particular application. A key assumption in our work is that the appli-

cation provides the flexibility to conduct multiple deployment visits (i.e., incremental deployment).

We argue that this is the case in a large set of envisioned WSN applications. For example, environ-

mental applications [60], in-home deployments [18], and many others. From node failure point of

view, incremental deployment offers the flexibility in postponing node deployment until we need

42

them, which may help in avoiding node failures. Ideally, we would like to postpone further node

deployments immediately after nodes in the sensor field fail. Furthermore, we assume that the cost

of a sensor node (denoted as Csensor) and the cost of conducting the field trip (denoted as Ctrip)

may have different ratios. The cost of a visit accounts for any administrative costs associated with

the field trip, such as personnel salaries and labor costs. The sensor cost represents the cost of actual

sensing hardware.

Changing cost ratio is leveraged by the pro-active deployment strategy to maintain a lower total

cost. Intuitively, having a very costly field trip expenses and very cheap sensor node may lead us

in reducing the number of field trip deployments while increasing the number of nodes deployed in

each trip to maintain the required availability level.

A changing field trip to sensor node cost ratio (i.e., Ctrip : Csensor) could be the result of several

factors. First, proximity of the sensor field, for instance, far-away sensor field may cause the cost

ratio to tip in favor of field trip cost. Second, hostility of the environment, for example, deploying

sensor nodes in a volcano may require very expensive safety measures which drives the field trip

cost significantly high. Third, expensive sensing hardware that may cause the scale to tip in favor

of sensor node cost, which may require us to increase the number of field trips and decrease the

number of sensor nodes to deploy in each trip. Fourth, geographical factors may result in different

cost ratios in different countries even for identical application. Contrary to developed countries, in

developing countries labor is typically cheaper than technology, this results in lower field trip costs

and higher sensor node costs.

4.3.4 Availability and cost model

Now, we are in a position to present WSN availability (i.e., Awsn) and the total cost (i.e., Ctotal)

as functions of the deployment strategy, which can be seen as a plan in which sensor nodes are

deployed incrementally over several phases at specific times, in each deployment phase, a specific

number of nodes are added in each cluster. This can be formalized as a tuple: D〈~τ , ~η 〉. ~τ =

(τ1, τ2, τi, . . . , τm) is a vector representing the time of each deployment phase, where 1 ≤ i ≤ m

43

and m represents the total number of deployment phases such that τm < Tmax (i.e., the last node

deployment should be conducted before the end of the WSN lifetime required by the end-user).

~η = (η11, η12, . . . , ηij , . . . , ηmN) is a two dimensional matrix with each element representing the

number of nodes to be deployed in phase i at cluster j, where i ∈ [1,m] and j ∈ [1, N]. Note that

both the availability of the WSN (i.e., Awsn) and the total cost (i.e., Ctotal) become functions of the

deployment strategy, and therefore, our goal can be summarized as finding the optimal deployment

plan (D〈~τ , ~η 〉) that meets a particular availability requirement and minimizes the total cost.

Availability of each cluster can be modeled as a κ-out-of-n system, and the availability of

the WSN as a serial system of the clusters. The availability of the WSN at a particular time

t ∈ [0, Tmax] depends on the number of nodes deployed by the time t in each cluster (denoted

as ηj(t) =
∑bt/mc

i=1 ηij for cluster j). On the other hand, the total cost (denoted as Ctotal) of a

particular deployment plan is defined as the cost of the sensor nodes plus the cost of all visits.

Awsn (t) =
N∏
j=1

ηj(t)∑
i=κ

Si(t)i · (1− Si(t))ηj(t)−i

 (4.1)

Ctotal = Ctrip ·m+ Csensor ·
m∑
i=1

N∑
j=1

ηij (4.2)

Depending on the cost ratio Ctrip : Csensor, different deployment plans result in different costs.

For example, if the cost of a sensor node is negligible compared to the cost of a field trip, then it is

probably best to deploy all the sensor nodes at front, in other words m = 1. Whereas, in case of

expensive sensing hardware, we may want to perform extra deployments only when necessary, in

other words, when deployed nodes fail.

The at-front and on-demand strategies lie at the extreme ends of the solution spectrum, whereas,

pro-active traverses the solution spectrum for optimal solution. At-front confines its deployment

plan to one visit and tries to satisfy the availability requirement by keeping on increasing the number

44

nodes to deploy at-front. On the other end, on-demand puts no limits on the number of deployment

visits, while minimizing the number of nodes to deploy in each visit. The pro-active strategy, on the

other hand, leverages the flexibility provided by incremental deployment and adapts to the changing

cost ratio and adjusts the number of deployment visits and the number of nodes to deploy in each

visit to satisfy availability requirement with minimal cost.

4.3.5 User requirement

We provide two ways to allow the end-user in expressing availability requirement: minimum

availability (denoted as minA) and average availability (denoted as avgA). Minimum availability

represents a lower bound on the probability of having an available WSN at any time over the WSN

lifetime, it is defined formally as minA = minTmax
t=0 Awsn(t). It allows the end-user in expressing

a WSN availability lower-bound, which could be useful in mission-critical applications. Average

availability represents the probability of having an available WSN on average at any point of time

during the WSN lifetime and defined formally as avgA =
∑Tmax

t=0 Awsn(t)
Tmax+1

. avgA is proportional to

total uptime of the WSN, for example, an avgA value of 0.5 results in Tmax
2 of total uptime.

4.4 Pro-active Strategy

The definition of the deployment strategy in Equation 4.1 has many variables, which makes the

optimization problem very complicated and the deployment plan impractical to carry out in the real

world. For example, it is easier for the WSN administrators and application scientists to carry out

a deployment strategy that mandates regular field trips every six months, rather than a strategy that

requires field trips at irregular times. Therefore, we impose several constraints on this definition.

First, the deployment phases are equally splitted in time, therefore, ~τ reduces to a vector of m

values with Tmax/m increments. Second, the number of nodes deployed in each field trip are equal,

in other words, for a fixed j, nij are equal ∀i ∈ [1,m]. Third, the number of nodes deployed in

each cluster is the same, in other words, for a fixed i, nij are equal ∀j ∈ [1, N]. These constraints

reduce the deployment plan into a tuple of two scalar values D〈m,n 〉, where m is the number of

45

field trips, and n is the number of nodes to be deployed in each cluster at each field trip. We use the

new deployment plan definition in the pro-active strategy.

Under the new deployment definition, the WSN lifetime is divided into m equal deployment

phases of length ∆ = Tmax/m each. During the first deployment phase (i.e., t ∈ [0,∆)), we have

exactly n nodes deployed in each cluster, in the second deployment phase (i.e., t ∈ [∆, 2 · ∆)),

we have 2 · n nodes deployed in each cluster. Let Ω = dt/∆e ∈ [1,m] represents the deployment

phase, then, ηj(t) = Ω · n ∀j ∈ [1, N]. To simplify our analysis, we confine κ in our mode to

1, this allows us to reduce the optimization problem in case of minA into a one-dimensional one.

This is still reasonable from the practical point of view, for example, in GAF [92], the sensor field is

divided into grids, in each grid at least one sensor node needs to be available to achieve connectivity

or coverage, and consequently, have an available WSN.

Note that all the nodes in the same patch (i.e., nodes that have been deployed in the same de-

ployment phase) have the same survival function, and that for patch ω ∈ [0,Ω − 1], the survival

function is, simply, a time-shift of S(t), formally, Sω(t) = e−λ(t−ω∆), note that the total number

of sensor patches equals to the number of deployment phases. The availability of cluster can be

derived as follows:

Ac (t) = 1− Pr{all nodes have failed by time t}

= 1− Pr{all nodes of the 1st patch have failed}

· Pr{all nodes of the 2nd patch have failed} . . .

· Pr{all nodes of the ω + 1th patch have failed}

= 1−
Ω−1∏
ω=0

(
1− e−λ(t−ω∆)

)n
where Ω = dt/∆e is the number of patches deployed

by time t

46

In order to have an available WSN at time t, all clusters must be available at that time, hence,

the availability of the WSN is defined as shown in Equation 4.3. The total cost for pro-active

deployment strategy reduces as in Equation 4.4.

Awsn (t) = Pr{all clusters are available at time t}

=
N∏
i=1

[
1−

Ω−1∏
ω=0

(
1− e−λ(t−ω∆)

)n]

=

[
1−

Ω−1∏
ω=0

(
1− e−λ(t−ω∆)

)n]N
(4.3)

Ctotal = Ctrip ·m+N · n ·m · Csensor (4.4)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time (in months)

A
w

sn
(t

)

D<10, 5>
D<5, 10>

Figure 4.2: Availability of WSN. The x-axis represents time in months, the y-axis represents the
probability of having a functioning WSN at that time.

Figure 4.2 represents the availability of a WSN with 10 clusters (i.e., N = 10), a sensor node

mean lifetime of 13.8 months (i.e., λ = 0.072), and a deployment lifetime of 10 years (i.e., Tmax =

120 months). The x-axis represents the WSN lifetime in months, whereas, the y-axis, represents the

WSN availability. The lines corresponds to two deployment plans, the un-marked line represents

availability for a deployment plan of 10 phases and a 5-nodes deployment in each phase in each

47

cluster (i.e., D〈 10, 5 〉), whereas the marked line represents a deployment plan of 5 phases and a

10-nodes deployment in each phase in each cluster (i.e., D〈 5, 10 〉). Note that both deployment

plans consume the same number of nodes (i.e., 50 nodes in each cluster over the 120 months),

however, their availability is totaly different. Intuitively, deploying more nodes at front results in

better availability at the beginning, however, more nodes will be susceptible to failures which results

in worse availability as the time goes by.

minA =
[
1−

(
1− e−λ

Tmax
m
−1
)n]N

(4.5)

avgA =
∑Tmax

t=0 Awsn(t)
Tmax + 1

(4.6)

From Figure 4.2, it is clear that minA happens at the end of the first deployment phase (i.e., t =

∆ − ε), where ε is a number close to zero. Note that each cluster will have only n nodes deployed

by then. Therefore, minA can be reduced as in Equation 4.5. avgA is defined as in Equation 4.6.

Figure 4.3 shows how availability changes as a function of the deployment planD〈m,n 〉,minA

in Figure 4.3(a) and avgA in Figure 4.3(b). In both figure, the x-axis represents the total number

of deployment phases (i.e., m), the y-axis represents the number of nodes added in each phase

at each cluster (i.e., n), each point on the xy-plane, hence, represents one deployment plan in the

pro-active strategy, the corresponding minA and avgA for each plan are shown on the z-axis in

Figure 4.3(a) and Figure 4.3(b) respectively. The other WSN parameters are chosen as follows:

N = 10, λ = 0.072 failures/month, and Tmax = 120 months.

We can see that minA and avgA are consistently increasing in m and n. We further observe

from Equation 4.4 that the total cost is also increasing in m and n. We leverage these properties to

devise a termination condition (refer to Figure 4.6 line 6) and locate a global optimal solution and

avoid exhaustive search of the open-ended solution space (i.e., m, n pairs) in our optimization.

48

0
20

40
60

80
100

120

20
40

60
80

100
120

140

0

0.2

0.4

0.6

0.8

1.0

m (# of field trips)

m
in

A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n (# of nodes
to deploy)

0
20

40
60

80
100

120

0
20

40
60

80
100
0

0.2

0.4

0.6

0.8

1.0

m (# of field trips)

n (# of nodes
 to deploy)

av
g A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

Figure 4.3: Clarifying WSN availability as function of deployment plan, minA in (a), avgA in (b).

4.4.1 Optimization

Now, we are in a position to formalize and solve the optimization problem, in other words,

finding D〈m,n 〉 (denoted as OptimalD) that meets availability requirement (i.e., minA or avgA)

and minimizes the total cost (i.e., Ctotal). Finding OptimalD is equivalent to searching for the lowest

point on a surface representing the total cost. The domain of this surface is a plane consisting of

all the pairs, D〈m,n 〉, that satisfy availability requirement (either minA or avgA). Note that the

cost surface is consistently increasing in m and n. Therefore, in our search for the global minimum,

which represents OptimalD, we can confine ourselves to the points D〈m,n 〉 located on the lower

boundary of this solution domain. In the case of optimization for minimum availability, we can

reduce the optimization problem into a single dimension domain. In the following two subsection,

we discuss the optimization problem for minA and avgA consecutively.

Optimizing for minimum availability

In this subsection, we are concerned with finding the deployment plan that meets user-defined

minimum availability requirement (minA) and minimizes the total cost (Ctotal). Solving Equa-

tion 4.5 for n as shown in Equation 4.7 and substituting in Equation 4.4, allows us to express Ctotal

in terms of m alone. Thus, our optimization problem reduces to searching for m that minimizes

total cost. We choose m as the independent variable, rather than n, since the number of possible

49

values form can be bounded by practical limits. In other words, the time between deployment visits

can be bounded with a minimum value (denoted as ∆min) by considering some practical issues.

After finding m that minimizes total cost, we can find corresponding n simply by plugging-in m

and minA in Equation 4.7.

n =

 ln
(
1− N

√
minA

)
ln
(

1− e−λ
Tmax

m

)
 (4.7)

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

m (# of deployment phases)

n
(n

um
be

r
of

 n
od

es
 d

ep
lo

ye
d

in

 e
ac

h
ph

as
e

in
 e

ac
h

cl
us

te
r)

min
A
 = 0.6

min
A
 = 0.9

Figure 4.4: Solution space, each point represents one deployment plan that achieves minA.

Figure 4.4 illustrates the solution plane for minA. The x-axis represents the number of visits

m, the y-axis represents the number of nodes to deploy in each visit, n. Each point in this plane

represents one deployment plan in the pro-active strategy. The line in the figure represents a lower

bound on the deployment plans that satisfy a specific minimum availability requirement. Observe

that as the number of visits increases (i.e., m), the number of nodes that should be deployed to

satisfy a particular minA decreases, and vice versa. Depending on the Ctrip : Csensor cost ratio

assignment, each point on this lower-bound line results in a unique total cost value. Recall that the

total cost is increasing in m and n, therefore, the optimal deployment plan that minimizes Ctotal

is located on this line, in essence, our optimization solution traverses this line to search for the

minimum total cost.

50

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

m (number of deployment trips)

C
to

ta
l

1:1, N=10, λ=0.072, T
max

=120, min
A
=0.9

Minimum C
total

 occurs at m = 12, corresponding

n can be found using Equation 7.
Optimal

D
 = 〈 m=12, n=7 〉

C
trip

:C
sensor

 = 1:1
min

A
 = 0.9

T
max

 = 120 months

λ = 0.072 failures/month
N = 10 clusters

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

m

C
to

ta
l

100:1, N=10, λ=0.072, T
max

=120

Minimum C
total

 occurs at m = 6, corresponding

n can be found using Equation 7.
Optimal

D
 = 〈 m=6, n=17 〉

C
trip

:C
sensor

 = 100:1
min

A
 = 0.9

T
max

 = 120 months

λ = 0.072 failures/month
N = 10 clusters

(a) (b)

Figure 4.5: Illustrating the pro-active strategy adaption to different Ctrip : Csensor cost ratio assign-
ments. A cost ratio of 1:1 is used in (a) and a cost ratio of 100:1 is used in (b).

Figure 5.7 demonstrates how the pro-active strategy adapts to a changing cost ratio in choosing

the optimal deployment plan. The x-axis represents the number of deployment trips, the y-axis rep-

resents the total cost. Both Figure 5.7(a) and Figure 5.7(b) have exactly the same parameters except

the cost ratio Ctrip : Csensor. In Figure 5.7(a), we use a cost ratio of 1 : 1, and in Figure 5.7(b),

we use a cost ratio of 100 : 1. It can be easily seen that as the cost of the field trip (i.e., Ctrip)

increased with respect to the cost of the sensor node (i.e., Csensor), the pro-active strategy, chooses

to decrease the number of field trips (i.e., m) and increase the number of nodes to deploy in each

trip (i.e., n) to lower the total cost and maintain the same level of minimum availability.

Optimizing for average availability

Unlike in optimizing forminA, we use a two-dimensional iterative numerical algorithm to solve

the optimization problem for avgA.

Figure 4.6 shows the pseudo code of our approach. We iterate over all the solution points m

and n on the lower boundary of the deployment points that meet avgA, calculate the corresponding

total cost (Ctotal) using Equation 4.4, and find m and n that achieve the minimum total cost. As

we did in Section 4.4.1, m takes on the values 1 up to Tmax
∆min

, with one step increments (line 2 in

51

 1. Optimal_Cost = INF
 2. for m = 1 to (Tmax / ∆min)
 3. begin
 4. n = 1
 5. calculate tAvgA for D<m, n> // use Eqn. 6 and Eqn. 3
 6. while (tAvgA< avgA) // terminate once avgA is satisfied
 7. begin
 8. n = n + 1
 9. calculate tAvgA for D m, n // use Eqn. 6 and Eqn. 3
 10. end while
 // D m, n satisfies avgA

 11. Ctotal = m . Ctrip + N . m . n . Csensor
 12. if (Ctotal < Optimal_Cost)
 13. begin
 15. OptimalD = m, n
 16. end if
 17. end for

Input: Ctrip, Csensor, Tmax, ∆min, avgA
Output: OptimalD m, n

Figure 4.6: The pseudo code for finding the optimal deployment plan that meets avgA with mini-
mum total cost.

Figure 4.6). For each each value of m, we keep on incrementing n until avgA is satisfied (lines 6 to

10 in Figure 4.6).

4.4.2 Cost-benefit analysis

From the business point of view, a very important issue that deserves a careful study is return on

investment. Managers are usually concerned with monetary profit they can achieve for each dollar

they spend. Our model allows to address this issue in a comprehensive way.

Figure 4.7 demonstrates that the total cost per availability unit (e.g., minA, avgA) is not ho-

mogeneous for all target availability levels. In each of the figures, we use the pro-active strategy

approach to obtain the optimal deployment plan for different minA and avgA user requirements

(shown on the x-axis), find the corresponding Ctotal for each plan, and finally get the total cost per

availability unit, minA in Figure 4.7(a), avgA in Figure 4.7(b), and total uptime in Figure 4.7(c).

In Figure 4.7(a) for example, if we wish to achieve a minA of 0.4, each minA unit costs twice

as much as the minA unit cost if we target minA value of 0.6. In Figure 4.7(c), we can observe

that one month of total uptime costs around $7 if we are seeking a deployment plan that guarantees

100 months of total uptime, whereas, we may have to pay more than $9 per month if we target a

52

0.2 0.4 0.6 0.8 1.0
1000

2000

3000

4000

5000

6000

7000

min
A

C
to

ta
l/m

in
A Most cost effective choice for min

A

0.2 0.4 0.6 0.8 1.0
800

900

1000

1100

1200

1300

1400

avg
A

C
to

ta
l/a

vg
A A plan that achieves 0.80 avg

A

results in better return on investment
than a plan that achieves 0.81 of avg

A

(a) (b

20 40 60 80 100 120
6.5

7

7.5

8

8.5

9

9.5

Total uptime (months)

C
to

ta
l/T

ot
al

 u
pt

im
e

($
/m

on
th

s) A plan that achieves more than
110 months of total uptime is NOT

effective from the cost−benefit perspective

(c)

Figure 4.7: Understanding cost-benefit for pro-active deployment strategy, x-axis can be trans-
formed into benefit for a particular business model, y-axis represents cost. User requirement is
expressed as minA in (a), avgA in (b), and total uptime in (c).

deployment plan that achieves 118 months of total uptime. Figure 4.7(b) suggests that we may want

to target a deployment plan that achieves 0.75 avgA in order to get the best deal on a unit of avgA

we obtain.

This non-homogeneity has implications on investment options. For simplicity, let us study a

scenario where the profit is $P constant-multiplication of the total uptime, in other words we make

a profit of $P for every month of total uptime of the WSN (i.e., profit = $P · the x-axis value in

Figure 4.7(c)). Thus, profit to cost ratio becomes $P multiplication of the line in Figure 4.7(c).

For example, let P=$10, according to Figure 4.7(c), if we use a deployment plan that achieves 85

months of total uptime, our profit is obviously $850, using the curve in the figure, we find that our

53

cost would be 570 = 6.7 · 85 resulting in $1.5 return-on-investment, however, we achieve only

$1.05 for every dollar we pay if we adopt a deployment plan that targets 119 months of total uptime.

Likewise, the curves in Figure 4.7(a) and in Figure 4.7(b) represent profit to cost ratios in case of

minA and avgA respectively.

In real-life applications and business models, a simple linear relationship between total uptime

and profit is unlikely, if the availability of the WSN is very low, chances the application loses repu-

tation and customers, and eventually profit, is very high. However, our analysis can be a powerful

tool in studying cost benefit tradeoffs. It is worth mentioning that targeting minimum availability

(Figure 4.7(a)) could be of particular importance in cost-benefit analysis, in some mission critical

applications, such as assisted-living. Having unavailable WSN, which may result in the undetection

of an emergency condition, could be very damaging to the application reputation, which may lead

to severe business losses.

4.5 Ad-hoc deployment strategies

In this section, we present two more simplistic deployment strategies: an ad-hoc on-demand

strategy and an at-front strategy. At-front represents a deployment strategy that considers the

hostility of the environment and the required WSN lifetime (i.e., λ and Tmax) to estimate the number

of the nodes required to be deployed at front to achieve the target availability without any further

deployment visits. Whereas, the on-demand strategy, represents an optimistic strategy in which no

planning is conducted at all to account for future node failures, on the contrary, further deployment

visits are scheduled on an on-demand basis only when a fraction of the sensor nodes in a particular

cluster fail.

4.5.1 At-front deployment strategy

The at-front deployment accounts and plans for node failures by estimating the required num-

ber of nodes needed to meet user-defined availability, however, only one deployment visit, at the

beginning of the WSN lifetime, is conducted. Limiting the number of deployment visits to one rules

out any possibility to consider the Ctrip : Csensor cost ratio.

54

To estimate the number of nodes required to meet user-defined availability, WSN availability un-

der the at-front deployment strategy can be modeled as a simple k-out-of-n system. By specializing

the general formula in Equation 4.1, we can model the availability of the WSN as follows:

Aat-front(t) =
(

1−
(

1− e−λt
)n)N

(4.8)

Again, n is the number of nodes to be deployed at t = 0 in each one the N clusters of the

WSN. Like in the pro-active deployment strategy, user-defined availability is expressed asminA or

avgA. For a given WSN of sizeN and a deployment lifetime of Tmax, finding n that achievesminA

or avgA can be formulated as a simple one-dimensional optimization problem using the following

formulas of minA and avgA:

minAat-front =
(

1−
(

1− e−λTmax

)n)N
(4.9)

avgAat-front =
Tmax∑
t=0

(
1−

(
1− e−λt

)n)N
(4.10)

The at-front deployment strategy exhibits a very high availability at the beginning of the WSN

lifetime, however, the availability degrades significantly toward the end lifetime of the WSN. There-

fore, it shows a very weak scalability to increasing maximum WSN lifetime (i.e., Tmax) and increas-

ing failure rate (λ) as we present in Section 4.6.

4.5.2 On-demand deployment strategy

As we have mentioned, the on-demand strategy is optimistic in the sense that it does not plan

for node failures in advance. However, it performs incremental deployment(s) whenever some sen-

sor nodes fail and the fraction of the remaining nodes drops below some user-defined threshold.

Planning and conducting deployment visits is not instantaneous, in other words, there is a minimum

time period between time of the detection of the need for node deployment and conducting the actual

55

deployment (Tprep). This constrain captures some real-life physical limitations. In our simulations,

we make Tprep and the minimum time between two consecutive deployment visits in the pro-active

strategy (∆min) the same.

We used a fraction of 0.7 and initial nodes of 2, every time the number of remaining nodes drops

below 0.7 of the original, a deployment visit is scheduled at t + Tprep and the number of nodes in

the cluster is brought back to 2.

4.6 Simulation and Evaluation

In this section, we simulate and evaluate the performance of the pro-active node deployment

strategy and compare it to more simplistic deployment strategies: on-demand and at-front and

observe how well these deployment strategies adapt to changing application deployment settings.

To capture the primary performance dimensions in our study: total cost and WSN availability,

we coin our performance metrics as cost per availability unit and observe the performance of the

different deployment strategies in changing application deployment settings.

4.6.1 Performance metrics

We define three performance metrics, cost per minA, avgA as low level metrics, and cost per

total uptime as a high level metric. The former metrics are direct measure of the goodness of the

optimization process, whereas, the latter is a more meaningful measure from the user point of view.

Due to the extremely large cost per availability unit of the at-front deployment strategy, we had to

draw the y-axis on a log scale, the x-axis is drawn on a linear scale.

4.6.2 Simulation setup

We perform four sets of experiments to study the scalability of the different deployment strate-

gies to different parameters. First, we study the effect of increasing failure rate (i.e., λ), this helps

us understand how well each of the deployment strategies scales to more and more hostile environ-

ments. Second, observe how the different deployment strategies adapt to a changing cost ratio (i.e.,

56

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

10
3

10
4

10
5

10
6

10
7

10
8

λ (failures / month)

co
st

 (
$)

 /
m

in
A

on−demand

pro−active

at−front

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

10
3

10
4

10
5

10
6

λ (failures per month)

co
st

 (
$)

 /
av

g A

on−demand
pro−active
at−front

(a) (b)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
10

0

10
1

10
2

10
3

10
4

10
5

λ (failures / month)

co
st

 (
$)

 /
T

ot
al

 U
pt

im
e

on−demand
pro−active
at−front

(c)

Figure 4.8: Comparing pro-active, on-demand, and at-front deployment strategies as environment
hostility increases (i.e., increasing λ). (a) total cost per minA, (b) total cost per avgA, and (c) total
cost per total uptime.

Ctrip : Csensor), this is important to see how these strategies behave in different settings due to

application specifics or geographical variations. Third, we study the different deployment strategies

scalability with respect to an increasing WSN size, by size we mean number of clusters in the WSN

(i.e., N). Fourth, we observe the scalability of these strategies to an increasing deployment time

(i.e., Tmax). Table 4.1 lists the parameter value ranges of the four experiment sets.

The WSN is arranged intoN clusters, the WSN is available if and only if at least one sensor node

is available in each cluster. The sensor nodes fails independently following exponential distribution

with parameter λ as defined in the particular deployment scenario being simulated. Finally, the

simulation is allowed to run until the maximum deployment time (i.e., Tmax) is reached or all the

57

10:1 30:1 50:1 70:1 90:1

10
3

10
4

10
5

C
trip

:C
sensor

 (in $)

co
st

 (
$)

 /
m

in
A

on−demand
pro−active
at−front

10:1 30:1 50:1 70:1 90:1

10
3

10
4

C
trip

:C
sensor

 (in $)

co
st

 (
$)

 /
av

g A

on−demand
pro−active
at−front

(a) (b)

10:1 30:1 50:1 70:1 90:1

10
1

10
2

C
trip

:C
sensor

 (in $)

co
st

 (
$)

 /
T

ot
al

 U
pt

im
e on−demand

pro−active

at−front

(c)

Figure 4.9: Comparing pro-active, on-demand, and at-front deployment strategies as the cost ratio
changes (i.e., Ctrip : Csensor gets larger). (a) total cost per minA, (b) total cost per avgA, and (c)
total cost per total uptime.

sensor nodes have failed and no future deployments are scheduled. The total cost (i.e., Ctotal) of

each run is calculated according to the cost ratio (Ctrip : Csensor) and the number of deployments

and number of nodes deployed (i.e., m and n). For each deployment scenario (i.e., deployment

settings), we perform simulations of 200 deployments and record the average minA, avgA, total

uptime, and the total cost. In all of the figures, we present the total cost per availability on the

y-axis, the x-axis shows the value of the changing parameter according to the application scenario.

58

8 10 12 14 16
10

3

10
4

10
5

N (# of clusters)

co
st

 (
$)

 /
m

in
A

on−demand
pro−active
at−front

8 10 12 14 16

10
3

10
4

10
5

N (# of clusters)

co
st

($
)

/ a
vg

A

on−demand
pro−active
at−front

(a) (b)

8 10 12 14 16

10
1

10
2

10
3

N (# of clusters)

co
st

 (
$)

 /
T

ot
al

 u
pt

im
e

on−demand
pro−active
at−front

(c)

Figure 4.10: Comparing pro-active, on-demand, and at-front deployment strategies as the WSN
number of clusters increases (i.e., N increases). (a) total cost per minA, (b) total cost per avgA, and
(c) total cost per total uptime.

4.6.3 Evaluation results

Environment Hostility. In the first set of experiments in Figure 4.8, we study the performance of

the deployment strategies as the environment hostility increases from 0.059 up to 0.125 failures per

month drawn linearly on the x-axis, this results in an average sensor node lifetime of 17 months

down to 8 months with 1 month decrements. Tmax, N , Ctrip : Csensor are set to 120 months,

10, and 50 : 1 respectively. The y-axis depicts total cost per minA in Figure 4.8(a), total cost per

avgA in Figure 4.8(b), and total cost per total uptime in Figure 4.8(c). The y-axis is drawn on a log

scale. In general, we observe increasing cost per availability unit as the environment gets harsher for

all deployment strategies. Harsher environment results in more node failures, which requires more

59

10 12 14 16 18 20
10

3

10
4

10
5

10
6

10
7

10
8

10
9

T
max

 (years)

co
st

 (
$)

 /
m

in
A

on−demand

pro−active

at−front

10 12 14 16 18 20

10
3

10
4

10
5

10
6

10
7

T
max

 (years)

co
st

 (
$)

 /
av

g A

on−demand
pro−active
at−front

(a) (b)

10 12 14 16 18 20

10
1

10
2

10
3

10
4

10
5

T
max

 (years)

co
st

 (
$)

 /
T

ot
al

 u
pt

im
e

(in
 m

on
th

s)

on−demand

pro−active

at−front

(c)

Figure 4.11: Comparing pro-active, on-demand, and at-front deployment strategies as deployment
time increases (i.e., Tmax increases). (a) total cost per minA, (b) total cost per avgA, and (c) total
cost per total uptime.

nodes to be deployed over more frequent deployment visits, this drives the total cost per availability

unit up.

As a general observation in Figure 4.8, we found that the pro-active deployment strategy ex-

hibits lower total cost per availability unit compared to the at-front and on-demand strategies.

Furthermore, it scales better to increasing failure rate. We further found that the non-incremental

at-front deployment strategy is by far the worst strategy on the basis of point-to-point comparison

and its scalability to increasing failure rate. In Figure 4.8(a), employing the pro-active strategy

results in the lowest cost per minimum availability unit. For example, for a λ of 0.125 (i.e., average

node lifetime is 17 months), on-demand requires more than three times the total cost compared

60

Scenario Parameter Value range
Environment Hostility λ 0.059 - 0.125

Cost Ratio Ctrip : Csensor 10:1 - 100:1
WSN size N 10 - 17 clusters

WSN lifetime Tmax 120 - 240 months

Table 4.1: The tuning parameters of different evaluation scenarios.

to that of pro-active deployment strategy, and at-front requires more than five orders of magni-

tudes higher cost per minA unit. We also observe that the pro-active strategy scales better than

on-demand and at-front strategies with respect to increasing failure rate. Total cost in on-demand

grows at least twice as fast as that growth of the pro-active deployment strategy, whereas, at-front

grows exponentially, recall that the y-axis is a log scale.

We observe similar results in Figure 4.8(b), the pro-active deployment strategy outperforms

both the on-demand and at-front strategies and decreases the total cost per a avgA unit. For

example, employing the on-demand strategy costs more than 6 times per avgA when employing the

pro-active strategy and more than 13 times when at-front is used. As far as scalability is concerned,

on-demand grows at a rate 2.5 times faster than that of pro-active, at-front grows exponentially.

Compared to Figure 4.8(a), the total cost per avgA tends to be cheaper for each of the corre-

sponding strategies, this is simply because guaranteeing minA requires more nodes and deploy-

ment visits than targeting avgA. While the absolute number on the y-axis in Figure 4.8(a) and

Figure 4.8(b), perhaps, does not represent meaningful quantity from the end user point of view,

the relative quantities indeed do. In Figure 4.8(c), on the other hand, the absolute numbers can be

interpreted in a more useful way as the total cost (e.g., dollars) per a unit of total uptime of the

WSN (e.g., months). For example, in a deployment environment with a failure rate of 0.1 fail-

ures per month, the on-demand strategy requires almost fifty dollars per one month of total uptime,

whereas, pro-active can achieve the same total uptime for only ten dollars. At-front requires around

four thousand dollars, which is significantly more.

61

Cost Ratio. In the second set of experiments, as shown in Figure 4.9, we study the effect of changing

the field trip to sensor node cost ratio (i.e., Ctrip : Csensor) on the performance of the different

deployment strategies, and how well these strategies adapt the number of deployment visits (i.e.,

m) and number of nodes in each visit (i.e., n) to maintain good cost to availability investment.

As we mentioned earlier, this ratio may change as a result of geographical characteristics, sensor

technology costs, and so on. We change Ctrip : Csensor from 10 : 1 up to 100 : 1 incrementing

Ctrip by 10 in each step. λ, Tmax, and N , are set to 0.071 failures per month, 120 months, and 10

clusters respectively.

We observe that pro-active can adapt m and n and achieve lower total cost per availability unit

for all Ctrip : Csensor ratios. For example, in Figure 4.9(a), adopting the on-demand strategy costs

at least 5 times perminA unit more compared to adopting pro-active when the cost of a deployment

visit is 90 times more expensive than the cost of a single sensor node (i.e., 90 : 1). Observe that when

the cost ratio is close to one, the performance of pro-active and on-demand is close, this is because

that pro-active loses its key adaptation advantage, where changing the number of deployment visits

(i.e., m) and the number of nodes to deploy in each visit (i.e., n) can no longer help in driving the

cost down when the cost of deployment visit and cost of sensor node is comparable. However, as

the cost ratio grows, pro-active starts to increasingly outperform on-demand. We, further, observe

that the performance of the at-front strategy performance is far worse than on-demand and pro-

active and that it is almost not affected by the increasing cost ratio. This is due to the fact that the

total number of nodes deployed is decided only based on the availability and is not affected by the

changing ratio, furthermore, there is only one deployment visit, therefore, the total cost in the case

of at-front increases by a very small amount (un-noticeable on a log scale) equal to the increase in

Ctrip in Figure 4.9.

WSN Size. To study the scalability of the deployment strategies to increasing WSN size defined

as the number of clusters (i.e., N), we contrast the cost per availability unit under the different

deployment strategies in Figure 4.10. N changes from 8 clusters up to 17 clusters. λ, Tmax, and

Ctrip : Csensor are set to 0.071 failures per month, 120 months, and 50 : 1 deployment visit to

62

sensor node cost ratio respectively. N effect on cost per availability unit is two-fold, first, increasing

N increases the number of total nodes to be deployed, which drives the cost up, second, increasing

N decreases WSN availability, which also increases cost per availability. Thus, increasing N has

a cumulative effect of increasing the deployment cost per availability for all deployment strategies,

which is what we can observe in Figure 4.10.

In general, we observe that pro-active outperforms both on-demand and at-front. In Fig-

ure 4.10(a) for example, on-demand costs almost five times more than pro-active per minimum

availability unit for a WSN of size 13 (i.e., N = 13), at-front, on the other hand, costs more than 2

orders of magnitudes than that of pro-active cost. In Figure 4.10(c) shows that for a WSN size of

16, pro-active costs $10 per one month of total uptime, compared to $40 and $500 for on-demand

and at-front respectively. Furthermore, we observe that pro-active scalability for increasing WSN

size is better than on-demand and at-front, for example in Figure 4.10(b), on-demand cost per

average availability grows almost 2.5 times faster than that of pro-active and more than five times

in case of at-front.

WSN Lifetime. Finally, we investigate the performance of the different deployment strategies as

WSN required lifetime (i.e., Tmax) increases from 10 months up to 240 months in terms of the total

cost per minimum availability in Figure 4.11(a), cost per average availability in Figure 4.11(b), and

cost per total uptime in Figure 4.11(c). λ, Ctrip : Csensor, andN are set to 0.071 failures per month,

50 : 1 cost ratio, and 10 clusters respectively. Increasing WSN lifetime allows for more node fail-

ures, as a consequence, more deployment visits and sensor nodes are needed , which increases the

total cost per minA and avgA availability units as we observe in Figure 4.11(a) and Figure 4.11(b)

respectively. Figure 4.11(c) represents a normalized total cost. Each point in Figure 4.11(c) repre-

sents the ratio of the total cost to the corresponding Tmax. Ideally, we expect that we pay the same

cost per a unit of total uptime whether the WSN runs for 10 years or 20 years. Both on-demand and

pro-active can achieve a stable cost per unit of total uptime no matter how long is Tmax. at-front,

63

on the other hand, does not scale well for increasing Tmax as deploying all the nodes at the begin-

ning results in a very low availability toward the end of the WSN lifetime, especially, when Tmax

gets longer and longer.

4.7 Related Work

Our work complements previous efforts and attacks the deployment problem from a new angle.

We target high availability and low total cost taking into consideration node failures and chang-

ing field trip to sensor node cost ratio. Among others, the node placement aspect of the deployment

problem enjoyed the attention of many researchers [37, 49]. In these efforts, the authors investigated

several node placement techniques that guarantee coverage and connectivity. They considered con-

trolled [14, 23, 81, 84] as well as un-controlled environments [49, 81, 103]. The latter stipulates

random node locations, whereas, the former allows hand-placement of nodes. Our work uses and

complements existing node placement techniques by considering node failures and total cost.

Incremental deployment has been leveraged by several previous efforts to overcome application

and environment uncertainty [17, 35, 36, 102, 103]. For example, in [35], the authors employed

the the idea if incremental deployment, one at a time, to provide better coverage for mobile WSN

in unknown environments. Early deployed nodes, discover the environment, and provide informed

experience to later nodes to move to appropriate locations and provide better coverage. Our work

uses incremental deployment to adapt to changing field trip to sensor node cost ratio and lower the

total deployment cost.

The authors in [17] propose to use incremental deployment to achieve user-requirement path-

exposure taking into consideration node and field trip costs as well as a maximum budget of sensor

nodes. Path-exposure is a measure of the likelihood of detecting a target traversing the region using

a given path. The higher the path exposure, the better target detection is. Our work is different

than their work in several ways. First, we take into consideration node failures resulted from harsh

environments. Second, our model allows the user to express availability requirement, a maximum

required WSN lifetime, and network parameters (i.e., number of clusters), given these requirements,

our optimization finds the optimal deployment plan including how many nodes to deploy over how

64

many visits. Third, we don’t impose any limitations on the total number of nodes that could be

deployed in our problem formulation. Fourth, we contrast our optimized deployment plan to other

ad-hoc strategies and show that it outperforms these solutions in different application scenarios.

4.8 Summary

In this chapter, we attack the deployment problem from availability and total cost perspectives.

We define the deployment problem as finding how many nodes to deploy in each cluster and when

to deploy them. We formulate the deployment problem as a two-dimensional optimization problem

whose solution yields the optimal deployment plan that satisfies availability requirement with a

minimum total cost. In our evaluation, we show that the pro-active strategy (i.e., optimized solution)

outperforms on-demand and at-front in terms of cost per availability unit.

In the next chapter, we present WSN availability modeling in the SAIL application. Unlike

the environmental applications discussed in this chapter, the sensor nodes are deployed in-door and

chances of catastrophic events are less probable, therefore, we employ the usage-based failure model

and attack the node scheduling problem with emphasize on maintaining high WSN availability.

65

CHAPTER 5

MODELING THE AVAILABILITY OF AUTONOMOUS IN-DOOR WSN

Availability analysis and modeling in autonomous and remotely administered systems that are

composed of cheap and failure-prone components is vital to redundancy management, which in-

cludes the prediction of the required number of components and the way these components are

scheduled ON and OFF. Targeting the application of wireless sensor networks for the monitoring

of elderly people living in their apartments, we use techniques from reliability theory to model the

WSN as a κ-out-of-m system with independent components. In addition to predicting the required

redundancy to meet the desired availability behavior early in the planning phase, we use our mod-

eling to show that scheduling these nodes ON and OFF later on in the operational phase does indeed

improve the availability behavior over the entire system lifetime. To validate our model, we design

and implement a simulator using nesC/TOSSIM. Our analytical as well as experimental results show

that using node scheduling almost doubles the expected WSN total uptime.

5.1 Introduction

Wireless Sensor Networks (WSNs) are envisioned to operate autonomously for long periods

of time without close maintenance and supervision. This makes modeling and predicting WSNs

availability behavior a very important and challenging problem. This problem includes two aspects.

One is about planning for the required number of nodes to meet desired availability behavior. The

other is in controlling the way these nodes are turned ON and OFF (i.e., node scheduling) to improve

the system’s availability. By availability we mean the probability that the system (i.e., WSN) will be

available (i.e., functioning) at an arbitrary point of time over its lifetime. In contrast to availability,

reliability means the probability of having longer continuous and uninterrupted operation of the

system.

66

Developing such models requires a clear understanding of sensor node failure models. From

the perspective of failure models, we can identify two application classes: in-door [18] and out-

door [79, 98] WSN applications. The latter tends to have a hostile deployment environment, which

results in more frequent and unexpected node failures due to harsh environmental conditions [93,

96]. Whereas, the former tends to provide a more controlled deployment environment, which results

in fewer and more expected sensor node failures. Therefore, adopting the usage-based failure model,

in which the probability of failure depends on the time a node spends in the ON mode, is more

reasonable. Despite the controlled deployment environment in in-door WSNs, sensor nodes are still

failure-prone due to their resource limitations and cheap cost. Therefore, WSN deployments are

envisioned to involve a high degree of node redundancy [13, 42, 93] to overcome these limitations.

Our work in this chapter is inspired by the application of WSNs for the monitoring of elderly people

living in their apartments(Chapter 3).

Node redundancy and scheduling, which has been referred to as topology management, has been

studied extensively in the literature [1, 13, 15, 18, 92]. In previous efforts, node redundancy and

scheduling is used basically to extend the WSN lifetime beyond the lifetime of a single sensor node.

Nodes are redundantly deployed so that multiple sensors are able to perform the same function.

Some nodes are turned OFF and save energy, while others stay ON and perform the function. Two

functions were considered, connectivity and coverage, which relate to connectivity and coverage

topologies respectively. Our work complements their work by emphasizing availability as a new

requirement on the node redundancy and scheduling algorithms. As topology (either connectivity

or coverage) is not a concern in this work, we prefer to use redundancy management instead of

topology management in this chapter.

5.1.1 Motivation of Node Scheduling

Note that turning a node OFF in the usage-based failure model prevents node failures. Hence,

node scheduling does indeed affect WSN availability behavior. In Fig. 5.1, we show an interesting

result on how node scheduling can affect WSN availability. The x-axis represents time and the y-axis

67

0 50 100 150
0

0.2

0.4

0.6

0.8

1

t (system time)

A
(t

)
=

 P
r{

sy
st

em
 is

 a
va

ila
bl

e}
No schduling
Queue scheduling

Figure 5.1: Effect of node scheduling on the availability of WSN.

represents system availability. In the queue scheduling scheme, the m sensor nodes are divided in

groups of κ′ nodes each, these groups are turned ON sequentially in a queue-like schedule one group

at a time. As shown in the figure, queue scheduling exhibits more desirable availability behavior

over the system lifetime than turning all the nodes ON since the beginning (i.e., the no scheduling

scheme). We differentiate four aspects to describe the more desirable features. First, queue schedul-

ing exhibits a higher average availability, which means that at an arbitrary time, queue scheduling

has a higher probability that the system will be available on average. Second, queue scheduling

exhibits a higher minimum availability, which is useful in planning for worst-case scenarios. Third,

queue scheduling exhibits less variation in the system’s availability at different stages of the system

lifetime, in other words, the system is more stable. In mission-critical systems it is undesirable to

have a highly available system in an early stage, while having poor availability in a later stage of

the system lifetime as the no scheduling scheme does. Fourth, queue scheduling results in a longer

expected total uptime.

5.1.2 Our Contribution

Our contribution in this work is four-fold. First, we model the WSN availability using sound

techniques from the reliability theory [28]. Second, we use the model to solve the redundancy man-

agement problems: deciding the number of redundant nodes needed to meet desired availability

68

behavior, and the way these nodes should be scheduled to improve the availability behavior. Third,

we define and formalize four performance availability metrics to compare the performance of dif-

ferent scheduling schemes. Fourth, we show that scheduling nodes in the usage-based failure model

does indeed improve availability behavior. We show analytically and experimentally that the ex-

pected total uptime under the queue scheduling scheme is almost double that of the no scheduling

scheme.

The rest of the chapter is organized as follows. Section 5.2 provides more details on the ap-

plication background and requirements. Section 5.3 states formal definitions of our performance

metrics and assumptions. In Section 5.4, we move on to present our node scheduling schemes and

their availability modeling, and finally formalize and solve the redundancy management problems.

Section 5.5 presents the evaluation results. Finally, we present related work and conclude our work

in Section 5.6 Section 5.7, respectively.

5.2 Application Context and Background

Despite several initiatives, the numbers of elders with one or more physical disabilities due to

lack of tools to monitor the elders’ physical activities, who are living in their apartments, is still on

the rise. In the SAIL application, sensor nodes are proposed to be deployed in each room to allow

for remote unobtrusive monitoring and detection of any life-threatening accidents such as falling of

elderly people.

There are several unique requirements of the application and unprecedented limitations and fea-

tures of WSNs that mandate novel approaches to network management. First, remote administration

and unattended WSN operations, which bring in the need for autonomous, self-managing, and self-

healing capabilities. Second, short-duration events. Events that need to be detected tend to have a

short time duration (e.g., falling), which makes availability take precedence over reliability. In this

application, high availability of the WSN is very important to detect potential events, however, high

reliability is not. Third, relatively fixed topology. Nodes that are deployed in the same room can be

considered to form one cluster, in which any node is able to do what any other node can do. Fourth,

69

mild deployment environment, which makes the usage-based sensor node failure model a very rea-

sonable assumption. Fifth, large volume. Wireless sensor nodes are envisioned as power-limited,

resource-limited, and failure-prone devices [93], however, these sensor nodes are expected to be

very cheap, which makes it feasible to deploy them in large volume. These characteristics make the

use of node redundancy to overcome these limitations an attractive solution [13, 42, 93].

Designing systems that are highly available on one hand, and autonomous and self-healing on

the other hand, puts more demand on developing tools and system models that capture node failure

behavior and facilitate the prediction of the required number of nodes that are needed to empower the

system to withstand failures and maintain availability and autonomy. In other words, an autonomous

system should be designed to sustain failures on its own without external intervention. Therefore, we

focus in this work on developing analytical models to help answer two fundamental questions: how

many nodes are required and the way these nodes should be scheduled to obtain best availability

behavior in terms of either minimum availability, average availability, expected total uptime, or

stability.

Unlike usage-based failure models, deployment-based failure models capture node failures re-

sulted from harsh environmental conditions and affect all the sensor nodes deployed in the field

regardless whether these nodes are turned ON or OFF. Therefore, deployment-based failure is more

suitable to out-door WSN applications and the use of a usage-based failure model is more reason-

able in our application. We assume that all the sensor nodes have similar initial power and perform

a similar workload, which enable them to function for an identical maximum period of time Tmax.

We further assume that all the nodes independently follow the same failure model and once a node

fails, it never becomes available again (i.e., fail-stop).

5.3 Problem Statement and Metrics

The purpose of our work is to model the availability of the sensor cluster (denoted as A(t))

in terms of the availability of the underlying components (denoted as Si(t)) under two scheduling

schemes; no scheduling and queue scheduling, formalize the redundancy management problem in

70

each scheduling scheme, and finally to compare their performance in terms of minimum availabil-

ity, average availability, stability, and expected total uptime. We use techniques from reliability

theory [28] to develop these analytical models and to formalize and solve the redundancy manage-

ment problems. We consider the sensor nodes of each room to form one cluster, out of which at

least κ sensor nodes have to be available in order to have an available cluster. κ sensor nodes are

needed instead of only one node to rule out sensor reading errors due to faulty sensors and noisy

environment [58]. Deciding the value of κ is outside the scope of this work and is considered as

input to our model. We use m to represent the number of nodes in each cluster. Basically, we model

the availability of the system as a κ-out-of-m system. In the rest of the chapter, we use the terms

system and cluster interchangeably.

We formally define our performance metrics as follows. The minimum availability (denoted as

minA(t)) is defined as minTmax
t=0 A(t). The average availability (denoted as avgA(t)) is defined as∑Tmax

t=0 A(t)
Tmax+1 . Stability (denoted as σA(t)) is defined as

√
1

Tmax+1

∑t=Tmax
t=0 (A(t) − avgA(t))2. The

total uptime time and expected total uptime are denoted as U and E[U], respectively and defined

as the total time and expected total time, in which the system is available. Formal definitions of

U and E[U] for the no scheduling and queue scheduling schemes are presented and explained in

Subsection 5.4.1 and Subsection 5.4.2, respectively.

0
0

0.1

0.2

λ(
t)

a=0.01, b=5.0, h
°
 = 0.03

T
max

Figure 5.2: Sensor node failure-rate function.

The redundancy management problem has slightly different settings in each scheduling scheme.

In the no scheduling scheme, all the nodes are made ON since the beginning and so, we are only

left with finding the required number of nodes (i.e., m) to meet some availability requirements (i.e.,

either minA(t), avgA(t), σA(t), or E[U]). Whereas in the queue scheduling scheme, the m nodes are

71

divided into groups of κ′ nodes each, and made ON in a queue-like manner, therefore, we have two

problems to solve. First, find m and the corresponding κ′ to meet some availability requirements.

Second, given m, find κ′ that optimizes availability in terms of either minA(t), avgA(t), σA(t), or

E[U]. Note that the no scheduling scheme is indeed a special case of the queue scheduling scheme

(i.e., make κ′ = 1), however, we prefer to model the no scheduling scheme separately for two

reasons. First, modeling the no scheduling scheme is easy as a classical κ-out-of-m system. Second,

this scheme needs no scheduling management at all, which makes the implementation different from

the queue scheduling.

The lifetime of usage-based components is typically divided into three periods, each with a dif-

ferent failure rate. First, an early period with decreasing failure rate; these failures are due to design

and manufacturing faults. Second, a stable period with a very low and stable failure rate. Third,

a wear-out period at the end of the component lifetime with increasing failure rate, these failures

are due to normal wear and tear. A widely known and accepted approach to model this behavior

is to use a bathtub-shaped failure rate function, denoted as λi(t). λi(t) represents the conditional

probability intensity that node i will fail in the next moment, given that it has survived until time

t (i.e., λi(t) = Pr{Xi ∈ [t + dt]|Xi > t} = −Si(t)′
Si(t)

), where X ∈ [0, Tmax] represents node

i lifetime and Si(t) is known as the survival function and represents the unconditional probabil-

ity that node i has no failures by time t and so the node is available at time t. It is known that

Si(t) = exp{−
∫ t

0 λ(τ)dτ} [28]. In this work, we use a failure rate function proposed recently

in [5]. λi(t) and the corresponding Si(t) are defined as follows:

λi(t) = a b(a t)b−1 + (
a

b
)(a t)

1
b
−1 + h◦ (5.1)

Si(t) = exp{−(a t)b − (a t)
1
b − h◦t} (5.2)

Fig. 5.2 depicts λ(t) with assumed values for a, b, and h◦. Based on our assumption that once a

node dies it never becomes available again (i.e., fail-stop), we may think of Si(t) as the availability

of node i at time t, which equals to Pr{node i is available at time t}. Also, note that since all the

nodes follow the same failure model, we can simply use λ(t) and S(t) in the rest of the chapter.

72

5.4 Availability Modeling

In the following two subsections, we present availability modeling of two scheduling schemes,

no scheduling and queue scheduling, including formalizing and solving the redundancy management

problems in the context of these scheduling schemes.

5.4.1 The No Scheduling Scheme

We simply model the availability of the cluster as a classical κ-out-of-m system. We say that

the sensor cluster is available at time t with probability Ano(t) if and only if there exists at least κ

nodes available at time t, put formally as follows:

Ano(t) =
m∑
i=κ

(
m

i

)
S(t)i · (1− S(t))(m−i) (5.3)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

t (cluster lifetime)

A
no

(t
)

κ=2

κ=1

Figure 5.3: No scheduling availability.

Fig. 5.3 shows an Ano(t) with m = 12 and κ = 1 and 2, and a Tmax = 144. To find E[U],

note that the system as a whole exhibits a fail-stop behavior following its fail-stop components (i.e.,

sensor nodes). In other words, once there are less than κ sensor nodes available, the system fails

and never becomes available again. Therefore, U is equivalent to a random variable representing

the time until first failure (denoted as τ) with Pr{τ > t} = Ano(t). Note that the random variable

73

τ ≥ 0, and so the expected time until the first failure and hence E[U] can be calculated as follows:

E[U] =
Tmax∑
t=0

Ano(t) (5.4)

As there is no scheduling in this scheme (i.e., all nodes are ON all the time, we are left with one

question for the model to answer:

PROBLEM 1: GIVEN A VALUE OF κ, FIND THE LOWEST m NEEDED TO MEET EITHER minAno(t),

avgAno(t), σAno(t), or E[U].

PROBLEM 1 is a simple optimization problem that can be solved iteratively over m starting with

m = κ, incrementing m by one each time, and checking whether the current value of m meets

the requirement (i.e., minA(t), avgA(t), σA(t), or E[U]). To find minAno(t) for a given m, simply

substitute (t = Tmax) in Equation (5.3). Note that Ano(t) is consistently decreasing with time as we

can observe from Fig. 5.3, hence,minAno(t) = Ano(Tmax). For avgA(t) and σA(t), we simply follow

the definition to calculate them for a given m value. From the definition of avgA(t) in Section 5.3,

we get (Tmax + 1) · avgAno(t) =
∑Tmax

t=0 Ano(t). By substituting in Equation (5.4), we get:

E[U] = avgAno(t) · (Tmax + 1) (5.5)

Thus, the value of m needed to meet the avgA(t) requirement is the same value of m that is

needed to meet E[U]. In other words, the solution of PROBLEM 1 for avgA(t) and E[U] is the same.

5.4.2 Queue Scheduling Scheme

Unlike the no scheduling scheme, queue scheduling divides the m nodes into η = m
κ′ groups

(denoted as gi, where i = 1, . . . , η). Each group, gi, consists of κ′ nodes, where (κ ≤ κ′ ≤ m).

Given these η groups, the time is divided into η epoches with equal periods denoted as ∆ = Tmax
η .

Each group gi is turned ON, in a queue-like scheduling, at the beginning of its corresponding epoch

(denoted as εi).

74

Tmax

5κ’

τ3
∆

m=ηκ’

3κ’
κ’

g3 “on”

g5 “on”

gη “on”

° of “on”
nodes

τ2τ1 τη
ε1 ε2 ε3 εη

Figure 5.4: Timeline of queue scheduling.

Fig. 5.4 depicts the queue scheduling timeline. The x-axis represents time, while the y-axis

represents the total number of ON nodes shown as discrete value multiples of κ′. Unlike in the no

scheduling scheme, the total uptime (i.e., U) in queue scheduling is different from the time until

the first failure since the system may fail and becomes available again when a new group is turned

ON. However, in a single epoch, the system exhibits a fail stop behavior. Therefore, we can define

the total uptime of the system as the summation of random variables representing the time until the

first system failure in each time epoch (shown as τi in Fig. 5.4). Formally, U =
∑η

i=1 τi, where,

0 ≤ τi ≤ ∆. Hence:

E[U] =
η∑
i=1

E[τi] (5.6)

Now, we turn our attention to find the system availability (AQ(t)), which also represents the

probability distributions of the random variable τi. Perhaps the first thing that comes to mind when

trying to model the availability of queue scheduling is the renewal process model. Unfortunately,

the fact that renewals (i.e., bringing node groups (gi) ON) are asynchronous to failures causes two

major inconsistencies with the classical renewal process model assumptions. First, lack of instanta-

neous repairs. In other words, should the system fail during epoch i (i.e., εi), it will not be available

until the beginning of the next time epoch (i.e., εi+1). Recall that in our usage-based failure model

assumption Section 5.3, nodes have to be in the OFF mode to avoid failures, which makes them

un-responsive to external events and therefore can not be asked to become active on the spot in

75

case a failure is detected. On the other hand, in unattended and remotely administered WSNs, hu-

man intervention is infeasible and violates the key non-obtrusive application requirement. Second,

non-homogeneity of the availability probability distribution during different time epoches. In other

words, τi in Fig. 5.4 are not identically distributed.

1. function result=Q(t, e, i, p)
2. t’ = t – (e - 1) * ∆
3. if (e == 1){ // base case
4. if (i > k’){
5. return 0 // no enough nodes to choose from
6. }
7. return * S(t’)i * (1 - S(t’))(k’- i) * p
8. }else{
9. minJ = max(0, i - (e - 1) * k’)
10. if (min > k’){
11. return 0 // no enough nodes to choose from
12. }
13. maxJ = min(i, k’)
14. tmpP = 0
15. for (j = minJ; j <= maxJ; j++){
16. current_p = p * * S(t’)j * (1 - S(t’))(k’ - j)

17. tmpP = tmpP + Q(t, e - 1, i - j, current_p)
18. }
19. return tmpP
20. }}

(i
k’)f

)(i
k’

k’()j

Figure 5.5: Q: finds recursively the probability of having exactly i nodes available.

In light of the above queue scheduling algorithm complications, we use a recursive numerical

function to model the system availability at an arbitrary time instance (i.e., AQ(t)). Let Q(t, e, i, p)

be the probability that there are exactly i nodes available at time t, then:

AQ(t) =
κ′· e∑
i=κ

Q(t, e, i, 1.0), where (5.7)

e =
⌊
t

∆

⌋
+ 1

The function Q finds the probability of having exactly i nodes available out of e · κ′ nodes

that are already turned ON by time t. Q considers all the possible i node combinations by looping

recursively over e. Fig. 5.5 lists the pseudocode of function Q. In line 2 of Fig. 5.5, Q finds the

total ON time (t′) of the current group (represented by the variable e) as a shift of the global time

t. Hence, the availability of the current node group becomes S(t′). Lines 3 through 6 in Fig. 5.5

76

0 15 30 45 60 75 90 105 120 135
0

0.2

0.4

0.6

0.8

1

t (cluster lifetime)

A
Q

(t
)

κ = 2

κ = 1

Figure 5.6: Queue scheduling availability.

represent the base case scenario (i.e., e = 1), in which only one group of nodes exists. Therefore,

Q returns the probability of having i nodes available out of κ′ ON nodes. Lines 15 through 17 loops

recursively over all the possible combinations. Fig. 5.6 showsAQ(t) form = 12, κ = 1, and κ = 2,

and Tmax = 144. κ′ is set equal to κ for simplicity.

Now, we shift our gear to formalize and solve the redundancy management problems for the

queue scheduling scheme. As in the no scheduling scheme, first the redundancy management prob-

lem is concerned with finding the needed number of nodes (i.e., m) to meet the desired availability

requirement put formally as follows:

PROBLEM 2: GIVEN κ, FIND THE LOWEST m AND CORRESPONDING κ′ NEEDED TO MEET

EITHER minAQ(t), avgAQ(t), σAQ(t), OR E[U].

Again, we may solve this simple optimization problem iteratively over m and κ′ starting from

m = κ, incrementing m by one, and checking against the requirement. For each value of m, κ′ is

changed from κ up tom. Fig. 5.6 illustrates the cluster availability for the queue scheduling schemes

with two different κ values. We can observe from Fig. 5.6 that minAQ(t) happens at t = ∆ − 1,

hence, minAQ(t) = AQ(∆− 1). To find E[U], we may rewrite avgAQ(t) as a piece-wise summation

with ∆ time intervals as follows:

77

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

12

m

κ’
 th

at
 m

ax
im

iz
es

 m
in

A
(t

)

κ = 1
κ = 2
κ = 3

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

12

m

κ’
 th

at
 m

ax
im

iz
es

 a
vg

A
(t

)

κ = 1
κ = 2
κ = 3

(a) (b)

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

12

m

κ’
 th

at
 m

in
im

iz
es

 σ
A

(t
)

κ = 1
κ = 2
κ = 3

(c)

Figure 5.7: The solutions of the PROBLEM 3: (a) for minA(t), (b) for avgA(t), and (c) for σA(t).

avgAQ(t) =

∑∆−1
t=0 AQ(t) + · · ·+

∑η·∆−1
t=(η−1)·∆AQ(t)

Tmax + 1
(5.8)

Note that the ith summation term in Equation (5.8) equals E[τi], hence, from Equation (5.6),

E[U] equals avgAQ(t) · Tmax + 1. Therefore, optimizing for avgAQ(t) is the same as optimizing for

E[U].

We can re-formulate PROBLEM 2 to find the optimal κ′, given a budget of m nodes from which

at least κ nodes should be available. Putting the problem this way is useful in two scenarios. First,

if there is a limited budget on the allowed number of nodes m in the planning phase. Second, if κ′

78

needs to be adapted during the operational phase by considering the actual new m nodes available

in the WSN after some node failures. The optimization problem is put formally as follows:

PROBLEM 3: GIVEN m AND κ, FIND κ′ THAT MAXIMIZES minAQ(t), avgAQ(t), OR MINIMIZES

σAQ(t).

As PROBLEM 1 and PROBLEM 2, PROBLEM 3 can be solved iteratively over κ′ starting from

κ′ = κ and incrementing κ′ one by one until κ′ = m, and finding the optimal κ′. Fig. 5.7 shows

solutions of PROBLEM 3 for minAQ(t) (Fig. 5.7(a)), avgAQ(t) (Fig. 5.7(b)) and σAQ(t) (Fig. 5.7(c)).

From these three figures, we can easily observe that the optimizing values of κ′ for minAQ(t),

avgAQ(t), and σAQ(t) are not the same. For example, for m = 8 and κ = 3, κ′ that optimizes

minAQ(t) is 4, whereas, κ′ that optimizes avgAQ(t) is 8.

5.5 Simulation and Evaluation

We design and implement a simulator in the nesC/TOSSIM environment to verify our mod-

eling results and to show that queue scheduling outperforms no scheduling in terms of minA(t),

avgA(t), σA(t), and E[U]. Therefore, node scheduling is a useful technique for improving the system

availability for in-door WSNs. nesC [26] is a well-known programming language for WSNs and

TOSSIM [51] is a simulator that can simulate nesC applications.

5.5.1 Simulation Setup

We arrange the m sensor nodes into one cluster with a pre-determined cluster head, the cluster

head is responsible for performing optimization and finding κ′, dividing the m sensor nodes into η

groups, and assigning each group the time it is supposed to become ON (denoted as αi in Fig. 5.8).

The cluster head is made aware of the total number of nodes in the cluster (i.e., m) and the required

number of ON sensor nodes (i.e., κ). As we discussed earlier, m is determined in the planning phase

using our model, whereas κ is an input to the simulator and made available at the cluster head as

a booting parameter. We argue that this centralized and fixed clustering structure is reasonable and

supported by the Tenet architecture recently proposed in [27]. In the simulator environment, we

maintain a global simulation time component that is responsible to maintain and advance the global

79

T & T=αi : w(T)

T & T≠ αi

T & r ≥ λ(ti): ti ++

T & r < λ(ti) :
w(T)

Initial state

FAIL

Final state
r : random value in [0,1]
w: write to trace file
T : simulation timeti : local time

ON

OFF
ti = 0 T

Figure 5.8: The state-transition diagram.

simulation time, denoted as T, and to notify all the sensor nodes in the cluster at each time unit

by firing an event at the nodes. The global simulation time starts at zero and stops at Tmax, which

marks the end of the simulation. Each sensor node is responsible to maintain its local simulation

time (denoted as ti), which represents the node’s time since it became ON and basically is a shift

of the global simulation time T. ti is used as input to the failure rate function (i.e., λ(t)) to decide

whether the node should fail or not in the next moment. The sensor nodes are responsible to write

two events, start time and fail time, on the simulation trace.

Fig. 5.8 shows a three-state diagram explaining the sensor node state transitions. All the sensor

nodes start in the OFF state and stay in that state until their start time assigned by the cluster head

does not equal the announced global time T. Otherwise, the sensor nodes switch to the ON state

and write their start time to the global simulation trace. While in the OFF state, the node’s local

time (i.e., ti) is not incremented. Once the node enters the ON state, it starts incrementing its local

time (i.e., ti) and checks whether the node should fail (i.e., switch to FAIL state) or not whenever a

new T is announced. Recall that we use λ(ti) as the failure probability, therefore, we use a random

variable uniformly distributed over the interval [0,1], (denoted as r in Fig. 5.8), and compare it to

λ(ti) to achieve the right failure probability. Should the node fail, it writes its failure time to the

global simulation trace and switches to the FAIL state and stays in that state until the end of the

simulation. Once all the nodes enter their FAIL state, the simulation ends.

80

0 15 30 45 60 75 90 105 120 135 150
0

0.2

0.4

0.6

0.8

1

(t) node lifetime

S
(t

)

Formula
Simulator

Figure 5.9: Generating S using the simulator and validating it against the formula.

5.5.2 Model Verification

Before presenting our evaluation results, we validate our simulator by re-generating the same

single node survival function (i.e., S(t) in Equation (5.2)). Later on, we use the simulator to validate

our scheduling schemes modeling.

Fig. 5.9 compares the survival function drawn directly from Equation (5.2) to which we get from

the simulator. The x-axis represents time (t), the y-axis represents failure probability. We perform a

thousand single-node simulation runs and record failure times. Each point represents the ratio of the

number of runs in which the node was available to the total number of runs at time t. We can observe

an excellent match, where the average difference between experimental S values and analytical S

values over all values of t equals to 0.025. This demonstrates the accuracy of our simulator.

In Fig. 5.10 we move on to validate our scheduling schemes availability modeling in Equa-

tion (5.3) and Equation (5.7) against the system availability obtained experimentally from the sim-

ulator. The x-axis represents time, the y-axis represents system availability. For each scheduling

scheme we perform one thousand runs, record single-node failure times, and calculate system avail-

ability at time t as the ratio of runs in which at least one node is available (i.e., κ = 1) at time t, to

the total number of runs. We observe an excellent match between analytical and experimental data

with an average difference of 0.093 and 0.065 in the no scheduling and queue scheduling schemes,

respectively. There are two more important observations that need further explanation. First, the

81

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (cluster lifetime)

A
(t

)
=

 P
r{

sy
st

em
 is

 a
va

ila
bl

e}
No sched, model
Queue sched, model
No sched, simulation
Que sched, simulation

Figure 5.10: Matching model and simulation.

mismatch between the model and the simulator is bigger than that of the single node scenario in

Fig. 5.9, whose average difference is 0.025. Second, the mismatch in the no scheduling scheme is

bigger than that of the queue scheduling scheme. The observed bigger mismatch in both cases is

due to the mismatch accumulation resulting from the several nodes in the system. This is easy to

understand in the first case. In the second scenario, note that the number of nodes that are turned

ON in the no scheduling scheme is bigger than that of the queue scheduling scheme, which results

in large-mismatch accumulation. This explanation is also supported by the observation that the

mismatch grows as more and more nodes are turned ON as time passes in queue scheduling.

5.5.3 Evaluation Results

In this subsection, we present our evaluation results to show that node scheduling has the ability

to improve the system availability. We compare the performance of the no scheduling and queue

scheduling schemes in terms of minA(t), avgA(t), σA(t), and E[U] as node redundancy increases. We

show that queue scheduling indeed exhibits better results than no scheduling in terms of all metrics.

We control the node redundancy by changing both m and κ. In queue scheduling, κ′ is chosen to

optimize the corresponding performance metric under evaluation.

Fig. 5.11 shows the analytical as well as experimental minimum availability comparison results

as m increases in Fig. 5.11(a), and as κ increases in Fig. 5.11(b). Experimentally, we perform one

82

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

m

M
in

im
um

 a
va

ila
bi

lit
y

(m
in

 A
(t

))

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4
0

0.2

0.4

0.6

0.8

1

κ

M
in

im
um

 A
va

ila
bi

lit
y

{m
in

A
(t

)}

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) effects of increasing m. (b) effects of increasing κ.

Figure 5.11: Comparing minA(t) under no scheduling and queue scheduling.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

m

A
ve

ra
ge

 a
va

ila
bi

lit
y

(a
vg

A
(t

))

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4
0

0.2

0.4

0.6

0.8

1

κ

A
ve

ra
ge

 a
va

ila
bi

lit
y

{a
vg

A
(t

)}

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) effects of increasing m. (b) effects of increasing κ.

Figure 5.12: Comparing avgA(t) under no scheduling and queue scheduling.

thousand runs for each m and κ value, calculate the system availability as we did in Fig. 5.10 for

all t ∈ [0, Tmax], and finally find the corresponding minimum availability. We can see that queue

scheduling exhibits a consistent and larger increase in the minimum availability compared to no

scheduling. For m = 12 in Fig. 5.11(a), the minimum availability goes from almost zero in the no

scheduling scheme up to 4.0 in the queue scheduling scheme. Also, note that as m and κ get closer

(i.e., less redundancy), the performance of queue scheduling and no scheduling becomes closer,

which is simply because queue scheduling converges to no scheduling. In other words, if m and

83

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

m

st
ab

ili
ty

 (
σ A

(t
))

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4
0

0.2

0.4

0.6

0.8

1

κ

st
ab

ili
ty

 {
σ (A

(t
)}

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) effects of increasing m. (b) effects of increasing κ.

Figure 5.13: Comparing σA(t) under no scheduling and queue scheduling.

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

m

E
xp

ec
te

d
up

tim
e

{E
[U

]}

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

1 2 3 4
0

20

40

60

80

100

120

140

κ

E
xp

ec
te

d
up

tim
e

{E
[U

]}

No sched, model
No sched, simulation
Que sched, model
Que sched, simulation

(a) effects of increasing m. (b) effects of increasing κ.

Figure 5.14: Comparing E[U] under no scheduling and queue scheduling.

κ are the same, the only way to schedule the nodes is to make all of them ON from the beginning,

which is the same as no scheduling.

Like in Fig. 5.11, in Fig. 5.12 we perform one thousand runs for eachm and κ value, calculate the

system availability, and finally find corresponding average availability over t ∈ [0, Tmax]. Again, we

observe that queue scheduling outperforms no scheduling, in particular for high node redundancy.

For example, for m = 12 and κ = 1 in Fig. 5.12(a), queue scheduling almost doubles the average

system availability compared to no scheduling. For m = 12 in Fig. 5.12(a), the average availability

84

goes from 0.4 up to 0.7 based on the experimental results, and from 0.5 up to 0.75 based on the

model.

In Fig. 5.13, we move on to compare no scheduling and queue scheduling in terms of stability.

As we mentioned earlier, we use standard deviation as a measure of stability (i.e., the y-axis). Note

that unlike Fig 5.12 and Fig. 5.11, a lower value on the y-axis in Fig. 5.13 means better stability.

Again, we observe better stability in case of queue scheduling. Furthermore, we observe that queue

scheduling achieves better and better stability as redundancy increases, whereas, no scheduling

keeps on getting worse as redundancy increases.

Finally, in Fig. 5.14 we compare no scheduling and queue scheduling in terms of the expected

total uptime as m increases in Fig. 5.14(a) and as κ increases in Fig. 5.14(b). The y-axis represents

the total expected uptime. Again, we observe that queue scheduling outperforms no scheduling by

increasing the total time in which the system is available. For example, for m = 12 in Fig 5.14(a),

the system total uptime is almost 105 hours when queue scheduling is used compared to less than

60 hours when no scheduling is used. The improvement is almost double.

In summary, we conclude that queue scheduling outperforms no scheduling significantly in

terms of all metrics.

5.6 Related Work

Sensor node redundancy and node scheduling have been extensively studied in the wireless

sensor network research community [1, 13, 15, 18, 92]. The basic idea in their work is to use node

redundancy and scheduling to work around the battery lifetime limitation of sensor nodes and extend

the network lifetime while maintaining coverage and connectivity. Our work complements their

work by adding a new dimension (i.e., availability) in the node redundancy and scheduling protocol

design space and exploring more sensor node failure models, namely usage-based, in addition to the

trivial running-out-of-battery sensor node failure model. Furthermore, coverage and connectivity

are minor objectives when performing the node scheduling process in our application, as all the

nodes in the same cluster can communicate directly to the cluster head and can provide the same

85

coverage. This setting has been also supported in the latest wireless sensor network architecture

(i.e., Tenet) proposed in [27].

In [96], the authors propose an adaptive sleeping schedule of redundant nodes based on appli-

cation demands and network conditions. They associate a backup set with each active node. The

backup sets are made active regularly to take over in case an active node failure is detected. They

considered two node failure models; aging failure model and catastrophic event failure model, which

correspond to our usage-based and deployment-based failure models. Our work differs from theirs

in two aspects. First, they adopt a reactive failure detection and recovery approach in contrast to

our proactive approach, in which we optimize for the best possible scheduling scheme in advance

given a specific failure model. Second, we address a more fundamental problem, which is pre-

dicting the required node redundancy to reach a desired fault tolerance behavior. In a sense, their

adaptive scheduling protocol can be integrated in our solution framework, which may result in more

efficient scheduling schemes in different application contexts. PEAS, proposed in [93], leverages

node redundancy and scheduling to overcome harsh deployment environments, which cause fre-

quent node failures. In other words, they target deployment-based failure model. Like DADA [96],

their approach is reactive in contrast to our proactive approach.

5.7 Summary

In this chapter, we develop analytical models of WSN availability based on reliability theory.

The model allows for the prediction of the required number of nodes to meet desired availability

behavior as well as the way these nodes should be scheduled. Furthermore, we show that in the

usage-based failure model, node scheduling improves availability significantly. Due to the small

number of large-scale real WSN deployments, the wireless sensor network research community

still lacks real traces of node failures that allow the development of strong sensor node lifetime

models. Therefore, we adopt the well-known bathtub failure model to capture usage-based sensor

node failures. However, our availability modeling can be easily adapted to employ any sensor node

86

failure model once it becomes available. In the next chapter, we take the opportunity to study a one-

month sensor failure traces made available to us through the United States Army Corps of Engineers

(USACE).

87

CHAPTER 6

FAILURE ANALYSIS

In this chapter, we take an initial step and analyze a one-month worth of collected sensor failure

traces. These traces are collected from a real-world water system surveillance application. Our

findings in this chapter supports some of the assumption we adopted in the previous two chapters.

Next, we provide some details on the water surveillance application and how these sensing units

deployed and operate in this application.

6.1 Sensing System Setup

The United States Army Corps of Engineers (USACE) in Detroit District has 22 data collection

platforms. These sensor nodes or gauges are deployed around the St. Clair and Detroit rivers in

southeast Michigan as well as the Lake Winnebago watershed southwest of Green Bay, Wisconsin.

One month data in January 2008 from 13 of the 22 gauges were made available for this study. Each

sensor node collects battery voltage, water level and precipitation except the “Dunn Paper” gauge

(G1) which collects battery voltage, air temperature and water temperature. However, precipitation

data for the St. Clair/Detroit river system is not used in this work, because that “data” in the raw files

is simply an artifact of the gauge programming. For convenience, we name each sensor node as G1,

where ‘G’ stands for “gauge.”. G1, G2 and G3 are located on the St. Clair River; G4 is located on

the Detroit River; and G5 through G13 are scattered around the Lake Winnebago watershed. Gauges

G5 through G13 are shown in Figure 6.1(a), the remaining gauges are shown in Figure 6.1(b).

The gauges are equipped with satellite transmitter units. The data collection system works as

follows: sensing units of each gauge continuously record measurements locally, these measurements

are transmitted over the GOES satellite channel every hour (for gauges with low baud rate transmit-

ters) and every four hours (for high baud rate transmitter equipped gauges). Data is then sent from

88

 G5G9

G8

G7
G13

G11

G10G6

G12

G1

G2

G3

G4

(a) (b)

Figure 6.1: Map of gauge location. (a) Lake Winnebago Watershed. (b) St. Clair River and Detroit
River

the satellite to a central location in Wallops Island in Virginia, where the data samples are collected

and arranged in files for later download through a regular ftp service. We conducted our analysis

directly using the un-decoded files. This raw data set has not been subject to any quality control pro-

cedure, and thus provide a good opportunity to study failures happening in sensor network. Water

level and precipitation are sampled once every hour, whereas voltage is sampled once every hour or

every two hours. Water level is measured against the IGLD Datum 1985, which works as the base to

measure current water level. So negative water level means it is below the local IGLD Datum 1985.

Precipitation data is supposed to be constantly increasing (except when the gauge resets as part of its

normal operation). To figure out how much precipitation fell over a one-hour period, the difference

between two consecutive samples are calculated and reported. The measurements for voltage and

precipitation are in volts and inches respectively. Water level is reported in meters, centimeters and

feet. For convenience, we converted the readings for water level in meters.

6.2 Failure Analysis

In this section we study the failure patterns of the sensor system including communication re-

lated failures and sensing hardware related failures. First, we present a few important definitions.

89

TTF denotes Time To Failure and represents the time between two consecutive failures. Mean TTF

(MTTF) is a measure of the system reliability.

TTR denotes Time to Repair that is the time it takes the system to recover from a failure. A system

that exhibits a small Mean TTR (MTTR) typically maintains high availability.

Total time: represents the total system lifetime including functioning as well as failing periods.

Uptime: the total time a system is in the functioning mode, in contrast, Downtime is the total time,

in which the system is un-available. The following two equations illustrate the relationship between

these values:

MTTF =
Total time

number of failures
(6.1)

Downtime = MTTR · number of failures (6.2)

6.2.1 Methodology

For each sensing parameter (i.e., Water level or Precipitation), we organize the readings as a

discrete time series and locate missing or corrupted readings. Each missing or corrupted reading is

considered a failure. For each time series, we record the Number of Failures, TTFs, and TTRs for

each individual failure type independently.

In our investigation of the raw data traces, we discovered several failure types. Some of these

failures are related to communication failures, while others are pertinent to the sensing hardware

itself. Table 6.1 lists all the failure types we encountered in the raw data along with a simple

description for each one of them. The first four failures in the figure (i.e., Comm-T1 to Comm-T4)

are communication failures between the gauge station and the satellite unit. The last two failures

(i.e., H/W-T1 and H/W-T2) are sensing hardware malfunctioning. H/W-T1 represents a fail-stop

failure, where the sensor simply fails to report a reading on time, whereas, in H/W-T2, the sensor

reports a corrupted reading (i.e., unreadable values).

90

Table 6.1: Failure types and their description.

Failure Type Message in raw trace files Description
Comm-T1 “ADDRESS ERROR CORRECTED” Unknown reasons. We could not reach

technical people who could provide ex-
planation.

Comm-T2 “MISSING SCHEDULED DCP MESSAGE” Communication failure due to lack of
time synchronization between the gauge
station and the satellite unit.

Comm-T3 “MESSAGE RECEIVED ON WRONG CHANNEL” The message was not received on the
channel that has been assigned to that
particular gauge station.

Comm-T4 “MESSAGE OVERLAPPING ASSIGNED TIME

WINDOW”

Communication failure due to lack of
time synchronization between the gauge
station and the satellite unit.

H/W-T1 Blank Sensor failure, no reading was reported by
the sensor on time. This represents a fail-
stop sensor failure.

H/W-T2 Corrupted reading Sensor failure, the data format is cor-
rupted, unreadable reading.

6.2.2 Failure Analysis by Type

To understand the relative importance of these failure types, we draw their relative occurrence

in the raw data traces for all locations combined in Figure 6.2(a) and the total downtime due to

the particular failure type in Figure 6.2(b). Figure 6.2(a) gives an idea of how frequent a particular

failure type is, whereas, Figure 6.2(b) clarifies how severe that failure is, in other words, how long

it takes to recover from the failure.

In Figure 6.2(a), we observe that 56% of the total number of failures are of type Comm-T2

communication failure, all other communication related failures (i.e., Comm-T1, Comm-T3, and

Comm-T4) collectively account for only 6% of the total number of failures. Comm-T2 as well as

Comm-T4 are directly related to the lack of time synchronization between the gauge station and the

satellite unit, thus, the lack of time synchronization constitutes 58% of the total number of failures.

Failure to report measurements by the sensor hardware on time (i.e., H/W-T1 failure) accounts for

34% of the total number of failures, in contrast, reporting corrupted data (i.e., H/W-T2 failure)

91

H/W-T1
34%

Comm-T2
56%

Comm-T3
2% H/W-T2

4%

Comm-T4
2%

Comm-T1
2%

H/W-T1
43%

Comm-T2
47%

Comm-T4
5%

Comm-T1
1%

H/W-T2
1%

Comm-T3
3%

(a) (b)

Figure 6.2: Understanding relative importance of different failure types. (a) shows their relative frequency
(b) shows their contribution to system total downtime.

accounts for only 4%. This observation suggests that fail-stop failures are more common in the real

world environmental applications.

Figure 6.2(b) allows us to observe the importance of the different failure types from a different

perspective, in particular, how long it takes to recover from a particular failure type. For example,

Although Comm-T4 and Comm-T1 failure types account for the same percentage of the total num-

ber of failures (i.e., 2% as shown in Figure 6.2(a)), it seems that recovering from a Comm-T4 failure

takes more time compared to recovering from a Comm-T1 failure, which allows us to conclude that

Comm-T4 failures are more important than Comm-T1 failures, in other words, Comm-T4 failures

contribute 5% to the system total downtime, whereas, Comm-T1 contributes only 1% as shown in

Figure 6.2(b). We also, observe that sensing hardware failures (i.e., H/W-T1 and H/W-T2 failures)

account for 44% of the total system downtime.

We observe in Figure 6.2 that we have two equally important major failure types, communication

related failures and sensing hardware failures. Based on these findings and after consultation with

field experts, we decide to merge these failure categories and abstract them into two failure classes:

communication failures and sensing hardware failures in the rest of this section.

92

6.2.3 Failure Analysis by Location

In this subsection, we study failure characteristics at different locations, which allows us to

understand the effect of the environment on inflicting failures on the system. At each location, we

record the Number of failures and MTTR for each failure type and draw them in Figure 6.3(a) and

Figure 6.3(b) respectively. Note that MTTF is directly proportional to the Number of failures (refer

to Equation 6.1), therefore, including MTTF offers no insight in our analysis.

0

5

10

15

20

25

30

G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13
Gauge ID

of

 F
ai

lu
re

s

Communication Failure Sensing Failure for Water Level Sensing Failure for Precipitation

(a) Effect of environment on failure frequency.

0
2
4
6
8

10
12
14
16
18

G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13

Gauge ID

M
TT

R
 (i

n
ho

ur
s)

Communication Failure Sensing Failure for Water Level Sensing Failure for Precipitation

(b) Effect of environment on MTTR.

Figure 6.3: Understanding effect of external environment on inflicting failures.

Figure 6.3 allows us to observe that gauge G10 experience much more failures compared to the

other gauges, because of the hostile environment surrounded G10. This suggests that the external

environment plays a significant role in the failure frequency and pattern of the system. We also

observe in Figure 6.3(a) that the environmental impact is uniform in inflicting different failure types.

93

For example, Figure 6.3(a) shows that gauge G10 suffered around 26 communication failures, 26

water level sensor failure, and 28 precipitation sensor failures, whereas, Gauge G3 experienced 1

water level sensor failure, 1 precipitation sensor failure, and 0 communication failures.

In Figure 6.3(b), we observe that different failure types need different recovery time. For exam-

ple, at gauge G10 in Figure 6.3(b), precipitation sensor failure takes more time on average to recover

from a failure compared to water level sensor failure. Surprisingly, communication failures exhibit

much longer repair time.

6.2.4 Summary and Implications

Based on our findings, we believe that the lack of time synchronization is a major source of

communication failures, this makes time synchronization algorithms of particular importance in re-

motely deployed environmental monitoring sensor applications. Sensor hardware failures are also

a major source of failures in these applications, we found that fail-stop failure is the most common

failure pattern in this category. We further observed that different sensor hardware exhibit different

failure characteristics, in particular, different repair times. Finally, we found that external environ-

mental conditions, perhaps, are the most important factor on inflicting failures in environmental

applications. This makes deployment-based failures particularly important, in which failures are

independent of aging.

6.3 Related Work

There have been a few efforts that focus on understanding failure patterns of computer hardware

components, in particular hard disks [39, 70]. Our work employs similar techniques and investi-

gates a different type of system that is deployed in an open environment, therefore, we believe that

its failure behavior is totaly different from classical computer systems. To the best of our knowl-

edge, there is no prior work that specifically studies and analyzes real sensor failure traces so that

our work is a leading exploration step in this direction. Most existing work on WSN reliability

assumes exponential lifetime distribution of sensor nodes [2, 96], and here we take a second look

of such assumption by investigating real sensor system failure traces. Although the current data set

94

spans a short period of time and does not permit us to draw strong conclusions regarding lifetime

distributions, we believe that our work brings new insights in understanding sensor device failure

patterns.

6.4 Summary

In this work, we use real sensor failure traces collected by 13 sensor nodes deployed by the

United States Army Corps of Engineers (USACE) around St. Clair and Detroit rivers in southeast

Michigan as well as the Lake Winnebago watershed southwest of Green Bay, Wisconsin. We found

that the lack of time synchronization is a major source of communication failures in the system,

which suggests that we should pay more attention to time synchronization protocols in remotely

deployed WSN environmental applications. We also found that external harsh environmental condi-

tions may be the most important factor on inflicting failures on sensor nodes in outdoor applications.

95

CHAPTER 7

SYSTEMS SUPPORT

In this chapter we move our attention to present and discuss Score, which defines the structure

of the communication protocol stack and provides protocol components with the adequate means

to collaborate in a cross-layer approach. In addition to Score, we present two important protocol

components that run in the context of Score and provide system support for our other protocol com-

ponents: the neighbor discovery and topology discovery services. To demonstrate the benefits of the

Score framework and its system support advantages, we present and discuss two higher-level com-

munication protocols, a routing protocol, Density-Aware-GPSR (DA-GPSR), and a dissemination

protocol, Redundancy-Aware Controlled flooding protocol (RAC).

7.1 Score

The Internet protocol stack is widely known for its modular layered design, in which the cross-

layer interface is confined to adjacent layers, where a higher layer uses services provided by the

layer immediately beneath it in the stack. Researchers think that this will not be the case in the fu-

ture wireless sensor network (WSN) communication stack due to several reasons including limited

energy supply, limited computational power, and unreliable wireless communication [16, 43]. These

limitations make the need for more optimal solutions another primary requirement besides modular-

ity. Protocol optimizations are usually possible by allowing layers to collaborate more closely when

performing their functions; this technique is widely known as cross-layer design. It is believed that

cross-layer design is the key to the self-optimization of WSN communication stack protocol layers,

and so overcome the energy and computing limitations of wireless sensor nodes [7, 16, 29, 43].

Typically, in cross-layer design, some pieces of information at one layer are used to improve

the performance of another layer in the communication stack. For example, a routing protocol can

96

Neighbor
Discovery &
Maintenance

Asymmetric-aware
Link Quality Service

Topology Discovery
Service

Sensor Core
(Score)

Trust
Model

Flooding protocol
(RAC)

Routing Protocol
(DA-GPSR)

Neighbor
List

SLEEP

Operational
State

Figure 7.1: Score vision as a baby frog. Score is depicted as the body, neighbor discovery as the
head, terminals as different network components.

consider link quality provided by a link quality service when selecting a path from a source to a

destination to improve the end-to-end delivery rate. Likewise, a topology management protocol

can take advantage of the node’s duty schedule maintained by the application to put the node into

a full sleep mode –when idle– and save energy. The former example represents a traditional top-

down interface, while the latter represents an unusual bottom-up interface. An effective cross-layer

design framework should allow for an arbitrary interface between any two protocol components, yet

maintain enough modularity among the different communication stack components. In this section,

we present Score, a framework to facilitate cross-layer design and maintain network component

modularity.

7.1.1 Score Framework Vision

We envision Score as a framework that facilitates other network components to collaborate in an

arbitrary fashion while maintaining a modular communication stack. As a core module, Score pro-

vides other components with the means to maintain and access the neighbor set and the operational

state, which are the fundamental pieces of information upon which all the network components base

97

their actions and optimization. Fig. 7.1 depicts this vision as a baby frog. The body represents the

Score module including the neighbor list and the operational state. The head represents a neigh-

bor discovery component that maintains the neighbor list using interfaces provided by Score. Each

one of the baby frog terminals represents a network component in the communication stack that

has access to the neighbor list and monitors the operational state. Note that any interface between

any of the network components (i.e., terminals) has to go through Score (i.e., the body). Arrows

differentiate provider from consumer services. For example, the topology discovery service inserts

parameters into Score, whereas, the dependable routing reads them out to perform dependable rout-

ing.
score

interface SCore{
 // Sequential Access Iterator commands
 command result_t first();
 command result_t next();
 event result_t nextDone(uint16_t neighborID);

 // Ramdom Access Iterator command
 command result_t seek(uint16_t n_id);
 event result_t seekDone(result_t success);

 // SCore Reader
 command result_t read(uint8_t *neighbor);
 event result_t readDone(uint8_t *neighbor);

 // SCore Writer
 command result_t write(uint8_t *neighbor);
 event result_t writeDone(result_t result);
}

Page 1

(a)
state

interface State{

 // To change the node's current state
 command result_t change(uint8_t newState)

 // Fired whenever the node's state changed
 event result_t changed(uint8_t newState);

}

Page 1

(b)

Figure 7.2: Score APIs, (a) neighbor set abstraction API and (b) state interface.

98

7.1.2 Score Framework Features

Score provides three basic mechanisms and interfaces to facilitate network components collab-

oration. First, a unified neighbor set abstraction. Second, a modular cross-layer interface. Third, a

cross-layer coordination mechanism.

Neighbor set abstraction API

Using the Score access interface (Fig. 7.2(a)), a network component can read or write any

neighbor record simply by pointing at the required record and performing a read or a write. Moving

the pointer can be done in two ways, sequentially using the first and next commands, or randomly

using the seek command (Fig. 7.2(a)). Following the nesC/TinyOS philosophy, Score provides

split-phase operations to keep the sensor node responsive to external events [26]. Score does not

impose any limitations and is not involved in deciding which nodes are included in the neighbor

set. In other words, Score only provides the mechanism and not the policy. We present an example

neighbor discovery service in Section 7.2.

Cross-layer Interface

Score plays a significant role in decoupling network components by providing a mechanism for

them to interface and communicate without the need for pair-wise interfaces. Score defines a global

neighbor record structure. In this structure, each network component is allocated a number of bytes.

The network components can use these bytes to annotate the neighbors with useful information that

other components wish to access. For example, a trust network component can rank the neighbors

based on some trust criteria, and annotate the neighbors with this value. Another component, the

routing protocol for example, can access these trust values through Score and exclude untrusted

neighbors while building a routing tree.

To keep the Score access interface simple and general, Score does not provide individual read

and write commands to read and write specific fields in the neighbor record, it only supports reading

and writing entire records. By doing so, Score is not severely involved and dependent on a particular

99

neighbor record structure, which we think can change in different WSN applications. Reading and

writing entire records raises the need for Score to prevent network components unintentionally or

intentionally (malicious component implementations) from overwriting each other’s information in

the neighbor record. Therefore, each network component is assigned a writing mask, This mask

(for short) is statically defined in Score according to the current neighbor record structure. Each

time a network service writes a neighbor record, Score will first apply the mask, on the new record,

which sets all the unrelated bits to zeros, and then perform a bit-wise OR operation with the old

neighbor record. The masking process does not only provide inter-protocol overwrite protection, it

also allows for multiple writers at the same time with no need for inter-component synchronization

(each component writes its own bytes only in the shared neighbor record).

Cross-layer coordination

Score supports cross-layer coordination by maintaining a sensor node operational state. This

state (e.g., DISCOVERY, BOOTED, SLEEP, and ACTIVE) describes the current sensor node op-

erational status. Each network protocol can react in its own way when a new state is announced

by Score. For example, a neighbor discovery service will send neighbor probing messages if the

node state changes to DISCOVERY (a DISCOVERY state means there are not enough neighbors in

Score), while a routing service will hold its protocol messages as there are not enough neighbors to

maintain a routing tree, and so save the node’s precious energy from being wasted for nothing. Score

provides a state interface (Shown in Fig. 7.2(b)), which provides a command to change the node’s

current state and uses an event to announce state changes. Any network component wishing to react

to state changes must provide an implementation of the changed event, in which the component can

take the appropriate action.

7.2 Neighbor Discovery Service

The neighbor discovery service works in passive as well as active modes. In the active mode,

the neighbor discovery service actively probes nodes in the vicinity to populate Score with new

neighbors, while in the passive mode, the neighbor discovery service passively intercepts incoming

100

ProbMsg

GenericComm GenericComm

InMsg

RadioCRCPacket

Score
Component

ActiveProbing

ProbMsg

PassiveListening

InMsgUses
Message
direction

OutMsg

OutMsg

Stat
e

Insert

Score

OutMsg InMsg

To upper layer
components

Interface

Figure 7.3: Score and the neighbor discovery service in the TinyOS communication stack. Our
components are shown as shaded boxes.

messages, extracts the source address, and inserts a new record into Score. Other network ser-

vices and protocols access the set of neighbors transparently using the Score access API with no

need for direct interface with the neighbor discovery service. Fig. 7.3 depicts Score, the neighbor

discovery service (represented by the activeProbing and passiveListening modules), and how they

fit in the TinyOS communication stack. The activeProbing module is responsible for active prob-

ing whenever Score announces a DISCOVERY node operational state, while the passiveListening

module passively intercepts incoming messages and inserts neighbor records into Score. Note that

the passiveListening module is located below the GenericComm module so that it can benefit from

all incoming messages and not only from those targeted for the neighbor discovery service (i.e.,

probReplyMsg messages). Doing so helps in reducing the need for costly active mode neighbor

discovery.

7.2.1 Active Probing

To perform active neighbor discovery, the activeProbing module simply broadcasts probe mes-

sages (i.e., ProbMsg(i)), which consist of the source node address (sender). Nodes in the vicinity

(receivers) reply by sending messages consisting of the the receiver’s address and the original sender

address. As we present in Section 8.3.1, including the original sender address in the probe reply

messages is important to build the shared neighbor sets in RAT. The active probing module registers

101

with Score for node operational state. Whenever the operational state changes to DISCOVERY, the

activeProbing module starts probing for neighbors so that passiveListening can insert new neighbor

records into Score. Once the operational state changes back to BOOTED, activeProbing holds back

its probing messages.

7.2.2 Passive Listening

The passiveListening module is placed under the active messaging layer (i.e., GenericComm in

Fig. 7.3) so that it can intercept all incoming messaging and not only those targeted to the neigh-

bor discovery service, and so lowers the need for costly active neighbor discovery. To make this

possible, the source node address has to be included as the first two bytes of the payload of all the

packets, so that the passiveListening module can simply extract the first two bytes of any incoming

message and insert a new neighbor record into Score without paying attention to the message type.

A ProbReply(i, j) message, on its own, tells any third party receiving node that both i and j are

neighbors. As we discuss in Chapter 8, RAT leverages this by overhearing these message to build

and maintain the shared neighbor sets, which is important for the RAT protocol.

7.3 Topology Discovery Service

Wireless Sensor Networks (WSNs) have been known as a self-configuring, self-organizing, self-

optimizing, and self-healing type of networks [40, 78, 97]. The rule of thumb in these self-* net-

works is the localization of communication, computation, and finally decision making. Protocol

layers running at sensor nodes located in a specific neighborhood collaborate and coordinate their

efforts to achieve a general goal without the aid of entities external to the network. As a first step

toward this collaboration, each sensor node should acquire the adequate topology information that

describes the node’s relation to other nodes in its vicinity. Our focus in this section is to present a

topology discovery service that works in the context of Score and supports cross-layer design. We

demonstrate the advantages of this service through two case studies: routing in irregular topologies

(DA-GPSR) and controlled flooding (RAC) in Section 7.4 and Section 7.5, respectively.

102

In this section, we present a topology discovery service that maintains several topology param-

eters to support cross-layer design. To the best of our knowledge, we are the first to propose such a

service that explicitly aims to support cross-layer design. The topology parameters are accessible by

other protocol components through Score. Sensor field dimensions, the total number of nodes, node

degree (i.e., the number of nodes within the sensing/communication range), and node density in a

specific sensor field area are typical examples of topology parameters. A routing layer, for example,

may choose to route around areas with high node density to avoid high levels of collisions.

7.3.1 The Topology Discovery Service in the Score Framework

On its own, the topology discovery service does not map into any of the OSI reference model

layers and it represents a typical network service that solely supports cross-layer design. Other tra-

ditional network layers, such as MAC and routing layers, uses the topology parameters maintained

by the topology discovery service in order to improve their performance. In order to build and main-

tain these parameters, the topology discovery service actively sends and receives protocol messages.

For example, neighboring nodes exchange their neighbor lists to find communication redundancy

and freshness. At node x with neighbor list (NSx), communication redundancy and freshness are

defined for each node (y ∈ NSx) as the cardinality of (NSx∩NSy), and (NSy \NSx) respectively.

After calculating the topology parameters, the topology discovery service publishes them into Score

so that other network components can access them at will. It is vital to note that the introduction

of the topology discovery service does not impose severe restructuring of the communication stack.

Score allows the network components to access the topology parameters without the need for direct

interfaces with the topology discovery service. Fig 7.4 shows the skeleton of the topology discovery

service in Score.

It is important to differentiate topology discovery from neighbor discovery. Neighbor discovery

mainly focuses on discovering a node’s neighbor list, usually by simple probing messages. Topol-

ogy discovery, on the other hand, builds on the neighbor list information to provide higher-level

103

module TopologyDiscoveryM{
 uses interface Score;
 ...
}
implementation{
 // pointer to the current neighbor record
 NeighborRecordPtr p;
 int16_t redundancy, freshness;
 ...
 event TOS_MsgPtr Receive.receive(TOS_MsgPtr m){
 // Receive message from y and
 // save neighbor list into NS(y)
 ...
 // Start calculating redundancy and freshness
 Score.first()
 }
 event result_t nextDone(uint16_t neigborID){
 // Got the next neighbor in my neighbor list
 ...
 for all e in NS(y){
 if (e == neighborID)
 redundancy++;
 }
 // move to next neighbor in my neighbor list
 if (!call Score.next()){
 // end of neighbor list, then find freshness
 freshness = |NS(y)| - redundancy;
 //put the pointer at y's record
 call Score.seek(y);
 }
 }
 event result_t seekDone(result_t suc){
 // update values of y's record
 p->redundancy = redundancy;
 p->freshness = freshness;
 call Score.write(p);
 ...
 }
}

Figure 7.4: Topology discovery skeleton implementation in Score. Upon receiving a neighbor list
from node y, current node loops over the neighbor set using Score and calculates communication
redundancy and freshness. Finally, current node updates relevant bytes in y’s neighbor record.

information with semantics. For example, what is a node’s communication redundancy with each

node in the node neighbor list.

7.3.2 Topology Parameters

Topology parameters describe in general the sensor field including its physical dimensions (i.e.,

size) and the number of nodes deployed in that field. This deployment implies several other topology

parameters including connectivity and coverage topologies, and average node density in general as

well as node density in different locations in particular. This deployment also dictates how many

104

N

S

EW

dN

dE

dS

dW

dN

dE

dS

dW

Sensor field N

S

EW

dN

dE

dS

dW

Communication
hole

Y

X

(a) (b)

X
R

Y
R

4

3

5

1

2

Redundant
node

Fresh
node

(c)

Figure 7.5: Illustrating topology parameters: (a) shows a sensor node at the center of its nominal
communication area, which is divided into four directional areas. (b) depicts a sensor field with
a communication hole (i.e., shaded area), node X located on the boundary exhibits zero dN and
dE . Node Y also exhibits very low dW which suggests a communication hole in that direction. (c)
depicts several nodes as red dots with their respective communication range R. X has communication
redundancy and freshness values of 2 and 3 with node Y, respectively. Nodes 1 and 2 are redundant,
while nodes 3 , 4, and 5 are fresh.

neighbors each node has in its neighbor list (i.e., node degree) on average and identifies nodes

with above and below average node degree. The link quality value for a node with each one of its

neighbors can also be considered as a topology parameter. Collectively, the topology parameters

describe a node’s topological (connectivity and coverage) relationship with its immediate neighbors

as well as its topological position in the sensor field (i.e., on the boundary of the connectivity graph

or on a boundary of a communication hole or high density area). The following is a list of these

parameters:

105

• Physical dimension of the sensor field: describes the shape and dimensions of the sensor field.

This information along with an estimation of the nominal communication range, can be used,

for example, by a routing protocol to get an estimate of the longest (hop count) possible path

between any two nodes in the sensor field. Such an estimate could be useful for a routing

layer to recover from routing loops (i.e., when the path exceeds the maximum hop count).

• Total number of nodes: specifies the total number of nodes the network has in total. It can be

used, along with sensor field dimensions, to calculate deployment node density. A topology

management protocol can use this as an indication of how aggressive the protocol should be

when putting nodes to sleep.

• Node density: could be either communication or sensing density, which is simply the number

of neighbors in a node’s communication/sensing range divided by communication/sensing

area. A node density can be used by a topology management protocol to maintain a specific

number of active nodes at any time.

• Directional density: represents a node density in a particular direction (i.e., NORTH, SOUTH,

EAST, WEST). Figure 7.5(a) explains the directional density. A large difference in a node’s

directional densities may suggest that the node is located on the topological boundary of the

network, some communication/sensing hole, or a high density area.

• Boundary: a flag that indicates whether a node is located on the boundary of a sensor field area

with irregular topological properties. An area is considered topologically irregular if the area

has above average node density (high node density), or below average node density (commu-

nication hole). The boundary flag may also indicate that the node is located on the topological

boundary of the network. Boundary nodes can collaborate to seize irregular areas. A routing

protocol becomes aware of such areas and avoids routing through them, for example, routing

around communication holes. Figure 7.5(b) depicts a sensor field with a communication hole

106

area (i.e., shaded area). We can notice that a node on the boundary of the communication hole

and a node on the sensor field boundary exhibit a variation in their directional densities.

• Communication/sensing redundancy: a node’s redundancy with each one of its neighbors

describes the number of nodes that both of them share in their neighbor lists.

• Communication/sensing freshness: a node’s freshness with each neighbor is the number of

nodes that exist in the neighbor’s neighbor list and not in the node’s neighbor list. Fig. 7.5(c)

illustrates communication redundancy and freshness.

Both communication redundancy and freshness can be used, for example, in a controlled

flooding protocol (Section 7.4), where the total number of transmissions required to dissem-

inate a message is minimized by selecting particular wireless links when forwarding a mes-

sage.

7.4 Redundancy-Aware Controlled Flooding

In this section, we demonstrate the utility of the topology discovery service using a data dis-

semination and flooding protocol. Data dissemination is one of the two popular communication

patterns in WSNs in addition to data collection. A data message (usually a query) has to be sent

from a single node (i.e., the sink) to reach every other node in the network. A basic approach to do

flooding is to make the sink start the process by broadcasting the message. Every receiving node,

in its turn, re-broadcasts the message until all the nodes get the message. It is vital that each node

forwards the same message only once, otherwise, loops will happen. We refer to this approach as

the blind flooding protocol (denoted as Blind). In this case study, we exploit topology redundancy

information provided by the topology discovery service in order to reduce the total number of trans-

missions required to disseminate the data message. We refer to our approach as Redundancy-Aware

Controlled flooding (denoted as RAC). In RAC, among the receiving nodes, only the node that

has the least communication redundancy with the sender re-broadcasts the message. This increases

the chance that the data message will reach more nodes that have never seen the message before,

107

and so, reduces the required number of transmissions overall. We also compare RAC to Random

Controlled flooding protocol (denoted as RC), in which the forwarder node is chosen randomly. We

refer to RAC and RC together as controlled flooding protocols.

7.4.1 Controlled Flooding Protocols

Based on who (i.e., sender versus receivers) decide(s) the node that should re-broadcast a mes-

sage, we can differentiate two approaches to controlled flooding (i.e., sender-based and receiver-

based). In sender-based flooding, the sender node chooses the node that should pick up the flooding

process, while in the receiver-based flooding, receiver nodes decide among themselves a single node

to pick up the flooding.

The sender-based controlled flooding approach maintains a single thread of flooding in the net-

work at any time, which potentially keeps the total number of transmissions as low as possible.

However, if the selected node to re-broadcast has already seen a copy of the message, it will not

be interested to re-broadcast, and therefore, the only thread of flooding will vanish, leaving some

nodes in the network unaware of the message. Therefore, the sender-based approach does not pro-

vide enough guarantee that all nodes get the message.

After receiving a message in the receiver-based controlled flooding approach, each one of the

receiver nodes backs off for a specific amount of time before re-broadcasting. During the back off

period, a node suppresses its transmission once the node gets another copy of the message from

another node in the vicinity. It is clear that several flooding threads may exist in the network at

the same time; however, this approach makes sure that at least one node eventually picks up the

flooding process and so, all nodes in the network get at least one copy of the message. The remaining

question is how the receiver nodes calculate their back off time. This is where we differentiate RAC

from RC. In RAC, each receiver node sets the back off time proportionally to its communication

redundancy with the sender node, so that receiver nodes with the least communication redundancy

with the sender re-broadcast first. As a result, more new nodes get the message. In RC, back off

times are chosen randomly.

108

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Total number of transmissions

(%
)

N
od

es
 r

ec
ei

ve
d

fr
es

h
m

es
sa

ge

Blind
RC
RAC

Blind RC RAC
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

Protocol

T
ot

al
 d

up
lic

at
e

m
es

sa
ge

s
re

ce
iv

ed

(a) (b)

Figure 7.6: Comparing the performance of Blind, RAC, and RC protocols.

7.4.2 Simulation Setup and Evaluation

We implement Blind, RC, and RAC on top of the topology discovery service in the nesC/TinyOS

platform. We compare the performance of the protocols in terms of two performance metrics. First,

the number of nodes that receive a fresh message copy for each message transmission per flooded

message. Second, the total number of duplicates received by all nodes per flooded data message.

Using each flooding protocol, we disseminate 100 messages from the sink in a wireless network of

300 nodes distributed randomly over a (100x100) units squared sensor field. The nodes’ nominal

communication range is 15 units. We take the average over the 100 message floodings and present

the data in Fig. 7.6.

Fig. 7.6(a) shows the cumulative number of fresh messages received, shown as the y-axis, for

each message transmission in the network, shown as the x-axis. We observe two important results.

First, RAC outperforms RC and Blind as for each transmission, there are always some nodes that

receive the message for the first time (i.e., the line consistently increasing), while, in RC and Blind,

many transmissions are useless, shown when the line moves horizontally. Second, RAC requires

around 70 transmissions in total to disseminate a message compared to over 150 and 300 for RC

and Blind, respectively. Fig. 7.6(b) shows the total number of duplicates received as the y-axis for

109

each one of the protocols as shown on the x-axis. We observe that RAC reduces the total number of

duplicates to almost half those of RC and around one third those of Blind.

7.5 Routing In Irregular Topologies

In this section, we use the topology discovery service to develop a modified version of the GPSR

routing protocol to improve end-to-end (E2E) performance in irregular topologies. By irregular

topologies we mean topologies where wireless links are not uniformly distributed in the sensor

field (i.e., some sensor field areas have high connectivity and so high interference levels, and some

areas with low connectivity and so lower interference levels). We argue that irregular topologies

are more probable to happen in real life scenarios than regular topologies as there are many reasons

for irregular topologies to happen such as non-uniform node deployment, environmental conditions

that make the nominal communication range variable at different locations in the sensor field, and

node failures.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

(a) GPSR Route (b) DA-GPSR Route

Figure 7.7: TOSSIM snapshot of routes chosen by GPSR compared to routes chosen by DA-GPSR.
In both (a) and (b), data messages goes from node 6 to node 70.

110

While routing from a source to a destination, DA-GPSR avoids areas with high node density

in contrast to GPSR, which strictly routes directly toward the destination. The rationale behind

avoiding areas with high node density is that these areas are more susceptible to collisions and have

higher levels of interference, which results in degradation in one-hop success rate and ultimately

degradation in E2E performance. As a result of avoiding areas with high node density, routes chosen

by DA-GPSR tend to have a higher hop count than routes chosen by GPSR. Nonetheless, in irregular

topologies, using shortest hop count routes obviously will not lead to the best E2E delivery rate

possible as these routes may have to pass through areas with high interference levels. However, it

may be not intuitive whether routing around those areas will result in better E2E delay.

The basic idea of DA-GPSR is to augment the link quality of the next hop sensor node on the

route to the destination in addition to the distance to the destination used by GPSR. Two factors

affect the link quality of a wireless link, SNR and interference level. The former is controlled

by environmental factors and we don’t have much power to improve it, while the latter is mainly

controlled by the number of potential transmitters on a given wireless link. As presented in [31],

interference has the larger effect on link quality and total network capacity. We employ the interfer-

ence definition of a wireless link introduced in [11], and further, define route interference level as

the maximum and average interference level over wireless links on the route.

7.5.1 Network Model

We assume a 2-dimensional sensor field with N sensor nodes distributed over the sensor field.

All sensor nodes have the same transmission range r. If a node transmits a packet, all the nodes

within a distance r of the transmitting node, which form the node’s neighbor set, will receive the

message. Since in this case study, we are interested in interference only, we assume a perfect pair-

wise wireless channel (i.e., no packet losses due to signal fading). Finally, we assume that the

relative physical location of the nodes is available to them by means of some localization protocol.

111

7.5.2 MAC Protocol

In this subsection we describe the underlying MAC protocol used with GPSR and DA-GPSR. To

avoid excessively long running time of the TOSSIM bit-level simulation, we use packet-level simu-

lation with simulated collisions. Our MAC protocol employs a TDMA channel access with packet

acknowledgement and retransmissions. As discussed in [13], in a network with S transmission slots

and d potential forwarding nodes, the probability that node i forwards a message successfully is

defined as follows:

Pr(suc.) =
(
S − 1
S

)d
(7.1)

The MAC protocol employs a simple acknowledgement mechanism to control packet retrans-

missions. Upon receipt of a data message, the receiver node sends a short acknowledgement mes-

sage back to the sender. If the sender node does not receive the acknowledgement within a round

trip time, it assumes that the data message has been lost, and so retransmits the data message one

more time. The sender node continues to retransmit a data message until the message is success-

fully received or it reaches the maximum number retransmissions (MAX RET), and so, give up.

To avoid the congestion control problem and keep the MAC protocol simple, each data message is

allowed enough time to propagate from the source node to the destination node in our simulation.

The single-hop success rate with retransmissions, therefore, is defined as follows:

Pr(suc. with ret.) = 1−
(

(1− Pr(suc.))MAX RET
)

(7.2)

From the above equations, we can see that S, d, and MAX RET are the parameters that control

the single-hop success rate, and therefore, E2E performance. S and MAX RET are MAC protocol

configuration parameters, while d is determined by the route that the routing protocol (i.e., GPSR

and DA-GPSR) chooses from the source node to the destination.

112

7.5.3 DA-GPSR

Let Si be the neighbor set of node i, |x, j| the Euclidean distance between node x and node j,

and |Sx| be the node degree of node x. At node i, we introduce two ranking values for each node

x ∈ Si given a final destination node j. First, dRankx,j is the distance rank of neighbor x. Second,

degRankx is the degree rank of neighbor x. dRankx,j ranks a node (i.e., x) based on its physical

proximity to the destination (i.e., j), while degRankx ranks a node (i.e., x) based on its link quality

with the current node (i.e., i). Interference of wireless link (i, x) equals to the summation of |Si|

and |Sx|. Thus, for node i, the link quality with any of its neighbors boils down to the node degree

of that neighbor (i.e., node degree of node i is the same for all neighbors). To bring distance rank

and the degree rank into the same domain values, we normalize both values as follows:

degRankx =
maxm∈Si (|Sm|)− |Sx|

maxm∈Si (|Sm|)
(7.3)

dRankx,j =
maxm∈Si (|m, j|)− |x, j|

maxm∈Si (|m, j|)
(7.4)

To keep DA-GPSR a localized algorithm, we use local maximums over the neighbor set of the

node to normalize dRankx,j and degRankx.

Rankx = α · dRankx,j + (1− α) · degRankx (7.5)

Under DA-GPSR forwarding rules, node i ranks the nodes in its neighbor set (i.e., Si) according

to formula 7.5 when forwarding to destination node j. Then, node i forwards the data message to

the neighbor with the highest Rank value. We use an α value of 0.7 in our simulation. Using an α

value of 1.0 brings DA-GPSR to the original the GPSR algorithm.

Using the interference level of a wireless link introduced in [11], we further define

Avg route interference level and Max route interference level to describe route quality. Let routea,b

113

pass through nodes {x1, x2, ..., xn}. Then,

Avg route interference level =
∑n

i=1 |Sxi|
n− 1

(7.6)

Max route interference level =
n

max
i=1
|Sxi| (7.7)

Figure 7.7 compares routes chosen by GPSR to routes chosen by DA-GPSR, GPSR tends to

choose routes with less hop count, however, DA-GPSR chooses routes with lower

Avg route interference level and Max route interference level. In Figure 7.7(a) and Figure 7.7(b),

the GPSR route has a hop count value of 6, an Avg route interference level value of 29.8, and

a Max route interference level value of 46, while the DA-GPSR route has a hop count value of

9, an Avg route interference level value of 10.9, and a Max route interference level value

of 19. As we show in Subsection 7.5.4, the impact of the interference level of a route outweighs the

impact of hop count on the ultimate E2E performance.

7.5.4 Evaluation

Performance metrics

We use the following four E2E performance metrics to compare GPSR to DA-GPSR:

• E2E delivery rate: the ratio of the number of sent messages at the data source to the number

of data messages received successfully at the destination node.

• modified Hop Count (mHC): is the number of hops required to route a data message from the

source to the destination. Each retransmission is counted as an extra hop.

Retransmissions may result from a lost data or ACK message. In a single hop transmission, if

the data message itself is lost, then the retransmission will count toward the mHC, but if the

data message is successfully received and the ACK is lost, the retransmissions will not count

114

toward the mHC, as the data message did go through. In order to capture lost ACK messages,

we define Transmissions Per Data message (TPD).

• Transmissions Per Data message (TPD): the number of transmissions –including data and

ACK messages– performed by the nodes on the route between the source and destination.

TPD accounts for both retransmissions resulting from lost data and ACK messages.

• E2E delay: the time in milliseconds required to deliver a data message from source node to

destination node on the route.

Simulation results

We have two sets of experiments. The first set of experiments studies the effect of the MAC

level parameters (i.e., S and MAX RET) configuration on the E2E performance of GPSR and DA-

GPSR. This set of experiments gives us an insight into how DA-GPSR performs in contrast to GPSR

given the same underlying MAC protocol settings. From the application point of view, the specific

MAC level settings are not the primary concern. Instead, E2E delivery rate is what actually matters.

Therefore, in the second set of experiments, we compare the performance of GPSR and DA-GPSR

in terms of E2E delay, mHC, and TPD given the same achievable E2E delivery rate.

In Fig. 7.8, we fix S to 24 and vary the MAX RET value from 0 to 15. Then, for the same

source/destination nodes, we send 100 data messages using GPSR and DA-GPSR and calculate

E2E delivery rate, mHC, E2E delay, and TPD in Fig. 7.8(a), Fig. 7.8(b), Fig. 7.8(c), and Fig. 7.8(d)

respectively. From Fig. 7.8(a), we notice that the E2E delivery rate is zero when MAX RET equals

zero. This means that not a single data message arrived successfully at the destination. Hence,

mHC, E2E delay, and TPD for a MAX RET value of zero are not defined. Therefore, MAX RET

value of zero is removed from the domain in Fig. 7.8(b), Fig. 7.8(c), and Fig. 7.8(d).

We can observe from Fig. 7.8(a) that E2E delivery rate improves very fast under DA-GPSR

compared to GPSR. Fig. 7.8(a) shows that for a MAX RET value of 4, DA-GPSR already achieved

over 90% E2E delivery rate, while GPSR is lagging behind with an E2E delivery rate value of only

115

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Max number of retransmissions

(%
)

E
nd

 to
 e

nd
 d

el
iv

er
y

ra
te

S=24

GPSR
DA−GPSR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6

8

10

12

14

16

18

20

Max number of retransmissions

m
od

ifi
ed

 H
op

 C
ou

nt

S=24

GPSR
DA−GPSR

(a) (b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1500

2000

2500

3000

3500

4000

4500

5000

Max number of retransmissions

E
nd

 to
 e

nd
 d

el
ay

 (
m

se
c)

S=24

GPSR
DA−GPSR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30

40

50

60

70

80

90

100

110

120

130

Max number of retransmissions

T
ra

ns
m

is
si

on
s

P
er

 D
el

iv
er

ed
 d

at
a

m
sg

 (
T

P
D

)

S=24

GPSR
DA−GPSR

(c) (d)

Figure 7.8: Comparing the effect of MAX RET on the performance of GPSR and DA-GPSR. S is
fixed to 24.

40%. Also, DA-GPSR shows more reliable E2E delivery rate performance compared to GPSR, in

which, E2E delivery rate keeps fluctuating even for high MAX RET values.

In Fig. 7.8(b), the y-axis represents the mHC. Therefore, the lower the y-axis value the better.

We observe that GPSR starts with lower mHC values when MAX RET is small. This is due to

the fact that routes under GPSR tend to have a lower hop count. However, as the figure shows,

DA-GPSR catches up very fast with GPSR to provide a stable and reliable mHC, which is less than

that of GPSR, for MAX RET values over 6. Besides, for those MAX RET values where GPSR

outperforms DA-GPSR, the E2E delivery rate is very low as we can infer from Fig. 7.8(a). This

point is made more straightforward to observe in the second set of experiments.

116

16 17 18 19 20 21 22 23 24
10

20

30

40

50

60

70

80

90

100

Channel Slots (S)

(%
)

E
nd

 to
 e

nd
 d

el
iv

er
y

ra
te

Ret=7

GPSR
DA−GPSR

16 17 18 19 20 21 22 23 24
10

11

12

13

14

15

16

17

18

19

20

Channel Slots (S)

m
od

ifi
ed

 H
op

 C
ou

nt
 (

m
H

C
)

Ret=7

GPSR
DA−GPSR

(a) (b)

16 17 18 19 20 21 22 23 24
7000

7500

8000

8500

9000

9500

10000

Channel Slots (S)

E
nd

 to
 e

nd
 d

el
ay

 (
m

se
c)

Ret=7

GPSR
DA−GPSR

16 17 18 19 20 21 22 23 24
20

40

60

80

100

120

140

Channel Slots (S)

T
ra

ns
m

is
si

on
s

P
er

 D
el

iv
er

ed
 d

at
a

m
sg

 (
T

P
D

)

Ret=7

GPSR
DA−GPSR

(c) (d)

Figure 7.9: Comparing the effect of number of transmission slots (S) on the performance of GPSR
and DA-GPSR. MAX RET is fixed to 7.

Fig. 7.8(c) studies the effect of MAX RET on E2E delay in milliseconds. Intuitively, E2E is

driven by two factors, mHC and S. mHC accounts for the actual number of hops including retrans-

missions a data message travels from the source to the destination, and S accounts for the time delay

at each hop (back off time a node needs to wait before forwarding a message). Since S is the same

for both GPSR and DA-GPSR in this figure, one expects E2E delay to follow mHC in Fig. 7.8(b)

exactly. However, the figure suggests this is not the case. When we examined the trace files, we

observed that processing time (i.e., single hop processing delay) spent by GPSR is higher than that

spent by DA-GPSR. The reason is that in GPSR, nodes on the route have to process a higher number

of nodes in their neighbor sets when forwarding a data message (i.e., nodes in areas with high node

117

density have larger neighbor sets). In addition, we observe that under DA-GPSR, E2E delay tends

to stay constant once the MAX RET exceeds a specific value (5 in the figure), while, E2E delay

under GPSR tends to keep increasing.

In Fig. 7.8(d), we study the relationship between MAX RET and TPD. We observe that TPD

starts at very large values, then it drops to reach a minimum value, and then its value increases a

bit and stabilizes. This is due to the fact that the relationship between TPD and MAX RET has an

explicit and implicit side. MAX RET explicitly controls TPD as it defines an upper bound on the

allowed number of possible transmissions for each data message (i.e., the higher the MAX RET

is, the higher the TPD). On the other hand, TPD is affected implicitly by MAX RET, since the

higher the MAX RET is, the better the single-hop and E2E delivery, and so the less the need for

retransmissions (i.e., the higher the MAX RET the lower the TPD). Fig. 7.8(d) shows that DA-

GPSR outperforms GPSR as it needs fewer transmissions to deliver a data message from the source

to the destination. After TPD stabilizes, DA-GPSR takes less than 30 transmissions, including

acknowledgements, to deliver a single message to the destination, while GPSR takes more than 60

transmissions to deliver the same data message.

In Fig. 7.9, we fix the MAX RET value to 7 and change S from 16 to 24 and run the same exper-

iments as in Fig. 7.8 in order to study the relationship between S and E2E delivery rate, mHC, E2E

delay, and TPD in Fig. 7.9(a), Fig. 7.9(b), Fig. 7.9(c), and Fig. 7.9(d), respectively. As evident in the

figures, the effect of S on the performance of GPSR and DA-GPSR is not as big and consistent as

that of MAX RET. This is due to the fact that the effect of S on the algorithms performance, except

E2E delay, stems only from S’s effect on single hop success rate. Furthermore, from formula 7.1,

we notice that increasing S by one causes a very small increase in single-hop success rate.

In Fig. 7.9(a), we observe that the E2E delivery rate improves slightly as S increases. Also,

it is very clear that DA-GPSR achieves much better E2E delivery rate for the same value of S.

Fig. 7.9(b) demonstrates how mHC decreases as S increases, which is simply because the number

of retransmissions required to deliver a data message is smaller at each hop. GPSR and DA-GPSR

exhibit a comparable mHC.

118

10 20 30 40 50 60 70 80 90 100
8

10

12

14

16

18

20

22

24

(%) End to end delivery rate

m
od

ifi
ed

 H
op

 C
ou

nt
 (

m
H

C
)

GPSR
DA−GPSR

10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

180

200

220

(%) End to end delivery rate

T
ra

ns
m

is
si

on
s

P
er

 D
el

iv
er

ed
 d

at
a

m
sg

 (
T

P
D

)

GPSR
DA−GPSR

(a) (b)

10 20 30 40 50 60 70 80 90 100
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

(%) End to end delivery rate

E
nd

 to
 e

nd
 d

el
ay

 (
m

se
c)

GPSR
DA−GPSR

(c)

Figure 7.10: Combining MAX RET and S into E2E delivery rate and comparing GPSR and DA-
GPSR.

Like Fig. 7.8(d), the relationship of S and E2E delay is double-sided. Increasing S improves

single-hop success rate, which decreases the need for retransmissions, and so decreases single-hop

delay and hence, E2E delay. On the other hand, increasing S, increases single-hop delay as nodes

need to back off for a longer period of time on average before forwarding a message. However, since

the effect of S on single-hop success rate is not that big, the second factor dominates. Therefore,

increasing S has a net effect of increasing E2E delay. Finally, in Fig 7.9(d), we notice that increasing

S improves single-hop success rate, and so, lowers the need for retransmissions and ultimately TPD.

DA-GPSR takes advantage of the improved single-hop success rate and achieves much lower TPD.

In Fig. 7.10, we abstract S and MAX RET into E2E delivery rate and compare the performance

of GPSR and DA-GPSR in terms of mHC, E2E delay, and TPD. As we mentioned, it is important

119

to contrast the performance of GPSR to that of DA-GPSR given the same achievable E2E delivery

rate. As we have no control to vary E2E delivery rate and observe the other performance metrics,

we have to make several runs, in which we vary S from 16 to 24 and vary MAX RET from 0 to 16

in order to get the full E2E delivery rate domain values (i.e., from 0% to 100%). For each run, we

record mHC, E2E delay, and TPD. Then, we sort and group the runs based on E2E delivery rate.

In each group, we calculate the average value of mHC, E2E delay, and TPD, and finally present the

data in Fig. 7.10(a), Fig. 7.10(b), and Fig. 7.10(c).

All the figures show that DA-GPSR outperforms GPSR. In Fig. 7.10(a), we observe that in order

to achieve an acceptable E2E delivery rate value of 90% or above, GPSR has a mHC value above

20 compared to an mHC value of around 14 for DA-GPSR. This result states that choosing routes

with higher hop count in order to avoid high density areas –as done by DA-GPSR– actually pays

off when we consider the number of hops a data message actually travels (i.e., mHC). Likewise,

we observe in Fig. 7.10(b) that TPD is decreased by almost 50% in DA-GPSR compared to GPSR.

Finally for an E2E delivery rate value of 90% or above, Fig. 7.10(c) shows that GPSR needs around

12 seconds to deliver a single data message from source to destination, while DA-GPSR can deliver

the same message in almost half the time.

7.6 Related Work

Our related work is four-fold, work that is related to Score, topology discovery service, RAC,

and DA-GPSR.

Unlike previous neighborhood abstraction [87, 88], in which the goal was to support a unified

neighbor view for application developers, Score is designed to support the system developers by

providing neighbor set abstraction and mechanisms for cross layer interface and coordination.

To the best of our knowledge, we are the first to define a topology discovery service in this

capacity. Reference [20] used the term topology discovery in a very limited scope. The topology

discovery algorithm (TopDisc) aims at finding a minimum dominating set. Nodes in the network are

organized into a tree of clusters (TreC), in which nodes of the dominating set act as cluster heads.

TreC is rooted at the sink and used for efficient data dissemination and aggregation. The TopDisc

120

algorithm is more related to topology management protocols. Our work is different from [20] in

many ways. For example, it separates topology discovery from topology management, in other

words, our topology discovery only provides the means (topology parameters) for a topology man-

agement protocol to select a dominating set, which is important to maintain modularity in the WSN

communication stack. Also, our topology discovery service is not confined to topology manage-

ment, it can also be used by other protocol layers, such as a routing protocol.

Unlike Gossip-based dissemination protocols [50], which trade off propagation time to reduce

the number of transmissions needed to disseminate a data message, our RAC reduces the total

number of transmissions through controlling and limiting the wireless links that should be used when

flooding a message. Therefore, RAC complements their work. DA-GPSR enhances GPSR [41] E2E

performance by avoiding interference. In a sense, DA-GPSR competes with MAC protocols [34, 89,

94] whose primary goal is to avoid collisions. However, DA-GPSR avoids collisions by avoiding

links with high collision probability; therefore, DA-GPSR is orthogonal to MAC protocols and they

can be combined to achieve even lower interference levels.

7.7 Summary

We discussed the Score framework including two basic network services: neighbor and topology

discovery services. Together, these services provide adequate system-level support for higher level

protocols such as topology management and routing. As a demonstration of the utility of our frame-

work, we developed RAC and DA-GPSR. RAC reduces the total number of transmissions required to

disseminate a message by up to 77% compared to Blind, and DA-GPSR reduces E2E delay, mHC,

and TPD by half. In the next chapter, we present our RAT protocol, which addresses connectivity

problem in environmental application.

121

CHAPTER 8

REDUNDANCY-AWARE TOPOLOGY MANAGEMENT IN ENVIRONMENTAL
MONITORING

Extending the lifetime of wireless sensor networks remains the most challenging and demanding

requirement that impedes large-scale deployments. Studies show that considerable energy savings

can be achieved only by putting a node’s radio into full sleep mode. In this chapter, we present

RAT, which is a redundancy-aware topology management protocol. RAT selects a minimum set of

active nodes that are good enough to maintain connectivity, and allows the others to sleep and save

energy. RAT is designed and implemented with underlying wireless channel irregularity in mind.

Scalability and low overhead are the other primary design goals of RAT as well. We implement RAT

in the context of Score, which is a cross-layer framework that allows RAT to coordinate its SLEEP

and ACTIVE state changes with the routing layer smoothly. Using TinyOS and PowerTOSSIM, we

implement RAT on top of Score. Comparing with the all-active scenario, RAT simulation results

show a total energy consumption decrease of 67% in a one-to-many routing scenario and up to 87%

in a many-to-one routing scenario.

8.1 Introduction

Saving energy and extending the lifetime of unattended wireless sensor networks is still one of

the most challenging design requirements of wireless sensor network applications and protocols. To

save energy and so extend the lifetime of the wireless sensor network, researchers have considered

power consumption at different levels, including the application level [33], routing layer [33, 75],

and MAC layer [38, 94]. As previous studies showed [15], putting the node’s radio into full sleep

mode is the most efficient technique in saving the node’s energy. Therefore, topology management

protocols have the most potential in extending the network lifetime. In this chapter, we use the term

topology management to describe the distributed in-network process of selecting a set of active

122

nodes, which together form a connected dominating set. All other redundant nodes can go to sleep

and save energy.

RAT (Redundancy-Aware Topology Management) is a novel topology management protocol to

identify node communication redundancy (the initialization phase), and schedule nodes for sleep

and active modes (the scheduling phase). RAT exhibits high fidelity to dynamic and irregular un-

derlying wireless channels, while maintaining low protocol overhead. Furthermore, RAT scales

very well with high node densities as only active nodes are allowed to produce overhead traffic.

To achieve high fidelity, RAT does not relate physical location to communication redundancy (e.g.,

fixed communication range). Instead, it uses the neighbor set as the basis to define sensor node com-

munication redundancy and to define a node’s responsibility in the multi-hop network. To maintain

low overhead, RAT leverages the neighbor discovery process and the broadcast nature of wireless

links to establish communication redundancy knowledge among sensor nodes instead of asking

nodes to simply exchange their neighbor sets.

RAT has two variants: Basic RAT (B-RAT) and Enhanced RAT (E-RAT). In B-RAT, the schedul-

ing phase starts at the sink by triggering a scheduling thread, which after that propagates serially

until all the nodes in the network switch to sleep or active modes. We trade some uniformity of

active node distribution in the sensor field in E-RAT to overcome the potential scheduling thread

deadlocks and to improve B-RAT propagation time. Instead of a single thread, E-RAT triggers sev-

eral scheduling threads which propagate simultaneously in the network, dispatching nodes sleep and

active modes.

We implement RAT in the context of Score. Score provides mechanisms to fill the gap between

topology management and the other network services and protocols. This gap refers to the lack of

mechanisms to communicate the sleep mode state to other protocol layers [13]. These mechanisms

are important for the routing layer, e.g., to pro-actively build alternative routes. Using nesC [26] and

PowerTOSSIM [77], we designed, implemented, and evaluated RAT using two sets of performance

metrics, low level and high level. We use the former to demonstrate attractive characteristics of

the active nodes selected by RAT, such as the number of active nodes and how well these nodes

123

are distributed in the sensor field. We use the latter to exhibit the advantage of RAT over the all-

active scenario in energy savings using the two most popular communication patterns in wireless

sensor networks; one-to-many and many-to-one. RAT shows an energy savings of 67% in a one-to-

many routing scenario and up to 87% in a many-to-one routing scenario for networks of high node

densities.

The rest of the chapter is organized as follows, Section 8.2 presents the RAT protocol and al-

gorithm; Section 8.3 discusses implementation details; In Section 8.4, we present our simulation

setup and results. Related work and chapter summary are presented in Sections 8.5 and Section 8.6,

respectively.

8.2 RAT Algorithm Design

RAT consists of two phases, the initialization phase and the node scheduling phase. In the

initialization phase, each node becomes aware of its role (responsibility) in the multi-hop network,

while in the scheduling phase, information from the initialization phase is used to put as many

nodes as possible to sleep, while maintaining connectivity. Before delving into the protocol details,

we explain key concepts, which are important for the reader to follow the discussion.

8.2.1 Basic Definitions and Notations

The neighbor set (NSi) plays the central role in RAT and is used to define a node’s responsibility

in the multi-hop network and communication redundancy metric. Two nodes are considered to have

a high communication redundancy if they share a high percentage of nodes in their neighbor sets. A

formal definition of Degree of Communication Redundancy of two nodes denoted as (DoCRi,j) is

presented next

DoCRi,j describes quantitatively how much communication redundancy node j can provide to

node i. Therefore, how much responsibility can node j take away from node i in the multi-hop

network.

DoCRi,j =
|NSi ∩NSj |
|NSi| − 1

124

Note that, DoCRi,j is not equal to DoCRj,i (i.e. asymmetric redundancy).

Based on the notion of the neighbor set, a node responsibility is defined as the number of nodes

in its neighbor set. The more neighbors in a node’s neighbor set, the more responsibility the node

takes on, and so the more neighboring nodes are needed to provide the required communication

redundancy if the node wants to switch to sleep. This intuition is formalized and quantified as the

neighbor set cover degree of that node denoted as CDi(α).

CDi(α) is defined as the minimum number of nodes in node’s i neighbor set, which together

can cover α portion of node’s i neighbor set (NSi), and is read as the α neighbor set cover degree.

From this definition we can see that α is an important parameter in calculating the neighbor set

cover degree (CDi(α)), and directly affects the probability of having a disconnected network. We

use α as a tuning parameter in RAT. α trades off energy saving for network connectivity. Choosing

a low α value allows for higher levels of energy saving, but may result in a disconnected network.

Choosing a high α value lowers the level of energy saving, but will more probably result in a con-

nected network. We use Threshold of Connectivity Confidence, denoted as (Tcc), as a representative

value for α.

Node(i) NSi di

1 {2,3,4,6,10,9,13} 7
4 {1,10,6,8,13,5} 6
5 {4,13,8} 3

SNS(1,4) {10,6,13}
SNS(4,5) {13,8}

(a) (b)

Node(i) DoCR(i,j)=
|SNS(i,j)|

di−1
NSCi(Tcc=80%) CDi(Tcc=80%)

1 DoCR(1,4)=
3
6

∞ -
4 DoCR(4,1)=

3
5

{1,5} 2
DoCR(4,5)=

2
5

5 DoCR(5,4)=
2
2

{4} 1

(c)

Figure 8.1: An example scenario with a Tcc value of 80%: (a) communication graph, (b) corre-
sponding NSi and di, and (c) DoCRi, j, NSCi(Tcc) and corresponding CDi(Tcc)

125

8.2.2 Example Scenario

Fig. 8.1 shows an example scenario of several nodes connected by wireless links as shown on

the left side, from which we can find the neighbor sets (NSi) and the pair-wise shared neighbor

sets (SNSi,j), which is the intersection of node i and node j neighbor sets, as shown in the central

table. Based on this scenario, Fig. 8.1(c) shows the pair-wise DoCRi,j , NSCi(Tcc), and CDi(Tcc)

for nodes (i = 1, 4, 5). The neighbor set cover of node i (NSCi(Tcc)) is simply the minimum set

selected to calculate the neighbor set cover degree of node i (CDi(Tcc)). It is vital to note that

no node maintains the entire tables, and the way this information is distributed over the nodes is

presented and discussed next.

8.2.3 Redundancy-Aware Topology Management (RAT)

In the initialization phase all the nodes, which start in the Active mode, perform neighbor

discovery (See Chapter 7), in which nodes become aware of their neighbor sets and the pair-wise

shared neighbor sets with each one of their neighbors. Nodes use the neighbor sets and the shared

neighbor sets together to find the DoCRi,j and the CDi(Tcc). B-RAT uses DoCRi,j to control the

propagating scheduling thread, while E-RAT uses CDi(Tcc) to trigger several scheduling threads in

the network simultaneously.

Initialization phase

The heart of the initialization phase is to obtain the pair-wise shared neighbor sets. A straight-

forward technique is for the neighbors to exchange their neighbor sets [15], but this can severely

decrease the protocol’s potential to save energy after all [8]. In RAT, we exploit the neighbor discov-

ery procedure and the underlying wireless broadcast communication to aid each node in obtaining

the shared neighbor sets with each one of its neighbors efficiently. Technically speaking, obtain-

ing shared neighbor set does not incur any new overhead traffic. The neighbor discovery has to be

performed anyway. For now, we will assume that the neighbors are aware of their pair-wise shared

neighbor sets. A detailed discussion of how we do this is deferred until Subsection 8.3.1.

126

Once the neighbor set and the shared neighbor sets are available, each node i can locally calcu-

late theDoCRi,j with each neighbor j and the CDi(Tcc). Finding the CDi(Tcc) is an NP-complete

problem (by simple reduction from subset sum). A greedy approximation is to order the nodes in the

neighbor set according to theirDoCRi,j , and start including each neighbor (highest to lowest) in the

neighbor set cover until the node reaches a coverage equal to or greater than the Tcc. By calculating

the DoCRi,j list, and the CDi(Tcc), node i is done with the initialization phase and ready for the

scheduling phase, which is discussed next.

Scheduling phase

In B-RAT, the sink (sender) triggers a scheduling thread by sending an active announcement.

Recipient nodes initiate timers proportional to their DoCRi,j with the sender, so that nodes with

the least communication redundancy with the sender switch to the active mode first and so min-

imize the total number of active nodes in the network. All other nodes hold back their timers once

they receive an active announcement. During the active announcements, any node that is able to

collect enough neighbor set coverage becomes eligible for the sleep mode and switches to sleep

immediately without sending any extra overhead messages.

B-RAT suffers a deadlock problem, which is possible when all the recipient nodes become eligi-

ble for the sleepmode leaving no node to pick up the scheduling thread. To overcome the deadlock

problem in B-RAT, E-RAT uses the neighbor set cover degree to trigger scheduling threads. In a

trial to minimize the total number of active nodes, E-RAT lets nodes with higher neighbor set cover

degree switch to the active mode first and trigger a scheduling thread, giving the opportunity

for more nodes to collect enough neighbor set cover and switch to the sleep mode. The intuition

is that nodes with higher neighbor set cover degree require more nodes to stay active and cover

its neighbor set than a node with a smaller neighbor set cover degree. In E-RAT, all nodes start

in “E-RAT” operation mode by starting up timers inversely proportional to their CDi(Tcc). If the

timer fires before any scheduling thread reaches that node, the node switches to active and triggers

a new scheduling thread to break a potential deadlock. On the other hand, if the node hears an

127

Figure 8.2: Functional components: shaded boxes represent our modules, PMsg, PRMsg, and DMsg
represent Probe, Probe reply, and Data messages respectively.

active announcement before the timer fires, the node switches to normal “B-RAT” mode, in which

later, the node can switch to active or sleep mode depending on how the existing scheduling threads

propagate in the network, but the node will never trigger a new scheduling thread. If it happens that

all B-RAT scheduling threads died, some node in the network will eventually break the deadlock

by triggering a new scheduling thread as this node must have never been reached by any scheduling

thread and is still running in the E-RAT mode.

RAT protocol overhead

The RAT protocol overhead messages consists of two parts, overhead messages in the initial-

ization phase and in the scheduling phase. By careful design of the neighbor discovery process,

RAT can build the shared neighbor sets without introducing any new overhead messages, See Sec-

tion 8.3.1. To keep low overhead in the scheduling phase, only active nodes need to announce their

states. As we present in Section 8.4, the number of active nodes stays constant even for higher

density topologies. This ensures a constant message overhead during the scheduling phase.

128

8.3 Implementation Details

In this section we present the detailed implementation of RAT. Fig. 8.2 shows the functional

decomposition including Score, neighbor discovery service, and finally the RAT module. As we

discussed in Chapter 7, the former two service modules provide integrated neighbor set abstraction

and neighbor discovery service. This integrated service is used by RAT, which performs topology

management. Among other implementation details, we found it is important to discuss how RAT

builds the shared neighbor sets without the need for an explicit exchange of neighbor lists.

Recall that the neighbor discovery service in Chapter 7 exchanges probe and probe reply mes-

sages to populate Score with the neighbor set. A probe message consists of the source node number

(i.e., ProbMsg(i)), whereas a probe reply message consists of the original probing node number (i.e.,

i) and the node number of the neighbor node (i.e., j) (i.e., ProbReply(j,i)).

A ProbReply(j,i) message, on its own, tells any third party receiving node that both i and j

are neighbors. RAT leverages this by overhearing these messages to build and maintain the shared

neighbor sets; a detailed discussion of this process is presented next.

8.3.1 Building Shared Neighbor Sets

i j

k
prob(i) probReply(j, i)

i j

k
prob(i) probReply(j, i)

i j

k
prob(i) probReply(j, i)

(a) (b) (c)

Figure 8.3: Building shared neighbor sets at node k.

As we discussed earlier, all the nodes have to have access to their neighbor sets and the shared

neighbor sets with their neighbors to finish the initialization phase of RAT. The neighbor discovery

process along with Score provides RAT with sequential as well as random access to the neighbor

set. The shared neighbor sets are built and maintained by RAT itself. By overhearing a probe reply

message sent from node j to node i, RAT at node k can add node j to the shared neighbor set of

129

node i, and node i to the shared neighbor set of node j only if node i is in the neighbor set of node

k. This scenario is illustrated in Fig. 8.3(a). Fig. 8.3(b) and Fig. 8.3(c) show the other two possible

scenarios. In Fig. 8.3(b) node j and node k are neighbors, but node k and node i are not. In this case,

node k will receive the probe reply message from node j, but never add any records to the shared

neighbor sets as node i is not in node k’s neighbor set. In Fig. 8.3(c) node k and node i are neighbors,

but node k and node j are not. In this case, node k does not receive the probe reply message from

node j in the first place.

8.4 Evaluation

8.4.1 Evaluation Setup and Metrics

Using nesC and PowerTOSSIM we implemented B-RAT and E-RAT and compared their per-

formance to the all-active case. In B-RAT and E-RAT cases, only active nodes participate in the

multi-hop network, while in the all-active case, all the nodes actively participate in the network and

forward messages.

Two sets of performance metrics are used, the first set is low level metrics to show some attractive

characteristics of the protocol, while the second set is high level metrics to show the advantage of

B-RAT and E-RAT over the all-active case in terms of energy savings. The first set includes four

metrics. First is the average active node degree, which is the average number of active nodes in the

neighbor sets of all the nodes in the network. Second is the active degree distribution, which is the

number of nodes having the same active node degree. Third is the sleeping ratio, which is the ratio

of sleeping nodes to the total number of nodes. Fourth is the propagation time, which is the time it

takes the protocol (B-RAT and E-RAT) to finish and all the nodes switch to active or sleep.

In the second set, we use the total power consumption in comparing B-RAT and E-RAT to the

all-active case. Two communication patterns are used, one-to-many and many-to-one. A detailed

discussion of the experiments is presented later.

The experiments are conducted on five topologies. In all of the topologies, the nodes were

randomly distributed over a fixed area of 100 by 100 units squared. In order to show the ability

130

of B-RAT and E-RAT in leveraging high node densities, the average node degree in the topologies

varies from seven to thirty; we use (Top 7, Top 10, Top 17, Top 21, and Top 30) to refer to them.

The communication ranges are adapted to get the desired node degree.

55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

Tcc (%)

N
um

be
r

of
 z

er
o

de
gr

ee
 n

od
es

Top7
Top30

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Tcc (%)

N
um

be
r

of
 z

er
o

de
gr

ee
 n

od
es

Top7
Top30

(a) (b)

Figure 8.4: Choosing appropriate Tcc values: (a) B-RAT, and (b) E-RAT value.

8.4.2 Simulation Results

In order to decide a good Tcc value, which is used to ensure a connected network, we conducted

a set of experiments in which we ran B-RAT and E-RAT using Tcc values ranging from 20% to

100%. Each time the number of zero degree nodes was recorded and plotted as in Fig. 8.4(a) and

Fig. 8.4(b). The number of zero degree nodes is used as an approximation to find out whether the

network is connected. As the sleep mode eligibility is lenient for small Tcc values, B-RAT suffered

deadlocks frequently, and in most cases the scheduling thread was not able to propagate over the

entire network. Top 7 and Top 30 are used in these experiments as representatives. We can see from

Fig. 8.4(b) that a Tcc value of 85% is good enough to ensure connectivity.

The second experiment shows the average active node degree after the application of B-RAT or

E-RAT as the node density increases. A constant average node degree as the node density increases

is important first to prove the correctness of the protocol and to show that the protocol actually has

a constant overhead. The experiment was performed by running B-RAT and E-RAT on each one of

131

7 12 17 22 27 30
0

5

10

15

20

25

30

Node degree

A
ct

iv
e

no
de

 d
eg

re
e

B−RAT
E−RAT

Figure 8.5: The average active node degree of different topologies in B-RAT and E-RAT.

the topologies and taking the average active node degree over all the nodes. Each value in Fig. 8.5

represents the average of 10 runs of B-RAT and E-RAT.

We can observe from Fig. 8.5 that both B-RAT and E-RAT maintain a constant active node

degree as the deployment node density increases, which emphasizes two things: First, both B-RAT

and E-RAT can leverage high node redundancy by selecting a constant number of nodes to be active,

which is only necessary for connectivity. Second, B-RAT and E-RAT maintain a constant protocol

overhead (i.e. only active nodes announce their states in the protocol). In addition to the average

active node degree, the active node degree distribution is important to show how uniformly the

active nodes spread over the sensor field. Having a uniform active node degree helps in avoiding

a situation where some network channels have high contention (high node degrees), while others

have low contention, which makes the decision of a MAC back off time, for example, difficult. An

ideal distribution would be for all the nodes to have exactly the same active node degree, but this

is impossible as boundary nodes by default have less node degree. Fig. 8.6 depicts the active node

degree distribution for B-RAT, E-RAT, and the all-active case of three configuration, where the x-

axis represents the active node degree values, while the y-axis represents the number of nodes with

the corresponding active node degree. The figures show that in the all-active case, the node degree

is highly variable. For example, in Fig. 8.6(c), some nodes have a degree of 40 while others have

132

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60
DD, Random 55, Tcc 85DD, Random 46, Tcc 85DD, Random 49, Tcc 85DD, Random 51, Tcc 85

Node density

F
re

qu
en

cy
 (

nu
m

be
r

of
 n

od
es

)

All active
B−RAT
E−RAT

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150
DD, Random 50, Tcc 85DD, Random 49, Tcc 85DD, Random 46, Tcc 85DD, Random 49, Tcc 85DD, Random 50, Tcc 85

Node density

F
re

qu
en

cy
 (

nu
m

be
r

of
 n

od
es

)

All active
B−RAT
E−RAT

(a) n=130 nodes. (b) n=330 nodes.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140
DD, Random 51, Tcc 85DD, Random 48, Tcc 85DD, Random 46, Tcc 85DD, Random 57, Tcc 85

Node density

F
re

qu
en

cy
 (

nu
m

be
r

of
 n

od
es

)

All active
B−RAT
E−RAT

(c) n=400 nodes.

Figure 8.6: Active node degree distribution: (a) Top 7 (b) Top 21 (c) Top 30, n is the total number
of nodes.

a degree of 10. In B-RAT and E-RAT, we can observe a neat distribution where most of the nodes

have an active degree of 5.

An understanding of the protocol’s propagation and convergence time is important. Other net-

work services and protocols need to wait for the network to become stable before starting generating

and sending data messages. Fig. 8.7 (next page) plots the cumulative distribution frequency of the

decided nodes over time. By decided nodes we mean a node that either switches to active or

sleep mode. Both can finish the protocol in less than 4 milliseconds. E-RAT can propagate faster

in the network, which follows from the fact that E-RAT initiates multiple B-RAT threads concur-

rently in the network. In addition to a deadlock-free RAT, E-RAT has a faster propagation time.

133

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Time (msec)

D
ec

id
ed

 n
od

es
 (

%
)

B−RAT
E−RAT

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

Time (msec)

D
ec

id
ed

 n
od

es
 (

%
)

B−RAT
E−RAT

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

Time (msec)

D
ec

id
ed

 n
od

es
 (

%
)

B−RAT
E−RAT

(c)

Figure 8.7: The percentage of decided nodes vs time: (a) Top 7 (b) Top 21 (c) Top 30.

The ability of B-RAT or E-RAT in saving energy can be predicted from the percentage of nodes

that switch to sleep mode. Fig. 8.8 shows an increasing percentage of sleeping node as the node

redundancy increases, a percentage of more than 85% of the nodes switched to sleeping mode in

topology 30.

In the last two experiments, we used the two most common communication patterns (one-to-

many and many-to-one) to compare the performance of B-RAT and E-RAT to the all-active case in

terms of the total power consumption. The sink in the one-to-many routing scenario, periodically

(every 60 seconds) broadcasts a data message, and the recipient nodes rebroadcast again. To avoid

forwarding the same data message more than once, each node forwards the same data message only

once. In the all-active case, all the nodes stay active all the time and participate in the forwarding

134

5 10 15 20 25 30
40

50

60

70

80

90

100

Node degree

S
le

ep
in

g
no

de
s

(%
)

B−RAT
E−RAT

Figure 8.8: Energy saving potential.

60 sec

14 sec

Sink

Sleeping node

Radio ON

14 sec

Radio ON

new msg new msg

14 sec

Radio ON
Radio OFF Radio OFF

Figure 8.9: Sleeping node duty cycle.

process, while in B-RAT and E-RAT, only active nodes stay active all the time and participate in

message forwarding. On the other hand, sleeping nodes do not forward data messages and turn their

radios off unless they need to receive data messages. A simple time line for the sink and a sleeping

node is shown in Fig. 8.9. The figure shows that a sleeping node turns its radio on for 14 seconds

starting from the time a new message is generated at the sink, 14 seconds is the maximum time that

a data message may take to propagate from the sink to the furthest node in the network. This time

interval (i.e., 14 seconds) is a conservative value that accounts for the maximum one hop delay and

the maximum number of hops in the network. A one hop delay may take up to 1 second, which

is the maximum back off time a node may wait to avoid collisions, and the maximum hop in the

topologies in our simulation is 14.

135

In the many-to-one routing scenario, the nodes in the network are arranged in a shortest path

routing tree rooted at the sink. Each node generates a data message every 60 seconds, which is

forwarded up the tree to the sink after being aggregated with other data messages. In the all-active

case, all the nodes are active, join the routing tree, and participate in the data message forwarding,

while in B-RAT and E-RAT, only the active nodes form the routing tree and forward data messages.

Sleeping nodes turn their radios off unless they need to send a new data message generated locally

at the node.

7 10 17 21 30
0

1

2

3

4

5

6

7
x 10

5

Node density

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n
pe

r
m

es
sa

ge
 (

Jo
ul

es
) All active

E−RAT

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7
x 10

5

Node density

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n
pe

r
m

es
sa

ge
 (

Jo
ul

es
) All active

E−RAT

(a) (b)

Figure 8.10: Total energy consumption per data message: (a) One-to-many routing and (b) Many-
to-one routing.

Fig. 8.10 compares the total energy consumption of E-RAT and the all-active case for three

different topologies in the one-to-many routing scenario (Fig. 8.10(a)) and the many-to-one routing

scenario (Fig. 8.10(b)). Since B-RAT and E-RAT show similar energy saving potential in Fig. 8.8

we use E-RAT only in our comparison with the all-active case. In both Fig. 8.10(a) and Fig. 8.10(b),

the y-axis represents the total energy in joules consumed by all the nodes in the network for each

individual data message generated in the network, while the x-axis represents the node density of

each topology. Fig. 8.10(a) shows a total energy reduction of at least half in low density topologies

(Top 7) and up to 67% in total energy reduction for higher density topologies (Top 30). Fig. 8.10(b)

136

on the other hand, shows a total energy reduction of more than 80% for a high node density (Top

30).

In the many-to-one routing scenario, Fig. 8.10(b), E-RAT shows an even higher energy saving

over the all-active case compared to the one-to-many routing scenario, Fig. 8.10(a). This is due

to the fact that in the many-to-one routing scenario in Fig. 8.10(b), sleeping nodes don’t need to

become active to receive data messages. Instead, sleeping nodes become active only to send data

messages. This allows for an even lower duty-cycle of sleeping nodes.

8.5 Related Work and Discussion

Several topology management protocols have been presented in the literature [13, 15, 18, 92],

RAT complements and enhances previous work by providing a working nesC/TinyOS implementa-

tion, which accounts for more practical issues such as irregular wireless channels. We also consider

new important performance metrics in addition to energy saving, such as active node density distri-

bution and propagation time.

GAF [92] uses physical location to define communication equivalence and redundancy. The

assumption that relates physical location to connectivity does not necessarily hold in real deploy-

ments [99, 101] and limits GAF applicability in real life deployments. Using the neighbor set to de-

fine communication redundancy, RAT adapts and captures harsh connectivity models. Exchanging

long neighbor lists (high density deployments) among neighbors, as in SPAN and ReORG [15, 18]

respectively, puts high overhead on the network. This high overhead limits the protocols’ ability in

saving energy. To avoid exchanging neighbor lists, RAT leverages the underlying broadcast medium

of wireless channels to build communication redundancy information, which is necessary for select-

ing the active node set. In addition to overhead resulting from exchanging neighbor lists, ReORG

requires all the nodes to announce their states (active or sleep). This results in poor scalability with

the total number of nodes. RAT, on the other hand, requires only active nodes to announce their

states. Since the number of active nodes is constant relative to the total number of nodes, RAT

scales very well to deployments with large number of nodes.

137

Also, the tight coupling of the routing and topology management layers in SPAN [15] may

unnecessarily limit the design space for the routing layer designers. RAT avoids any dependency

on the routing layer, which makes it operational with any routing protocol. Nevertheless the state

interface provided by Score allows the routing layer to get notification of any topology changes

smoothly so that it can adapt its routing infrastructure appropriately. ASCENT [13] takes a different

approach in selecting a set of active nodes. It uses the active node density and loss rate as driving

factors in assigning nodes active and sleep states. Transient node failures and high wireless channel

quality variation may compromise the integrity of a node’s decision of going to sleep or active,

which may lead to a disconnected network. RAT guarantees connectivity by forcing nodes to stay

active unless a set of active nodes already provide enough communication redundancy.

Topology management, in which a set of nodes stay active while other nodes turn their radios

off completely, is not the only mechanism that has been used to control network topology and so

save energy. Several protocols and algorithms [53, 55, 90] have been proposed to control network

topology by adjusting the sensor node sending power. Such mechanisms can be used side by side to

complement our work and further provide higher levels of energy savings.

8.6 Summary

In this chapter, we discussed the implementation and evaluation of the RAT protocol under two

routing scenarios. RAT achieves energy savings up to 87% by leveraging high node density by

assigning 80% of the nodes to the sleep mode and assigning a small set of nodes, good enough to

maintain connectivity, to the active mode.

138

CHAPTER 9

CONCLUSION AND FUTURE WORK

We dedicate the final chapter to summarize and conclude this work, we also, discuss future

research directions.

We follow a top-down as well as a bottom-up approach to tackle very important aspects of WSNs

including their availability, autonomy, and energy efficiency. We develop analytical systems to

model WSNs availability and use these models to attack two major WSNs problems: the deployment

problem and availability-aware node scheduling problem. As we shown by the analytical as well

as simulation results, our solutions to these problems move WSNs toward a more dependable and

autonomous as well as cost efficient systems. In an attempt to validate some of the assumptions

that we have used in our models, we leverage some sensor systems failure traces to draw some

conclusions about their failure patterns including effect of environmental conditions on inflicting

failures. On the other hand, we approach dependable and autonomous WSNs from a more systems

perspective by proposing a new and more flexible structuring of the WSN communication stack

(Score). In the context of Score the network protocols collaborate and coordinate in arbitrary manner

without the need for tight coupling. On top of Score, we develop several network services and

protocols that enable autonomous WSNs including neighbor the discovery and topology discovery

services. Finally, we propose, implement, and evaluate the RAT protocol, which leverages high node

density to schedule nodes ON and OFF to save energy.

My future work is twofold: I plan to continue on improving availability and reliability modeling

by incorporating more aspects of the WSN system. These models help in addressing similar pre-

deployment stage problems. On the other hand, I plan to continue on developing more network

services that benefit from and runs on top of the Score framework and improve on the existing ones

to support operational stage autonomous WSNs. Furthermore, I plan to utilize simulation techniques

139

that permit capturing WSNs failure scenarios that are difficult to capture in the analytical models.

In attempt to bridge the gap between operational stage protocols and decrease the pressure on pre-

deployment stage models, I plan to investigate a new self-learning deployment strategy that does

not assume prior knowledge of the sensor node failure rate (i.e., λ). The new strategy employs life-

testing techniques to estimate λ in the early phases of the WSN lifetime. During this early phase,

the deployment strategy performs deployment visits on an on-demand basis, and once a λ estimate

with certain confidence is reached, the deployment strategy adopts the pro-active approach.

140

Appendix A

PUBLICATION LIST

A.1 Published

• Safwan Al-Omari and Weisong Shi, Toward Low Cost and Highly Reliable Sensor Networks

Deployment [extended abstract], ACM CoNEXT Student Workshop 2008, Spain, Madrid,

December 9, 2008.

• Kewei Sha, Guoxing Zhan, Safwan Al-Omari, Tim Calappi, Weisong Shi and Carol Miller,

Data Quality and Failures Characterization of Sensing Data in Environmental Applications,

in Proceedings of the 4th International Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom’08), Orlando, November 13-16.

• Safwan Al-Omari and Weisong Shi, Availability Modeling and Analysis of Autonomous In-

Door WSNs, in Proceedings of the 4th IEEE International Conference on Mobile Ad-hoc and

Sensor Systems (MASS’07), Pisa, Italy, October 8-11, 2007.

• Safwan Al-Omari and Weisong Shi, A Novel Topology Discovery Service for Self-Organized

WSNs, in Proceedings of the 1st International Conference on Wireless Algorithms, Systems

and Applications (WASA’07), Chicago, August 1-3, 2007.

• Safwan Al-Omari and Weisong Shi, Towards Highly-Available WSNs for Assisted Liv-

ing, in Proceedings of the 1st International Workshop on Systems and Networking Sup-

port for Healthcare and Assisted Living Environments (HealthNet’07), in conjunction with

USENIX/ACM MobiSys’07, San Juan, June 11-14, 2007.

141

• Safwan Al-Omari and Weisong Shi. Redundancy-aware topology control in wireless sen-

sor networks. In Proceedings of the 2nd International Conference on Collaborative Com-

puting: Networking, Applications and Worksharing (CollaborateCom06), Atlanta, Georgia,

USA, November 17th - 20th, 2006.

• Safwan Al-Omari, Junzhao Du, and Weisong Shi. Score: A sensor core framework for

cross-layer design [extended abstract]. In Proceedings of The Third International Conference

on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine06), Waterloo, On-

tario, Canada, August 7 9, 2006.

A.2 Under Submission

• Safwan Al-Omari and Weisong Shi, A Novel Topology Discovery Service for Self-Organized

WSNs. Submitted to IJDSN (major review).

• Safwan Al-Omari and Weisong Shi, Incremental Sensor Node Deployment for Low Cost

and Highly Available WSN, MIST-TR-2008-002. Submitted to IEEE TVT.

• Safwan Al-Omari, Weisong Shi, and Carol J. Miller. Sesame: A sensor system accessing

and monitoring environment. Technical Report MIST-TR-2004-018, Wayne State University,

November 2004.

142

REFERENCES

[1] S. Al-Omari and W. Shi. Redundancy-aware topology control in wireless sensor networks.

In Proc. of CollaborateCom’06, 2006.

[2] S. Al-Omari and W. Shi. Availability modeling and analysis of autonomous in-door wsns. In

Proceedings of IEEE MASS’07, September 2007.

[3] S. Al-Omari, W. Shi, and C. J. Miller. Sesame: A sensor system accessing and monitor-

ing environment. Technical Report MIST-TR-2004-018, Wayne State University, November

2004.

[4] Lichun Bao and J. J. Garcia-Luna-Aceves. Topology management in ad hoc networks. In

MobiHoc ’03: Proceedings of the 4th ACM international symposium on Mobile ad hoc net-

working & computing, pages 129–140, New York, NY, USA, 2003. ACM Press.

[5] M. Bebbington, C. Lai, and R. Zitikis. Useful periods for lifetime distributions with bathtub

shaped hazard rate functions. IEEE Tran. Reliability, 55(2):245–251, 2006.

[6] Christian Bettstetter. On the minimum node degree and connectivity of a wireless multihop

network. In Proceedings of the MobiHoc’02, June 2002.

[7] R. Bhatia and M. Kodialam. On power efficient communication over multi-hop wireless

networks: joint routing, scheduling, and power control. March 2004.

[8] D. M. Blough and P. Santi. Investigating upper bounds on network lifetime extension for

cell-based energy conservation techniques in stationary ad hoc networks. In Proceedings

of the 8th Annual ACM/IEEE International Conference on Mobile Computing and Network-

ing(MobiCom’02), 2002.

143

[9] P. Brass. Bounds on coverage and target detection capabilities for models of networks of

mobile sensors. ACM Transactions on Sensor Networks, 3(2), 2007.

[10] N. Bulusu, J. Heidemann, and D. Estrin. Adaptive beacon placement. In Proceedings of the

21st International Conference on Distributed Computing Systems, April 2001.

[11] Martin Burkhart, Pascal von Rickenbach, Roger Wattenhofer, and Aaron Zollinger. Does

topology control reduce interference? In MobiHoc ’04: Proceedings of the 5th ACM interna-

tional symposium on Mobile ad hoc networking and computing, pages 9–19, New York, NY,

USA, 2004. ACM Press.

[12] A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sensor network topologies. In

Proceedings of the IEEE Infocom’02, June 2002.

[13] Alberto Cerpa and Deborah Estrin. Ascent: Adaptive self-configuring sensor networks

topologies. IEEE Transactions on Mobile Computing Special Issue on Mission-Oriented

Sensor Networks, 3(3), July-September 2004.

[14] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho. Grid coverage of surveillance and target

location in distributed sensor networks. IEEE Transaction on Computers, 51(12):1448 –

1453, 2002.

[15] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. SPAN: An energy-efficient coor-

dination algorithm for topology maintenance in ad-hoc wireless networks. In Proceedings

of the 7th Annual ACM/IEEE International Conference on Mobile Computing and Network-

ing(MobiCom’01), July 2001.

[16] M. Chiang. To layer or not to layer: Balancing transport and physical layers in wireless

multihop networks. March 2004.

144

[17] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. Saluja. Sensor deployment strat-

egy for target detection. In Proceedings of WSNA’02, September 2002.

[18] W. Steven Conner, Jasmeet Chhabra, Mark Yarvis, and Lakshman Krishnamurthy. Exper-

imental evaluation of synchronization and topology control for in-building sensor network

applications. In WSNA ’03: Proceedings of the 2nd ACM international conference on Wire-

less sensor networks and applications, pages 38–49, New York, NY, USA, 2003. ACM Press.

[19] K. Dasgupta et al. An efficient clustering-based heuristic for data gathering and aggregation

in sensor networks. In Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC’03), March 2003.

[20] B. Deb, S. Bhatnagar, and B. Nath. A topology discovery algorithm for sensor networks with

applications to network management. In In IEEE CAS workshop(short paper), September

2002.

[21] Budhaditya Deb and Badri Nath. On the node-scheduling approach to topology control in

ad hoc networks. In MobiHoc ’05: Proceedings of the 6th ACM international symposium on

Mobile ad hoc networking and computing, pages 14–26, New York, NY, USA, 2005. ACM

Press.

[22] S. Dhillon and K. Chakrabarty. Sensor placement for effective coverage and surveillance in

distributed sensor networks. In Proceedings of WCNC’03, March 2003.

[23] S. Dhillon, K. Chakrabarty, and S. Iyengar. Sensor placement for grid coverage under impre-

cise detections. In Proceedings of the 5th International Conference on Information Fusion

(fusion’02), July 2002.

[24] Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and

Arvind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets and

145

linear-size skeletons. In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM sym-

posium on Discrete algorithms, pages 717–724, Philadelphia, PA, USA, 2003. Society for

Industrial and Applied Mathematics.

[25] Yong Gao, Kui Wu, and Fulu Li. Analysis on the redundancy of wireless sensor networks.

In WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor

networks and applications, pages 108–114, New York, NY, USA, 2003. ACM Press.

[26] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language: A

holistic approach to networked embedded systems. In Proc. of PLDI’03, June 2003.

[27] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein, A. Joki, D. Estrin, and

E. Kohler. The tenet architecture for tiered sensor networks. In Proc. of SenSys ’06, 2006.

[28] B. Gnedenko, Y. Belyayev, and A. Solovyev. Mathematical Methods of Reliability Theory.

Acadamic Press, 1969.

[29] B. Greenstein, E. Kohler, and D. Estrin. A sensor network application construction kit

(snack). In Proc. of ACM SenSys 2004, November 2004.

[30] Himanshu Gupta, Samir R. Das, and Quinyi Gu. Connected sensor cover: self-organization

of sensor networks for efficient query execution. In MobiHoc ’03: Proceedings of the 4th

ACM international symposium on Mobile ad hoc networking & computing, pages 189–200,

New York, NY, USA, 2003. ACM Press.

[31] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on Infor-

mation Theory, 19(2):73–85, February 2000.

[32] MohammadTaghi Hajiaghayi, Nicole Immorlica, and Vahab S. Mirrokni. Power optimization

in fault-tolerant topology control algorithms for wireless multi-hop networks. In MobiCom

146

’03: Proceedings of the 9th annual international conference on Mobile computing and net-

working, pages 300–312, New York, NY, USA, 2003. ACM Press.

[33] B. Hamdaoui and P. Ramanathan. Energy-Efficient and MAC-Aware Routing for Data Aggre-

gation in Sensor Networks. IEEE Press, October 2004.

[34] Balakrishnan H Heinzelman WR, Chandrakasan A. Energy-efficient communication protocol

for wireless microsensor networks. In Proc. of Hawaii Internaltional Conference On System

Sciences (HICSS’00), January 2000.

[35] A. Howard, M. Matadd, and G. Sukhatme. An incremental self-deployment algorithm for

mobile sensor networks. Autonomous Robots, Special Issue on Intelligent Embedded Systems,

13(2):113–126, 2001.

[36] A. Howard, M. Mataric, and G. Sukhatme. Mobile sensor network deployment using poten-

tial fields: A distributed, scalable solution to the area coverage problem. In Proceedings of

DARS’02, 2002.

[37] V. Isler, K. Daniilidis, and S. Kannan. Sampling based sensor-network deployment. In Pro-

ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Septem-

ber 2004.

[38] S. Jayashree, B. S. Manoj, and C. Siva Ram Murthy. On using battery state for medium

access control in ad hoc wireless networks. In MobiCom ’04: Proceedings of the 10th annual

international conference on Mobile computing and networking, pages 360–373, New York,

NY, USA, 2004. ACM Press.

[39] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are disks the dominant contributor for storage

failures? a comprehensive study of storage subsystem failure characteristics. In Proceedings

of USENIX FAST’08, January 2008.

147

[40] Aditya Karnik and Anurag Kumar. Distributed optimal self-organisation in a class of wire-

less sensor networks. In Proc. of IEEE Conference on Computer Communications (INFO-

COM’04), March 2004.

[41] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for wireless networks.

In Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing

and Networking(MobiCom’00), August 2000.

[42] R. H. Katz, J. M. Kahn, and K. J. Pister. Mobile networking for smart dust. In Proceedings of

the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom’99), Seattle, WA, August 1999.

[43] U. Kozat, I. Koutsopoulos, and L. Tassiulas. A framework for cross-layer design of energy-

efficient communication with qos provisioning in multi-hop wireless networks. March 2004.

[44] B. Krishnamachari. Networking Wireless Sensors. Cambridge University Press, 2006.

[45] S. Kumar, T. Lai, and J. Balogh. On k-coverage in a mostly sleeping sensor network. In

Proceedings of the 10th Annual ACM/IEEE International Conference on Mobile Computing

and Networking(MobiCom’04), September 2004.

[46] P.F. Lagasse and E.V. Richardson. Asce compendium of stream stability and bridge scour

papers. 127(7):531, 2001.

[47] P.F. Lagasse, J.D. Schall, and E.V. Richardson, 2001. Stream stability at highway structures

(3rd edition): Federal Highway Administration Hydraulic Engineering Circular No. 20.

[48] P.F. Lagasse, L.W. Zevenbergen, J.D. Schall, and P.E. Clopper, 2001. Bridge scour and stream

instability countermeasures: Experience, selection, and design guidelines (2nd edition): Fed-

eral Highway Administration Hydraulic Engineering Circular No. 23.

148

[49] M. Leoncini, G. Resta, and P. Santi. Analysis of a wireless sensor dropping problem in

wide-area environmental monitoring. In Proceedings of IPSN’05, April 2005.

[50] P. Levis et al. Trickle: A self-regulating algorithm for code propagation and maintenance

in wireless sensor networks. In Proceedings of the First USENIX/ACM Networked System

Design and Implementation, March 2004.

[51] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable simulation of entire

tinyos applications. In Proceedings of the First ACM SenSys’03, November 2003.

[52] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and Roger Wattenhofer. A cone-

based distributed topology-control algorithm for wireless multi-hop networks. IEEE/ACM

Trans. Netw., 13(1):147–159, 2005.

[53] N. Li, C. Hou, and L. Sha. Design and analysis of an mst-based topology control algorithm.

In Proc. of INFOCOM’03, March 2003.

[54] N. Li and J. Hou. Topology control in hetergeous wireless networks: Problems and solutions.

In Proc. of IEEE Conference on Computer Communications (INFOCOM’04), March 2004.

[55] N. Li and J. C. Hou. Localized topology control algorithms for heterogeneous wireless net-

works. IEEE/ACM Trans. on Networking, December 2005.

[56] Errol L. Lloyd, Rui Liu, Madhav V. Marathe, Ram Ramanathan, and S. S. Ravi. Algorithmic

aspects of topology control problems for ad hoc networks. Mob. Netw. Appl., 10(1-2):19–34,

2005.

[57] Errol L. Lloyd, Rui Liu, Madhav V. Marathe, Ram Ramanathan, and S. S. Ravi. Algorithmic

aspects of topology control problems for ad hoc networks. Mob. Netw. Appl., 10(1-2):19–34,

2005.

149

[58] X. Luo, M. Dong, and Y. Huang. On distributed fault-tolerant detection in wireless sensor

networks. IEEE Trans. Computers, 55(1):58–70, 2006.

[59] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny aggregation service

for ad-hoc sensor network. In Proc. of the Fifth USENIX Symposium on Operating Systems

Design and Implementation, December 2002.

[60] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor net-

work for habitat monitoring. In Proceedings of the First ACM Workshop on Wireless Sensor

Networks and Applications (WSNA), September 2002.

[61] D. Marsh, R. Tynan, G O’Hare, and A. Ruzzelli. The effects of deployment irregularity on

coverage in wireless sensor networks. In Proceedings of ISSNIP’05, December 2005.

[62] D.S. Mueller and C.R. Wagner, 2002. Field Observations and Evaluations of Streambed

Scour at Bridges, Federal Highway Administration Report.

[63] S. Nath et al. Synopsis diffusion for robust aggregration in sensor networks. In Proc. of ACM

SenSys 2004, November 2004.

[64] National Transportation Safety Board (NTSB), 1988. Collapse of the New York Thruway

(I-90) Bridge of Schoharie Creek, near Amsterdam, New York, April 5th, 1987.

[65] U.S. Department of Transportation (USDOT), 1991. Evaluating scour at bridges, Technical

Advisory.

[66] Jianping Pan, Y. Thomas Hou, Lin Cai, Yi Shi, and Sherman X. Shen. Topology control

for wireless sensor networks. In MobiCom ’03: Proceedings of the 9th annual international

conference on Mobile computing and networking, pages 286–299, New York, NY, USA,

2003. ACM Press.

150

[67] E.V. Richardson and S.R. Davis, 2001. Evaluating scour at bridge (4th edition): Federal

Highway Administration Hydraulic Engineering Circular No. 18.

[68] P. Santi and D. Blough. The critical transmitting range for connectivity in sparse wireless ad

hoc networks. IEEE Transactions on Mobile Computing, 2(1):25–39, 2003.

[69] Paolo Santi, Douglas M. Blough, and Feodor Vainstein. A probabilistic analysis for the range

assignment problem in ad hoc networks. In MobiHoc ’01: Proceedings of the 2nd ACM

international symposium on Mobile ad hoc networking & computing, pages 212–220, New

York, NY, USA, 2001. ACM Press.

[70] B. Schroeder and G. Gibson. Disk failures in the real world: What does an mttf of 1,000,000

hours mean to you? In Proceedings of USENIX FAST’07, February 2007.

[71] C. Schurgers et al. Topology management for sensor networks: exploiting latency and den-

sity. In Proceedings of the MobiHoc’02, June 2002.

[72] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor networks. In

MILCOM Proceedings on Communications for Network-Centric Operations: Creating the

Information Force, 2001.

[73] Loren Schwiebert, Sandeep K.S. Gupta, and Jennifer Weinmann. Research challenges in

wireless networks of biomedical sensors. In MobiCom ’01: Proceedings of the 7th annual

international conference on Mobile computing and networking, pages 151–165, New York,

NY, USA, 2001. ACM Press.

[74] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-efficient forwarding strate-

gies for geographic routing in lossy wireless sensor networks. In Proc. of ACM SenSys 2004,

November 2004.

151

[75] R. Shah and J. Rabaey. Energy aware routing for low energy ad hoc sensor networks. In

Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’02),

March 2002.

[76] W. Shi and C. Miller. Waste containment system monitoring using wireless sensor networks.

Technical Report MIST-TR-2004-009, Wayne State University, March 2004.

[77] V. Shnayder et al. Simulating the power consumption of large-scale sensor network applica-

tions. In Proc. of ACM SenSys 2004, November 2004.

[78] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization of a wireless

sensor network. IEEE Personal Communications, 7(5):16–27, October 2000.

[79] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis of a large scale habitat

monitoring application. In Proc. of ACM SenSys 2004, November 2004.

[80] Di Tian and Nicolas D. Georganas. A coverage-preserving node scheduling scheme for large

wireless sensor networks. In WSNA ’02: Proceedings of the 1st ACM international workshop

on Wireless sensor networks and applications, pages 32–41, New York, NY, USA, 2002.

ACM Press.

[81] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman. Infrastructure tradeoffs for sensor networks.

In Proceedings of WSNA’02, 2002.

[82] N. Vlajic and D. Xia. Wireless sensor networks: To cluster or not to cluster? In Proceedings

WoWMoM’06, June 2006.

[83] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. Distributed construction of connected

dominating set in wireless ad hoc networks. Mob. Netw. Appl., 9(2):141–149, 2004.

152

[84] G. Wang, G. Cao, and T. La Porta. Movement-assisted sensor deployment. IEEE Transactions

on Mobile Computing, 5(6):640–652, 2006.

[85] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless, and Christopher

Gill. Integrated coverage and connectivity configuration in wireless sensor networks. In

SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor

systems, pages 28–39, New York, NY, USA, 2003. ACM Press.

[86] Yu Wang, WeiZhao Wang, and Xiang-Yang Li. Distributed low-cost backbone formation

for wireless ad hoc networks. In MobiHoc ’05: Proceedings of the 6th ACM international

symposium on Mobile ad hoc networking and computing, pages 2–13, New York, NY, USA,

2005. ACM Press.

[87] M. Welsh and G. Mainland. Programming sensor network using abstract regions. In Pro-

ceedings of the First USENIX/ACM Networked System Design and Implementation, March

2004.

[88] K. Whitehouse, C. Sharp, D. Culler, and E. Brewer. Hood: A neighborhood abstraction for

sensor networks. In Proc. of ACM MobiSys’04, June 2004.

[89] A. Woo and D. Culler. A transmission control scheme for media access in sensor networks.

In Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile Computing

and Networking (MobiCom’01), Rome, Italy, July 2001.

[90] J. Wu and F. Dai. Mobility-sensitive topology control in mobile ad hoc networks. accepted

to apear in IEEE Tran. on Parallel and Distributed Systems, June 2006.

[91] Guoliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang Lu, Robert Pless, and Christopher

Gill. Integrated coverage and connectivity configuration for energy conservation in sensor

networks. ACM Trans. Sen. Netw., 1(1):36–72, 2005.

153

[92] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad hoc

routing. In Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile

Computing and Networking(MobiCom’01), July 2001.

[93] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS: A robust energy conserving protocol for

long-lived sensor networks. In Proc. of ICDCS ’03, 2003.

[94] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor

networks. In Proceedings of IEEE Infocom’02, New York, NY, June 2002.

[95] M. Younis, M. Youssef, and K. Arisha. Energy-aware routing in cluster-based sensor network.

In Proceedings of ACM/IEEE MASCOTS’2002, October 2002.

[96] S. Yu, A. Yang, and Y. Zhang. Dada: A 2-dimensional adaptive node schedule to provide

smooth sensor network services against random failures. In Workshop on Information Fusion

and Dissemination in Wireless Sensor Networks, 2005.

[97] H. Zhang and A. Arora. GS3: Scalable self-configuration and self-healing in wireless sensor

networks. Computer Networks (Elsevier), 2003.

[98] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret Martonosi. Hardware de-

sign experiences in zebranet. In SenSys ’04: Proceedings of the 2nd international conference

on Embedded networked sensor systems, pages 227–238, New York, NY, USA, 2004. ACM

Press.

[99] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in dense

wireless sensor networks. In SenSys ’03: Proceedings of the 1st international conference on

Embedded networked sensor systems, pages 1–13, New York, NY, USA, 2003. ACM Press.

154

[100] Rong Zheng, Jennifer C. Hou, and Lui Sha. Asynchronous wakeup for ad hoc networks.

In MobiHoc ’03: Proceedings of the 4th ACM international symposium on Mobile ad hoc

networking & computing, pages 35–45, New York, NY, USA, 2003. ACM Press.

[101] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity on

wireless sensor networks. In Proc. of ACM MobiSys’04, June 2004.

[102] Y. Zou and K. Chakrabarty. Sensor deployment and target localization based on virtual forces.

In Proceedings of IEEE INFOCOM 2003, March 2003.

[103] Y. Zou and K. Chakrabarty. Uncertainty-aware and coverage-oriented deployment for sensor

networks. Journal of Parallel and Distributed Computing, 64(7):788–798, 2004.

[104] Yi Zou and K. Chakrabarty. A distributed coverage- and connectivity-centric technique for

selecting active nodes in wireless sensor networks. IEEE Trans. Computers, 2005.

155

ABSTRACT

PETRA: TOWARD DEPENDABLE AND AUTONOMIC NETWORKED SENSOR SYSTEMS

by

SAFWAN AL-OMARI

DECEMBER 2008

Advisor: Dr. Weisong Shi

Major: Computer Science

Degree: Doctor of Philosophy

The recent development of small wireless sensing devices has opened the door for a plethora of

new applications. In a typical application, these battery-powered and failure-prone sensor nodes are

required to operated autonomously for extended period of time. In this work, we propose analytical

models, system-level support, and network protocols that move WSNs forward toward autonomous,

dependable, energy efficient, and cost effective WSNs. Our work falls into two major categories.

First, we use analytical models to formalize and quantify WSN dependability characteristics, these

models allow for the systematic integration of WSN dependability as a primary dimension in the

design space of the communication stack protocols and algorithms as well as the deployment prob-

lem. Second, we propose a novel structure of the WSN communication stack based on our Sensor

Core (Score). In the context of Score, we propose and develop fundamental network services that

perform automatic low-level discovery services such as neighbor and topology discovery. Score

along with discovery services provide a framework that hosts our protocols and provide them with

system-level support to collaborate and coordinate with each other in a cross-layer approach.

156

AUTOBIOGRAPHICAL STATEMENT

Safwan Al-Omari is a PhD candidate at the Department of Computer of Wayne State University.

He received his BSc degree in computer science from the University of Jordan in 1999, and his

MSc in computer and Information science from the University of Michigan-Dearborn in 2003. He

started his PhD in the winter of 2004, since then, he has been working on Wireless Sensor Networks

in the Mobile and Internet SysTems lab. His research focuses on developing analytical models as

well as systems support that help in building more reliable and highly available Wireless Sensor

Networks. He has several publications in well-known International conferences and workshops

including MASS’07, HealthNet’07, WASA’07, CollaborateCom’06, and Qshine’06.

