
Resource Scheduling in Data-Centric Systems

Zujie Ren, Xiaohong Zhang and Weisong Shi

1 Introduction

Effective resource scheduling is a fundamental issue for achieving high performance
in various computer systems. The goal of resource scheduling is to arrange the
best location of each resource and determine the most appropriate sequence of job
execution, while satisfying certain constraints or optimizations. Although the topic
of resource scheduling has been widely investigated for several decades, it is still
a research hotspot as new paradigms continue to emerge, such as grid computing
[1, 2], cloud computing [3, 4], big data analytics [5, 6], and so on.

With the explosive growth of data volumes, more and more organizations are
building large-scale data-centric systems (DCS). These systems are hosted by one
or more data centers, where they serve as IT infrastructures for data processing,
scientific computing, and a variety of other applications involving “big data”. Data-
centric systems offer new solutions for existing applications and promote warehouse-
scale data businesses such as cloud computing, cloud storage services, and so on.

Unfortunately, there is no widely accepted standard definition for data-centric
systems. However, in general, if a computing system involves large volumes of data
which are hosted by data centers, it can be labeled as “data-centric systems”. Exam-
ples include large-scale web search engine, data management systems, data mining
systems. Particularly, we focus on three kinds of data-centric systems in this chapter:

Z. Ren (�)
School of Computer Science and Technology,
Hangzhou Dianzi University, Hangzhou, China
e-mail: renzju@gmail.com

X. Zhang
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Science, Shenzhen, China
e-mail: xh.zhang@siat.ac.cn

W. Shi
Department of Computer Science, Wayne State University, Detroit, USA
e-mail: weisong@wayne.edu

© Springer Science+Business Media New York 2015 1307
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_46



1308 Z. Ren et al.

• Cloud computing platforms. A cloud computing platform is depicted as a large
pool of computing and storage resources, which provides various services (IaaS,
PaaS and SaaS) and elastic resources [3] to public users via the Internet. Recent
years have witnessed a rapid growth in the number of cloud computing platforms,
such asAmazon EC2 [7], IBM Blue Cloud [8], GoogleAppEngine [9], RackSpace
[10] and Microsoft Azure [11].

• Data-Intensive Super Computing (DISC) systems. DISC systems are new forms
of high-performance computing (HPC) systems that concentrate on high-volume
data, rather than computation. DISC is responsible for the acquisition, updating,
sharing, and archiving of the data. In addition, DISC supports data-intensive
computation over high-volume data [12–14].

• MapReduce-style systems. MapReduce-style processing systems are designed to
deal with big data volume in parallel on large-scale clusters. A traditional and
popular example is Hadoop [15], an open-source implementation of the MapRe-
duce framework [16]. Hadoop can easily scale out to thousands of nodes and work
with petabyte data.

In the context of DCS, effective resource scheduling is notoriously difficult due
to the complexity and diversity of DCS. More specifically, the challenges for
scheduling optimization include the following: (1) the software/hardware stack in
data-centric systems is composed of many layers [17, 18]. The entities and objectives
of scheduling may be completely different across these software/hardware layers.
(2) the workload running the data-centric systems is significantly miscellaneous.
The workload is usually comprised of long-running applications, Web services,
MapReduce jobs, HPC jobs, and so on. Therefore, compared with the traditional
distributed systems like distributed file systems and DBMS, data-centric systems
pose many more challenges for improving resource efficiency by scheduling due to
the system complexity and workload diversity.

To address these challenges, various resource scheduling methods in the context
of DCS have been proposed in recent years. For example, motivated by the market
behaviors in the field of economics, some literature has focused on regulating the
supply and demand of resources in cloud environments, using such as commodity-
based [19, 20] or auction-based strategies [21, 22]. These resource scheduling polices
are designed for reducing cost for resource consumers and maximizing profits for
resource providers. Other literature focuses on optimizing the system throughput by
allocating resources based on various heuristics. For example, the scheduler may con-
centrate on system utilization [23], job completion time [24, 25], load balance [26],
energy consumption [27–29], data locality [30, 31], or real-time satisfaction [32, 33].

While the topic of resource scheduling in data-centric systems is broad enough
to provide enough content for a book, those existing techniques are scattered and
poorly organized. A systematic survey on the existing research advances is necessary
and helpful to further improvement and performance optimization. In this chapter,
we classify the resource scheduling approaches into three categories according to the
scheduling model: resource provision, job scheduling and data scheduling. We give a
systematic review of the most significant techniques for these categories, and present



Resource Scheduling in Data-Centric Systems 1309

some open problems to be addressed. We believe this systematic and comprehensive
analysis can help researchers and engineers to better understand those scheduling
techniques and inspire new developments within this field.

The chapter is organized as follows. Section 2 presents the definitions of a list
of terminologies used in the chapter. A taxonomy of existing works on resource
scheduling is presented in Sect. 3. In Sect. 4, we will look at four case studies, each
of which is derived from practical or productional systems. In Sect. 5, we outline
interesting future trends and challenges of resource scheduling.

2 Terminology

Due to the diversity of data-centric systems, the terminology used in this field is
often inconsistent. To clarify the description in this chapter, we define the following
necessary terminology.

Resource. Resource is a collection of components that can be scheduled to perform
an operation. Some traditional examples of resources are CPU cores for computing,
memory spaces for storage, network links for transferring, electrical power, and so
on.

Task. A task is an atomic action from the scheduler’s point of view. A Task is defined
by a collection of input data and corresponding operations.

Job. A job is a group of tasks that will be executed on a set of resources. The
definition of jobs is recursive, which means that jobs are composed of sub-jobs
and/or tasks, and sub-jobs can be decomposed further into atomic tasks.

Service. A service is a program to enable access to one or more resources, where the
access is provided by a predefined interface. For instance, cloud computing, which
is provisioned as services, are broadly divided into three categories: software-as-a-
service (SaaS), platform-as-a-service (PaaS), and infrastructure as-a-service (IaaS).

Data-Centric Systems. Although there is no de-facto standard definition for the
term “data-centric systems”, they are very common in various forms. In most cases,
they are characterized (partially or fully) by the following features:

• managing of large volumes of data, in range of petabyte-level and beyond
• hosted by one or more data centers
• involving complex software/hardware stacks
• serving for multiple users and execute diverse workloads

Generally, many computing systems can be labeled as “data-centric systems”, such
as web search engines, data management systems, and data mining systems. To sum-
marize, this chapter concentrates on three kinds of traditional data-center systems,
including cloud computing platforms, data-intensive super computing systems, and
MapReduce-style systems.



1310 Z. Ren et al.

3 Classification and State-of-the-Art

In this section, we present a broad view of resource scheduling issues in data-centric
systems. As data-centric systems involve multiple software layers, scheduling oper-
ations take place on multiple layers. For example, assume that a set of MapReduce
jobs are submitted to a data processing application, which is hosted on a cloud plat-
form like Amazon EC2, the scheduling operations will be conducted multiple times.
Firstly, when the application for processing MapReduce jobs, such as Hadoop, is
loaded on the cloud, the application needs to be provisioned with a certain amount of
resources, which is often referred to as resource provision (aka. resource allocation).
Secondly, when the set of job requests are submitted to the application, the scheduler
in the application needs to map the set of jobs to multiple servers in a certain manner,
which is also known as job scheduling. Thirdly, to improve the resource utilization or
job execution efficiency, the scheduler within storage systems needs to schedule the
data transfer, replication, distribution, either during the job execution or in advance,
which is often referred to as data scheduling.

3.1 Hierarchy of Resource Scheduling in DCS

In fact, similar as in the context of a data processing system, the resource scheduling
issue in DCS also can be generally divided into the problems of resource provision,
job scheduling and data scheduling. Although data-centric systems come with vari-
able implementations, we still can abstract a common hierarchical architecture of
various data-centric systems from the perspective of scheduling, which is depicted
in Fig. 1.

• Resource provision. Resource provision is to allocate resources to satisfy multi-
ple applications efficiently. In one aspect, on the top layer of data-centric systems,
various applications, VM instances, Web services etc., run on the data-centric sys-
tems. They demand a certain type and amount of resources when they are loaded.
In the other aspect, the data-centric systems is a unified resource platform, which
holds massive computation and storage resources in the data centers. The re-
sources are allocated to users based on a certain policy to satisfy the requirements
of resource providers and users. Therefore, the scheduling issue in this layer is
often also referred to as resource allocation [34–37].

• Job scheduling. Within a data-centric system, various jobs, such as HPC and
MapReduce-style jobs, will be submitted in parallel by many applications (or
users). Simple scheduling algorithms such as FIFO, are hard to satisfy perfor-
mance requirements in most cases. To improve the job’s execution performance,
a scheduling algorithm is needed to assign jobs or tasks to appropriate nodes in
a certain order. Therefore, the scheduling issue in this layer is also known as job
scheduling.



Resource Scheduling in Data-Centric Systems 1311

Fig. 1 Resource scheduling hierarchy in DCS

• Data scheduling. On the storage layer of data-centric systems, there are large vol-
umes of data stored and managed by distributed nodes. The goal of data scheduling
is two-fold: in one aspect, data-centric systems employ various data placement
and migration techniques to increase the storage resource utilization, data re-
liability and availability; in the other aspect, data-centric systems apply online
scheduling techniques for data prefetching, data transfer etc., for accelerating the
job (request) execution, aiming to reduce to data access/transfer latency Fig. 2.

Resource Scheduling

Data Scheduling

Offline scheduling

migration[75]
replication[76, 77]

placement[78]

Online scheduling

transfer[70, 71]
prefetch[72]

distribution[73, 74]

Job Scheduling

Static scheduling

heuristic[65, 13]
optimization[66, 67]

utility[68, 69]

Dynamic scheduling

scalability[59]
fairness[30][60]
data locality[61]

efficiency[24][33]
deadline[62, 63]

QoS[64]

Resource Provision

Utility-oriented

energy conservation[55]
cost reduction[35, 56]

workload balance[57, 58]

SLA-oriented

static[47, 48]
dynamic[49, 50]
predictive[51]

reactive[52, 53]
hybrid[54]

Economic-based

contracts[38, 39]
bargaining[40, 41]
commodity[42, 20]

auction[43, 44]
posted price[45, 46]

Fig. 2 Resource scheduling taxonomy in DCS



1312 Z. Ren et al.

3.2 Resource Provision

During the past few years, cloud computing has become a main trend in delivering IT
services, where the computing and storage capabilities are shared among multiplex
many users. In a cloud computing platform, the resources are available on-demand,
charged on a pay-as-you-go basis. In one aspect, cloud providers hold enormous
computing resources in their data centers, while in the other aspect, cloud users lease
the resources from cloud providers to run their applications. Usually, the resource
requirement imposed by cloud users are heterogeneous [18] and time-varying [79,
80], which makes the scheduling much more complicated.

According to the provision model, we classify the resource provision techniques
into three groups: economic-based, SLA-oriented, and utility-oriented. The first and
second groups focus on resource provision issues between providers and consumers
using economical models or SLA contracts, while the third group concentrates on
high-efficiency resource management from the perspective of the data center owner.

3.2.1 Economic-Based Resource Provision

To maximize benefits on cloud platforms, many researchers proposed various eco-
nomic models to effectively solve the issues of scheduling problems in the grid or
cloud environments, such as commodity market [81], posted price [45, 82], tender-
ing/contract [38], bargaining [83, 84], auction [43, 21], and so on. Economics-based
methods are very suitable for handling the provision issues in a cloud environment,
as they have been effectively utilized in the field of economics to regulate the supply
and demand of limited resources.

The concept of a commodity market model is similar to commodity trade in real
markets in our daily life. Resource providers specify their service prices and charge
users according to the amount of resources they use. The users can freely choose a
proper service, but the price is unable to change. The prices can be generated based
on the resource supply and demand. Generally, the resources are priced in such a
way that supply and demand equilibrium is reached.

The posted price model is similar to the commodity market model. The only
difference is that the posted price model advertises special offers in order to attract
consumers. The posted-price offers will have usage conditions, but they might be
attractive for some users because the posted prices are generally cheaper compared
to regular prices.

Although some economic-based resource allocation are non-price-based [85],
most of the economic-based schedulers emphasize the schemes for establishing an
appropriate price based upon their users’ demands. They in turn determine a proper
price that keeps supply and demand in equilibrium. Several market principles are
considered in the process of figuring out the price scheme, including equilibrium
price [82], Pareto efficiency [86], individual rationality [87], stability [88], and
communication efficiency [55].



Resource Scheduling in Data-Centric Systems 1313

3.2.2 SLA-Oriented Resource Provision

Although economic-based methods achieve impressive performances for allocating
resources, there exist some limitations in some cases. The limitations lie in the
difficulty for users to determine an quantized resource demand. When a user sends
a request for resources to a provider, the provider looks for resources to satisfy the
request and assigns the resources to the requesting users, usually as a form of virtual
machines with different capabilities. However, for the users of the systems it would
be difficult, even unable, to make a decision about the number and types of resources
needed, especially when the request is time-varying. The ultimate concern of the user
is to meet application-level requirements, instead of determining resource allocation
needs.

To address such problems, many researchers proposed dynamic provisioning of
resource using virtualization. The amount of provisioned resource can be adjusted
with the workload fluctuates over time. Meng et al. [47] proposed a joint-VM provi-
sioning approach in which multiple VMs are consolidated and provisioned together,
based on an estimate of their aggregate capacity needs. This approach exploits statis-
tic multiplexing among the workload patterns of multiple VMs to improve the overall
resource utilization.

Garg et al. [49] proposed a dynamic resource provision strategy that considers
SLAs of different types, particularly transactional and non-interactive applications.
Both types of applications have different types of SLA requirements and specifica-
tions. For transactional workload, the placement decisions are made dynamically
to respond to the workload variation. For non-interactive workload, the resource
manager predicts the future resource availability and schedules the jobs by stealing
CPU cycles.

Cloud providers such asAmazon EC2, usually offer differentiable QoS guarantees
for users, which are essential for ensuring the service quality users received. The QoS
guarantees are defined in the form of SLA (Service Level Agreement). Under such
circumstances, cloud providers are delegated to make the decisions about the number
and types of resources allocated. SLA-oriented methods are proposed to allocate
resources to each user with the fulfillment of SLA [89]. Besides satisfying the SLA,
these methods also concern other system performance metrics, such as improving
the resource utilization [35], energy conservation [90], and cost reduction [56].

3.2.3 Utility-Oriented Resource Provision

Besides these two kinds of resource provision, there are some provision techniques
that neglect actual levels of services required by different users and assume all
requests are of equal importance. These provision techniques focus on the sys-
tem utilization, rather than the profit and SLA contracts, so they are labeled as
utility-oriented resource provision.

Paragon [35] is a heterogeneity and interference-aware data center sched-
uler, which supports the classification of an unknown application with respect to



1314 Z. Ren et al.

heterogeneity and interference. Paragons classification engine utilizes existing data
from previously scheduled applications and offline training and requires only a min-
imal signal about a new workload. It uses singular value decomposition to perform
collaborative filtering and identify similarities between incoming and previously
scheduled workloads.

Researchers [90] improve the service scheduling by historical workload traces
characterization. The long-term workload patterns are derived by workload dis-
cretization. The resources are allocated predictively by the predicted base load at
hour-level scale and reactively allocated to handle any excess workload at minute-
level scale. The combination of predictive and reactive provisioning contributes to
meeting SLA requirements, conserve energy, and reduce allocation cost.

Beloglazov et al. [55] proposed resource provisioning and allocation algorithms
for energy-efficient management in cloud computing environments. The proposed
energy-aware allocation heuristics provision data center resources to client applica-
tions in a way that improves energy efficiency of the data center, while delivering
the negotiated Quality of Service (QoS).

Birke et al. [91] characterized the evolution and the elasticity of workload demands
in several thousands of servers at geographically distributed data centers, to improve
the effectiveness of capacity planning and resource provision in data centers.

Xiong et al. [56] proposed a SLA (Service Level Agreement)-based approach for
allocating resources to satisfy the quality of service (QoS) constraints while mini-
mizing the total cost of computational power. These QoS metrics include percentile
response time, cluster utilization, packet loss rate and cluster availability.

Economic-based methods are very suitable for scheduling resources in cloud envi-
ronments, for regulating the supply and demand of resources at market equilibrium.
With the advent of economic-based methods, SLA-oriented methods are promoted
to differentiate QoS guarantees for users. SLA-oriented methods are suitable for the
users that are only concerned with application-level requirements, rather than the
amounts and types of involved resources. Utility-oriented methods aim to improve
the system utilization, regarding all resource requests as having equal importance.
Therefore, utility-based methods are applicable in cluster computing systems that do
not have to consider customer-driven service managements.

3.3 Job Scheduling

Once the resources are provisioned to applications (or VM instances), each applica-
tion needs to schedule the allocated resources to perform various computation jobs.
In this context, the scheduling problem concerns matching the jobs to the available
resources for maximization of system throughput, execution efficiency, and so on.
The optimal matching is an optimization problem with NP-complete complexity.

Due to the high diversity of jobs and situations, there is no general job scheduling
algorithm that can fit for all jobs. The most widely-used methods are heuristic meth-
ods, such as genetic algorithms, tabu search and simulated annealing. These methods



Resource Scheduling in Data-Centric Systems 1315

have been successfully applied as approximately optimal algorithms to solve the job
scheduling problem.

In this chapter, we classify these job scheduling methods into static scheduling and
dynamic scheduling. Static scheduling techniques are suitable for the environments
where the details of all jobs and resources are known prior to the scheduling being
performed. On the contrary, dynamic job scheduling is performed on the fly each
time a job arrives. Dynamic scheduling techniques are applied in the environments
where job information and resource states cannot be available in advance.

3.3.1 Static Job Scheduling

Static scheduling techniques are commonly used in HPC and computing grid envi-
ronments. In order to minimize the turnaround time, many approximation algorithms
have been proposed, such as genetic algorithms [92], simulated annealing algorithms
[93], and ant colony algorithms [94]. Some of these approximation methods are in-
spired by nature’s phenomena. They do not guarantee an absolute optimal solution,
but they are guaranteed to find an approximate optimal solutions in a timely manner.
The quality of these solutions can be tuned by a series of parameters.

Genetic Algorithm is an evolutionary technique for solving job scheduling prob-
lem where the solution space is large. Using a genetic algorithm, the scheduling
problem is represented as a genome, while a scheduling genome can be defined by
the sequence of tasks. Each task and its corresponding start time represents a gene,
which is a unit of genome.

The Simulated Annealing (SA) is a well-known greedy method where the search
process is simulated by the thermal procedure of obtaining low-energy crystalline
states of a solid. To avoid falling local optimum, SA results in a worse solution in
some cases, however in most cases it results in a better solution. Analogous to the
thermal procedure of metal smelting, the probability is based on the temperature that
decreases for each iteration. This means, as the search progresses, a worse solution
is increasingly difficult to be generated.

So far, static scheduling has been widely applied in the field of grid computing.
Braun et al. [95] evaluated and compared the efficiency of 11 heuristics, includ-
ing GA, SA, Tabu, Minimum Execution Time (MET), Minimum Completion Time
(MCT), and so on. This study gives valuable guidelines for choosing a technique
which outperforms another under a specific circumstance. More details on static
scheduling can also be found in [96].

3.3.2 Dynamic Job Scheduling

Dynamic scheduling are applicable to the situation when the jobs arrive one after
another, rather than being fixed. During the jobs execution, available resources can be
scheduled on the fly to handle the new coming jobs. The goals of various dynamic job
scheduling methods differ greatly. Besides system throughput, many job scheduling



1316 Z. Ren et al.

methods are designed to emphasize other metrics in certain environments, including
fairness, load balance, QoS guarantee, energy consumption, and so on.

Schedulers in Hadoop are a representation of the implementation of dynamic job
scheduling. The original default scheduler in Hadoop uses FIFO policy to sched-
ule jobs. Later significant research efforts have been devoted to developing more
effective and efficient schedulers. Now, the default scheduler in Hadoop is replaced
by FAIR scheduler [60]. Moreover, a variety of alternative job schedulers, i.e. De-
lay Scheduler, Dynamic Proportional Scheduler, Capacity Scheduler etc., have been
proposed.

Zaharia et al. [60] proposed FAIR Scheduler, with a rational of allocating every
job a fair share of the slots over time. In fair scheduler, jobs are assigned to pools,
which are assigned a guaranteed minimum quota of logic units of resources, aka.
slots. Slots are first allocated into pools and then allocated to individual jobs within
each pool. Each pool is given a minimum share and the sum of minimum quota
of all pools does not exceed the system capacity. Idle slots are shared among jobs
and assigned to the job with the highest slot deficit. Due to its simplicity and high
performance, FAIR scheduler has gained a high popularity in Hadoop community.
However, some recent work [97] has shown that the FAIR scheduler is not very
well-suited for scheduling diverse workloads with considerably small jobs.

Similar as FAIR scheduler, Capacity Scheduler was also developed to ensure a fair
allocation of computing resources among large number of users. The jobs from these
users are submitted to different queues. Each queue is configured with a fraction
of resource capacity, and free resources can be shared among the queues. Within
each queue, the share of resources allocated to a user is limited, this is to guarantee
that no user occupies or controls the resources exclusively. In addition, jobs can
be configured with priorities. Jobs with high priorities can be allocated resources
preferentially.

Delay scheduling method proposed by Zaharia et al. [31] preferentially schedule
jobs to nodes where these jobs have good data locality. The method would schedule
the job of which the input data is available on a node with free slots, rather than
the job with the highest priority. Delay scheduling performs well in typical Hadoop
workloads because there are multiple locations where a task can run to access each
data block.

YARN [59], known as the next generation of Hadoop compute platform, sepa-
rates resource management functions from the programming model. This separation
makes various alternative programming models besides MapReduce applicable on
YARN, such as Dryad [98], Spark [99], and so on.

InYARN, the functionalities of the JobTracker node in traditional Hadoop is split
and performed by two components: a global ResourceManager and per-application
ApplicationMasters. The ResourceManager allocates resources among all the appli-
cations in the system. The ResourceManager cooperates with per-node slaves, and
form the data-computation framework. The ApplicationMaster is responsible for
negotiating resources from the ResourceManager and working with the computing
slaves to execute and monitor the tasks.



Resource Scheduling in Data-Centric Systems 1317

Chang et al. [24] proposed a theoretical framework for optimal scheduling in
MapReduce. The authors formulate a linear program which minimizes the job com-
pletion times to solve the problem. Given the hardness at solving the linear program,
approximate algorithms are designed to achieve feasible schedules within a small
constant factor of the optimal value of the objective function.

Sandholm et al. [100] developed a dynamic priority (DP) scheduler, which allows
users to bid for task slots or quality of service levels dynamically. For a given user,
the budget of slots is proportional to the spending rate at which a user has previously
bid for a slot and inversely proportional to the aggregate spending rate of all existing
users. When a group of slots have been allocated to one user, that same spending
rate is deducted from the users budget. Using this mechanism, the scheduler allows
users to optimize and customize their slots allocation according to job requirements
and system overhead.

Sparrow [33] provides low response times for parallel sub-second jobs that are
executed on a large-scale cluster. The authors focus on short task workload scheduling
for low-latency and high throughput. The schedulers run on a set of machines that
operate autonomously and without shared state. Such a decentralized design offers
attractive properties of high scalability and availability.

Energy-aware methods aim to optimize energy consumption by job dispatching.
The method proposed by Wang et al. [29] and the one proposed by Kliazovich et al.
[26] belong to this group of methods. Wang et al. [101] presents a thermal aware
scheduling algorithm for data centers to reduce the temperatures inside of the data
center. An analytical model, which describes data center resources with heat transfer
properties and workloads with thermal features are used to guide the scheduler to
find suitable resources for workload execution.

Nguyen et al. proposed a reputation-based resource selection scheme to reduce
the energy waste caused by failures. They introduced a reputation model, called
Opera, combined with a vector representation of the reputation and the just-in-time
feature that represents the real-time system status. Opera enables the scheduler in
Hadoop to select appropriate nodes which helped to reduce not only the number of
re-executed tasks, but also improve the energy efficiency of the whole system.

Job scheduling focused on matching multiple jobs to multiple nodes using various
heuristics. Scheduling techniques for MapReduce jobs usually use dynamic heuris-
tics, such as fairness, data locality, and execution efficiency. While for HPC jobs,
the scheduling techniques use static heuristics, such as OLB (Opportunistic Load
Balancing), MET, MCT, GA, SA, and so on.

3.4 Data Scheduling

In the early stage of distributed computing systems, such as data grids, the data
scheduling was coupled with job scheduling. In this mechanism, the cost for data
access and movement are taken into considerations when deciding job scheduling.
However, due to the increased growth of data size, data scheduling was gradually



1318 Z. Ren et al.

decoupled from job scheduling [102], and became an important issue in large-scale
distributed systems.

There have been several recent studies investigating new approaches for data man-
agement and data transfer in distributed systems. These approaches can be classified
into two categories: online data scheduling and offline data scheduling. The former
focuses on scheduling data for serving the job (request) execution. The main goal is
to reduce to data access latency and improve the job (request) execution efficiency.
The latter handles the data scheduling for improving the storage resource utiliza-
tion or improving the data reliability. These data scheduling approaches are offline
because they are not directly performed for the online job execution.

3.4.1 Online Data Scheduling

Balman et al. [70] developed data scheduling methodologies and the key attributes for
reliability, adaptability and performance optimization of distributed data placement
tasks. An adaptive scheduling of data placement tasks is proposed for improving
end-to-end performance. The adaptive scheduling approach includes dynamically
tuning data transfer parameters over wide area networks for efficient utilization of
available network capacity and optimized end-to-end data transfer performance.

To optimize the performance of data transfer, Chowdhury et al. [71] proposed a
global data transfer management architecture and a set of network resource schedul-
ing algorithms. Guo et al. [103] decrease the network traffic via inter-flow data
aggregation with an efficient incast tree.

Al-Fares et al. [104] proposed a dynamic flow scheduling system, called Hed-
era, for multi-stage switch topologies found in data centers. Hedera collects flow
information from constituent switches, computes non-conflicting paths for flows,
and instructs switches to re-route traffic accordingly. The design goal of Hedera is
to maximize aggregate network utilization-bisection bandwidth and to do so with
minimal scheduler overhead or impact on active flows.

Seo et al. [72] proposed prefetching and pre-shuffling optimization to improve the
MapReduce performance. The prefetching scheme involves the intra-block prefetch-
ing and the inter-block prefetching. The prefetching scheme exploits data locality,
while the pre-shuffling scheme significantly reduces the network overhead required
to shuffle key-value pairs.

3.4.2 Offline Data Scheduling

To improve data locality, Abad et al. [76] observed the correlation between benefits
of data locality and data access patterns. They propose a distributed adaptive data
replication algorithm, called DARE, that aids the scheduler to achieve better data
locality. DARE addresses two problems, how many replicas for each file and where
to place them. DARE makes use of probabilistic sampling and a competitive aging
algorithm independently at each node. It takes advantage of existing remote data
accesses in the system and incurs no extra network usage.



Resource Scheduling in Data-Centric Systems 1319

To save the energy consumption caused by communication fabric, DENS [26]
combines energy efficiency and network awareness to achieve the balance between
job performance, QoS requirement, traffic demands and energy consumed by the data
center. DENS is designed to avoid hotspots with a data center while minimizing the
number of computing servers required for job execution. DENS is particulary relevant
in data centers running data-intensive jobs which produce heavy data transfer.

Ranganathan et al. [102] developed a data scheduling framework to satisfy various
and general metrics and constraints, including resource utilization response times.
The data movement operations may be either tightly bound to a job, or performed by
a decoupled, asynchronous process on the basis of historical data access patterns.

In the context of traditional data storage systems, such as data grids, various
offline data scheduling have been proposed and implemented. Offline data schedul-
ing focuses on data storage, transfer, copy and replication management, aiming to
improve the utilization ratio of storage resources and data access QoS, instead of
directly serving the process of task execution. Online data scheduling focuses on job
execution acceleration, and explores the strategies of data prefetch, parallel transfer
and distribution for task execution procedure on a massive data processing frame-
work. Compared with offline data scheduling, online data scheduling overcomes the
limitation of lack-responsivity to job execution, and limits data I/O latency during
the job execution.

4 Case Studies

Section 3 reviewed recourse scheduling techniques from three aspects, resource pro-
vision, job scheduling and data scheduling. In this section, we present how these tech-
niques work in practical production systems. Particularly, we have chosen Amazon
EC2, Dawning Nebulae, Taobao Yunti, and Microsoft SCOPE as the cases for study.

4.1 Amazon EC2

Amazon EC2 is one of the most popular IaaS cloud platforms which allow users
to rent computing and storage resources to run applications, typically in forms of
virtual machines. EC2 enables users to create virtual machines, each of which is
called an instance. EC2 defines several type of instances,and configures each type
with different computing power, memory and storage capacity.

EC2 applies commodity market and posted pricing models for provisioning the
resource to users. More specifically, EC2 creates separate resource pools and has
separate capacities for each type of VM. The market price for each VM type can
fluctuate periodically to reflect the balance between demand and supply. Using the
commodity market model, EC2 announces its service price according to the resource
capacity and configuration. Customers can choose an appropriate service that meet



1320 Z. Ren et al.

their objective. The pricing policy can be derived from the resource supply and
demand. In general, services are priced in such a way that achieves a supply and
demand equilibrium. Using the posted price model, EC2 announces the special
offers as a supplement of regular prices. The scheduling compares whether special
offers can meet the requirement of users, and match the supply and demand if they
are matched. If not, the scheduling apply commodity strategy as usual.

In addition, EC2 offers three purchasing models to facilitate the cost optimization
for users. The models provide different guarantees regarding when instances can be
launched and terminated.

1. On-Demand instances, which allow users to pay an hourly fee with no guarantee
that launching will be possible at any given time.

2. Reserved instances, which allow users to pay a low, one-time fee and in turn
receive a significant discount on the hourly usage charge for that instance.Paying
a yearly fee buys clients the ability to launch one reserved instance whenever they
wish.

3. Spot instances, which enable users to bid for unused Amazon EC2 capacity. The
Spot Price changes periodically based on supply and demand, and customers
whose bids meet or exceed it gain access to the available Spot Instances.

4.2 Dawning Nebulae

Supercomputers are regarded as the important infrastructure to carry out high per-
formance computing. They are expected to run not only computation-intensive
applications but also data-intensive applications, which challenges the job scheduling
softwares on these supercomputers. To satisfy the requirements of different users, the
scheduling softwares must exploit various policies, and assign different kinds of jobs
flexibly. Here, we use Dawning Nebulae as a case of the job scheduling techniques
applied to supercomputers.

Dawning Nebulae is a supercomputer developed by ChineseAcademy of Sciences.
It includes more than 9200 multi-core CPUs, and more than 4600 NVIDIA GPUs.
It achieves a performance of more than 1270 trillion operations per second or 1.27
petaflops [105]. It ranked second in the TOP 500 list of the world’s most powerful
supercomputers released in June 2010 [106]. Dawning Nebulae has been set up
in NSCC-Shenzhen[http://www.nsccsz.gov.cn]. It provides about 200 user groups
and research entities with application services such as weather forecast, ocean data
simulation, gene research, universe evolution, and so on.

Dawning Nebulae includes huge computing resource and storage resource, and
has to depend on a special and powerful software platform to manage these resource.
Platform LSF (Load Sharing Facility) [107] is such a platform. It contains multiple
distributed resource management softwares, and it can connect computers into a
cluster, monitor loads of systems, schedule and balance workload and so on. Here,
we only focus on the scheduling software of Platform LSF, and take it as the scheduler
of Dawning Nebulae.



Resource Scheduling in Data-Centric Systems 1321

The scheduler provides several scheduling policies like first-come-first-service
(FCFS), preemption, fair share, and so on. It supports multiple policies co-existing
in the same cluster. For convenience of description, we introduce these policies one
by one.The first policy is FCFS. According to this policy, the scheduler attempts to
assign jobs in the order submitted. However, the shorter jobs with higher priorities
will be pending for a long time if a long job with low priority was submitted earlier.

The second policy is the preemption policy. Preemption is not enabled until all
the job slots in a cluster are occupied. After receiving the job with high priority, the
scheduler suspends one job with low priority to free the slots occupied by the job.
And then, it assigns the job with high priority to these slots. It resumes the suspended
job if free job slots are available.

The third policy is the fair share policy. According to this policy, the scheduler
divides cluster resources into shares, and assign shares to users. The policy can avoid
the cluster resources monopolized by one user. The forth policy is exclusive policy.
With this policy, the scheduler allows a job exclusive use of specified server hosts,
and does not preempt the exclusive jobs. The last policy is the backfill policy. Under
the policy, the scheduler allows small jobs to use the slots reserved for other jobs.
However, it will kill those small jobs if they cannot be finished within their run limit.

4.3 Taobao Yunti

With the rapid growth of data volume in many enterprises, effective and efficient
analytics on large-scale data becomes a challenging issue. Large-scale distributed
computing systems, such Hadoop, have been applied by more and more organiza-
tions. Here, we take a Hadoop production cluster in Taobao [108] as another example
to illustrate job scheduling techniques.

Taobao is the biggest online e-commerce enterprise in Asia, ranked 10th in the
world as reported by Alexa. The Yunti cluster is an internal data platform in Taobao
for processing petabyte-level business data mostly derived from the e-commerce web
site of “www.taobao.com”. The total volume of data stored in theYunti has exceeded
25 PB, and the data volume grows with the speed of 30 TB per day.1 The goal of
the Yunti cluster is to provide multi-user businesses with large-scale data analysis
service for some online applications. Yunti is built on Hadoop 0.19, with some slight
modifications.

In the early stage, the Yunti cluster directly employed FAIR [60] to allocate the
slots because FAIR achieves high performance and supports multi-user clusters.
However, after several months of system running, it is observed that FAIR is not
optimal for scheduling small jobs within a miscellaneous workload. The goal of
FAIR is to assure the fairness among all jobs. FAIR always reassigns idle slots to the
pool with the highest slot deficits. However, small jobs usually apply fewer slots,
thus the slot deficits of small jobs are often smaller than the ones of normal jobs.
Therefore, small jobs are more likely to suffer from long waits than the other jobs.

1 These statistics were released on the year of 2012.



1322 Z. Ren et al.

The users of Yunti submitting small jobs, including application developers, data
analysts and project managers from different departments in Taobao, will complain
about the long-waits.

As new workloads which feature short and interactive jobs are emerging, small
jobs are becoming pervasive. Many small jobs are initiated by interactive and online
analysis, which requires instant and interactive response. Ren et al. [97] proposed
and implemented a job scheduler called Fair4S, to optimize the completion time of
small jobs. Fair4S introduces pool weights and extends job priorities to guarantee
the rapid response for small jobs. It is verified that Fair4S accelerates the average
waiting times by a factor of 7 compared with FAIR scheduler for small jobs.

4.4 Microsoft SCOPE

SCOPE [109] is a distributed computation platform in Microsoft for processing large-
scale data analysis jobs and serving a variety of online services. Tens of thousands
of jobs are executed on SCOPE everyday. Scope integrates parallel databases with
MapReduce systems, achieving both good performance and scalability.

SCOPE relies on a distributed data platform, named COSMOS, for storing large
volumes of data sets. COSMOS is designed to run on tens of thousands of servers and
has similar goals to other distributed storage systems, like Google File System [110]
and Hadoop Distributed File System [111]. COSMOS is an append-only file system
optimized for large sequential I/O.All writes are append-only, and concurrent writers
are serialized by the system. Data are distributed and replicated for fault tolerance
and compressed to save storage and increase I/O throughput.

In SCOPE, the executions of jobs are scheduled by a centralized job manager.
The job manager constructs the job graph (directed acyclic graph) and schedules
the tasks across the available servers in the cluster. The job manager simplifies
job management by classifying distinct types of vertices into separate stages. Like
JobTracker in Hadoop, the job manager maintains the job graph and monitors the
status of each vertex (task) in the graph.

As SCOPE is deployed on globally distributed data centers, an automated mech-
anism to place application data across these datacenters is quite necessary. SCOPE
employs a data placement algorithm, called Volley [112], to minimize the bandwidth
cost and data access latency. Volley analyzes the logs using an iterative optimization
algorithm based on data access patterns and client locations, and outputs migration
recommendations back to the cloud service.

Volley periodically analyzes COSMOS to determine whether the migration should
be executed. To perform the analysis, Volley relies on the SCOPE to accelerate the
analysis efficiency. The analysis procedure is composed of three phases. In Phase 1,
a reasonable initial placement of data items based on client IP addresses is computed.
In Phase 2, the placement of data items by moving them freely over the surface of
the earth is improved iteratively, which consumes the dominant computational time.
Phase 3 iteratively collapses data with the satisfaction of capacity constraints of data
centers.



Resource Scheduling in Data-Centric Systems 1323

5 Future Trends and Challenges

The topic of resource scheduling has been investigated in a great deal of literature,
however, this is still an emerging field and there are many open problems in the area
of data-centric systems. In this section, we enumerate a few such challenges that
may help to inspire new developments in the field.

Increasing System Heterogeneity. With the progress of IT technologies, new
software and hardware products emerge increasingly. In order to improve system
performance and satisfy users’ requirements, data centers have to adopt timely new
products such as SSD and SDN [113], and hence they always include different types
of equipment, even multiple generation equipments of the same type. Data cen-
ters are heterogeneous inevitably, and their heterogeneity grows with the adoption
of new equipments. The ever-growing heterogeneity challenges resource provision
especially when considering the different requirements from users.

It’s very common that some tasks are designed to run on some machines for special
purposes, i.e. the machines with special accelerators for an expected performance
goal. Users define the constraints or preference of the machines to run their tasks
by task specifications, which provide detailed requirements of users, meanwhile this
makes resource provision more difficult and complicated. In addition, such resource
affinity and constraints also complicate task migration.

Scalable Decentralized Scheduling. In a system with a centralized architecture,
scheduling decision are made by a master node. The node maintains all information
about tasks and keeps track of all available resources in the system. A centralized
scheduler can be deployed easily, while its performance is limited by the master
node. However, in a decentralized system, a master node and multiple slave nodes
cooperate to schedule tasks. Hence, the scheduler in such a system can assign tasks
with higher performance and scalability.

Decentralized schedulers have begun to attract more and more attentions as the
scales of data centers grow. In decentralized schedulers, the nodes involved in co-
scheduling are assumed to be autonomous, and responsible for their own scheduling
decisions. However, if these nodes make these decisions independently, they can
only optimize their performance rather than the performance of the whole system.
New techniques and models need to be designed to schedule jobs, and hence optimize
the performance of the whole system.

Enhancing Information Sharing. In data-centric systems of which the resources
belong to multiple providers, users request resources to run their applications, while
providers respond to these requests, and allocate resource for the users. If providers
and users can share detailed information about resources and applications, schedulers
can make efficient decision, and optimize system performance. However, providers
and users only reveal limited information about resources and applications due to
security concerns as well as other reasons. Some works were carried out to capture
characters of workloads by analyzing historical trace, which makes it feasible to opti-
mize job schedulers according to workloads. For periodic jobs, if we can derive their



1324 Z. Ren et al.

characters, we can optimize the scheduling of these kind of jobs by pre-scheduling.
Unfortunately, there exist few examples of such work.

Schedulability Analysis. When processing real-time jobs like interactive queries,
periodic jobs and so on, a data-centric system must satisfy the time constraints of
them. However, it is challenging to satisfy the time constraints because the system
has to respond to the requirements from multiple users with relative QoS, espe-
cially when the job scales increase dramatically. And hence, an efficient and smart
scheduler is needed to handle these kind of real-time jobs. Unfortunately, not all
data-centric systems are suitable for real-time jobs. So it is very important to analyze
whether a system can process real-time jobs with the specified time constraints be-
fore submitting real-time jobs to the system. There exist some research works which
carry out scheduability analysis, however they only apply to multiprocessors [114]
and virtualized platforms [115]. Besides, the models in these works are simple and
only suitable for computing resources. Therefore, these works cannot be exploited
to do scheduability analysis in data-centric systems, and new scheduability analysis
techniques should be investigated as soon as possible with the consideration of com-
puting resources, storage resources, network bandwidth, job scale, data distribution,
resource competition, dynamic load, and so on.

Predictive Resource Allocation. Resource demand prediction [116] plays an es-
sential role in dynamic resource allocation and job scheduling. For example, if a
user has a job that needs to be finished within a certain deadline, an adequate amount
of computing resources must be allocated. To determine whether or not a certain
amount of resources are “adequate”, the user needs to predict the completion time
of the job with the resources. However, due to the heterogeneity and dynamism of
the workload, the prediction of future resource demands would be hardly accurate.
Reiss et al. [18] analyzed Google trace data [117] to reveal several insights which
are helpful for improving the resource scheduling in a cloud infrastructure. The most
notable characteristics of workload are heterogeneity and dynamism, which make
the resource demand prediction very difficult.

6 Conclusions

In this chapter, we gave a survey of the scheduling techniques used in the three
kinds of data-centric systems, including cloud computing platforms, data-intensive
super computing systems, and MapReduce-style systems. According to the schedul-
ing model, we categorized these techniques into three groups, including resource
provision, job scheduling and data scheduling. We reviewed the new techniques
systematically and outlined the open problems in each level. Further more, four
practical systems selected from the industrial field are discussed to further under-
stand the scheduling techniques and their applications. Finally, we concluded with
some open problems in resource scheduling, aiming to inspire new developments
within this field.



Resource Scheduling in Data-Centric Systems 1325

Acknowledgement We thank Raymond Darnell Lemon for his valuable comments on the early
version of this chapter. This research is supported by NSF of Zhejiang (LQ12F02002), NSF of China
(No. 61202094), Science and Technology Planning Project of Zhejiang Province (No.2010C13022).
Xiaohong Zhang is supported by Ph.D. foundation of Henan Polytechnic University (No. B2012-
099). Weisong Shi is in part supported by the Introduction of Innovative R&D team program
of Guangdong Province (NO. 201001D0104726115), Hangzhou Dianzi University, and the NSF
Career Award CCF-0643521.

References

1. Schwiegelshohn, U., Badia, R.M., Bubak, M., Danelutto, M., Dustdar, S., Gagliardi, F.,
Geiger, A., Hluchy, L., Kranzlmüller, D., Laure, E., et al.: Perspectives on grid computing.
Future Generation Computer Systems 26(8) (2010) 1104–1115

2. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling
problems. Future generation computer systems 26(4) (2010) 608–621

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the ACM
53(4) (2010) 50–58

4. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, 2008. GCE’08, Ieee (2008) 1–10

5. Dittrich, J., Quiané-Ruiz, J.A.: Efficient big data processing in hadoop mapreduce.
Proceedings of the VLDB Endowment 5(12) (2012) 2014–2015

6. Madden, S.: From databases to big data. Internet Computing, IEEE 16(3) (2012) 4–6
7. Amazon Elastic Compute Cloud: http://aws.amazon.com/ec2/
8. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked

resources with brokered leases. resource 6 (2006) 6
9. Ciurana, E.: Developing with Google App Engine. Apress (2009)

10. Rackspace: http://www.rackspace.com
11. Windows Azure: http://www.windowsazure.com/
12. Bryant, R.E.: Data-intensive supercomputing: The case for disc. (2007)
13. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious scheduling of

hpc applications on distributed cloud-oriented data centers. Journal of Parallel and Distributed
Computing 71(6) (2011) 732–749

14. Gorton, I., Gracio, D.K.: Data-intensive computing: A challenge for the 21st century. Data-
Intensive Computing: Architectures, Algorithms, and Applications (2012) 3

15. White, T.: Hadoop - The Definitive Guide. O’Reilly (2009)
16. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: OSDI.

(2004) 137–150
17. Chen, Y.: Workload-driven design and evaluation of large- scale data-centric systems (May,

09 2012)
18. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and

dynamicity of clouds at scale: Google trace analysis. In: SoCC. (2012) 7
19. Macías, M., Guitart, J.: A genetic model for pricing in cloud computing markets. In: SAC,

ACM (2011) 113–118
20. Niyato, D., Vasilakos, A.V., Zhu, K.: Resource and revenue sharing with coalition formation

of cloud providers: Game theoretic approach. In: CCGRID, IEEE (2011) 215–224
21. Lin, W.Y., Lin, G.Y., Wei, H.Y.: Dynamic auction mechanism for cloud resource allocation.

In: CCGRID, IEEE (2010) 591–592
22. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Dynamic place-

ment of virtual machines for cost optimization in multi-cloud environments. In: HPCS, IEEE
(2011) 1–7



1326 Z. Ren et al.

23. Wolf, J., Balmin, A., Rajan, D., Hildrum, K., Khandekar, R., Parekh, S., Wu, K.L., Vernica,
R.: On the optimization of schedules for mapreduce workloads in the presence of shared
scans. The VLDB Journal 21(5) (2012) 589–609

24. Chang, H., Kodialam, M.S., Kompella, R.R., Lakshman, T.V., Lee, M., Mukherjee, S.:
Scheduling in mapreduce-like systems for fast completion time. In: INFOCOM, IEEE (2011)
3074–3082

25. Wolf, J.L., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., Wu, K.L., Balmin,
A.: Flex: A slot allocation scheduling optimizer for mapreduce workloads. In: Middleware.
(2010) 1–20

26. Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: data center energy-efficient network-aware
scheduling. Cluster Computing 16(1) (2013) 65–75

27. Chen, Y., Alspaugh, S., Borthakur, D., Katz, R.H.: Energy efficiency for large-scale
mapreduce workloads with significant interactive analysis. In: EuroSys, ACM (2012) 43–56

28. Wang, L., Khan, S.U.: Review of performance metrics for green data centers: a taxonomy
study. The Journal of Supercomputing 63(3) (2013) 639–656

29. Wang, L., Khan, S.U., Chen, D., Kolodziej, J., Ranjan, R., Xu, C.Z., Zomaya, A.Y.: Energy-
aware parallel task scheduling in a cluster. Future Generation Comp. Syst 29(7) (2013) 1661–
1670

30. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: fair
scheduling for distributed computing clusters. In: SOSP, ACM (2009) 261–276

31. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In:
EuroSys. (2010) 265–278

32. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H.,
Ranganathan, K., Molkov, D., Menon, A., Rash, S., Schmidt, R., Aiyer, A.S.: Apache hadoop
goes realtime at facebook. In: SIGMOD Conference. (2011) 1071–1080

33. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: Scalable scheduling for sub-
second parallel jobs. Technical Report UCB/EECS-2013-29, EECS Department, University
of California, Berkeley (April 2013)

34. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Comp. Syst 25(6) (2009) 599–616

35. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous datacenters.
In: ASPLOS. (2013) 77–88

36. Vasic, N., Novakovic, D.M., Miucin, S., Kostic, D., Bianchini, R.: Dejavu: Accelerating
resource allocation in virtualized environments architectural support for programming lan-
guages and operating systems, (17th ASPLOS’12). In: Proceedings of the 17th International
Conference on, ACM Press (2012) 423–436

37. Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C.,
Gmach, D., Gardner, R., Christian, T., Cherkasova, L.: 1000 islands: an integrated approach
to resource management for virtualized data centers. Cluster Computing 12(1) (2009) 45–57

38. Kale, L.V., Kumar, S., Potnuru, M., DeSouza, J., Bandhakavi, S.: Faucets: Efficient resource
allocation on the computational grid. In: Proceedings of the 2004 International Conference
on Parallel Processing (33th ICPP’04), Montreal, Quebec, Canada, IEEE Computer Society
(August 2004) 396–405

39. Rodero-Merino, L., Caron, E., Muresan, A., Desprez, F.: Using clouds to scale grid resources:
An economic model. Future Generation Computer Systems 28(4) (2012) 633 – 646

40. Kang, Z., Wang, H.: A novel approach to allocate cloud resource with different performance
traits. In: Proceedings of the 2013 IEEE International Conference on Services Computing.
SCC ’13, Washington, DC, USA, IEEE Computer Society (2013) 128–135

41. Sim, K.M.: Towards complex negotiation for cloud economy. In: Advances in Grid and
Pervasive Computing. Springer (2010) 395–406

42. Garg, S.K., Vecchiola, C., Buyya, R.: Mandi: a market exchange for trading utility and cloud
computing services. The Journal of Supercomputing 64(3) (2013) 1153–1174



Resource Scheduling in Data-Centric Systems 1327

43. Izakian, H., Abraham, A., Ladani, B.T.: An auction method for resource allocation in
computational grids. Future Generation Comp. Syst 26(2) (2010) 228–235

44. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine instances
in clouds. In: CloudCom, IEEE (2010) 127–134

45. Samimi, P., Patel, A.: Review of pricing models for grid & cloud computing. In: Computers
& Informatics (ISCI), 2011 IEEE Symposium on, IEEE (2011) 634–639

46. Wang, Q., Ren, K., Meng, X.: When cloud meets ebay: Towards effective pricing for cloud
computing. In Greenberg, A.G., Sohraby, K., eds.: INFOCOM, IEEE (2012) 936–944

47. Meng, X., Isci, C., Kephart, J.O., Zhang, L., Bouillet, E., Pendarakis, D.E.: Efficient resource
provisioning in compute clouds via VM multiplexing. In Parashar, M., Figueiredo, R.J.O.,
Kiciman, E., eds.: ICAC, ACM (2010) 11–20

48. Zhang, W., Qian, H., Wills, C.E., Rabinovich, M.: Agile resource management in a virtualized
data center. In Adamson, A., Bondi, A.B., Juiz, C., Squillante, M.S., eds.: WOSP/SIPEW,
ACM (2010) 129–140

49. Garg, S.K., Gopalaiyengar, S.K., Buyya, R.: SLA-based resource provisioning for heteroge-
neous workloads in a virtualized cloud datacenter. In Xiang, Y., Cuzzocrea, A., Hobbs, M.,
Zhou, W., eds.: ICA3PP (1). Volume 7016 of Lecture Notes in Computer Science., Springer
(2011) 371–384

50. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier
internet applications. In: Autonomic Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on, IEEE (2005) 217–228

51. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud systems. In:
Network and Service Management (CNSM), 2010 International Conference on, IEEE (2010)
9–16

52. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant,
A.: Automated control of multiple virtualized resources. In: Proceedings of the 4th ACM
European conference on Computer systems, ACM (2009) 13–26

53. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: Autonomic resource management in
virtualized data centers using fuzzy logic-based approaches. Cluster Computing 11(3) (2008)
213–227

54. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive quality of service
management for enterprise services. ACM Transactions on the Web (TWEB) 2(1) (2008) 8

55. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Generation Computer
Systems 28(5) (2012) 755–768

56. Xiong, K., Perros, H.G.: SLA-based resource allocation in cluster computing systems. In:
IPDPS, IEEE (2008) 1–12

57. Gu, J., Hu, J., Zhao, T., Sun, G.: A new resource scheduling strategy based on genetic
algorithm in cloud computing environment. Journal of Computers 7(1) (2012) 42–52

58. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual ma-
chine resources in cloud computing environment. In: Parallel Architectures, Algorithms and
Programming (PAAP), 2010 Third International Symposium on, IEEE (2010) 89–96

59. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves,
T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B.,
Baldeschwieler, E.: Apache hadoopYARN:Yet another resource negotiator. In: SoCC. (2013)

60. Zaharia, M., Borthakur, D., Sarma, J.S., Shenker, S., Stoica, I.: Job scheduling for multi-user
mapreduce clusters. Technical Report No. UCB/EECS-2009-55, Univ. of Calif., Berkeley,
CA (April 2009)

61. Zhang, X., Zhong, Z., Feng, S., Tu, B., Fan, J.: Improving data locality of mapreduce by
scheduling in homogeneous computing environments. In: Parallel and Distributed Processing
with Applications (ISPA), 2011 IEEE 9th International Symposium on, IEEE (2011) 120–126

62. Kc, K., Anyanwu, K.: Scheduling hadoop jobs to meet deadlines. In: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference on, IEEE
(2010) 388–392



1328 Z. Ren et al.

63. Tang, Z., Zhou, J., Li, K., Li, R.: MTSD: A task scheduling algorithm for mapreduce base on
deadline constraints. In: IPDPS Workshops, IEEE Computer Society (2012) 2012–2018

64. Schwiegelshohn, U., Tchernykh, A.: Online scheduling for cloud computing and different
service levels. In: Proc. 9th High-Performance Grid & Cloud Computing – 9th HPGC’12,
Proc. IEEE International Parallel and Distributed Processing Symposium Workshops & PhD
Forum (26th IPDPS’12), IEEE Computer Society (2012) 1067–1074

65. Venugopal, S., Buyya, R.: An scp-based heuristic approach for scheduling distributed data-
intensive applications on global grids. Journal of Parallel and Distributed Computing 68(4)
(2008) 471–487

66. Chang, R.S., Chang, J.S., Lin, P.S.: An ant algorithm for balanced job scheduling in grids.
Future Generation Computer Systems 25(1) (2009) 20–27

67. Kolodziej, J., Khan, S.U., Xhafa, F.: Genetic algorithms for energy-aware scheduling in
computational grids. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2011
International Conference on, IEEE (2011) 17–24

68. Lee, Y.H., Leu, S., Chang, R.S.: Improving job scheduling algorithms in a grid environment.
Future generation computer systems 27(8) (2011) 991–998

69. Samuel, T.K., Baer, T., Brook, R.G., Ezell, M., Kovatch, P.: Scheduling diverse high per-
formance computing systems with the goal of maximizing utilization. In: High Performance
Computing (HiPC), 2011 18th International Conference on, IEEE (2011) 1–6

70. Balman, M.: Failure-awareness and dynamic adaptation in data scheduling (November 14
2008)

71. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data transfers in
computer clusters with orchestra. In: SIGCOMM, ACM (2011) 98–109

72. Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.S., Maeng, S.: Hpmr: Prefetching and pre-shuffling
in shared mapreduce computation environment. In: Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on, IEEE (2009) 1–8

73. Çatalyürek, Ü.V., Kaya, K., Uçar, B.: Integrated data placement and task assignment for
scientific workflows in clouds. In: Proceedings of the fourth international workshop on Data-
intensive distributed computing, ACM (2011) 45–54

74. Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A., Qin, X.: Improving
mapreduce performance through data placement in heterogeneous hadoop clusters. In: Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, IEEE (2010) 1–9

75. Zeng, W., Zhao, Y., Ou, K., Song, W.: Research on cloud storage architecture and key
technologies. In: Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ACM (2009) 1044–1048

76. Abad, C.L., Lu, Y., Campbell, R.H.: DARE: Adaptive data replication for efficient clus-
ter scheduling. In: Proc. ’11 IEEE International Conference on Cluster Computing (13th
CLUSTER’11), Austin, TX, USA, IEEE Computer Society (September 2011) 159–168

77. Castillo, C., Tantawi, A.N., Arroyo, D., Steinder, M.: Cost-aware replication for dataflows.
In: NOMS, IEEE (2012) 171–178

78. Chervenak, A.L., Deelman, E., Livny, M., Su, M.H., Schuler, R., Bharathi, S., Mehta, G.,
Vahi, K.: Data placement for scientific applications in distributed environments. In: GRID,
IEEE Computer Society (2007) 267–274

79. Chen, Y., Ganapathi, A.S., Griffith, R., Katz, R.H.: Analysis and lessons from a publicly
available google cluster trace. Technical Report UCB/EECS-2010-95, EECS Department,
University of California, Berkeley (Jun 2010)

80. Chen,Y., Ganapathi, A.S., Griffith, R., Katz, R.H.: Towards understanding cloud performance
tradeoffs using statistical workload analysis and replay. University of California at Berkeley,
Technical Report No. UCB/EECS-2010-81 (2010)

81. Stuer, G., Vanmechelen, K., Broeckhove, J.: A commodity market algorithm for pricing
substitutable grid resources. Future Generation Comp. Syst 23(5) (2007) 688–701

82. Teng, F., Magoulès, F.: Resource pricing and equilibrium allocation policy in cloud
computing. In: CIT, IEEE Computer Society (2010) 195–202



Resource Scheduling in Data-Centric Systems 1329

83. Eymann, T., Reinicke, M., Villanueva, O.A., Vidal, P.A., Freitag, F., Moldes, L.N.: Decen-
tralized resource allocation in application layer networks. In: CCGrid, IEEE (May 12 2003)
645–650

84. Padala, P., Harrison, C., Pelfort, N., Jansen, E., Frank, M.P., Chokkareddy, C.: OCEAN:
The open computation exchange and arbitration network, A market approach to meta com-
puting. In: Proc. 2nd International Symposium on Parallel and Distributed Computing (2nd
ISPDC’03), Ljubljana, Slovenia, IEEE Computer Society (October 2003) 185–192

85. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: PlanetLab: A Blueprint for Introducing
Disruptive Technology into the Internet. In: First ACM Workshop on Hot Topics in Networks,
Association for Computing Machinery (October 2002) Available from http://www.planet-
lab.org/pdn/pdn02-001.pdf.

86. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant
resource fairness: Fair allocation of multiple resource types. Technical report, University of
California, Berkeley (2011)

87. Mihailescu, M., Teo, Y.M.: Dynamic resource pricing on federated clouds. In: CCGRID,
IEEE (2010) 513–517

88. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center resource
allocation to control theory and back. In: Proc. IEEE International Conference on Cloud
Computing (3rd IEEE CLOUD’10). (2010) 410–417

89. Buyya, R., Garg, S.K., Calheiros, R.N.: SLA-oriented resource provisioning for cloud com-
puting: Challenges, architecture, and solutions. In: Cloud and Service Computing (CSC).
(January 21 2012)

90. Gandhi, A., Chen,Y., Gmach, D., Arlitt, M.F., Marwah, M.: Minimizing data center SLA vio-
lations and power consumption via hybrid resource provisioning. In: IGCC, IEEE Computer
Society (2011) 1–8

91. Birke, R., Chen, L.Y., Smirni, E.: Data centers in the cloud: A large scale performance
study. In: Proc. 2012 IEEE Fifth International Conference on Cloud Computing (5th IEEE
CLOUD’12). (June 2012) 336–343

92. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms. Future
Generation Computer Systems 21(1) (2005) 151–161

93. Fidanova, S.: Simulated annealing for grid scheduling problem. In: Modern Computing, 2006.
JVA’06. IEEE John Vincent Atanasoff 2006 International Symposium on, IEEE (2006) 41–45

94. neng Chen, W., 0003, J.Z.: An ant colony optimization approach to a grid workflow schedul-
ing problem with various qoS requirements. IEEE Transactions on Systems, Man, and
Cybernetics, Part C 39(1) (2009) 29–43

95. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A.I., Robertson,
J.P., Theys, M.D., Yao, B., Hensgen, D.A., Freund, R.F.: A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous distributed computing
systems. J. Parallel Distrib. Comput 61(6) (2001) 810–837

96. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: State of the art and open
problems. School of Computing, Queens University, Kingston, Ontario (2006)

97. Ren, Z., Wan, J., Shi, W., Xu, X., Zhou, M.: Workload analysis, implications and optimization
on a production hadoop cluster: A case study on taobao. IEEE Transactions on Services
Computing (2013)

98. Isard, M., Budiu, M.,Yu,Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. In: EuroSys, ACM (2007) 59–72

99. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing
with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. (2010) 10–10

100. Sandholm, T., Lai, K.: Dynamic proportional share scheduling in Hadoop. In Frachtenberg,
E., Schwiegelshohn, U., eds.: Job Scheduling Strategies for Parallel Processing. Springer
Verlag (2010) 110–131

101. Wang, L., von Laszewski, G., Dayal, J., He, X., Younge, A.J., Furlani, T.R.: Towards thermal
aware workload scheduling in a data center. In: ISPAN, IEEE Computer Society (2009)
116–122

http://www.planet-lab.org/pdn/pdn02-001.pdf
http://www.planet-lab.org/pdn/pdn02-001.pdf


1330 Z. Ren et al.

102. Ranganathan, K., Foster, I.T.: Decoupling computation and data scheduling in distributed
data-intensive applications. In: HPDC, IEEE Computer Society (2002) 352–358

103. Guo, D., Li, M., Jin, H., Shi, X., Lu, L.: Managing and aggregating data transfers in data
centers (2013)

104. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: Dynamic
flow scheduling for data center networks. In: NSDI, USENIX Association (2010) 281–296

105. Sun, N.H., Xing, J., Huo, Z.G., Tan, G.M., Xiong, J., Li, B., Ma, C.: Dawning nebulae: a
petaflops supercomputer with a heterogeneous structure. Journal of Computer Science and
Technology 26(3) (2011) 352–362

106. : Top500 list
107. Lumb, I., Smith, C.: Scheduling attributes and platform lsf. In: Grid resource management.

Springer (2004) 171–182
108. Taobao: http://www.taobao.com
109. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:

Scope: easy and efficient parallel processing of massive data sets. Proceedings of the VLDB
Endowment 1(2) (2008) 1265–1276

110. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS Operating
Systems Review. Volume 37., ACM (2003) 29–43

111. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, IEEE
(2010) 1–10

112. Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., Bhogan, H.: Volley: Automated
data placement for geo-distributed cloud services. In: NSDI. (2010) 17–32

113. McKeown, N.: Software-defined networking. INFOCOM keynote talk, Apr (2009)
114. Liu, D., Lee, Y.H.: Pfair scheduling of periodic tasks with allocation constraints on multiple

processors. In: IPDPS. (2004)
115. Lee, J., Easwaran, A., Shin, I.: LLF schedulability analysis on multiprocessor platforms. In:

IEEE Real-Time Systems Symposium. (2010) 25–36
116. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource

provisioning in the cloud. Future Generation Computer Systems 28(1) (2012) 155–162
117. Wilkes, J., Reiss, C.: Details of the clusterdata-2011-1 trace (2011)


	Part IX Resource Management
	Resource Scheduling in Data-Centric Systems
	1 Introduction
	2 Terminology
	3 Classification and State-of-the-Art
	3.1 Hierarchy of Resource Scheduling in DCS
	3.2 Resource Provision
	3.2.1 Economic-Based Resource Provision
	3.2.2 SLA-Oriented Resource Provision
	3.2.3 Utility-Oriented Resource Provision

	3.3 Job Scheduling
	3.3.1 Static Job Scheduling
	3.3.2 Dynamic Job Scheduling

	3.4 Data Scheduling
	3.4.1 Online Data Scheduling
	3.4.2 Offline Data Scheduling


	4 Case Studies
	4.1 Amazon EC2
	4.2 Dawning Nebulae
	4.3 Taobao Yunti
	4.4 Microsoft SCOPE

	5 Future Trends and Challenges
	6 Conclusions
	References





