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Chapter 1

Introduction

Staying connected anywhere, anytime isn’t any more a foreseeable eventuality but

has become a present day reality. To get a sense of how connected the world

is growing some statistics are presented. According to the International Telecom-

munications Union, in the year 2002 there were 580 million Internet users, 615

million personal computers, and 1,155 million mobile phones(a little more than the

total number of telephone subscribers in the world). Forecasts for 2003 show an

increase by at least 50 million in each of these categories. About 20 million Amer-

icans will have broadband Internet access and yet the US will rank only 11th in

terms of broadband penetration. Taiwan is believed to have more mobile phones

than people. The numbers are impressive and growing.

The need to stay connected to people and data is the driver. It has lead to the

development and emergence of numerous new technologies. There are as many

ways to use data as there are ways to connect to it. A person may stay connected

via half a dozen different networks throughout the course of a day, from a cable
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modem or DSL connection at home, to a high speed ethernet network at work or

school, to a bluetooth network in the car, to a WiFi network at the airport or the

neighborhood coffee shop or using their latest 3G mobile phones.

Along with the freedom to roam through these diverse environments the user

expects to be connected to personal files and data where ever he or she may be.

Availability of data and ease of access to it is crucial to end user satisfaction, but

providing it still remains a big challenge. Each method of connectivity has its own

characteristic requirements, services and limitations. To be effective, an underlying

system should be able to adapt to the diverse nature of the connectivity available.

A distributed file system provides one way of tackling this complicated problem.

Distributed file systems have been extensively studied in the past [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11], but they are still far from wide acceptance over heterogeneous

network environments. Most traditional file systems target high speed reliable ho-

mogenous network environments and therefore do not work well in a wide-area

heterogenous context. Providing seamless, secure file access to personal docu-

ments by adapting to diverse network connections is the desirable goal.

The Cegor(CloseE and Go Open and Resume) file system [12] has been pro-

posed to address the important issues of availability, security, transparency and

adaptability across the different environments that exist today. It tries to address

these issues in the following ways:

• Reducing communication frequency to adapt to varying network conditions

using semantic based caching

• Type-specific communication optimization to reduce the bandwidth require-
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ment of synchronization between client and server

• A Connection-view based transparent and secure reconnection mechanism

This thesis focuses on semantic based caching. In order to design and imple-

ment such a system effectively, a good understanding of user behavior and file

access patterns is important. Studies have been conducted on existing file sys-

tems [13, 14, 11, 15, 16] but not periodically enough to reflect or predict present

day workloads. Publicly available file system traces are almost a decade old.

Trace-driven file system analysis is necessary to collect useful information to

support the design process. This thesis had two objectives. First, to investigate the

important factors that influence the design of such a system, through the analysis

of existing and current file system traces. Second, to use the results to study

caching as a means of reducing communication overhead and hence reliability on

varying network conditions.

Based on the results, a semantic-based cache replacement algorithm has been

proposed. We show it is more suited to heterogenous environments than existing

caching approaches. The results also provide an insight into how access patterns

have changed over the years, allowing us to speculate on workloads of tomorrow

and their influence on future file system design.

1.1 Distributed File Systems and Caching

Traditionally, the three basic processes involved in anywhere, anytime data access

are, retrieve the files from the server, work on them locally and write the changes



4

back to the server. Almost all clients in distributed file systems have a client-side

cache [1, 5, 8, 17] to minimize communication with the server, improving system

performance on the whole. It can not be assumed that a fast network connection

to a file server always exists and thus policies must be designed to have a mini-

mal reliance on communication, resulting from cache misses (fetching) and cache

replacement (update synchronization).

In the very popular network file system NFS [1] delayed write backs are imple-

mented, writes are flushed back to the server from the cache after some preset

time or when a file is closed. The Andrew file system AFS [4] uses a write back

on close policy to reduce write traffic to the server. When the cache is full and

programs request more data from AFS, a Cache Manager must flush out cache

chunks to make room for the data based on a LRU type algorithm. So in gen-

eral, each time a cache gets full, data has to be either written back to the server

or dropped (generating an additional exchange with the server, the next time it is

requested). Replacements can be expensive.

In the case of high-speed networks this may not be noticable. But caches

of distributed file systems, that operate across heterogeneous, especially low-

bandwidth, networks, must not only provide the hit ratios of conventional caches

that operate over homogeneous high-speed networks, but must do so performing

as few replacements as possible. This thesis reexamines caching in this context.
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1.2 User behavior and File access patterns

As stated earlier to design an efficient system a good understanding of user be-

havior is required. We are interested in single user needs so as to provide the

close and go open and resume experience across an heterogenous environment.

Though traces of user activity have been collected and studied in the past, there

are several reasons they cant be used in the context of our problem.

• Traces haven’t been collected periodically enough to reflect present day us-

age activity.

• The traces available today have been collected to evaluate systems such as

BSD, AFS, Sprite or CODA after the implementation phase rather than before

the design phase. Traces are more usefull in the design stage, as modifying

existing systems based on trace driven evaluation is often complex. An exam-

ple is the recently proposed translucent caching mechanism for CODA [18].

It cannot be incorporated into an already complex system without a complete

reimplimentation of the entire system.

• Traces that are available such as those collected at the disk driver level [15]

or web proxy traces [19] don’t give designers relevant information on single

user activity and access patterns.

The above reasons provided us with a strong motivation, to collect a new set of

traces that reflected current user behavior. The analysis of the new traces provided

information to design new caching algorithms. It served as workload over which
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to test the proposed caching techniques and also showed how user behavior and

access patterns have changed over the past decade.

1.3 Semantic-based Caching

File access patterns aren’t random. Many algorithms exist that utilize the inherent

relationship between files(inter-file semantics and intra-file semantics) to perform

pre-fetching [20, 21, 22, 23] or hoarding [7]. Problems related to these approaches

are discussed in the next chapter.

The proposed approach, on the other hand does not use this relationship in-

formation to prefetch files or hoard them, rather it concentrates its efforts on pre-

serving these relationships in a cache. An eviction index is defined and calculated

based on these relations. ’Strong’ relations are preserved and ’weak’ ones re-

placed. Not only does this approach deliver effective hit ratios but it also decreases

the communication overhead as compared to other replacement algorithms such

as LRU, LFU and Greedy-dual size [19] when run against the DFStraces [11] from

CMU and our own MIST traces. This approach could be important for two reasons:

• It takes the relationships between files into consideration that conventional

approaches ignore.

• It minimizes the need for replacement which could mean increased file avail-

ability or reduced synchronization overhead.

User patience depends on importance of the file and expected fetch delay [24].

Importance of a file is specified by user in some systems [18, 24]. We try to remove
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this burden by building file relationship information based on which caching is done.

This produces better hit rates than LRU while in some cases performing half the

number of replacements. It is felt by allowing more files to remain in the cache

the user can be given more options using translucent mechanisms [24] when in a

weakly connected or disconnected state.

1.4 Contributions

User behavior and file access patterns are constantly changing. Knowledge of

system workload is essential in optimizing existing systems and in designing new

ones. File system activity must be traced periodically to provide us with this in-

formation. But publicly available file system traces are almost a decade old. The

traces collected during the course of this study are important for the following rea-

sons

• The traces help us better understand present day user behavior and file ac-

cess patterns

• They provide a realistic and practical workload over which experimental sys-

tems may be developed and tested

• The new traces allow us to perceive change and the reasons for it, when

compared against older studies

A trace collection utility has been built that is transparent to the user and does not

affect system performance. Some important results from the trace analysis are
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• Most files were opened for less than a hundredth of a second

• The majority of files are accessed only a few times. There is a small percent-

age of very popular files

• The majority of files are less than 100KB in size. Large file can be very large

• Almost half the accesses repeat within a short period of initially occuring

• File throughput has greatly increased due to presence of large files

• Majority of files accessed have a unique predecessor

While several file systems exist to support mobility, cache management policies

haven’t been examined in detail. All most all systems in existence today use LRU

as the replacment policy. This thesis considers the problem of caching in file sys-

tems that need to operate across heterogenous environments. Caching has been

reexamined with new data and new goals. Files are cached based on inter or

intra-file relationships. This semantic based caching approach not only yields bet-

ter hit rates but does so performing almost half the replacements, compared to

conventional approaches.

1.5 Outline

This thesis is organized as follows. Chapter 2 provides an overview of previ-

ous work, describes caching in existing distributed file systems, factors that effect

caching and issues that need to be addressed in future systems. Chapter 3 de-

scribes the process of trace collection, the observations made on file charateristics



9

such as size, popularity and semantic relationships. Comparisions with existing

studies on the DFSTraces are also made that reflect changes in user behavior

and file access patterns over the past ten years. The design of the semantic based

cache replacement algorithm based on inter-file and intra-file relations is described

in Chapter 4. Chapter 5 describes the replacement policies and metrics used in to

study the performance of the proposed approach. Chapter 6 summerizes the work

done and results obtained.
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Chapter 2

Background

In view that this thesis involves both the study of file systems through tracing and

the study of caching, as a means of performance optimization to such systems,

this chapter has accordingly been divided into two parts. The first part describes

the workload characterization studies on existing file systems. Factors influencing

the design of caching and the caching techniques used in existing distributed file

systems are described in the second part.

2.1 Workload of Existing Distributed File Systems

The goal of most trace driven studies involve tracing existing distributed file system

activity to evaluate the existing system or to design techinques to optimize per-

formance [13, 11, 14, 15]. The problem being focusing on here involves a single

user moving across a heterogenous networking environment. The goal here is to

understand the user behaviour and access patterns on single user file system and
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design a system that allows a user to emulate this behavior across a heterogenous

environment. Some existing studies on user behavior and file acces patterns are

presented in this section.

One of the earliest studies by Ousterhout [14] in 1985 on the UNIX 4.2 BSD

file system showed that average file system bandwidth needed per user was a few

hundred bytes per second. Files were open only a short time (70-80% were open

less than 0.5 seconds) and accessed sequentially. 80% of all acesses were to files

less than 10KB long.

Six years later a study [13] was conducted along similar lines on the Sprite net-

work file system [8]. They found similar results; most files were short, opened for

brief periods of time and accesses were sequential. Significant changes observed

were that large files had grown larger and file throughput had increased by a factor

of 20 and was very bursty with peak throughput reaching 9MB per second. They

found that increases in cache sizes resulted in increased read hit ratios but not as

expected due to the increase in large file sizes. There was no improvement in re-

ducing write traffic using caching. They felt that as cache sizes increase more read

requests would be handled by the caches, leading to the conclusion that writes

would dominate file system performance.

Rosenblum [10] too predicted that future workload would be dominated by write

traffic leading to the design of log structured file system. Here all modifications to

files in main memory would be written to disk to speed up write operations. A latter

study at HPlabs [16] found this prediction did not hold as the number of reads

in newer traces have been seen to have greatly increased. The above studies

involved tracing at the file system level. Tracing at the disk level [15] revealed that
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only 13-41% of accesses are to user data. All these studies are nearly a decade

old and motivated us to make new measurements.

2.2 Caching in Existing Distributed File Systems

Distributed systems consisting of workstations and shared file servers typically

have main memory disk block caches at both the workstations and the file servers.

These caches form a two-level hierarchy in which file I/O requests generated by

applications running on the clients may be satisfied at the local cache or if not then

possibly at the file server cache. These caches improve system performance by

reducing the frequency with which costly disk operations are performed and in the

case of the caches at the workstations the frequency of requests to the file servers,

in addition to reducing network load.

Crucial to the efficient functioning of a file system cache is a good replacement

policy. The replacement policy specifies which disk block should be removed when

a new block must be entered into an already full cache and should be chosen so

as to ensure that blocks likely to be referenced in the near future are retained in

the cache. A lot of work has been done on distributed systems and caching. In

this section we look at existing approaches, the issues they address, and their

advantages and shortcomings.

A discussion of client side caching in different distributed file systems follows.

The section following that lists the issues that need to be looked at during design.



13

2.2.1 NFS

In Sun’s very popular network file system [1] file block as opposed to whole file

caching is used on the client side. NFS performs file, attribute, and directory

caching. Attributes and directory information are cached for a duration determined

by the client. At the end of a predefined timeout, the client will query the server to

see if the related filesystem object has been updated. When a file is opened, the

copy in the cache needs to be revalidated with the one in the server. A query is sent

to the server to determine if the file has been changed. Based on this information,

the client determines if data cache for the file should kept or released. When the

file is closed, any modified data is flushed back to the server. Repeated reference

to the server to find that no conflicts exist is expensive. The communication pro-

duced each time a file is opened or closed, or for invalidating attributes can result

in serious performance drawbacks. A common case is one in which a file is only

accessed by a single client, where sharing is infrequent and constant invalidation

is unneccessary. Another problem is if clients are geographically distributed there

is an increase in the latency for cache revalidation requests. In a heterogenous

environment this must be reduced as much as possible to minmize reliance on the

underlying link.

The NFS version 3 [25] client significantly reduces the number of write requests

it makes to the server by ”collecting” multiple requests and then writing the collec-

tive data through to the server’s cache. Subsequently, it submits a commit request

to the server which causes the server to write all the data to stable storage at one

time.
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NFS version 4 [25] uses delegation to reduce communication overhead. At

open, the server may provide the client either a read or write delegation for the

file. If the client is granted a read delegation, it is assured that no other client

has the ability to write to the file for the duration of the delegation. If the client is

granted a write delegation, the client is assured that no other client has read or

write access to the file. Delegations can be recalled by the server if another client

requests access to the file in such a way that the access conflicts with the granted

delegation. This requires that a callback path exist between the server and client.

If this callback path does not exist, then delegations can not be granted.

The NFS version 4 protocol does not provide distributed cache coherence.

However, it defines a more limited set of caching guarantees to allow locks and

share reservations to be used without destructive interference from client side

caching. All this said, NFS remains one of popular file systems in use today.

2.2.2 AFS

The Andrew file system [17] developed at CMU originally used whole file caching

but now large files are split into 64K blocks. Write back on close semantics re-

duces write traffic to the server. Cache consistency is achieved through a callback

mechanism. The server records who has copies of a file. If the file changes, server

is updated (on close). The server then immediately tells all the clients having the

old copy. The callback scheme allows clients to cache data until the server tells

them it’s invalid, while in NFS clients must continually revalidate their cached data.

When the cache is full and application programs request more data from AFS, a
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Cache Manager must flush out cache chunks to make room for the data. The

Cache Manager considers two factors:

• 1. How recently an application last accessed the data?

• 2. Is the chunk is dirty?

A dirty chunk contains changes to a file that have not yet been saved back to the

permanent copy stored on a file server machine. The Cache Manager first checks

the least-recently used chunk. If it is not dirty, the Cache Manager discards the

data in that chunk. If the chunk is dirty, the Cache Manager moves on to check

the next least recently used chunk. It continues in this manner until it has created

a sufficient number of empty chunks. Chunks that contain data fetched from a

read-only volume are by definition never dirty, so the Cache Manager can always

discard them. Normally, the Cache Manager can also find chunks of data fetched

from read/write volumes that are not dirty, but a small cache makes it difficult to

find enough eligible data. If the Cache Manager cannot find any data to discard, it

must return I/O errors to application programs that request more data from AFS.

2.2.3 Coda

AFS and similar systems are vulnerable to server and network failures. Coda [5]

was developed based on AFS to provide reliability as well as the availability of AFS

while supporting disconnected operations. It was initially felt that server replication

was the solution to providing higher reliability and fault tolerance. Disconnected

operations, however involved hoarding, emulation and reintegration upon recon-
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nection. The need for server replication seemed unnecessary. But in fact both

these mechanisms compliment one another [18].

A distinction is made between first class replicas on servers and second class

replicas(cached copies) on clients. While first class replicas are of better quality

and are the reason for system reliability, second class replicas allow supporting

disconnected operations, even as quality suffers. This is implemented as a user

level cache manager Venus on the client side. Whole file caching is performed

at the clients on their local disks with block caching being performed in their main

memory buffer caches. It uses callback based cache coherence where the server

maintains what objects have been cached by the client and notifies it when another

client updates on of those objects. Disconnected operations involved hoarding

which can be done manually or using tools such as SEER [7].

2.2.4 Sprite

This system was developed at Berkeley with the goal of improved file sharing.

Server detects when two users are concurrently writing to the same file and dis-

ables caching of that file on both machines. When files are not shared, writes

are delayed 30s before writing back to the server. Sprite’s file caches change

size dynamically in response to the needs of the file and virtual memory system.

Baker [13] showed about 60% of all data bytes read by applications are retrieved

from client caches without contacting file server. Sprite’s 30 second delayed-write

policy allows 10% of newly written bytes to be deleted or over written without be-

ing written back from the client cache to the server. Sprite’s network file system
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provides a single system image: there is a single shared hierarchy with no local

disks.

The file system uses large file caches in both clients and servers and ensures

cache concurrency even in case of concurrent write access. A least-recently-used

mechanism is used to choose blocks for replacement in Sprite. According to the

Baker study on average blocks have been unreferenced for almost an hour before

they get replaced. On server side can consume entire physical memory but on

client side(the side that concerns us) can consume between one third to one fourth

of physical memory. This is significantly larger than size used by the unix kernel

at the time(1991). The Baker study says 50% of traffic is filtered out thanks to the

client cache.

2.2.5 xFS

Berkeley’s eXperimental file system [2] optimizes AFS. When a file is modified, it

is not written back to the server. The server is informed of the modifications and

the client becomes the owner of the file. The next request for this file is forwarded

to new owner. In such systems server caches don’t need to be relied upon much,

though there exists the overhead of maintaining state on who has what.

2.2.6 Ficus

Ficus [26] was developed at UCLA and supports disconnected operations, which

means a client can continue operating when totally disconnected from the rest of

the network. This is achieved using a sophisticated predictive caching [7].
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2.3 Factors Effecting Caching in Distributed File Sys-

tems

Having looked at the way most of todays distributed file systems implement caching

the following list of issues needs to be considered while designing an effective

caching strategy.

Cache on disk or memory? While a main memory cache implies reduced ac-

cess time, a disk cache implies increased reliability and autonomy of client

machines. The creators of Sprite [8] give the following reasons why main

memory caches are better. Main memory caches allow clients to be diskless

hence cheaper. Quicker access from main memory than disk. As memories

get larger main memory caches will grow to achieve even higher hit ratios.

Cache on server or client? When faced with a choice between having a cache

on the server node versus the client node, the latter is always preferable

because it also contributes to scalability and reliability. Replacement strate-

gies that rely on temporal locality such as LRU suffer when implemented

on server caches. Fileserver caches differ, both in comparison to the client

caches with respect to the characteristics of the disk reference streams that

they handle. These reference streams differ greatly from those generated

by the applications themselves as all references satisfied by client caches

have been removed. This filtering of the reference stream destroys much of

its temporal locality [27]. LFU performs better except for small client caches

which dont remove all temporal locality. Thus the choice of replacement pol-
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icy at fileserver as well as at client caches will continue to be an important

issue. If different policies on client and server are choosen, their effects on

one another must be studied. Some have argued that client caches are now

becoming so large that they can hold the complete disk block working sets

of their users and thus that the ability of a fileserver cache to hold portions

of these working sets is irrelevant. But at the same time, increased file sizes

seen in current day workloads could overwhelm smaller client caches.

Whole file caching or block caching? Whole file caching has several advantages.

Transmitting an entire file in response to a single request is more efficient than

transmitting it block by block in response to several requests as dependency

on network conditions is minimum. It has better scalability as servers re-

ceive fewer access from each client. Disk access is faster when dealing with

a whole file than with random blocks. Clients supporting whole file caching

maybe more immune to server and network failures. The main drawback is

sufficient space is required on client nodes to store large files in their entirety.

Therefore it may not be the best strategy when clients are diskless worksta-

tions. Ameoba [9] and AFS-2 [17] are examples of systems that implement

whole file caching. Whole file caching makes more sense in mobile envi-

ronments when clients are in weakly connected or disconnected states. But

block transfers can complete more quickly than file transfers. The less time

a transfer needs to complete the sooner a user can resume working. This

becomes very advantageous in low bandwidth scenarios where file transfers

are very time consuming. Additionally the use of blocks as the caching unit
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means that it is not necessary to transfer the entire contents of a file to the

client if the whole file is not referenced. This also means client nodes need

not have large storage space. NFS [1], LOCUS [28] and Sprite [8] imple-

ment block based caching. Byte-level caching has also been investigated.

Its main drawback is the difficulty in implementing cache management due to

the variable length data for different access requests.

Variable or fixed size caches Fixed size caches are easier to implement but dont

make use of the free memory available on the disk or memory. Sprite [8] im-

plements a variable size memory cache that occupies main memory along

side the virtual memory system. The virtual memory system receives prefer-

ence. A physical page used by virtual memory cannot be converted to a file

cache page unless it has been unreferenced in the last 20 minutes [13].

Performance Measurement? The theoretical optimal replacement policy provides

lowest miss ratios. Replacing blocks which will not be used for the longest

period of time requires knowledge of the future and maybe impossible to im-

plement but provides an upper bound on attainable performance. This would

provides a measure of the goodness of other policies. Since we have infor-

mation of future accesses in trace data this can be done to see how other

policies measure up to an optimal strategy. Random replacement chooses

all blocks with equal probability. This scheme would work well if all blocks

were equally accessed. If ‘intelligent informed’ replacement policies cannot

perform better, then there almost certainly are some underlying flaws in deci-

sion strategy. It provides a lower bound on performance. There is no reason
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to use any policy which performs worse than this one. Most caches are de-

signed and tested based on file system traces. Trace collection is almost

always done in research environments, is this good enough?

Caching and mobility Cache management in a mobile environment is a signifi-

cantly different problem and management policies need to be examined in

that context if good performance is to be achieved. It can no longer be as-

sumed that a fast network connection to a file server exists and thus policies

must be designed to have a minimal reliance on communication. Policies

should be designed to be adaptive in nature. That is for performance reasons

it may be necessary to dynamically modify policies in response to changes in

the operating environment. Finally since user behavior is strongly affected by

perceived performance it might be expected that the access patterns of a dis-

connected user will be different from that of a strongly connected user. Since

any good cache management policy relies on the knowledge of the patterns

of requests which occur, it may be advantageous to reject this change in file

request traffic in cache management policies.

Transparent and Translucent caching Almost all current file systems perform

cache management without user interference. Exposing too much detail to

the user requires the user to learn more about the systems functioning, to

be able to control it well. But the aim in almost all cases is to make system

functioning as transparent to the user as possible. This would allow the user

to focus on his or her work rather than system management.

Hoarding and Prefetching Hoarding is scheme to allow mobile client to continue



22

working in case of disconnection. Hoarding is a relatively infrequent operation

performed only at clients request prior to disconnection, timing is not critical.

Prefetching is mainly concerned with improving performance and timing is

important. In prefetching, file server is assumed to be still accessible although

network connectivity may be weak. A cache miss is much more catastrophic

in disconnected operations hence hoarding is typically willing to overfetch

more in order to enhance availability of files.

File prefetching [20, 21, 22, 23] is done using semantic structures such as

access trees that capture potentially useful informaion concerning the inter-

relationships and dependancies between files. Two advantages of prefetch-

ing are applications run faster as they hit more in the cache, and second less

burst load is placed on the network as prefetching is done when bandwidth is

available. The disadvantages are CPU cycles are wasted on when and what

to prefetch. Network bandwidth and server capacity is wasted when prefetch-

ing decisions prove less than perfect. Timeliness is another cruical factor in

determining how effective prefetching turns out. The time interval between,

the system being about to perform an I/O operation and actually doing so in

most cases is very small. Prefetching must be done within this time.

Periodic Removal Another issue that needs consideration is periodic removal [29]

versus on demand replacement. If a cache is nearly full replacement on de-

mand would involve replacement on nearly every request there after meaning

higher overhead costs. Periodic removal of files to ensure availability cache

space and reduced overhead might be a solution. But periodic removal would
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decrease number of files in the cache and hence hit rates.

Complexity A good argument supporting why caching must not rely on simplistic

approaches such as LRU, LFU and size is presented by Dix [30]. It is argued

that caching should be a cooperative activity between the system and the

user. Dix illustrates this point with an interesting scenario.

“Imagine a field engineer is accessing layout diagrams for a faulty

electricity sub-station, half way through the repair the communica-

tion goes down and relavant part of the plans aren’t on the local

machine. A cache miss might cause several minutes delay. In the

mean time which was the 10,000 volt cable?”

Because cost of failure is higher and time scales are longer, caching algo-

rithms can afford to be more complex. Coda [5, 18] allows the user to set

up a preferences on which files should be permenantly cached. Lotus notes

gives the user control over replication policy. Ebling [24] implements translu-

cent cache management for Coda. Critical aspects of caching are exposed

to the user while noncritical aspects are hidden to maintain usability. This

scheme makes use of a user patience model to evaluate if a user should be

burdened with caching decisions or not.
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Chapter 3

File System Workload and Access

Patterns

User behavior is dramatically different from what it was ten years ago. This is due

to a variety of factors, such as faster processors, larger storage capacity, wide

range of applications, high speed network connectivity, to name a few. Periodic

analysis of user behavior and file access patterns is therefore essential, in making

design choices and decisions [31] while designing the file systems of tomorrow.

Characteristics of current user workload may be determined by tracing file system

activity and analysing the collected traces. The traces also serve as a workload

over which to test experimental systems.

We describe the DFS and MIST traces in this section that have been used as

the workload in our caching experiments. The older DFS Traces are compared

with a set of newly collected traces, the MIST traces. It helps in understanding

how user behavior has changed over the years and also gives us clues on what
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to expect in future. The studies in this section lead to the design of new caching

algorithms described in Chapter 4.

3.1 DFS Traces

The DFS Traces [11], collected from Carnegie Mellon University, were used as the

workload to run simulations, testing the proposed semantic caching algorithms.

During the period from February’91 to March’93 the Coda project collected

traces of all system call activity on 33 different machines. The publicly available

DFSTrace reading library was made use of to handle the trace files. Seven differ-

ent traces files (two from Mozart, Ives and Barber each and one from Dvorak 1 )

were analysed. The machine Barber was a server with the highest rate of system

calls per second. Ives had the largest number of users, and Mozart was selected

as a typical desktop workstation. Statistical data characterizing each of the seven

traces used are presented in the Table 3.1.

1Mozart, Ives, Barber and Dvorak are machine names

Trace Opens Closes Duration(hrs) Files
Mozart1 25890 33953 49.43 709
Mozart2 93575 126756 162.83 1644
Dvorak1 122814 196039 121.75 4302

Ives1 41245 55862 75.70 247
Ives2 26911 36614 48.81 686

Barber1 30876 42155 52.12 725
Barber2 14734 20005 23.99 592

Table 3.1: Statistics of workload used.
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3.2 MIST Traces

Studies have been conducted on existing file systems [13, 14] but not periodically

enough to reflect constantly changing workloads. This is probably due to the diffi-

culty of obtaining trace data, and also to the large volume of data that is likely to

result. As the DFS traces were a decade old it was assumed, and later proven

correct, that access patterns have since changed. A new set of traces needed to

be colled to study these changes. A kernel level tracing system was developed to

collect more current data.

The study presented here is the detailed characterization of file access at the

kernel level generated by six different machines over a period of a month. Subsets

of the traces used for analysis covered periods ranging from a few hours to few

days. All the traced machines had the same configuration Pentium 4, 2.2GHz with

512MB of RAM running patched Redhat Linux 8.0(kernel 2.4.18-14) to support

system call interception.

3.2.1 Trace Collection

To monitor user activity at the filesystem level system calls such as open() , close() ,

read() , write() etc., need to be logged. This can be done by system call in-

terception. Logging is accomplished with the use of a kernel module. With this

module access is gained to the kernel space of the machine, whose activity is to

be logged. Using this access, all open() and close() system call activity and

related data is captured. The System Call Table accessible only in kernel space

provides a list of function pointers to all the system calls. System call intercep-
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tion involves replacing the default open() and close() function in the kernel’s

System Call Table with new ones.

When a process calls a standard file open function in user space, a system call

is made. This call maps to an index offset in the System Call Table array. As the

kernel module modifies the function pointer at the open index to point to its own

implementation, the execution switches into kernel context and begins executing

the new open call. This is shown in Figure 3.1.

The module has been designed so that information generated can be either

logged to a file or by the syslogd daemon. The structure of the information logged

is shown in Table 3.2 and a sample of the trace data is shown in Figure 3.2. Though

system call interception has its advantages, it can be used to seriously compromise

system security. Reprogramming system calls without a complete understanding

of all aspects of system functioning can easily produce race conditions affecting

system stability.

Due to these reasons most linux kernels starting from 2.4.10 onwards prevent

modules from using the system call table. To overcome this all the kernels being

used had to be modified and recompiled to allow system call interception. These

modified kernels allowed the tracing module to be loaded. Care was taken while

implementing the new open and close system call, to keep the implementation

simple while extracting as much information as possible.

We considered logging other potentially interesting calls such as read() , write() ,

execve() , seek() etc, but did not implement it for two reasons. Firstly, large

amounts of data were generated very fast and secondly tracing had to be done

without the user experiencing any sort of performance degradation. Therefore the
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Figure 3.1: The conceptual representation of open system call redirection.



29

1081951980 440964 close 5 /usr/lib/perl5/5.8.0/File/Spec.pm 8716 chbg.pl 100444 

1081951980 441058 open 5 /usr/lib/perl5/5.8.0/File/Spec/Unix.pm 12053 chbg.pl 100444 100000 

1081951980 441274 open 6 /usr/lib/perl5/5.8.0/i386-linux-thread-multi/Cwd.pm 14246 chbg.pl 100444 100000 

1081951980 441741 open 7 /usr/lib/perl5/5.8.0/base.pm 2437 chbg.pl 100444 100000 

1081951980 442579 close 7 /usr/lib/perl5/5.8.0/base.pm 2437 chbg.pl 100444 

1081951980 448562 close 6 /usr/lib/perl5/5.8.0/i386-linux-thread-multi/Cwd.pm 14246 chbg.pl 100444 

1081951980 448701 open 6 /usr/lib/perl5/5.8.0/i386-linux-thread-multi/XSLoader.pm 3836 chbg.pl 100444 100000 

1081951980 449912 close 6 /usr/lib/perl5/5.8.0/i386-linux-thread-multi/XSLoader.pm 3836 chbg.pl 100444 

1081951980 450390 open 6 /usr/lib/perl5/5.8.0/i386-linux-thread-multi/auto/Cwd/Cwd.so 84576 chbg.pl 100555 0 

1081951980 450451 close 6 /usr/lib/perl5/5.8.0/i386-linux-thread-multi/auto/Cwd/Cwd.so 84576 chbg.pl 100555 

1081951980 454499 close 5 /usr/lib/perl5/5.8.0/File/Spec/Unix.pm 12053 chbg.pl 100444 

Figure 3.2: Sample from kernel trace collected

system had to be designed keeping these constraints in mind. A shell script was

used to collect the traces from the various machines being monitored using ssh

and scp. A small suite of programs and scripts were developed to analyse the col-

lected data. All access to the proc file system was filtered out as it is a virtual file

system and its files aren’t being stored on disk.

3.2.2 Observations

We have based most of this study on the eight traces sumarized in Table 3.3. An

attempt was made to characterize the traces based on the following paramters; File

size, Time to next access, Open time, Access Count and Activity (Refer Appendix A

for all graphs).

The BSD studyin 1985 [14] showed 75% of files were open less than one-

half second. Baker in 1991 [13] says 75% of files are open less than one-quater
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Field Name Data Type Description
Seconds Long Time in seconds when system

call was logged
Microseconds Long Time in microseconds when

system call was logged
Operation char System call (either open or

close )
Descriptor int File descriptor of file being

used
Name char File name
Size long Size of file being used in Bytes
Process char Name of the process that

made the call
Flag octal Describes file attributes, ap-

plies only to open
Mode octal Describes mode of the file

(read-only, read-write, etc.)

Table 3.2: Structure of a Mist Trace record.

second. The MIST traces show 75% of accesses are open less than a hundredth

of a second as shown in Figure 3.3. Similar results are seen on the other MIST

traces, refer Appendix A. Baker concludes that this is due to increasing processor

speeds. But another conclusion that can be drawn is, that the majority of files

being accessed are being used by the system rather than the user, due to the

imperceptible time periods involved. An example of this is when a user wants

to edit a document with a word processor or listen to music with a media player.

Even though only a single file, the document or the song is being opened, a large

number of system files are being accessed in the background by the application.

These files maybe shared libraries, codecs, font files, styles sheets, drivers etc.

These files are open for very short periods and form the majority of accesses

being made. This could be a very useful parameter in distinguishing files opened
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Trace Opens Closes Duration(hrs) Files
Kewei (Apr14) 81492 83517 15.73 2230

Sharun (Apr14) 81670 86716 16.10 2251
Siva (Apr14) 59229 67179 50.06 2593
Zhu (Apr14) 48107 52585 49.85 3605

Sharun (Apr16) 398542 421723 75.57 4019
Zhu (Apr16) 85996 94889 75.52 7232

Kewei (Apr16) 67764 76420 76.08 4683
Siva (Apr16) 65577 70848 76.23 2542

Table 3.3: Traces used in this study

by a user and those opened due to system activity. In certain scenarios every

single system file need not be cached and in such cases being able to distinguish

between user and system files could be very useful.

The majority of files being accessed are read-only, application specific having

very short open times. This trend will continue as applications grow more complex

and processors more fast. Another important aspect that was looked into was

file popularity. Access count tells us how many times a file was accessed over

the length of the tracing period. Figure 3.4 shows almost 80% of the files were

accessed less than 5 times. Similar results were obtained from all the other MIST

Trace Read Read Write Large Files
Write Read-Only Write-Only Read-Write

Kewei (Apr16) 44469 231 83 8945 3394 10022
Kewei (Apr14) 9537 106 64 71216 351 199
Siva (Apr14) 39328 329 9270 9445 441 366
Siva (Apr16) 50355 373 6854 6132 1187 657

Sharun (Apr14) 47583 1479 84 29100 685 1767
Sharun (Apr16) 231145 6909 159 147205 2648 5198

Table 3.4: Mode in which files were accessed.
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Figure 3.3: File open times. Cumulative distribution of the time files were open

traces, refer Appendix A. The long tails of these graphs indicate there is small

percentage of very popular files. Most of the popular file are system files such as

configuration files or shared libraries.
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Figure 3.4: File access count. Cumulative distribution of number of times files were
accessed over entire tracing period

It can be observered that most of the accesses are coming from the /usr /lib

and /etc directories as shown in Figure 3.5 indicating how system files dominate

user files. Of course this is not the best way of differentiating system and user files
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but it gives a good indication of what is being accessed. Other studies [14, 32]

also indicate majority of file accesses are not caused by user data but by program

execution, swapping, metadata etc.

 Sharun

/usr
43%

/etc
12%

/home
18%

/lib
22%

other
5%

Figure 3.5: Distribution of access among standard filesystem directories

Figure 3.6 represents the cumulative distribution of file sizes when files were

closed. It shows that 75% of all accesses were to files less than 100KB in size.

Again this graph has a long tail indicating few accesses are to very large files. This

is the general trend, 60-75% of all access were to files less than 100KB in size(refer

Appendix A).

Looking at Figure 3.7 three levels of activity may be defined. There are periods

of inactivity or less than 1000 files opened per hour, normal activity where 1000

to 5000 files are opened an hour and periods of high activity where greater than

5000 files are opened per hour. Changes from one level of activity to another can

be seen in the graphs as user behaviour changes through the course of the day.

Some processes generate many more file opens than others. Processes such

as update, which updates the search database and nautilus for file managment
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Figure 3.6: File size. Distribution of file sizes measured when files were closed
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open almost all files on the partition each time they are run. Word processing

applications such as pdflatex and openoffice also generate a lot of opens while

loading font files, shared libraries and style sheets. When the user isn’t active, files

continue to be opened by background processes and deamons. Another observa-

tion that can be made is that different users produce different amounts of activity

depending on the applications used. Development and program testing can gen-

erate high activity while web browsing, multimedia and text editing produce normal

activity. Designing caches to adapt to such changes in activity level is challeng-

ing. Two ways that this can be done is, through user participation in the caching

processes or maximizing files available and allowing the user to work with what is

available.

Significant differences in access patterns and user behavior were observed in

comparison with the DFS traces. What interestingly hasn’t changed is the precur-

sor counts of files, we still see a majority of files have at most one or two very

‘popular‘ precursors among their individual set of precursors. This is again be-

cause file accesses aren’t random. Therefore it seems only logical to exploit this

relationship between file accesses that conventional caches totally ignore.
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Figure 3.9: Time to next access

Knowledge on when a file is to be accessed next can be useful in determining

how long a file should be allowed to stay in the cache. The Time to Next Access

is defined here as the time between, when a file is closed and when it is next

opened. In some studies it has been refered to as the inter access time. We

measure this parameter for every access. Figure 3.9 shows that around 40% of

the accesses resulted in an access to the same file within 10 seconds. In general

half the accesses result in an access to the same file within a short time span. This

means if a file stays in the cache for about 10 seconds they have a 50% chance of

being accessed again. This is interesting as it means half the files, likely to be in

the cache are to be accessed ‘soon’ while the remaining may not.

File throughput has definately increased over the last decade mainly due to

much larger, large files. Having recorded only size at open and close actual

throughput cannot be measured but an upper bound on throughput can be de-

termined. This varies from trace to trace depending on what a user is doing and

what time of the day it is as can be seen in Table 3.6.
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Traces
V-Apr14 V-Apr16-19 Z-Apr14 Z-Apr16-19
evolution-mail evolution-mail mozilla-bin mozilla-bin
nautilus pdflatex xscreensaver-ge xscreensaver-ge
gs sh gs sh
pdflatex xscreensaver-ge sh gs
mozilla-bin vim fortune pdflatex
xscreensaver-ge fortune nautilus gvim
sh sftp-server pdflatex nautilus
netscape-bin netscape-bin sftp-server fortune
nautilus-adapte mozilla-bin xscreensaver xscreensaver
eog-image-viewe java gweather-applet scp

Table 3.5: Top 10 Active Processes for two users on different days

Total Bytes accessed(files opened) per second (in bytes) 

zhu

minimum

25th
Percentile

75th
Percentilemedian

maximum

Figure 3.10: Throughput, in terms of size of files opened per second

Percentile Traces
S1 M Z S2

10th 0 0 0 2.8
25th 1.3 2.6 2.5 52.5
Median 147.3 3.3 9.8 7356
75th 12424 142.2 3336 7384
90th 12605 4932 4935.3 7937.9

Table 3.6: Total Kilobytes accessed(from file open calls) per second.
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Chapter 4

Semantic Caching

The basic idea of the proposed approach is motivated by the observation that

file access isn’t random. It is driven by user behavior and application programs.

There exists a semantic relationship between two files in a file access sequence.

We classify this relationship into two categories, inter-file relations and intra-file

relations. An inter-file relationship exits between two files A and B, if B is the

next file opened following A being closed. A is called B’s precursor. An intra-

file relationship is said to exist between two files A and B if they are both open

before they are closed. Our aim is to translate this relationship information into an

eviction index based on which caching can be performed. The relationship may be

‘strong’ or ‘weak’. Our caching replacement algorithm preserves the ‘strong’ while

replacing the ‘weak’.
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Figure 4.1: The cumulative distribution function of precursor count of file access.

4.1 Inter-file relations

To define an inter-file relationship, the information obtained by studying DFStraces [11]

and our own file activity traces captured by system call interception is used [33].

We found something common in both traces, a large portion of the files examined

have a small number of unique precursors (precursors rather than successors are

considered as this information is easy to obtain and manage). In some cases 80%

of the files have only one unique precursor as can be seen in Fig. 4.1. Similar

results have been observed in other studies[34].

A heuristic parameter INTERi is defined to represent the importance of a file

i with respect to inter-file relations with it’s precursors. The greater the importance

the less likely it will be replaced and therefore it is used as an eviction index by

our caching algorithm. The importance of the file is determined by the following

factors.

Xi - represents the number of times file i is accessed.

Ti - represents the time since the last access to file i.
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Tj - represents the time since the last access to file j where j is a precursor of i.

Yj - represents the number of times file j precedes file i.

INTERi =
Xi

Ti +
∑n

j=1(Tj − Ti)
Yj

Xi

(4.1)

The importance of file i as shown in equation 4.1 is directly proportional to

its access count and inversely to the time since its last access. The summation

represents the strength of the inter-file relationship i has with its precursors.

The strength of the inter-file relationship between i and j is not dependent only

on the recentness of access of i or j represented by Tj−Ti but also on the number

of times j precedes i represented by Yj. Therefore the greater the weight Yj

Xi
more

importance is given to the recentness. Consider the case where file j (a popular

precursor to file i meaning Yj

Xi
is relatively large ) has occurred more recently than

file i, that is recentness Tj−Ti is negative. This would reduce the summation value

increasing the importance of file i. This is what is required, if j has been accessed

recently, i is highly likely to be accessed next and must stay in the cache. Therefore

files with stronger relationships are given more importance than files with weaker

relations.

4.2 Intra-file relations

Intra-file relationships are those where both files are opened before they are closed.

An intra-file relationship is based on the concept of shared time. Consider two files

i and j that are both opened before they are closed and i is closed before j is
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closed, then we define shared time of i with respect to j, Si,j, as the time between

i’s close and the later of the two opens as shown in Equation 4.2. Shared time is

calculated when file i is closed. The intuition used here is, files that have relatively

large shared time are likely to share time in the future.

Si,j = C(i)−MAX(O(i), O(j)) (4.2)

where O(i) and C(i) are the open and close times of file

i respectively and C(i) < C(j).

A heuristic parameter INTRAi is defined to represent the unimportance of a

file i based on it’s intra-file relations, shown in Equation 4.3. This is opposite to the

definition of importance based on inter-file relations explained above, in the sense

that the higher its value the less important is the file. Here rather than depending

on precursors, we depend on the files that shared time.

INTRAi = Ti +
n∑

j=1

(Tj − Ti)
Si,j

Stotal

(4.3)

Ti - represents the time since the last access to file i.

Tj - represents the time since the last access to file j where j is open before i is

closed.

Si,j - represents the shared time of file i with respect to file j where i is closed

before j.

Stotal - represents the total shared time with all files that are open before i is closed
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(
∑n

j=1 Si,j).

The strength of the intra-file relationship between i and j is dependent on the

recentness of access of i or j represented by Tj − Ti which is weighted by the

relative shared time Si,j

Stotal
. If j has occurred more recently than i and Si,j is relatively

large, INTRAi is reduced or file i is less unimportant. On the other hand if j has

occurred much before i and Si,j is relatively large the unimportance of i increases.

In this way intra-file relations are preserved in the cache using INTRAi as an

eviction index.

Both Equation 4.1 and Equation 4.3 are combined to produce a general mea-

sure of importance of the file based on inter-file as well as intra-file relations. It is

defined as follows:

BOTHi =
Xi

Ti +
∑n

j=1(Tj − Ti)
Yj

Xi
+

∑n
j=1(Tj − Ti)

Si,j

Stotal

(4.4)



43

Chapter 5

Evaluation

This chapter describes the evaluation of the semantic caching algorithms proposed

in the previous chapter. The design and working of the simulator is explained. To

evaluate our approach, four other replacement policies were implemented for com-

parision purposes. Three different metrics of performance were chosen namely

Hit rate, Byte hit rate and Files replaced. The complete simulation results for both

DFS traces and MIST traces are presented in Appendix C and B respectively.

A simple file system client cache simulator was implemented to operate on

both the DFS traces and the MIST traces which were described in Chapter 3. The

cache itself is simulated using a hash table. Two additional lists are maintained,

one keeps track of the currently open files and the other keeps track of closed

files. The closed file list had a secondary purpose of maintaining relavant statistical

information such as access count, number of unique predecessors, shared time,

inter access time etc. The basic structure can be seen in Figure 5.1.

The simulator goes through the trace looking for the open() and close()
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OpenList CloseList

B

D

F

D

B

F

C

Precursor file list
Concurrent file list

Precursor file list
Concurrent file list

Precursor file list
Concurrent file list

Precursor file list
Concurrent file list

Figure 5.1: Basic data structure used by the replacement algorithm.
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system calls. On encountering an open() the following operations are performed:

First a check is performed to see if space is available in the cache. If it is, an

entry corresponding to the file that has been opened, is added to the Open list, the

Close list and the file itself is added to the Cache. The entry added into each list

is different but share common information such as the filename, its size and the

time it was opened. Every closed file also maintains a precursor list and access

counts for each precursor in the list. Every new file opened is added to the end of

the Close list. If it already exists in the Close List it’s entries open time is updated

with the new open time.

When out of cache space, files need to be replaced to accommodate the new

file. To prevent large files from pushing many small files out of the cache we define

a MaxFileSize threshold. Any file bigger than this threshold value isn’t brought

into the cache. We set this threshold as 30% of the total cache size. After this

check is performed the main replacement policy is enforced. An eviction index

is calculated for each file in the cache. Depending on the policy the file with the

biggest or smallest index is removed from the cache. If this doesn’t create enough

space to accommodate the new incoming file the file with the next biggest/smallest

index is removed. This process repeats until enough space has been freed to

accommodate the new file. Calculation of the index is dependent on the cache

replacement policy and is explained in the following section.
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5.1 Policies

This implementation looks at seven different policies, the first four are popular ap-

proaches against we which we evaluate our algorithm.

1. Round Robin (RR) - The eviction index is set to a constant value for all files. It

provides a lower bound on performance. There would seem no reason to use

any policy which performs worse than this one when considering computional

or spatial overhead.

2. Least Recently Used (LRU) - This the most commonly used algorithm in al-

most all existing filesystem caches. The eviction index represents the time

since the last access to a file. The file with the highest index is replaced.

3. Least Frequently Used (LFU) - This is based on the access counts of each

file. The most popular files stay in the cache and the least popular files are

replaced.

4. Greedy Dual-size (GDS) - This index is calculated based on the file size.

Larger the file the smaller the index. File with the smallest index is replaced.

We use the inflation value defined in [19] to keep frequently accessed large

files in the cache.

5. INTRA - The eviction index is calculated based on intra-file relations as de-

fined in Equation 4.3.

6. INTER - The eviction index is calculated based on inter-file relations as de-

fined in Equation 4.1.
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Start: 
Read Trace Record  
If ( operation is OPEN ) 
 If ( file not in cache ) 
  If ( file_size < MAX_FILE_SIZE) 
   If ( file_size < free_cache_space  ) 

Add_To_Cache(); 
   Else 
    Calculate_Index(); 
    Replace(); 
   Endif 
  Endif 

Endif 
Add file to Open_List; 
Add file to Close_List; 

Endif    
 
If ( operation is CLOSE ) 
 Remove from Open_List; 
 Update file information in Close_List; 
Endif 
Goto Start if not end of file; 

 
   

Figure 5.2: Pseudocode used to implement the caching simulator

7. BOTH - The eviction index is calculated taking both inter-file and intra-file

relations into consideration as defined in Equation 4.4.

Once the index for all the files are calculated, replacement is performed based

on the eviction index until enough space is available. The new file is then added to

the cache. The performance of the cache is studied by varying its size.
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If Replacement policy is, 
LRU) 

Index = Time of last CLOSE 
            File with largest index evicted 
 
RR) 
 Index = 1 
  
LFU) 
 Index = Access Count 
 File with smallest index evicted 
 
GDS) 
 Index = Inflation value + 1/Size 
 File with smallest index evicted  
 
INTRA) 
 Index = based on shared time (refer equation) 
 File with largest index evicted  
 
INTER) 
 Index = based on predecessor count (refer equation) 
 File with smallest index evicted 
 
BOTH)  
 Index = INTER + INTRA (refer equation) 
 File with smallest index evicted 

 
   

Figure 5.3: Replacement policies
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5.2 Metrics

We evaluate our semantic-based approach (INTRA, INTER, BOTH) by com-

parison against four conventional caching algorithms (RR, LRU , LFU and GDS).

We used two parameters, cache hit rate, byte hit rate to measure the effectiveness

of using file relationship information in making caching decisions against conven-

tional approaches. It indicates the percentage of files or bytes accessed that can

be handled by the cache. A third parameter Replace attempts was used as an

indicator of communication overhead in a low-bandwidth distributed environment.

This is because each replacement in a client, necessitates synchronization with a

remote file server in a distributed file system. Another way we measure this over-

head is looking at the total bytes missed over the tracing period. If the total bytes

missed is low then the communication with the server is also low.

Due to space constraints only a small part of the evaluation is present here,

more details can be found in the Appendix B.

5.3 Results

5.3.1 DFSTraces

The first part of our evaluation is done using the DFS Traces. The simulation results

for traces ives1, ives2 and mozart2 have been presented here. The simulation

results of the reminaing traces can be found in Appendix C. Simulation has been

performed with three different cache sizes 10K, 25K and 100K. The reason for such

small cache sizes is the age of the DFS Trace. It represents an older workload with
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Figure 5.4: Hit rates recorded during the simulation using trace files mozart2, ives1
and ives2 with caches of size 25K and 100K resp.
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Figure 5.5: Byte Hit rates recorded during the simulation using trace files mozart2,
ives1 and ives2 with caches of size 25K and 100K resp.



52

CacheSize=25K CacheSize=100K

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  10  20  30  40  50  60  70  80  90  100

R
ep

la
ce

A
tte

m
pt

s

Time

ReplaceAttempts ( mozart2 )

RR
LRU
LFU

GDS
INTRA
INTER
BOTH

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

R
ep

la
ce

A
tte

m
pt

s

Time

ReplaceAttempts ( mozart2 )

RR
LRU
LFU

GDS
INTRA
INTER
BOTH

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5  10  15  20  25  30  35  40  45

R
ep

la
ce

A
tte

m
pt

s

Time

ReplaceAttempts ( ives1 )

RR
LRU
LFU

GDS
INTRA
INTER
BOTH

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  5  10  15  20  25  30  35  40  45

R
ep

la
ce

A
tte

m
pt

s

Time

ReplaceAttempts ( ives1 )

RR
LRU
LFU

GDS
INTRA
INTER
BOTH

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20  25  30

R
ep

la
ce

A
tte

m
pt

s

Time

ReplaceAttempts ( ives2 )

RR
LRU
LFU

GDS
INTRA
INTER
BOTH

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30

R
ep

la
ce

A
tte

m
pt

s

Time

ReplaceAttempts ( ives2 )

RR
LRU
LFU

GDS
INTRA
INTER
BOTH

Figure 5.6: Replace attempts recorded during the simulation using trace files
mozart2, ives1 and ives2 with caches of size 25K and 100K resp.
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much smaller file sizes than seen today. It has been used, however, as it remains

one of the most popular traces being used by the research community. The x-axis

of these figures represent the number of file requests that have been processed,

and the y-axes report hit ratio, byte hit ratio, and file replaced respectively. Each

parameter is measured after every thousand requests handled. As can be seen

INTER and BOTH exhibit the highest hit ratios and byte hit ratios, and also the

lowest number of replace attempts.

In general, in terms of hit ratios, INTRA performs very badly and this we feel

is because of the very low number of intra-file relations present in the DFS traces,

which means file access is generally sequential in nature. INTER or BOTH in

almost all cases [33] have the best hit ratios which validates our belief that file

relations should be taken into consideration while making caching decisions.

5.3.2 MIST Traces

In this section the simulation results using the MIST Traces have been presented.

The hit rates, byte hit rates, files replaced and total bytes missed have been exam-

ined in the following tables. The remaining simulation results have been presented

in Appendix B. In general INTER show better hit rates than all conventional algo-

rithms. As of now most files accessed are small and the few large files accessed

are very large. GDS also performs well as it takes advantage of this fact. It always

replaces the largest file in the cache creating a lot of space each time. When there

are more large files in the cache INTER has the advantage as it considers relation-

ships. This could be the reason in almost all cases INTER performs better than
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GDS in terms of hit rate.

Bytehitrate in general is good only for caches above 5-10Mb in size as this

allow larger files to be cached longer. A 50 Mb cache seems to be sufficient for

most of todays workload though in some cases of high activity involving large files

(installing packages) bigger caches may be required. The reason why file relations

should be considered an important factor are the results from the replace attempts

metrics. For example in Table 5.3 in comparision with a conventional algorithm like

LRU for a 10MB cache which replaces 450 files, INTER replaces 16 files. Though

GDS replaces only 9 its hitrates are still less than INTER.

Size LRU LFU RR GDS INTER INTRA BOTH
100K 71.31 69.30 69.15 68.05 72.77 69.67 69.50

500K 74.85 76.32 75.87 76.36 78.46 76.77 75.90

1Mb 79.17 78.55 79.03 77.02 81.71 78.23 78.73

5Mb 85.81 85.95 85.71 85.83 86.48 86.06 85.92

10Mb 92.89 92.76 92.72 92.96 93.57 92.77 92.60

50Mb 94.96 94.96 94.95 94.92 95.52 94.96 94.96

Table 5.1: Hit Rates of trace Siva (Apr16). It can be seen that INTER performs
better than the other replacement policies for all tested cache sizes.

As the goal is to minimize communication, a simple test was performed to

check how much communication is generated due to replacements as shown in

Figure 5.7. If we assume that replacements result in write backs of the files re-

placed that have since changed, by examining the total “excess” bytes replaced
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 1.30 1.13 1.11 1.03 1.38 1.17 1.14

500K 1.74 2.20 2.10 2.17 2.61 2.33 2.08

1Mb 4.06 3.78 4.01 2.48 6.25 3.30 3.91

5Mb 13.19 13.68 13.06 12.97 13.03 13.67 13.70

10Mb 40.77 40.35 40.31 40.67 40.65 39.92 39.86

50Mb 98.38 98.38 98.37 97.31 98.41 98.30 98.36

Table 5.2: Byte Hit Rates of trace Siva (Apr16). It can be seen that a 10Mb cache
produces above 90% hit rate regardless of policy which corresponds to only 40%
of the bytes being accessed. While a 50Mb cache is able to hold most of the bytes
being accessed.

Size LRU LFU RR GDS INTER INTRA BOTH
100K 62 141 117 27 25 31 142

500K 168 244 227 33 43 39 148

1Mb 376 399 282 32 44 39 238

5Mb 342 334 324 17 17 20 198

10Mb 450 333 308 9 16 12 194

50Mb 275 91 32 1 0 1 13

Table 5.3: Files replaced over the length of the trace period of trace Siva (Apr16).
It is quite clear that the number of files replaced are much less for INTER,INTRA
and GDS in comparision to conventional caching algorithms like LRU and LFU.
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we can get an upperbound on the communication due to replacement. As the min-

imum bytes required to be replaced is equal to the file coming into the cache, the

“excess” here refers to the bytes replaced beyond this value. Files whose size has

been changed have been considered. It was observed that files needed to be writ-

ten back to the server due to replacement wasn’t significantly large. Type specific

communication optimization techniques [12, 35] may be used to further minimize

the communication overhead.
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 559 675 717 379 504 418 596

500K 3160 3123 2969 2354 2608 2259 2201

1Mb 6996 6603 5898 4475 4105 5343 5262

5Mb 10755 16856 15665 4991 8468 10651 9345

10Mb 21164 16655 14277 6335 13185 11443 8609

50Mb 0 0 0 0 0 0 0

Table 5.4: Total Kilobytes missed over trace duration for trace Siva (Apr16). It can
be seen that INTER performs better than LRU in all cases. GDS performs better in
some cases for this trace as activity is low and number of unique files being dealt
with is much less than in other cases. The last line implies bytes missed is less
than 1KB
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Chapter 6

Conclusion

A trace collection module has been developed. The tracing is completely trans-

parent to the users and adds no noticeale load to the system It has been used

to collect workload that reflects present day user behavior and access patterns.

The traces provide more current information to people investigating file system de-

sign. This workload allows us to practically test new ideas and concepts for future

file systems. An analysis of this workload provided us the information to define

inter and intra file semantic relationships. We have presented a semantic-based

caching algorithm and shown that it performs better than conventional caching ap-

proaches in terms of hit ratio and byte hit ratio. We have also shown that it does this

performing far fewer replacements. Compared to prevalent replacement strategies

that ignore file relations and communication overhead, this approach would seem

to better suit distributed file systems that operate across heterogeneous environ-

ments, especially with low-bandwidth connections such as cegor.
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Appendix A

Analysis of Mist Traces

Traces
K-Apr14 K-Apr16-19 S-Apr14 S-Apr16-19
nautilus mozilla-bin chbg.pl chbg.pl
mozilla-bin wish gconftool-2 gconftool-2
sh xscreensaver-ge sh sh
gnome-panel nautilus nautilus nautilus
gs sh netscape-bin netscape-bin
fortune gs gconfd-2 gconfd-2
ggv-postscript- ggv-postscript- wish java
nautilus-adapte fortune sox realpath
gnome-terminal nautilus-adapte play ls
rhn-applet-gui xpdf xscreensaver wish

Table A.1: Top 10 Active Processes for some more users
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Appendix B

Simulation results using MIST

Traces

Size LRU LFU RR GDS INTER INTRA BOTH
100K 65.47 61.57 61.82 62.00 65.92 64.41 62.27

500K 73.29 73.34 72.79 73.38 73.75 73.38 72.79

1Mb 75.81 75.33 74.75 75.25 76.35 76.31 75.46

5Mb 80.87 80.85 81.26 81.64 82.30 81.93 80.75

10Mb 82.36 83.58 85.78 91.48 85.81 86.82 81.54

50Mb 93.06 93.07 93.08 93.08 93.07 93.08 93.07

Table B.1: Hit Rates of trace Siva (Apr14)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 1.26 .84 .84 .85 1.24 1.12 .87

500K 2.73 2.75 2.55 2.61 2.81 2.63 2.53

1Mb 4.57 4.09 3.61 3.72 4.70 4.65 4.14

5Mb 12.13 12.29 13.55 13.37 16.65 14.89 11.64

10Mb 17.55 21.64 30.96 51.21 29.37 33.98 14.14

50Mb 89.03 89.03 89.03 89.01 89.01 89.03 89.01

Table B.2: Byte Hit Rates of trace Siva (Apr14)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 256 330 234 48 43 54 206

500K 279 393 263 28 27 42 237

1Mb 299 344 258 22 23 30 221

5Mb 323 537 362 10 11 19 276

10Mb 303 371 336 7 7 10 415

50Mb 45 221 11 1 1 1 64

Table B.3: Files replaced, trace Siva (Apr14)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 80.56 80.54 80.11 82.81 81.78 74.77 80.53

500K 86.82 86.82 86.85 86.37 87.52 86.05 86.77

1Mb 88.13 87.80 88.10 88.77 88.68 87.76 88.12

5Mb 95.70 95.66 95.71 95.75 95.77 95.53 95.73

10Mb 95.79 95.62 95.79 95.86 95.83 95.74 95.82

50Mb 97.32 97.31 97.31 97.33 97.33 97.33 97.32

Table B.4: Hit Rates of trace Sharun(Apr16)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 4.50 4.49 4.39 6.18 5.48 3.55 4.49

500K 7.41 7.42 7.42 6.49 8.15 6.92 7.38

1Mb 8.87 7.64 8.84 9.96 9.47 8.40 8.84

5Mb 27.14 27.11 27.11 26.43 27.15 25.97 27.14

10Mb 27.60 25.71 27.59 27.07 27.48 27.07 27.60

50Mb 93.24 93.23 93.24 92.44 93.24 93.24 93.23

Table B.5: Byte Hit Rates of trace Sharun (Apr16)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 691 697 545 36 96 100 431

500K 758 657 417 24 31 47 328

1Mb 909 642 493 12 19 42 374

5Mb 1109 745 504 17 32 28 395

10Mb 1196 512 631 4 17 19 597

50Mb 889 224 352 2 7 9 286

Table B.6: Files replaced, trace Sharun (Apr16)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 77.91 77.88 77.94 89.19 89.01 89.28 77.82

500K 87.28 87.17 87.25 92.55 92.60 92.66 87.25

1Mb 88.65 88.55 88.63 93.13 93.13 93.15 88.65

5Mb 95.30 95.25 95.30 95.44 95.46 95.44 95.30

10Mb 95.38 95.38 95.38 95.38 95.39 95.38 95.38

50Mb 95.67 95.67 95.67 95.67 95.69 95.67 95.67

Table B.7: Hit Rates of trace Sharun (Apr14)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 5.47 12.61 12.62 39.20 38.99 39.67 12.60

500K 18.99 19.00 18.97 41.39 41.30 41.88 18.97

1Mb 21.72 21.70 21.70 42.72 42.58 42.85 21.69

5Mb 51.13 51.13 51.13 59.29 59.19 59.29 51.13

10Mb 52.29 52.29 52.29 52.29 52.18 52.29 52.29

50Mb 75.73 75.73 75.73 75.73 75.67 75.73 75.73

Table B.8: Byte Hit Rates of trace Sharun (Apr14)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 109 134 101 6 6 5 126

500K 37 207 40 2 2 3 28

1Mb 96 158 69 2 2 2 29

5Mb 33 153 90 1 1 1 22

10Mb 0 0 0 0 0 0 0

50Mb 0 0 0 0 0 0 0

Table B.9: Files replaced, trace Sharun (Apr14)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 66.76 67.24 66.08 64.80 70.98 64.02 68.67

500K 77.34 77.42 77.29 76.22 77.60 76.01 77.51

1Mb 79.44 79.65 78.48 78.97 79.62 78.60 79.56

5Mb 85.46 85.59 85.47 85.42 85.59 84.47 85.50

10Mb 85.48 85.66 85.50 85.64 85.65 85.55 85.44

50Mb 85.70 85.73 85.70 85.81 85.78 85.80 85.73

Table B.10: Hit Rates of trace Zhu (Apr16)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 4.23 4.43 4.04 3.69 6.46 3.21 5.25

500K 12.81 12.80 12.46 10.15 12.78 10.03 12.87

1Mb 20.53 20.79 15.82 16.78 20.22 16.42 20.56

5Mb 66.96 67.14 66.92 62.89 67.09 54.95 66.85

10Mb 69.20 69.03 67.47 66.84 69.19 65.63 69.04

50Mb 70.20 70.17 70.22 70.22 70.17 70.18 70.05

Table B.11: Byte Hit Rates of trace Zhu (Apr16)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 1178 1400 1187 152 314 477 878

500K 862 811 720 46 136 235 727

1Mb 824 548 579 25 54 89 767

5Mb 214 79 296 15 19 51 296

10Mb 338 199 370 24 136 69 697

50Mb 181 218 621 6 6 22 334

Table B.12: Files replaced, trace Zhu (Apr16)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 67.96 67.93 67.59 73.21 69.51 71.89 67.41

500K 78.08 78.16 78.03 77.56 78.28 77.43 78.04

1Mb 80.55 80.91 80.92 80.25 81.18 79.91 80.95

5Mb 86.75 86.79 86.76 86.83 86.96 86.84 86.77

10Mb 86.74 86.85 86.70 87.01 86.98 86.85 86.77

50Mb 87.02 87.02 87.02 87.02 87.00 87.02 87.02

Table B.13: Hit Rates of trace Zhu (Apr14)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 3.51 3.54 3.40 5.50 4.06 4.94 3.38

500K 9.63 9.63 9.58 8.63 9.61 8.52 9.62

1Mb 16.85 17.32 17.26 14.29 17.36 13.66 17.57

5Mb 51.24 51.26 48.88 48.65 51.11 48.91 51.24

10Mb 51.34 51.36 49.03 51.40 51.27 49.02 51.31

50Mb 51.61 51.61 51.61 51.61 51.54 51.61 51.61

Table B.14: Byte Hit Rates of trace Zhu (Apr14)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 501 463 435 30 71 65 333

500K 465 316 319 19 60 38 321

1Mb 500 353 299 14 34 26 317

5Mb 293 273 117 4 18 7 219

10Mb 350 217 152 2 6 5 206

50Mb 0 0 0 0 0 0 0

Table B.15: Files replaced, trace Zhu Apr14
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 2699 2891 2311 1351 1811 2005 2059

500K 3795 4325 3904 1900 2274 3151 3822

1Mb 6667 6489 6894 3095 2721 4402 6970

5Mb 26405 31004 28001 15033 16178 20443 20592

10Mb 38538 41034 37840 22058 27487 31165 32787

50Mb 44690 54032 43429 46229 24703 41843 35314

Table B.16: Total bytes missed of trace Kewei (Apr16)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 4194 4366 4271 1979 3015 4621 4262

500K 5766 5652 5962 2387 5095 7345 5791

1Mb 8521 7219 8054 3045 5235 6074 6796

5Mb 8652 11316 13405 8564 8768 26962 41564

10Mb 47547 48502 52445 47475 36435 66646 71154

50Mb 52387 48786 50764 28110 27623 44954 47419

Table B.17: Total bytes missed of trace Zhu (Apr16)

Size LRU LFU RR GDS INTER INTRA BOTH
100K 1845 1617 1627 469 795 813 857

500K 3212 2823 2742 1324 1988 1855 2045

1Mb 5292 5476 4909 2587 3363 3590 2979

5Mb 5593 8593 5711 4283 8146 5066 5085

10Mb 9437 7468 6322 2787 5855 5735 6450

50Mb 0 0 0 0 0 0 0

Table B.18: Total bytes missed of trace Zhu (Apr14)
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Size LRU LFU RR GDS INTER INTRA BOTH
100K 1154 1317 1338 789 790 876 826

500K 3783 4502 3899 2345 2278 3171 2505

1Mb 7895 6353 6518 2521 4026 4340 4003

5Mb 22040 24381 19602 5538 8357 10840 32402

10Mb 22494 18160 22245 7112 12053 11027 12172

50Mb 11522 11522 11522 11522 11522 11522 11522

Table B.19: Total bytes missed of trace Siva (Apr14)
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Appendix C

Simulation results using DFS Traces
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Figure C.1: Hit Rates recorded during the simulation using trace files barber1,
barber2 and mozart1 with caches of size 25K and 100K resp.
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Figure C.2: Byte Hit Rates recorded during the simulation using trace files barber1,
barber2 and mozart1 with caches of size 25K and 100K resp.
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Figure C.3: Replace attempts recorded during the simulation using trace files bar-
ber1, barber2 and mozart1 with caches of size 25K and 100K resp.
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Figure C.4: Hit Rates recorded during the simulation using trace files barber1,
barber2, mozart1, mozart2, ives1 and ives2 with caches of size 10K
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Figure C.5: Byte Hit Rates recorded during the simulation using trace files barber1,
barber2, mozart1, mozart2, ives1 and ives2 with caches of size 10K
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Figure C.6: Replace attempts recorded during the simulation using trace files bar-
ber1, barber2, mozart1, mozart2, ives1 and ives2 with caches of size 10K
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The ability to stay continually connected, due to ubiquitous availabilty of a wide

variety of networks, is a persent day reality. Yet the convenience and transparency

of use, offered by present distributed file systems across heterogeneous networks

have a long way to go. This thesis, examines present day user behavior and file

access patterns for clues to imporve distributed file system design. Motivated by

the results, a semantic based caching algorithms have been proposed. Not only

does this approach produces better hit rates than conventional algorithms but it

does so reducing the number of replacements by almost half. This gives a user

more options while in a weakly connected or disconnected state and also results

in savings on synchronization-related communication overhead, essential to the

effectiveness of a heterogenous distributed system.
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