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Abstract

Environmental monitoring is one of the most important
sensor network application domains. The success of those
applications is determined by the quality of the collected
data. Thus, it is crucial to carefully analyze the collected
sensing data, which not only helps us understand the fea-
tures of monitored field, but also unveil any limitations and
opportunities that should be considered in future sensor sys-
tem design. In this paper, we take an initial step and analyze
one-month sensing data collected from a real-world water
system surveillance application, focusing on the data sim-
ilarity, data abnormality and failure patterns. Our major
findings include: (1) Information similarity, including pat-
tern similarity and numerical similarity, is very common,
which provides a good opportunity to trade off energy effi-
ciency and data quality; (2) Spatial and multi-modality cor-
relation analysis provide a way to evaluate data integrity
and to detect conflicting data that usually indicates appear-
ances of sensor malfunction or interesting events; and (3)
External harsh environmental conditions may be the most
important factor on inflicting failures in environmental ap-
plications. Communication failures, mainly caused by lack-
ing of synchronization, contribute the largest portion among
all failure types.

1 Introduction
As new fabrication and integration technologies reduce

the cost and size of wireless micro-sensors, we are witness-
ing another revolution that facilitates the observation and
control of our physical world [3, 12], just as networking
technologies have changed the way individuals and organi-
zations exchange information. Environmental monitoring,
targeting at discovering and understanding the environmen-
tal laws and changes, is one of the most important sensor
network application domains.

With the increasing number of deployments of sensor
systems, in which the main function is to collect interest-
ing data at the sink, it is becoming crucial to carefully ana-

lyze the large amount of collected data. However, this prob-
lem is neglected in previous research, which mainly focuses
on energy efficient, reliable sensor systems design and opti-
mization. Although data quality management attracts more
and more attention in the last two years [10, 15], propos-
ing novel data quality management mechanisms is still an
important and interesting research topic. We argue that sen-
sor system optimization and data quality management are
closely related to the characteristics of collected data, in
other words, sensor system optimization and data quality
management should take data characteristics into consider-
ation. Thus, in this paper, we take an initial step to charac-
terize the data quality and failures using a set of one-month
data collected by a real-world water system surveillance ap-
plication. The data set consists of water level, precipitation,
and gauge voltage measurements from 13 gauges located
around Lake Winnebago, St. Clair River and Detroit River
in January 2008.

Our data analysis focuses on two aspects: quality ori-
ented data analysis and failure pattern analysis. In quality
oriented data analysis, we intend to discover two types of
data, namely similarity data and abnormal data, whereas, in
failure pattern analysis, we try to classify the common fail-
ure type and record failure time. The significance of our
discovery is two-fold. On one hand, it helps us understand
the laws and changes in the monitored field. On the other
hand, it unveils the limitations in the current sensor system
design, and provides us with a strong ground upon which
we can base our future WSN systems design.

Our study reveals several interesting facts. First, infor-
mation similarity, including pattern similarity and numeri-
cal similarity, is very common, which provides a good op-
portunity to trade off energy efficiency and data quality.
Second, different parameters exhibit different data charac-
teristics, which suggests that adaptive protocols using vari-
able sampling rates can bring in significant improvements.
Third, spatial correlation analysis and multi-modality corre-
lation analysis provide a way to evaluate data integrity and
to detect conflicting data that usually indicates appearances
of sensor malfunction or interesting events. Fourth, abnor-



mal data may appear all the time, and continuous appear-
ance of abnormal data usually suggests a failure or an in-
teresting event. Finally, external harsh environmental con-
ditions may be the most important factor on inflicting fail-
ures in environmental applications. Communication fail-
ures, mainly caused by lack of synchronization, contribute
the largest portion among all failure types.

The rest of the paper is organized as follows. A brief
background of the targeting application and data is de-
scribed in Section 2. We conduct quality oriented data anal-
ysis in Section 3, followed by failure pattern analysis in
Section 4. Finally, related work and conclusion are listed
in Section 5 and Section 6 respectively.

2 Background
The United States Army Corps of Engineers (USACE) in

Detroit District, has 22 data collection platforms commonly
referred to as sensor nodes or gauges, deployed around the
St. Clair and Detroit rivers in southeast Michigan as well
as the Lake Winnebago watershed southwest of Green Bay,
Wisconsin. One month data in January 2008 from 13 of the
22 gauges were made available for this study. Each sensor
node collects battery voltage, water level and precipitation
except the Dunn Paper gauge (G1) which collects battery
voltage, air temperature and water temperature. However,
precipitation data for the St. Clair/Detroit river system is
not used in this work, because that “data” in the raw files
is simply an artifact of the gauge programming. For conve-
nience, we name each sensor node as G1, where ‘G’ stands
for “gauge.” The gauge locations of G1, G2 and G3 are
on the St. Clair River, G4 is located on the Detroit River,
and G5 through G13 are spread around the Lake Winnebago
watershed. Gauges G5 through G13 are shown in Figure 1,
and the other remaining gauges are shown in Figure 2. It is
worth mentioning that G8 and G10 suffered many failures
throughout the period of study. Therefore, any data analy-
sis on G8 or G10 will mostly look like “weird” or at least
different from the other gauges.
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Figure 1. Lake Winnebago Watershed

Data samples are sent from each gauge to the GOES
satellite, once every hour or every four hours, depending
on whether the station has a high baud rate transmitter or
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Figure 2. St. Clair River and Detroit River

not. High baud rate transmitters send data every hour. Data
is then sent from the satellite to a central location in Wal-
lops Island in Virginia, where the data samples are collected
and arranged in files for later download through a regular
ftp service. We conducted our analysis directly using the
un-decoded files. This raw data set has not been subject
to any quality control procedure, and thus provide a good
opportunity to study failures happening in sensor network.
Water level and precipitation are sampled once every hour,
whereas voltage is sampled once every hour or every two
hours. Water level is measured against the IGLD Datum
1985, which works as the base to measure current water
level. So negative water level means it is below the local
IGLD Datum 1985, though that does not happen often. Pre-
cipitation data is supposed to be constantly increasing (ex-
cept when the gauge resets as part of its normal operation).
To figure out how much precipitation fell over a one-hour
period, the difference between consecutive samples are cal-
culated and reported. The measurements for voltage and
precipitation are in volts and inches respectively. Water
level is reported in meters, centimeters and feet. For conve-
nience, we converted the readings for water level in meters.

3 Quality-Oriented Sensing Data Analysis

In this section, we focus on quality-oriented sensing data
analysis. How to define data quality is still an open problem.
Here, We define high quality data as the data that contains
the most information from the monitored field.

To understand the quality of the collected data, we try to
discover the spatial and temporal relationship among those
data; specifically, we are mostly interested in detecting two
types of data, redundant data and abnormal data. Usually,
redundant data, which we name as similarity, will not affect
the overall quality of the collected data when it is removed.
Contrary to redundant data, abnormal data, which largely
affects the data quality, should be examined more carefully,
because it usually denotes sensor failures, malicious attacks
or interesting events.

2



3.1 Time Series Analysis for Individual
Parameter

For each individual parameter, we define two types of
similarity, the pattern similarity and the numerical simi-
larity. Here, we define a pattern as the continuous reap-
pearance of the same value sensed by one sensor, and the
number of continuous reappearance is called pattern length.
Note that a pattern must have a minimum length of 2. Thus,
each pattern is a two tuple < key, length >. For example,
if the sensor reads a series of 4, 4, 4, 5, 5, 4, 5, we detect the
patterns as < 4, 3 > and < 5, 2 >, and the number of ap-
pearance of each pattern is 1. We use the pattern reappear-
ance ratio, which is the ratio of the pattern data in the whole
data, to measure the pattern similarity among the data. The
numerical similarity records the number of reappearance of
the same numerical value. For example, if a sensor reads a
series of 4, 4, 4, 5, 5, 4, 5, we get numerical similarity as 4
times of appearance of value 4 and 3 times of appearance of
value 5. Similarly, the numerical similarity ratio is used to
evaluate the value similarity, which is defined as the ratio of
the reappeared sensor readings in all sensor readings.
3.1.1 Pattern Similarity
We detect all patterns for all monitoring parameters in 13
gauges. Here, we pick up gauge G5 as a typical example to
show the patterns we detected as well as reappearance times
of the pattern, which is shown in Figure 3.

From the figure, we do find specific patterns in the col-
lected data, and the number of total patterns is small for all
three parameters. Water level of gauge G5 has the largest
number of patterns, which is 33, whereas, precipitation has
the smallest number of patterns, which is 19. Some patterns
have very large pattern length. For example, the largest pat-
tern length for water level and for precipitation are 77 and
139 respectively. This indicates that water level and pre-
cipitation values stay constant for a long period of time at
the area where G5 located. The number of appearances of
each pattern is mostly small, especially for patterns with
large length. This is because we set up endurance inter-
val as [0.00, 0.00], thus, very small difference between two
keys, such as 14.66 and 14.67, are distinguish. Here en-
durance interval is an interval within which the difference
between two readings can be ignored, for example, if the
endurance interval is [−0.02, 0.02], 14.67 and 14.66 can be
regarded as the same. Because of unavoidable system er-
ror in measurement and applications lowered requirements
on accuracy, it is reasonable to set up an endurance interval
for each monitoring parameter. Another reason is that we
define different patterns even when they have the same key
value but different lengths.

Figure 4 shows the pattern reappearance ratio, where “-”
means there is no available data. In the figure, we find that
voltage has the smallest pattern reappearance ratio, which
suggests that the changes of the voltage are very frequent.

V Pattern  Appearances W Pattern Appearances P Pattern Appearances
<14.09, 2> 1 <0.67, 2> 1 <1.67, 2> 1
<14.58, 2> 1 <0.68, 2> 1 <1.77, 2> 1
<14.59, 2> 1 <0.69, 2> 2 <2.28, 2> 1
<14.63, 2> 2 <0.70, 2> 1 <2.50, 2> 1
<14.64, 2> 1 <0.71, 2> 2 <2.52, 2> 1
<14.66, 2> 2 <0.72, 2> 1 <2.30, 5> 1
<14.67, 2> 2 <0.68, 3> 1 <2.47, 5> 1
<14.68, 2> 3 <0.69, 3> 2 <2.24, 7> 1
<14.69, 2> 1 <0.70, 3> 2 <2.34, 7> 1
<14.71, 2> 1 <0.71, 3> 4 <2.40, 8> 1
<14.73, 2> 1 <0.72, 3> 2 <1.69, 16> 1
<14.57, 3> 1 <0.70, 4> 2 <2.36, 22> 1
<14.60, 3> 1 <0.71, 4> 1 <2.20, 38> 1
<14.67, 3> 3 <0.72, 4> 3 <2.36, 44> 1
<14.72, 3> 1 <0.69, 5> 2 <2.11, 49> 1
<14.65, 4> 1 <0.70, 5> 4 <2.53, 67> 1
<14.67, 4> 2 <0.70, 9> 1 <2.41, 97> 1
<14.68, 4> 3 <0.72, 9> 1 <2.51, 102> 1
<14.69, 4> 2 <0.71, 11> 1 <1.29, 139> 1
<14.61, 5> 1 <0.71, 14> 1
<14.64, 5> 1 <0.68, 16> 1
<14.67, 5> 1 <0.71, 16> 1
<14.68, 5> 2 <0.71, 18> 1
<14.68, 6> 1 <0.71, 22> 1
<14.70, 6> 1 <0.67, 28> 1
<14.67, 7> 2 <0.68, 29> 1
<14.69, 7> 1 <0.71, 30> 1
<14.68, 8> 2 <0.70, 34> 1
<14.68, 9> 2 <0.70, 38> 1
<14.68, 10> 1 <0.69, 45> 1
<14.68, 11> 1 <0.69, 47> 1
<14.67, 12> 1 <0.68, 69> 1

<0.72, 77> 1

Figure 3. Detected patterns and the number of appear-
ance in gauge G5.

This is also because we distinguished the pattern keys in ex-
tremely fine granularity; however, even in such a fine gran-
ularity, both patterns in water level and precipitation show
a large ratio of pattern similarity. For example, the small-
est pattern reappearance ratio is 0.43 in G3, and the largest
pattern reappearance ratio is 0.94 in G12. While precipita-
tion shows the largest pattern similarity, which can be seen
not only from the least number of patterns in Figure 3, but
also from the fact that it has all pattern reappearance ratio
larger than 0.77; actually, most pattern reappearance ratio
of precipitation is about 0.99 for all gauges. We can ex-
pect precipitation to stay stable at most time. It may change
suddenly, however, after this sudden change, it goes back
to normal and stabilizes for a long period of time. Volt-
age has the most varying pattern reappearance ratios, which
ranges from 0.04 to 0.96, showing that the performance of
the power supply is really independent and highly dynamic.

The goal of the sensor network applications is to col-
lect meaningful data, thus, most of those applications can
endure a certain level of data inaccuracy, which will not af-
fect our discovery of the rules and events in the monitor-
ing field. We reexamine the pattern reappearance ratio after
we lower the accuracy requirements on the collected data
and set up different endurance intervals for three parame-
ters. The resulted pattern reappearance ratio is depicted in
Figure 5, where the three numbers under the title are the en-
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Gauge 
ID 

Voltage  
Pattern 

Reappearance 
Ratio 

Water Level 
Pattern 

Reappearance 
Ratio 

Precipitation 
Pattern 

Reappearance 
Ratio 

G1 0.07 - - 
G2 0.85 0.64 - 
G3 0.78 0.43 - 
G4 0.38 0.57 - 
G5 0.50 0.88 0.92 
G6 0.17 0.84 0.89 
G7 0.96 0.69 0.93 
G8 - - - 
G9 0.23 0.87 0.89 
G10 0.04 0.44 0.77 
G11 0.10 0.83 0.90 
G12 0.87 0.94 0.91 
G13 0.05 0.88 0.89 

 

Figure 4. Pattern reappearance ratio with zero endurance
interval.

durance intervals, which are mostly 10% of possible largest
changes, i.e., we allow voltage to endure 0.2 volts changes,
water level to endure 0.04 meter changes, and precipitation
to endure 0.04 inch changes. Note that different units are
used for water level and precipitation, i.e., meter for water
level and inch for precipitation, which we keep the original
units as in the raw data.

Gauge 
ID 

Voltage 
Pattern 

Reappearance 
Ratio 

[-0.1, 0.1] 

Water Level 
Pattern 

Reappearance 
Ratio 

[-0.02, 0.02] 

Precipitation  
Pattern 

Reappearance 
Ratio 

[-0.02, 0.02] 
G1 0.59 - - 
G2 1.00 0.85 - 
G3 1.00 0.74 - 
G4 0.96 0.78 - 
G5 0.88 0.99 0.95 
G6 0.98 0.94 0.92 
G7 1.00 0.99 0.95 
G8 - - - 
G9 1.00 0.94 0.92 
G10 0.64 0.72 0.79 
G11 0.78 0.93 0.94 
G12 1.00 0.99 0.94 
G13 0.80 0.95 0.94 

 

Figure 5. Pattern reappearance ratio with increased en-
dure intervals.

Comparing Figure 5 to Figure 4, we can find that al-
most all pattern reappearance ratios increased by increasing
the endurance interval, especially for those with small reap-
pearance ratio in Figure 4. After we increase the endurance
interval, we can see that 50% of the voltage data pattern
reappearance ratio is larger than 0.95, while water level and
precipitation pattern reappearance ratio do not change too
much compared to that in voltage; however, most of them
are still larger than those in Figure 4. From both figures, we
can see that there is a big pattern reappearance ratio.

In our definition, pattern length means the number of
continuous appearance of the same sensor reading. Thus,
we try to figure out the distribution of the pattern length in

terms of variable endurance interval, as shown in Figure 6,
where the x-axis is the length of the pattern and the y-axis
is the CDF of the pattern length. From the figure, we find
that most patterns have short patten length. For example,
when the endurance interval is set to be [0.00, 0.00], 90% of
voltage patterns have length less than 10, and about 70% of
water level patterns and about 60% of precipitation patterns
have length less than 10. However, different parameters
have different pattern lengths. In the figure, we can see that
voltage, which has almost all pattern length less than 20,
has more short length patterns than water level and precipi-
tation, while precipitation has the longest length among the
three parameters, where about 30% of the precipitation pat-
tern has length longer than 20. This observation shows that
precipitation is stable at most of the time, but the reading of
the voltage has high dynamics. By increasing the endurance
interval, more patterns have longer length appear. For ex-
ample, when water level endurance interval is increased to
[−0.04, 0.04], more than 30% of the patterns have length
between 140 to 180.

3.1.2 Numerical Similarity
Having studied pattern similarity, we move on to check the
numerical similarity. Numerical similarity focuses on the
numerical value reappearance of the sensing data, which
differs from pattern similarity in that numerical similarity
does not intend to detect any pattern. For the numerical
similarity, we identify the number of appearance for each
individual value. Figure 7 shows the numerical distribution
of the collected data, where the x-axis is the numerical value
of the sensing reading and the y-axis denotes the number of
appearance of the corresponding numerical value. Note that
we pick up the data collected by gauge G5 as an example.

In the figure, we find that those three parameters exhibit
totally different distributions. The reading of the voltage
and water level are very close to normal distribution with
µ = 14.22, σ = 0.38 and µ = 0.7, sigma = 0.02 re-
spectively. The voltage readings are more centralized to
value 14.7, while water level readings are more broadly
distributed from 0.68 to 0.72 and centralized at 0.71. The
reading of precipitation shows no obvious distribution. It
spreads from about 1.25 to 2.55. Some precipitation values
such as 1.29 and 2.51, appear much more times than others,
which means no rain or snow falls for a long time after the
precipitation value is read, while other precipitation read-
ings only appear several times, which mainly depicts some
transitional states during a continuous rain or snow falling.
Like the pattern similarity ratio, numerical reappearance ra-
tio is used to evaluate the numerical similarity.

Figure 8 presents the numerical reappearance ratio of the
sensing data at all gauges. We can see that all parameters
exhibit very high reappearance ratio. Compared to pattern
reappearance ratio, numerical reappearance ratio is much
larger for voltage, fairly larger for water level, and com-
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Figure 6. CDF of pattern length: (a) Voltage, (b) water level, (c) precipitation.
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Figure 7. The number of appearances for each numerical values: (a) Voltage, (b) water level, (c) precipitation.

Gauge 
ID 

Voltage 
Numerical 

Reappearance 
Ratio 

Water Level 
Numerical 

Reappearance 
Ratio 

Precipitation  
Numerical 

Reappearance 
Ratio 

G1 0.84 - - 
G2 0.99 0.64 - 
G3 0.97 0.43 - 
G4 0.91 0.57 - 
G5 0.82 0.88 0.92 
G6 0.94 0.84 0.89 
G7 0.99 0.69 0.93 
G8 - - - 
G9 0.97 0.87 0.89 
G10 0.77 0.44 0.77 
G11 0.82 0.83 0.90 
G12 0.99 0.94 0.91 
G13 0.89 0.88 0.89 

 

Figure 8. Numerical reappearance ratio with endurance
interval [0.00, 0.00].

parable for precipitation. For example, the voltage pattern
reappearance ratio in G1, G10 and G11 is less than 10%,
while the voltage numerical pattern reappearance is close
to 80%. The large difference implies that although the nu-
merical readings of the voltage have a large similarity, they
fluctuate very frequently and there are no obvious patterns
in voltage readings. The two reappearance ratios of precipi-
tation do not differ too much, which suggests that reappear-
ance patterns play an important role in precipitation.

Similar to what we have done in the pattern similarity
analysis, we increase the endurance interval to a certain

Gauge 
ID 

Voltage 
Numerical 

Reappearance 
Ratio 

[-0.1, 0.1] 

Water Level 
Numerical 

Reappearance 
Ratio 

[-0.02, 0.02] 

Precipitation 
Numerical 

Reappearance 
Ratio 

[-0.02, 0.02] 
G1 0.95 - - 
G2 0.99 0.97 - 
G3 0.99 0.94 - 
G4 0.97 0.95 - 
G5 0.94 0.99 0.95 
G6 0.98 0.98 0.93 
G7 1.00 1.00 0.95 
G8 - - - 
G9 0.99 0.96 0.93 
G10 0.89 0.93 0.90 
G11 0.92 0.96 0.94 
G12 1.00 0.99 0.95 
G13 0.95 0.97 0.94 

 

Figure 9. Numerical reappearance ratio with increased
endurance intervals.

level. Here, we set the endurance interval to the same value
as we did in the pattern similarity analysis. As a result, most
numerical appearance ratios are increased by increasing the
endurance interval; however, the increasing rate is not as big
as the one in pattern similarity analysis. From Figure 9, we
really find that the numerical redundancy is very high in all
three types of sensing data. For instance, after we increase
the endurance interval, the numerical reappearance ratio is
mostly over 90%. We also try to mine the pattern of the data
change in terms of the time series. We calculate the coeffi-
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ciency in the time series with different time periods such as
24 hours, 48 hours and so on, however, we find that all the
coefficiencies are very low, thus, we believe that there is no
strong clues showing the periodically reappearance pattern
in data changes.
3.1.3 Abnormal Data Detection
Abnormal data may result from sensor malfunction, data
loss during the communication, faked data inserted by ma-
licious nodes, or the appearance of an interesting event. We
try to detect abnormal data based on the presented numeri-
cal value of the data. Basically, two types of abnormal data
can be detected. One is the out-of-range data, and the other
is dramatic changing data.

Gauge ID  Parameter  Position  Value 
G6  Water Level  Reading # 45  62.79 
G10  Voltage  Reading #47  1.00 
G10  Voltage  Reading #119  1.00 
G10  Voltage  Reading #126  1.00 
G10  Voltage  Reading #127  1.00 
G10  Voltage  Reading #323  1.00 

 

Figure 10. Detected out-of-range readings.

Figure 10 shows the appearance of the out-of-range data,
which is the data out of the possible valid range defined by
the domain scientists. Based on the figure, we figure out that
most sensing data are within the normal range. We find out-
of-range data only at two gauges, G6 and G10, and G6 only
has one invalid reading. Considering the failure patterns to
be discussed in Section 4, we find that G10 has a maximum
number of failures as well. So, we believe there are some
relations between the probability of abnormal readings and
the probability of failures.

Figure 11 explains hourly water level changes in gauge
G3, where we find that their distributions are close to nor-
mal distribution based on normal probability plot, which is a
graphical technique for assessing whether or not a data set is
approximately normally distributed. For such data, 3-sigma
limits is a common practice to base the control limit, i.e.,
whenever a data point falls out of 3 times the standard devi-
ation from its average value, it is assumed that the process
is probably out of control. In the figure, two horizontal lines
depict the upper and lower 3-sigma limits. We find that only
several points are out of the two limits, which means do-
main scientists do not need to check the cause of water level
changes at most time. The similar patterns are detected in
all gauges as shown in Figure 12, where most gauges have
water level changes within 3-sigma limits. Investigation is
deserved when out-of-limit changes are detected to find the
cause of the abnormality.
3.1.4 Implications
Learned from above similarity and abnormal analysis, we
argue that we need to revisit system protocol design by in-
tegrating the intrinsic features of the monitoring parameters.

0 100 200 300 400 500 600 700
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (in hours)

H
ou

rly
 C

ha
ng

e

Upper Limit

Lower Limit

Average change

Figure 11. Limit control of G3’s hourly water level
changes.

G2 G3 G4 G5 G6 G7 G9 G10 G11 G12 G13
2.17% 1.55% 2.95% 0.00% 0.31% 0.16% 0.00% 1.40% 0.16% 6.06% 1.86%

Figure 12. Out-of-Limit ratio for hourly water level
changes.

First, we can take advantage of the large amount of
data similarity. Because data similarity is common, it is
not necessary to transfer all the collected data to the gate-
way. Quality-assured local data processing, aggregation and
compression algorithms are necessary to remove redundant
data and reduce overall data volume but keep the quality of
the collected data at a satisfactory level. By enduring a cer-
tain level of data inaccuracy, we can reduce the total amount
of collected data up to 90% according to the pattern and nu-
merical reappearance ratios. In addition, strong patterns are
helpful to estimate the future data and detect abnormal data.

Second, we can use different data sampling rates for dif-
ferent monitoring parameters. For example, we discover
that the changes in voltage is much more frequent than those
in precipitation. Thus, we need to increase the sampling rate
to sense voltage data more frequently, whereas, decrease the
sampling rate for precipitation. Furthermore, in the sensor
readings for precipitation, some of them reappear a large
amount of times, while others only appear once. Usually,
the readings that only appear once or twice imply a high
dynamic environment. Therefore, it is better to increase
sampling rate so that we can detect the details in changes.

Third, there may be a lot of abnormal data existing in
the sensor reading. Basically, they can be classified to two
categories. One type is transitional, which disappears very
quickly. We can mostly ignore this type of data without af-
fecting overall data quality by replacing it with a reasonable
value. The other type is continuous, which typically lasts a
longer period of time. This type of abnormal data usually
implies malicious data or interesting events. When continu-
ous abnormal data is detected, more attention should be paid
to them at the early stage. For example, more data should
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be sampled and reported to the gateway as fast as possible.
Finally, various data sampling rates may result in differ-

ent amount of data traffic. Samplings for different param-
eters and detected abnormal data may have different prior-
ities in their delivery to the gateway. A well designed data
collection protocol is necessary to achieve this goal.

3.2 Multi-Modality and Spatial Sensing
Data Analysis

In this subsection, we analyze the relationship between
two types of sensing data, water level and precipitation.
Moreover, we try to explore the spatial relationship at dif-
ferent locations.

Gage ID Endurance Interval Confliction ration Endurance Interval Confliction ration
G5 (0.00, 0.00)  0.0612 (0.00, 0.01)  0.0408
G6 (0.00, 0.00)  0.0263 (0.00, 0.01)  0.0236( , ) ( , )
G7 (0.00, 0.00)  0.1778 (0.00, 0.01)  0.1111
G9 (0.00, 0.00)  0.0139 (0.00, 0.01)  0
G10 (0.00, 0.00)  0.4786 (0.00, 0.01)  0.0679
G11 (0.00, 0.00)  0.0476 (0.00, 0.01)  0.0476
G12 (0.00, 0.00)  0 (0.00, 0.01)  0
G13 (0.00, 0.00)  0.0145 (0.00, 0.01)  0.0145

0.4
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0.6 [0.00, 0.00]
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Figure 13. Conflict ratio of water level and precipitation.

Although water level can be affected by many factors,
including moisture when it starts raining, rainfall intensity,
and even temperature and slope of the land, we believe that
there is a relationship between water level and precipitation.
Mostly when precipitation increases, water level should also
increase. We count the ratio of the conflict, which is de-
fined as the appearance when precipitation increases but
water level decreases, to verify this relationship. Figure 13
records the conflict ratio between water level and precipi-
tation. In the figure, the x-axis depicts the gauge ID, and
the y-axis shows the conflict ratio. The dark blue bar and
the gray bar denote the conflict ratio with endurance inter-
val [0.00, 0.00] and [−0.01, 0.01] independently. From the
figure we observe that in most cases the conflict ratio is less
than 6%, which verifies that water level is closely related to
precipitation; however, there are two gauges with conflicts
larger than 10%, i.e., G7 has conflict ratio of 18% and G10
has conflict ratio of 48%. After a carefully examination, we
figure out that G10’s high conflict ratio is related with lots of
failures it has. While G7’s high conflict ratio may be caused
by other reasons, because when precipitation increases only
a little, other factors, such as moisture and temperature, may
play major roles to determine water level. This is verified
by the fact that when we increase the endurance interval a
little, the conflict ratio decreases very fast, and it eventually
disappears when we set endurance interval to [−0.01, 0.01]
for water level and [−0.02, 0.02] for precipitation.

We analyze spatial correlation for all of the three param-
eters. Because there are no direct communications among

Water Level G2 G3 G4 G5 G6 G7 G9 G11 G12 G13
G2 1 0.924 0.174 0.344 0.083 0.314 0.64 0.471 0.513 0.569
G3 0.924 1 0.306 0.428 0.254 0.377 0.601 0.505 0.525 0.591
G4 0.174 0.306 1 0.486 0.413 0.35 0.35 0.54 0.436 0.528
G5 0.344 0.428 0.486 1 0.159 0.916 0.699 0.888 0.875 0.555
G6 0.083 0.254 0.413 0.159 1 0.113 -0.1 0.002 -0.01 0.32
G7 0.314 0.377 0.35 0.916 0.113 1 0.659 0.832 0.848 0.474
G9 0.64 0.601 0.35 0.699 -0.1 0.659 1 0.825 0.835 0.7

G11 0.471 0.505 0.54 0.888 0.002 0.832 0.825 1 0.909 0.627
G12 0.513 0.525 0.436 0.875 -0.01 0.848 0.835 0.909 1 0.652
G13 0.569 0.591 0.528 0.555 0.32 0.474 0.7 0.627 0.652 1

Figure 14. Spatial correlation of water level.

Correlation Coefficients for the same parameter between different gages

Voltage G5 G6 G7 G9 G11 G12 G13
G5 1 -0.21 0.004 0.067 -0.54 -0.09 0.15
G6 -0.21 1 0.04 -0.23 0.04 0.259 -0.1
G7 0.004 0.04 1 0.084 0.013 -0.03 -0.03
G9 0.067 -0.23 0.084 1 -0.25 -0.32 0.228
G11 -0.54 0.04 0.013 -0.25 1 0.027 -0.27
G12 -0.09 0.259 -0.03 -0.32 0.027 1 -0.12
G13 0.15 -0.1 -0.03 0.228 -0.27 -0.12 1

Water Level G2 G3 G4 G5 G6 G7 G9 G11 G12 G13
G2 1 0.924 0.174 0.344 0.083 0.314 0.64 0.471 0.513 0.569
G3 0.924 1 0.306 0.428 0.254 0.377 0.601 0.505 0.525 0.591
G4 0.174 0.306 1 0.486 0.413 0.35 0.35 0.54 0.436 0.528
G5 0.344 0.428 0.486 1 0.159 0.916 0.699 0.888 0.875 0.555
G6 0.083 0.254 0.413 0.159 1 0.113 -0.1 0.002 -0.01 0.32
G7 0.314 0.377 0.35 0.916 0.113 1 0.659 0.832 0.848 0.474
G9 0.64 0.601 0.35 0.699 -0.1 0.659 1 0.825 0.835 0.7
G11 0.471 0.505 0.54 0.888 0.002 0.832 0.825 1 0.909 0.627
G12 0.513 0.525 0.436 0.875 -0.01 0.848 0.835 0.909 1 0.652
G13 0.569 0.591 0.528 0.555 0.32 0.474 0.7 0.627 0.652 1

Precipitation G5 G6 G7 G9 G11 G12 G13
G5 1 0.977 0.996 0.995 0.985 0.996 0.996
G6 0.977 1 0.959 0.99 0.996 0.967 0.968
G7 0.996 0.959 1 0.983 0.969 0.999 0.998
G9 0.995 0.99 0.983 1 0.992 0.988 0.988
G11 0.985 0.996 0.969 0.992 1 0.975 0.975
G12 0.996 0.967 0.999 0.988 0.975 1 0.999
G13 0.996 0.968 0.998 0.988 0.975 0.999 1

Figure 15. Spatial correlation of precipitation.

sensors at different locations in this application, we do not
expect spatial correlation among voltage readings at the dif-
ferent gauges, which is validated by the collected data. The
calculated co-efficiency value between any two gauges is
less than 0.54 and 99% of them is less than 0.32. However,
we do find some spatial correlation for both water level and
precipitation based on the data sensed from various gauges.
The results are depicted in Figure 14 and 15 respectively.

In the figure for precipitation, we only have data for
listed gauges. We can see that all gauges with precipitation
data have very large co-efficiency value because they are all
located at Lake Winnebago, which means that the weather
in that area is pretty uniform. When there is a rain fall at
the location of one of the gauges, it is most probably rain-
ing at the locations of the other gauges as well. Water level
also exhibits the similar pattern. In Figure 14, gauges lo-
cated closely usually have high co-efficiency values, which
results in similarity in water level changes, while gauges lo-
cated far away usually have no obvious similarity in terms
of water level changes. For instance, gauges can be grouped
into several small groups with similar water level changes
based on the calculated large co-efficiency values. Thus,
gauge G2 and G3 are within one group with co-efficiency
value larger than 92%. We can see that both of them are
located in St. Clair River. G4 is the only gauge in Detroit
River, so it has no high co-efficiency with any other gauges.
Moreover, gauge G5, G7, G11, and G12 show high similar-
ity because they are located closely. Thus, we believe that
geographical similarity exists in the sensed data for water
level and precipitation.

Implication Multi-modality and spatial sensing data
analysis helps us to find the correlation between different
parameters and geological correlation of the same parame-
ter. Therefore, data collected by the correlated sensors can
be used as a reference to calibrate the sensing data. For
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example, an increase in precipitation mostly results in an
increase in water level. When there are some conflicts be-
tween them, we need to take a close look and figure out the
reason of the conflict. Furthermore, we can take advantage
of similarity in different parameters or sensors located in
different locations. Quality-assured aggregation can be ap-
plied in this scenario to reduce the volume of sensing data.
Thus, multi-modality models and spatial models are very
useful in quality-assured data collection protocol design.

4 Failure Analysis
In this section we study the failure patterns of the sensor

system including communication related failures and sens-
ing hardware related failures. First, we present a few im-
portant definitions.
TTF denotes Time To Failure and represents the time be-
tween two consecutive failures. Mean TTF (MTTF) is a
measure of the system reliability.
TTR denotes Time to Repair that is the time it takes the sys-
tem to recover from a failure. A system that exhibits a small
Mean TTR (MTTR) typically maintains high availability.
Total time: represents the total system lifetime including
functioning as well as failing periods.
Uptime: the total time a system is in the functioning mode,
in contrast, Downtime is the total time, in which the system
is un-available. The following two equations illustrate the
relationship between these values:

MTTF =
Total time

number of failures
(1)

Downtime = MTTR · number of failures (2)

4.1 Methodology

For each sensing parameter (i.e., Water level or Precip-
itation), we organize the readings as a discrete time series
and locate missing or corrupted readings. Each missing or
corrupted reading is considered a failure. For each time se-
ries, we record the Number of Failures, TTFs, and TTRs
for each individual failure type independently.

In our investigation of the raw data traces, we discov-
ered several failure types. Some of these failures are related
to communication failures, while others are pertinent to the
sensing hardware itself. Figure 16 lists all the failure types
we encountered in the raw data along with a simple descrip-
tion for each one of them. The first four failures in the figure
(i.e., Comm-T1 to Comm-T4) are communication failures
between the gauge station and the satellite unit. The last
two failures (i.e., H/W-T1 and H/W-T2) are sensing hard-
ware malfunctioning. H/W-T1 represents a fail-stop failure,
where the sensor simply fails to report a reading on time,
whereas, in H/W-T2, the sensor reports a corrupted reading
(i.e., unreadable values).

4.2 Failure Analysis by Type

To understand the relative importance of these failure
types, we draw their relative occurrence in the raw data
traces for all locations combined in Figure 17(a) and the
total downtime due to the particular failure type in Fig-
ure 17(b). Figure 17(a) gives an idea of how frequent a par-
ticular failure type is, whereas, Figure 17(b) clarifies how
severe that failure is, in other words, how long it takes to
recover from the failure.

H/W-T1
34%

Comm-T2
56%

Comm-T3
2% H/W-T2

4%

Comm-T4
2%

Comm-T1
2%

H/W-T1
43%

Comm-T2
47%

Comm-T4
5%

Comm-T1
1%

H/W-T2
1%

Comm-T3
3%

(a) (b)

Figure 17. Understanding relative importance of differ-
ent failure types. (a) shows their relative frequency (b)
shows their contribution to system total downtime.

In Figure 17(a), we observe that 56% of the total num-
ber of failures are of type Comm-T2 communication failure,
all other communication related failures (i.e., Comm-T1,
Comm-T3, and Comm-T4) collectively account for only
6% of the total number of failures. Comm-T2 as well as
Comm-T4 are directly related to the lack of time synchro-
nization between the gauge station and the satellite unit,
thus, the lack of time synchronization constitutes 58% of
the total number of failures. Failure to report measurements
by the sensor hardware on time (i.e., H/W-T1 failure) ac-
counts for 34% of the total number of failures, in contrast,
reporting corrupted data (i.e., H/W-T2 failure) accounts for
only 4%. This observation suggests that fail-stop failures
are more common in the real world environmental applica-
tions.

Figure 17(b) allows us to observe the importance of the
different failure types from a different perspective, in par-
ticular, how long it takes to recover from a particular failure
type. For example, Although Comm-T4 and Comm-T1 fail-
ure types account for the same percentage of the total num-
ber of failures (i.e., 2% as shown in Figure 17(a)), it seems
that recovering from a Comm-T4 failure takes more time
compared to recovering from a Comm-T1 failure, which al-
lows us to conclude that Comm-T4 failures are more impor-
tant than Comm-T1 failures, in other words, Comm-T4 fail-
ures contribute 5% to the system total downtime, whereas,
Comm-T1 contributes only 1% as shown in Figure 17(b).
We also, observe that sensing hardware failures (i.e., H/W-
T1 and H/W-T2 failures) account for 44% of the total sys-
tem downtime.

We observe in Figure 17 that we have two equally impor-
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Failure Type Message in the raw traces Description

Comm-T1 "ADDRESS ERROR CORRECTED" Unknown reasons. We could not reach technical people who 
could provide explanation.

Comm-T2 "MISSING SCHEDULED DCP MESSAGE" Communication failure due to lack of time synchronization 
between the gauge station and the satellite unit.

Comm-T3 "MESSAGE RECEIVED ON WRONG CHANNEL" The message was not received on the channel that has been 
assigned to that particular gauge station.

Comm-T4 "MESSAGE OVERLAPPING ASSIGNED TIME WINDOW" Communication failure due to lack of time synchronization 
between the gauge station and the satellite unit.

H/W-T1 Blank Sensor failure, no reading was reported by the sensor on time. 
This represents a fail-stop sensor failure

H/W-T2 Corrupted reading Sensor failure, the data format is corrupted, unreadable 
reading

Figure 16. Failure types and their description.

tant major failure types, communication related failures and
sensing hardware failures. Based on these findings and af-
ter consultation with field experts, we decide to merge these
failure categories and abstract them into two failure classes:
communication failures and sensing hardware failures in the
rest of this section.

4.3 Failure Analysis by Location

In this subsection, we study failure characteristics at dif-
ferent locations, which allows us to understand the effect
of the environment on inflicting failures on the system. At
each location, we record the Number of failures and MTTR
for each failure type and draw them in Figure 18(a) and Fig-
ure 18(b) respectively. Note that MTTF is directly propor-
tional to the Number of failures (refer to Equation 1), there-
fore, including MTTF offers no insight in our analysis.

Figure 18 allows us to observe that gauge G10 expe-
rience much more failures compared to the other gauges,
because of the hostile environment surrounded G10. This
suggests that the external environment plays a significant
role in the failure frequency and pattern of the system. We
also observe in Figure 18(a) that the environmental impact
is uniform in inflicting different failure types. For exam-
ple, Figure 18(a) shows that gauge G10 suffered around 26
communication failures, 26 water level sensor failure, and
28 precipitation sensor failures, whereas, Gauge G3 expe-
rienced 1 water level sensor failure, 1 precipitation sensor
failure, and 0 communication failures.

In Figure 18(b), we observe that different failure types
need different recovery time. For example, at gauge G10
in Figure 18(b), precipitation sensor failure takes more time
on average to recover from a failure compared to water level
sensor failure. Surprisingly, communication failures exhibit
much longer repair time.

4.4 Summary and Implications

Based on our findings, we believe that the lack of time
synchronization is a major source of communication fail-
ures, this makes time synchronization algorithms of partic-

ular importance in remotely deployed environmental moni-
toring sensor applications. Sensor hardware failures are also
a major source of failures in these applications, we found
that fail-stop failure is the most common failure pattern
in this category. We further observed that different sensor
hardware exhibit different failure characteristics, in partic-
ular, different repair times. Finally, we found that external
environmental factors, perhaps, are the most important fac-
tor on inflicting failures in environmental applications. This
makes deployment-based failures particularly important, in
which failures are independent of aging. Since our data set
spans only a short period of time (one month), it is hard to
draw any conclusions about the effect of aging on failures,
however, by the camera-ready time, we will have access to
3 more months worth of data, this will allow us to provide
more analysis regarding usage-based failures and aging.

5 Related Work

The work presented in this paper is inspired by many
previous work in WSNs, although, to our knowledge, it is
the first work on detailed data quality and failures charac-
terization of sensing data in WSNs. Next, we will list the
most relevant previous efforts.

SenseWeb [14] has provided a venue for people to pub-
lish their data, but we have not seen any analysis yet. Our
next step will use more data set from SenseWeb. Data ag-
gregation is an important way to reduce the volume of the
collected data. A few data aggregation approaches have
been proposed. These approaches make use of cluster based
structures [6] or tree based structures [2, 5, 7, 11, 18]. Tang
and Xu propose to differentiate the precisions of data col-
lected from different sensor nodes to balance their energy
consumption [16].

Adaptive sampling has been proposed to match sampling
rate to the properties of environment, sensor networks and
data stream. Jain and Chang propose an adaptive sampling
approach called backcasting [8]. Gedik and Liu proposed a
similar way of data collection, selective sampling [4]. Al-
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Figure 18. Understanding effect of external environment on inflicting failures. (a) effect of environment on failure frequency (b)
effect of environment on MTTR.

though many approaches have been proposed to reduce en-
ergy while maintaining data quality, there exists rare study
on the pattern of raw data collected by sensor nodes in the
real world. In addition, most studies adopt the way of sim-
ulation, whereas, our quality-oriented sensing data analysis
gives a chance to take a fresh look at how the data behaves.

Failure pattern is another important issue for WSNs.
There have been a few efforts that focus on understanding
failure patterns of computer hardware components, in par-
ticular hard disks [9, 13]. Our work employs similar tech-
niques and investigates a different type of system that is de-
ployed in an open environment, therefore, we believe that
its failure behavior is totaly different from classical com-
puter systems. To the best of our knowledge, there is no
prior work that specifically studies and analyzes real sen-
sor failure traces so that our work is a leading exploration
step in this direction. Most existing work on WSN reli-
ability assumes exponential lifetime distribution of sensor
nodes [1, 17], and here we take a second look of such as-
sumption by investigating real sensor system failure traces.
Although the current data set spans a short period of time
and does not permit us to draw strong conclusions regarding
lifetime distributions, we believe that our work brings new
insights in understanding sensor device failure patterns.

6 Conclusion

In this work, we use real sensor data sets collected by
13 sensor nodes to study and analyze data quality proper-
ties as well as failure patterns. We found that data redun-
dancy is very high in the water level and precipitation data
sets. This provides us with an opportunity to design more
aggressive energy-efficient data collection protocols. We
also found that the lack of time synchronization is a ma-
jor source of communication failures in the system, which
suggests that we should pay more attention to time synchro-
nization protocols in remotely deployed WSN environmen-
tal applications. In our future work, we will focus on de-
signing energy-efficient sensor networks with high-quality
data taking advantage of what we have learned here about
information redundancy, similarity between data series, and
abnormal data detection.
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