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Abstract

Requests for dynamic and personalized content have be-
come an important part of current-day Internet traffic;
however, traditional caching architectures are not well-
suited to cache such content. Several recently proposed
techniques, which exploit reuse at the sub-document
level, promise to address this shortcoming, but require a
better understanding of the workloads seen on web sites
that serve such content.

In this paper, we study the characteristics of a medium-
sized personalized web site,NYUHome, which is a cus-
tomizable portal used by approximately 44,000 users
from the New York University community. Our study
leverages detailed server-side traces of client activity
over a two-week period in February 2002, obtained
by instrumenting the NYUHome server. The paper
presents statistics on document composition, person-
alization behavior, server-side overheads, and client-
perceived request latencies. We then use these statis-
tics to derive general implications for efficient caching
and edge generation of dynamic content in the context
of our ongoing CONCA project. Our study verifies both
the need for and likely benefit from caching content at
sub-document granularity, and points to additional op-
portunities for reducing client-perceived latency using
prefetching, access prediction, content transcoding, and
migrating channel generation functionality to the edge.

1 Introduction

The growing popularity of personalized Internet ser-
vices, ranging from news portals to other “utility” ser-
vices, has resulted in requests for dynamic and per-

sonalized content increasingly becoming an important
part of current-day Internet traffic. Unfortunately, tradi-
tional solutions such as web caches and content distribu-
tion networks (CDNs) developed to improve delivery of
static content do not yield the same benefits for dynamic
content [18, 26].

More promising are recently proposedobject composi-
tion approaches [3, 11, 12, 17, 20, 29, 35, 36, 39], which
observe that despite multiple requests for the same site
resulting in different content at document granularity,
there exists substantial opportunity for reuse at the sub-
document level (at the granularity of individual objects
making up the overall document). Two recent stud-
ies have shown that approximately 60% of the bytes
in dynamic responses from a set of popular web sites
could in fact be reused from a previous retrieval of the
page [34, 39].

Although encouraging, the above proposals and studies
need to be supplemented with characterizations of the
actual workload encountered on sites that serve dynamic
and personalized content. These characterizations serve
two roles: first, they provide evidence for whether or not
object composition techniques are in fact required and if
they are likely to be beneficial (given the specific client
and content characteristics), and second, they can lend
new insights into further improving delivery of dynamic
and personalized content. Two recent studies [5, 30]
have characterized the workloads seen by dynamic web
sites, which characterize themselves by either generat-
ing the content dynamically for each request or updat-
ing their content very frequently; however, we have not
seen any public literature on the characterization of per-
sonalized web sites. The latter, which allow users to



customize their web pages by choosing amongst differ-
ent channels(also calledmodules), impose additional
challenges for content delivery because of the need to
serve different content across the client population.1

In this paper, we address the above omission by studying
the characteristics of a medium-sized personalized web
site, NYUHome. NYUHome is a customizable portal
to many web-based services and tools for the students,
faculty, and staff of New York University, and is being
widely used by the NYU community (more than 44,000
registered users). Although NYUHome is smaller and
exhibits less diversity in its client population than some
commercial personalized web sites (e.g., MyYahoo!),
we believe that its personalization and workload char-
acteristics are likely to demonstrate similar trends and
should therefore be of interest to our research commu-
nity.

Our study leverages an instrumented version of the
NYUHome server, working with detailed server-side
traces of client activity over a two-week period from
February 13 to February 28, 2002.

Access to the server code enables us to collect infor-
mation at a finer granularity than normally present in
web server logs. In particular, the instrumented logs
allow us to characterize, from both a server-side and
client-side perspective, document composition (num-
ber, type, and TTL of channels), personalization be-
haviors, server-side overheads for document generation,
and client-perceived request latencies. Our results show
that: (1) a considerable fraction of NYUHome users do
personalize their view of the site; (2) a significant frac-
tion of document bytes are for content that is “sharable”;
(3) non-sharable or personalized content is important
enough for users to generate a large number of otherwise
redundant requests; and (4) clients perceive request la-
tencies over a wide range, determined primarily by their
network connectivity.

We then use the above observations to derive general
implications for efficient caching and edge generation
of dynamic and personalized content. These implica-
tions are drawn in the specific context of our proposed
CONCA architecture [35], which exploits knowledge of

1In this paper, ‘personalized web sites’ refer to those sites whose
content is governed by explicit user selection of channel or module
preferences. We contrast this with sites that may customize or spe-
cialize their content based on implicit knowledge of user interests or
access history.

document structure and user access behavior to improve
content delivery, but apply to other object composition
techniques as well. We find that:

• Substantial benefits are likely from applying object
composition techniques for personalized content,
i.e., reusing content of “sharable” channels to serve
subsequent requests. Additional improvements are
possible by shifting channel generation functional-
ity downstream as well.

• Both server load and client-perceived latencies can
be further reduced by prefetching the content of a
small number of personalized (non-shared) chan-
nels and pushing these eagerly towards the clients.

• The above optimization can be achieved in a prac-
tical fashion by identifying only a small group
of clients because of the Zipf-like distribution of
client popularity and personalization behaviors.

• Client-perceived request latencies can be made
more uniform by specializing the document tem-
plate and content, using transcoding, to the net-
work connection employed by the client.

Note that the above optimizations only representoppor-
tunity for improving performance and in practice, one
needs to trade off realization costs against potential ben-
efits. However, our analysis of the NYUHome site indi-
cates that current response times offer sufficient leeway
for most of these optimizations to be profitably realized.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the structure of NYUHome and
overview the CONCA architecture to provide a concrete
setting for the use of object composition. Section 3 dis-
cusses the method of trace gathering, including the in-
formation gathered and the format of the logs. A de-
tailed analysis of these logs, in terms of request distribu-
tion, user behavior, and server performance, is described
in Section 4. The implications for CONCA-like archi-
tectures are presented in Section 5. Section 6 discusses
related work and we summarize in Section 7.

2 Background

2.1 NYUHome

NYUHome (home.nyu.edu ) is a web portal for the
students, faculty and staff of New York University



(NYU) to obtain news and stock information, access
their e-mail, register for courses, participate in web fo-
rums, access class pages, research tools, and more. The
NYUHome screen is customizable at the granularity of
channels, and can be personalized by different users in
terms of both which channels are selected for display
and their layout on the screen. The current version
of NYUHome (Version 2.0) categorizes 20 channels
into five tabs: HOME, ACADEMICS, RESEARCH,
NEWS, andFILES . Figure 1 shows a screen snapshot of
a dynamically generated and personalized NYUHome
page; The default two-column template of channels in
each tab is displayed in Figure 2.

Figure 1. A screen snapshot of a personalized
NYUHome page (NEWStab).

Implementation NYUHome is implemented using
150,000 lines of object-oriented perl and currently runs
in a modperl environment within an Apache 1.3 server
on a 12 processor domain of a 399 MHz Sun E10000
with 12 GB RAM. The system runs Solaris 2.6 in a clus-
tered, failover environment.

Figure 3(a) shows the basic flow sequence of how
NYUHome serves a client request. Authentication hap-
pens only at the beginning of each session, with subse-
quent requests relying on a session key. After authenti-
cation, the personal preferences are fetched to construct
the layout with the appropriate channels. NYUHome
relies on two object-level caches: ashared cachefor
sharable channels, and anon-shared cache, which stores
user preferences and individual personal content. De-
pending on the channel TTL, content is obtained either
from the caches or generated in a channel-specific fash-

ion. For content that can be gathered periodically (e.g.,
News, Events ), a program runs at regular intervals to
populate the cache.

2.2 CONCA Architecture

CONCA (COnsistentNomadicContentAccess) [35] is
a proposed edge architecture for the efficient caching
and delivery of dynamic and personalized content to
users who access the content using diverse devices and
connection technologies. CONCA attempts to exploit
reuse at the granularity of individual objects making up
a document, improving user experience by combining
caching, prefetching, and transcoding operations as ap-
propriate.

To achieve its goals, CONCA relies on additional infor-
mation from both servers and users. All content sup-
plied by servers in CONCA architecture is assumed to
be associated with a “document template” which can
be expressed by formatting languages such as XSL-
FO [41] or edge-side include (ESI) [36]. Given this
information, CONCA node can efficiently cache dy-
namic and personalized content by storing quasi-static
document templates and reusing sharable objects among
multiple users. Moreover, based on the preference infor-
mation provided by users, a CONCA cache node deliv-
ers the same content to different users in a variety of
formats using transcoding and reformating.

3 Trace Gathering

This study leverages detailed server logs collected over a
two-week period spanning February 13 to February 28,
2002. To ensure that our instrumentation did not pro-
duce unintended side effects, fewer than 10 lines of code
were added at two locations: when a request was admit-
ted into the system (Accept Request ) and after the
server was done processing a request (Send Out ). At
these points, we logged the following pieces of informa-
tion:

• (at entry) The arrival time of a request, the docu-
ment being requested; the source IP address; and
the user ID or any session keys;

• (at end) The departure time of the response; the
size of the document; for each channel present in
the response, the channel ID, size, and the SHA-1
hash [1] of its contents; and for each column, the
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Figure 2. Default channels and their layout in NYUHome.
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Figure 3. (a) The general flow chart to serve a request at NYUHome, and (b) time sequence of a request between
client and server.

SHA-1 hash of the string obtained by concatenat-
ing the hash values of channels making up the col-
umn.

Only requests for the NYUHome main pages (served
by ISng.pl) were logged. NYUHome main pages are
served by NYUHome server, which is responsible for
all five of the tabs, content for most of the channels, and
response assembly. Requests for embedded images are
served by another machine, as is the content for two hot
channels:Email andAlbert .

The SHA-1 hash values permit efficient computation of
the change frequency of each channel and each tab. The
overhead of computing the hash itself (0.30 milliseconds
on the production web site) is three orders of magnitude
less than the user-perceived request latency (seconds).

To estimate client-perceived request latency, we aug-
mented each response to add a link to a blank pixel at
the end of each document. When the client receives this
reply, its browser will send out another request for this

pixel. Recording the arrival time of this follow-on re-
quest and distinguishing it from the first request gives
us three timestamps:T2, the time the first request ar-
rives at the server;T3, the time the response leaves the
server; andT5, the time the follow-on request arrives.
Figure 3 shows these timestamps in the context of the
overall request-response timeline between the client and
server. Assuming that the TCP connection establish-
ment overheads are similar for both requests,2the col-
lected timestamps allow us to estimate client-perceived
latency,T4−T1, as the time intervalT5−T2. Addition-
ally, this interval can be divided into two components:
server processing time(Tp = T3 − T2) and network
transfer time(Tn = T5 − T3). Assuming that the re-
sponse time dominates network costs, this decomposi-
tion allows us to correlate document content character-
istics with observed costs.

2This assumption is true for NYUHome, which disables HTTP
1.1 persistent connections for reasons explained later in the paper.



In this estimation procedure, there are two likely sources
of error. First, browsers may not wait until the entire
document is received before sending out a request for
the blank pixel. To assess the magnitude of error re-
sulting from this assumption, we added another blank
pixel at the head of each document and recorded the
time interval between the requests for these two pixels.
We found that the browser parsing time on average con-
tributes less than 10% to the network transfer time. In
the rest of the paper, the network transfer time is used to
refer the network latency and the browser parsing time.

The second source of error is that client-side perceived
latency (T4 − T1) may not be the same as server side
latency (T5 − T2). To understand the range of error
resulting from our estimation technique, we performed
the following experiment. At the client side, we use
tcpdump to record the timestamps when a user is
browsing NYUHome, and calculate the client-side la-
tency based on these timestamps. We then compare
it with the server-side latency computed from corre-
sponding logs at the server side, and find that on aver-
age the difference between these two values is less than
5%. Therefore, we believe that our estimation technique
is a reasonable server-side approach to measure user-
perceived latency.

The combination of user ID information (instead of in-
ferring it from client IP address), detailed information
about document composition, and the above estimation
of client-perceived latency distinguish our log format
from traditional web server logs. Additionally, times-
tamps are at microsecond resolution, which is more ac-
curate than any publicly available server log formats,
such as CLF or ECLF [24].

4 Trace Analysis

We start by presenting the overall characteristics of the
trace and then analyze it from three perspectives: doc-
ument composition, personalization and user behavior,
and request processing overhead and latency.

4.1 Overall Characteristics

Table 1 lists the aggregate statistics from the data we
collected during the two-week period. The number in
the parenthesis refers to the data bytes, the rest can
be viewed as carrying template information. The total
number of users who accessed NYUHome during the

two-week period (27,576) represent 62% of the regis-
tered users.

Figure 4(a) shows that, on average, NYUHome is ac-
cessed each day by 13,000 users during weekdays
and 9,000 users during the weekend. On average,
NYUHome received 1706 requests an hour: Figure 4(b)
shows the minimum and maximum requests received
during the same hour over the two-week period. Fig-
ure 4(c) shows the cumulative distribution of the inter-
request arrival interval. Using theχ2 method as the
goodness-of-fit [15] measure,3 we found that this dis-
tribution is captured very well by anExponentialdis-
tribution with λ = 0.526, suggesting a Poisson arrival
process. This observation seemingly conflicts with that
from previous studies of web servers [6] and telnet ses-
sions [33], where it was found that the aggregate refer-
ence stream is not Poisson. Note however, that in terms
of busy documentsdefined in [6] (a document refer-
enced at least 50 times in a one-hour interval), the ar-
rival process was indeed found to be Poisson. We as-
cribe our observation to the fact each document logged
in the trace corresponds to abusydocument.

To understand where these requests come from, we clas-
sified the source IP addresses into five categories: the
NYU main campus, NYU Dialup (for phone modem
connections), NYU-Resnet installed in student dormi-
tories, NYU overseas campuses (at London and Flo-
rence), and other third-party ISPs. Figure 5 shows the
distribution of IP addresses, and the corresponding num-
ber of requests that originate from each category. Al-
though NYU machines contribute to only 17% of the
IP addresses, they are responsible for 69% of all re-
quests. The 60,688 IP addresses (83%) that fall out-
side NYU control represent varied connection options
and correspond to administrative systems worldwide.
Using the network-aware clustering technique proposed
in [25], these IP addresses can be grouped into 4183
network clusters, where 109 clusters have more than
50 IP addresses and 60 clusters have more than 100 IP
addresses. In Section 4.4, we correlate the measured
client-perceived latency with the IP address category a
request corresponds to.

3The Anderson-Darling (A2) test was also used in our analysis,
however, the results of theA2 test showed no significance in terms
of goodness of fit for large amounts of data, which is a common
problem ofA2 [9, 32]. Theχ2 method is used as the goodness-of-fit
measure in the rest of the paper.



Total # of requests Total # of users Total # of IP addresses Total # of sessions Total # of bytes (Mbytes)
643,853 27,576 73,119 520,408 6,533 (2,434)

Table 1.Aggregate statistics of the NYUHome log from 02/13/2002 to 02/28/2002.
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4.2 Document Composition

To understand the characteristics of documents that
were generated in response to client requests, we ana-
lyzed the properties of component tabs and individual
channels.

Tabs Table 2 lists the number of requests to each tab,
the number of users who accessed the tab, and the av-
erage number of requests per user (the ratio of the first
two values). 90.1% of requests are for the defaultHOME
tab. Of the requests to the other four tabs, 50% of re-
quests from 7,148 users are for theACADEMICStab,
which includes the course systemAlbert . On a per-
user basis, after theHOMEtab, theNEWStab is the next
popular. Table 2 also shows the average size of the doc-
ument generated in response to a tab request, and the
fraction of the response bytes taken up by the template
(between 30% and 66%).

Channels Figure 6 shows, for each channel, the num-
ber of requests that involve the channel. The figures also
show the percentage of total document bytes contributed
to by the channel. Variations in the number of requests
for channels that belong to the same tab, particularly
prominent in theNEWStab, are a direct result of per-
sonalization.

Figure 7(a) shows the cumulative distribution function
(CDF) of the distribution of channel size. We find
that the channel sizes, 99% of which are smaller than
3000 bytes, are best modeled using aWeibull distribu-
tion (with CDFF (X) = 1 − e−(0.0012x)1.6

). This ob-
servation is in agreement with a previous study on six
news and e-commerce web sites [34]. It is interesting to
compare this distribution with the overall document-size
distribution in Figure 7(b). The latter shows that 70% of
the documents lie in a very small range between 9,725
and 10,688 bytes. The popularity of theHOMEtab and
the fact that the template accounts for a sizeable fraction
of the overall document size explains this phenomenon.

Table 3 lists average, minimum, and maximum sizes
of all the channels, by decreasing order of average
size. Also shown is the number of distinct hash val-
ues generated for the channel content, both during the
whole period and during the busiest day (February 25).
The number of distinct hash values for a channel indi-
cate how sharable a channel is, dependent both upon
its time-to-live (TTL) and the nature of its content.

This qualitative notion of sharability is shown in the
last column of Table 3, which marks channels suit-
able for reuse with a ’Y’ and others with an ’N’. For
instance, channels such asLibrary , Search , and
Bookstore are essentially unchanging over the en-
tire duration of the trace; channels such asEvents ,
Movies , Sports , andNews are sharable and change
only infrequently (at most a few times a day); channels
such asHoroscope , Weather , and evenClasses ,
are not sharable, but given reasonable-sized client pop-
ulations are in fact shared. Finally, channels such as
Email , ContactHome , Albert , andDirectory
are truly personalized (the last three because of per-user
history) as reflected by their large number of distinct val-
ues.

4.3 User Behavior and Personalization

To understand the behavior of a particular user (asso-
ciated with a particular user ID), we examined session
statistics, client popularity, and personalization charac-
teristics.

SessionsFigure 8(a) shows the cumulative distribution
function of the number of requests per session (defined
as the requests accompanied by the same session key).
82.85% of sessions contain one request only, for the de-
fault HOMEtab. For sessions with multiple requests,
Figure 8(b) shows the inter-request arrival interval. The
mean inter-request time is 492.7 seconds, and the me-
dian is 92.9 seconds. Such relatively long inter-request
intervals are the major reason NYUHome has disabled
HTTP 1.1 persistent connections.

The concept of inter-request interval within a session
is the single web site version of the “Inactive OFF”
time between successive requests; however, our obser-
vation differs from previous studies that have charac-
terized OFF times using a heavy-tailed Pareto-like dis-
tribution [9, 13]. In contrast, we find that the session
inter-request intervals are captured best by aLognormal
distribution with µ = 4.5, σ = 2.2, without a heavy
tail. We ascribe this difference to the typical behavior
of users in regards to a single personalized portal site,
where a user may spend time on pop-up windows (such
as checking e-mail), before going back to click other
tabs.

Client Popularity Figure 9 shows the cumulative dis-
tribution function of the number of requests per user:



Tab HOME ACADEMICS RESEARCH NEWS FILES
Number of requests 598,585 (90.1%) 32,229 9,873 15,595 7,927
Number of users 27,576 7,148 3,584 2,988 2,200
Requests per user 21.70 4.50 2.75 5.22 3.60
Average tab size 10024.65 7048.05 13374.59 26810.22 7052.34
Average template size 6611.18 3938.73 4169.09 9080.06 2506.19

Table 2.The number of requests to different tabs and corresponding number of users, and the average tab size and
template size for each tab .
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Figure 6. Distribution of the number of requests to different channels in the (a) HOME tab; (b) other tabs.
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Channel Average size Minimum size Maximum size # of distinct # of distinct Sharability
(bytes) (bytes) (bytes) hashes hashes (02/25)

Library 6860 2672 6887 3 2 Y
Events 4255 217 6391 19 1 Y
Files 4075 63 26064 7309 508 N
Finance 4062 68 4267 59 7 Y
News 3649 849 3965 406 28 Y
Sports 2777 68 2940 256 20 Y
Movies 2432 68 2524 41 5 Y
Search 1573 1565 1573 7 4 Y
Albert 1482 1482 1482 30020 1879 N
Weather 1251 41 3814 467 32 Y
ContactHome 1159 1102 2010 163808 20527 N
Forums 934 140 36778 10038 5631 N
Classes 845 214 11204 2135 641 Y
Directory 836 833 838 27273 14055 N
Bookstore 830 800 845 4 1 Y
Horoscope 664 366 884 221 19 Y
WebPage 523 497 540 2240 275 N
Email 398 303 840 396892 32343 N
Links 206 79 3860 1999 1078 N
MyHTML 129 80 2393 346 174 N

Table 3.The size information of channels, including average, minimum, and maximum sizes, and the number of
distinct values of channels during the whole period and the busiest day (02/25/2002).

57% of the users send less than 15 requests during the
two-week period (one request/day on average), how-
ever, 5% of users send more than 90 requests (six re-
quests/day on average). As in [5], we studied the rela-
tionship between the rank of users (based on the number
of requests he or she issues) and the corresponding num-
ber of requests. Users who issue the most number of re-
quests are assigned rank 1. If client popularity follows
a Zipf-like distribution, the log scale plot should appear
linear with a slope near−β [8]. Figure 9(b) shows that
the popularity of clients does follow a Zipf-like distri-
bution for the top 2000 users withβ = 0.35, but does
not fit as well for users who issue fewer than 50 requests
over the two-week period.

Personalization To understand how many users per-
sonalize their NYUHome pages and how, we calculated
the distinct channel combinations (including both chan-
nel selection and layout options) for each tab, and then
counted the distinct number of users who used a par-
ticular channel combination. The relative statistics are
shown in Figure 10. The pie graphs in Figure 10(a) show
the comparison between the percentage of users who use

the default channel selection and layout and those who
personalize one and/or the other. With the exception of
the ACADEMICStag, there was significant customiza-
tion. The numbers are also likely to have been biased
towards the lower end by the fact that a significant num-
ber of users likely use theHOMEtab only to check their
e-mail.

Figure 10(b) shows that the number of requests that
are targeted to these different channel combinations are
compatible with the user fractions. More interesting is
the observation that in the four tabs where personaliza-
tion occurs, a considerable percentage (about 30%) of
the requests are for a channel combination that differs
from the default only in its layout, not in the set of chan-
nels. Another statistic that does not come across in the
graphs is that users are interested in other forms of per-
sonalization as well: 19% of the requests for theNEWS
tab involve 40 channel combinations different from ei-
ther the default or the simple layout exchange.

An additional observation pertains to how frequently
users change their personalization preferences. In our
two-week trace, this number was relatively small: only
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1,090 of the 27,576 users changed their preferences at
least once.

4.4 Request Processing Cost and Latency

Table 4 shows, for the overall trace as well as for indi-
vidual tabs, the average, minimum, and maximum val-
ues of the per-request processing time,Tp, and network
transfer time,Tn, computed as described in Section 3.
The lower half of Table 4 lists the network transfer times
for the five categories of IP addresses identified in Sec-
tion 4.1.

Processing Overhead The average server process-
ing overhead across all of the requests is 1.41 seconds;
28% of requests incur overheads larger than this value.
To understand whether there is a relationship between
server load and request processing overhead, we looked
at the average processing time seen by requests on the
least busy (02/16) and the busiest day (02/25) in our
trace. Figure 11 shows the processing overhead and
number of requests received by the server on an hourly
basis on these two days. We conclude that the aver-
age processing time is independent of load,4and reason
that the NYUHome server is operating far below it’s
planned capacity most of the time. Consequently, the
high server processing overheads represent the inherent
overhead associated with dynamic generation of person-
alized content.

To understand the primary contributors for this process-
ing overhead, we computed the correlation coefficient
between the overhead and the number of channels in
and the overall document size of the response. We
found a strong correlation, 0.98, between the number of
channels and the processing overhead, which explains
the lower averageTp values for theACADEMICSand
RESEARCHtabs. On the other hand, the correlation co-
efficient for the relationship between document size and
processing overhead achieved a value of 0.044, indicat-
ing the lack of any significant correlation between the
two.

To understand the details of server processing overhead,
we propose a simple model which involves the num-
ber of channelsN and three types of per-channel cost
— tc for obtaining content from a cache,tg for gener-

4The bursts at 3:00am on 02/16, 12:00pm on 02/25, and 1:00pm
on 02/25 occur because of backup operations and a restart of the
session manager respectively.

ating the content synchronously, andta for assembling
the content into a document. Assuming the number of
channels served from cache isnc, and the number of
channels generated by server dynamically isng, where
nc+ng = N , the total processing overhead can be mod-
eled asTp = nc×tc+ng×tg+N×ta. Using the average
Tp of different tabs, we end up with the following rela-
tionships:tg + ta = 0.523s andtc + ta = 0.329s. Thus,
we find that generating a channel synchronously incurs
an additional average overhead of about 0.2 seconds.

Transfer Time and Throughput The average network
transfer time was observed to be 2.45 seconds, with 27%
of the requests resulting in larger times and 15% of the
requests spending more than 5 seconds in the network.
Looking at throughput, defined as the ratio of document
size and the network transfer time, we find a mean value
of 30 KB/s and a median value of 13 KB/s. Both net-
work transfer time and throughput are captured well by
the Lognormaldistribution withµ = 0.005, σ = 1.55
(transfer time) andµ = 9.35, σ = 1.6 (throughput)
respectively. Our finding of throughput coincides with
earlier observations made by Balakrishnan et al. using
traces from the 1996 Atlanta Summer Olympic Games
web server [7].

To identify the primary contributor to network transfer
time, we again computed the correlation coefficient be-
tween transfer times and document sizes. The result,
-0.0031, reveals that in general there is no clear cor-
relation between the two. A stronger correlation was
observed when we separated out the network transfer
time based upon the category of IP address a particu-
lar request belongs to. The five categories from Sec-
tion 4.1 correspond to two (Campus and NYU-Resnet)
with good LAN-like connectivity, one (Overseas) with
WAN-like connectivity, one (NYU Dialup) with phone
modem connectivity, and the remaining (Other ISPs)
that correspond to varied connectivity options ranging
from ADSL, cable modems, to phone modems. As one
might expect, the faster connectivity options result in
lower transfer times and better throughput, while the
slower connectivity options see degraded performance.
On average, users who access NYUHome using phone
modems (NYU-Dialup) encounter five times the net-
work transfer time and 1/20th the throughput of those
accessing NYUHome from campus.



Tab AverageTp Min Tp Max Tp AverageTn Min Tn Max Tn
a Throughput (KB/sec)

Total 1.41 0.05 487.75 2.45 0.002 19.74 30.24
HOME 1.44 0.05 487.75 2.51 0.01 20.29 29.93
ACADEMICS 0.66 0.06 45.39 1.61 0.002 12.43 19.30
RESEARCH 0.48 0.06 23.31 2.07 0.04 12.21 31.76
NEWS 1.92 0.06 224.01 1.73 0.03 14.16 67.62
FILES 2.07 0.05 46.19 1.73 0.04 12.32 19.17

Campus — — — 1.35 0.004 9.35 38.54
NYU Dialup — — — 7.43 0.9 42.19 2.26
NYU-Resnet — — — 1.02 0.002 8.15 43.02
Overseas — — — 2.24 0.34 9.50 8.35
Others — — — 3.92 0.01 28.51 17.38

aMax Tn refers to the 99th percentile value: a small fraction of requests involve file and web page upload/download and can incur transfer
times of several minutes.

Table 4.The average, minimum, and maximum values of server processing overhead and network transfer time,
and the average throughput.
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5 Implications for Dynamic Content Caching
and Delivery

The analysis of the NYUHome traces points to both the
need to improve delivery of personalized content, and
the opportunity for leveraging various solutions at the
server-side and on surrogates or proxy caches to address
this need. We discuss these implications below:

1. Need for efficient delivery of personalized content
Our study has shown that six years after the introduction
of the concept of personalized web sites [27], a substan-
tial fraction of users are using the concept — 30% in our
case, and larger if one accounts for the fact that a large
fraction of NYUHome users use it only to check email.
However, this situation comes at the cost of increased
server overheads that are several times larger than that
seen for static content or even non-personalized dy-
namic content, and larger network transfer latencies. To-
gether, these two factors contribute to client-perceived
latencies of several seconds.

2. Effectiveness of server-side fragment caches

Although NYUHome relies on simple fragment-based
caches, our observations show that these by themselves
are not sufficient to reduce per-request processing over-
heads. Accessing the cache and assembling the content
incurs per-channel overheads of about 0.33 seconds (see
Section 4.4). Generating channel content incurs an ad-
ditional per-channel overhead of 0.2 seconds.

More efficient server-side caching schemes such as
DUP [11, 12] are likely to yield better performance, as
are schemes which cache partial responses in addition
to per-channel content and can use these to incremen-
tally construct the full response. The latter are partic-
ularly well-suited for requests that refer to one or more
default selection and layout of channels. As we found in
Section 4.3, a significant fraction of all personalization
takes the relatively simple form of only layout modifi-
cation.

3. Potential for and likely benefits from using the ob-
ject composition technique
Object composition techniques as in our CONCA archi-
tecture, advocate caching of channel content at surro-
gates and proxy caches; requests from clients are for-
warded to servers only to download missing channels,

which are then assembled into a response sent back to
the client.

We observe that among the eleven NYUHome chan-
nels with average length larger than 1 KB (see Table 3),
six of them —Library , Events , News, Sports ,
Movies , andSearch — are completely sharable; one
— Finance — has a large portion that is sharable;
and one more —Weather — although not completely
sharable can be effectively shared amongst users that
share interest in the same zip code. Combined with the
fact that over 60% of requests refer to the default layout
of a tab (see Figure 10), and that the tab layout template,
which can be cached as well in CONCA-like architec-
tures, contributes to anywhere from 30% to 66% of the
transmitted bytes (see Table 2), the object composition
technique can yield significant bandwidth savings and
reduction in server processor overheads.

Taking the HOMEtab as an example, let’s examine
the potential bandwidth savings by downstream proxy
caches. The average size of this page is 10,000 bytes,
and it includes 5 channels:Email (398), Contact
Home(1158),Directory (835),Forums (934), and
Links (206). The number in the parenthesis refers to
the average size of each channel in bytes and is taken
from Table 3. The size of the layout template is 6,469
bytes (calculated by subtracting the sum of channel sizes
from the total page size). Assuming a request is re-
ceived and authenticated at a proxy cache, which has
already cached the template and four channels except
the Email channel, what the proxy cache needs to do
is send a request for the latter to the server. As such,
the number of bytes that must be transmitted between
the NYUHome server and the proxy cache reduces from
10,000 to 398 (96% are saved).

Additional savings are possible by redesigning tab lay-
outs so as to separate out sharable channels from those
that are truly personalized. From tables in Section 4.2,
the large number ofHOMEtab requests and its corre-
spondence with the number of distinct hash values seen
for theEmail andContactHome channels seems to
suggest that users may be loading the tab primarily to
track changes in the contents of the personalized chan-
nels. Modifying the tab layouts can help avoid the need
to transmit unnecessary channels.

4. Benefits from proxy prefetching and/or server
pushing



Although several NYUHome channels are sharable, a
sizeable fraction (40%) do refer to truly personalized
content, and therefore do not benefit from caching
of channel content at surrogates or proxy caches.
More suitable solutions for channels such asEmail ,
ContactHome , Links , andForums , involve either
the proxy cache prefetching the content from the server
or the server pushing the content upon detecting an up-
date.

Such eager propagation of content can avoid unneces-
sary downloads — a large fraction of the difference be-
tween the total number of requests involving theHOME
tab and the number of distinct hash values for the
Email channel likely fall into this category. Addition-
ally, as seen in Figure 8, the interval between successive
requests in a session is large enough (on the order of sev-
eral minutes) to permit use of sophisticated prefetching
policies.

5. Benefits from predicting access patterns
To allow prefetching schemes such as the ones described
above to be practically employed in personalized web
sites, the conflicting demands of personalization and
prediction need to be reconciled. In other words, for
prefetching to be successful, we need to predict access
patterns of individual users, which is likely to result
in prohibitive space and time overhead. Fortunately,
the Zipf-like distribution of client popularity (see Fig-
ure 9(b)), which indicates that a small number of users
are responsible for most of the requests, suggests a so-
lution to this problem. By focusing on predicting the
access patterns of only the users who make the most
requests, overheads of collecting and exploiting access
pattern information can be made manageable.

6. Need for migrating channel generation function-
ality to edge servers
Server overheads for request processing, observed to
be strongly correlated to the number of channels in
the document, can be reduced by offloading channel
content caching and content assembly to proxy caches.
However, as we find in Section 4.4, generating chan-
nel content incurs an additional per-channel overhead
of 0.2 seconds, implying that additional improvements
are possible by shifting channel generation functional-
ity downstream as well. Clearly, this choice needs to
be traded off against the cost of maintaining consistency
between the state at the server and that at edge servers.

For channels such asClasses andForums , generated
from read-mostly data, migration of the channel gener-
ation code may be an attractive option.

7. Need for customizing content based on network
connection characteristics
The network transfer times reported in Table 4 show that
there are wide variations in the latencies seen by differ-
ent groups of IP addresses based on their connectivity
characteristics. To provide a uniform user experience
across multiple device types and network connections,
one might imagine defining different default layouts and
channel content for each class of device or network.
Taking the example of theNEWStab andNYU-Dialup
users, the latency perceived by clients can be lowered
by reducing the number of channels in the tab, by re-
ducing the amount of content in each channel (e.g., the
News channel can incorporate fewer headlines), and by
changing the formatting to reduce the fraction of docu-
ment bytes devoted to defining the tab layout template.

6 Related Work

Web workload characterization has been extensively
studied in the past five years from the perspective of
proxies [10, 16, 38, 40], client browsers [2, 8, 13, 14,
22], and servers [5, 6, 27, 28]. Many of these previ-
ous research results accurately capture the characteris-
tics of static web content. However, for dynamic and
personalized web content which introduces the notion
of channels, many of these characteristics need to be re-
visited. Moreover, personalized content necessitates un-
derstanding of new characteristics, such as the change
frequency of user preferences, the number and sizes of
channels making up a document, the freshness times of
these channels. To the best of our knowledge, the work
described in this paper is one of the first efforts trying
to model these latter characteristics for a personalized
web site. Our work also distinguishes itself from pre-
vious work in that we are looking for characteristics at
the sub-document granularity and work with an instru-
mented server as opposed to existing server logs.

The first user experience analysis of a personalized web
site was done by Manber et al. on the Yahoo! site [27].
In that paper only general information and some high
level implications for the design of personalized web
sites were presented. In contrast, our study examines
detailed quantitative characteristics of personalized web



sites and additionally proposes several optimizations to
improve performance of dynamic content caching.

Recent studies of the MSNBC news site [30] and a large
shopping site [5] are closely related to our effort. In
[30], Padmanabhan and Qiu analyzed the dynamics of
both the server content and client accesses made to the
MSNBC news server by analyzing the standard HTTP
logs from the web site. More recent work by Arlitt et al.
[5] focuses on characterizing the scalability of a large
web-based shopping system. Although our study shares
a similar motivation with these two previous works, it
complements these efforts by focusing on the character-
istics of personalized web sites.

Finally, our work is also related to several previous stud-
ies of web server performance [4, 19, 21, 23, 31, 37],
but differs from them in that the overhead of dynamic
web content generation and related network transfer
time are studied.

7 Summary and Future Work

In this paper, we have presented the analysis of a
medium-sized personalized web site, NYUHome, using
instrumented server logs. In addition to a detailed study
of characteristics, we also present several implications
derived from these observations. The main implications
include: (1) Personalization functionality is increasingly
being accepted, and traditional caching and prefetching
schemes need to be revisited; (2) Substantial benefits are
likely from applying object composition techniques for
personalized content; (3) Both server load and client-
perceived latencies can be further reduced by prefetch-
ing the content of a small number of personalized (non-
shared) channels; (4) Client-perceived request latencies
can be made more uniform by specializing the document
layout and content, using transcoding, to the network
connection employed by the client.

Our future work includes integrating these implications
into a CONCA prototype, and cooperating with the
NYUHome team to accelerate the delivery of their con-
tent.
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