
Tuxedo: A Peer-to-Peer Caching System

Weisong Shi, Kandarp Shah, Yonggen Mao, and Vipin Chaudhary
Department of Computer Science

Wayne State University
{weisong,kandarp,ygmao,vipin}@wayne.edu

Abstract
We are witnessing two trends in Web content access: (a)
increasing amounts of dynamic and personalized Web
content, and (b) a significant growth in “on-the-move”
access using various mobile resource-constrained de-
vices by nomadic users. Web caching and the content
distribution network (CDN) are popular solutions for im-
proving Web access latency and have the effect of moving
content closer to the client. However, these solutions typ-
ically do not work well with dynamically generated and
personalized content.Transcodingis a popular solution
to resolve server-client mismatches (device heterogene-
ity), but is unable to benefit from caching in general.

These trends necessitate revisiting the traditional Web
caching and CDN approaches. In this paper, we pro-
posed Tuxedo, a peer-to-peer caching system, that com-
plements to existing hierarchical-based Web caching for
efficient delivery of Web content and value-added edge
services. Tuxedo allows multiple caches (peers) to ef-
ficiently share not only original Web documents, but
also computing resources for transcoding (by sharing
transcoded versions) and other value-added edge ser-
vices. The novelty of Tuxedo includes anadaptive neigh-
bor set algorithmfor different Web servers, and ahier-
archical cache digestfor sharing of transcoded versions
and value-added services. Together, these two protocols
contribute to the scalable and decentralized features of
the Tuxedo system.

1 Introduction
Peer-to-peer systems have increasingly become a hot re-
search topic [15, 17, 21, 28]. However, in the con-
text of peer-to-peer (P2P) computing, most of the re-
search projects focused on routing algorithms and effi-
cient query search mechanisms. Currently, major ap-
plications of peer-to-peer systems are music file sharing
[7, 9, 14] and instant messengers [13, 27]. Although the
technology is promising, we still face the barrier of lack

of applications [11]. In this paper, we argue that peer-
to-peer caching system is a very interesting application,
especially with the following two trends of Web content
access: (a) increasing amounts of dynamic and personal-
ized Web content, and (b) a significant growth in “on-the-
move” access using various mobile resource-constrained
devices.

These trends point to a situation where a user would
have ubiquitous access to content, but require that con-
tent be efficiently delivered to the user irrespective of lo-
cation, and in a form most suited to the user’s end de-
vice. Web caching and the content distribution network
(CDN) are two popular solutions for improving Web ac-
cess latency and have the effect of moving content closer
to the client. However, in the last five years, we have wit-
nessed the fast growth of dynamic and personalized Web
content [29], observing that both Web caching and CDN
typically do not work well with those content [5, 10, 24].
Transcodingis a popular solution to resolve server-client
mismatches (device heterogeneous), but is unable to ben-
efit from caching in general.

Object compositionapproach [19, 23] proposed re-
cently is very promising in handling the first trend, which
observes that despite multiple requests for the same site
resulting in different content at document granularity,
there exists substantial opportunity for reuse at the sub-
document level (at the granularity of individual objects
making up the overall document). Transcoding and
applying other value-added edge services at the proxy
cache to suit the client’s end device based on user prefer-
ences and user access patterns are efficient techniques to
address the second trend, as exploited by CONCA-like
proxy caches [12, 19]. Although some pessimistic ob-
servations about cooperating caching were demonstrated
in Wolman et al.’s work [24], in this paper we argue that
these solutions for the two trends together hold the poten-
tial of both document sharing (e.g., document template
and shareable objects) and computing resource sharing

(e.g., trascoded versions and other services) among mul-
tiple caches (peers).

In this paper, we proposed Tuxedo, a peer-to-peer
cache system, as an alternative to existing hierarchical-
based Web caching for efficient delivery of Web con-
tent and value-added edge services. The novelty of
Tuxedo includes anadaptive neighborhood set algorithm
for different Web servers, and ahierarchical cache di-
gestfor sharing of transcoded versions and value-added
services. In comparison to Napster’s centralized direc-
tory servers [14] and Gnutella’s massive message flood-
ing [7], the approach adopted in the Tuxedo is more scal-
able and completely decentralized.

The remainder of the paper is organized as follows.
Section 2 describes briefly the CONCA proxy cache,
which is the building block of the Tuxedo system. The
design and scalability analysis of Tuxedo architecture is
presented in Section 3. Section 4 discusses the related
work in this area and finally the current status and sev-
eral challenging issues are listed in Section 5.

2 Background
2.1 End-to-End is Not Enough
According to the end-to-end arguments [18], most of the
intelligence has been deployed at the end systems on
the Internet. However, the rapid proliferation of Inter-
net users and increasing web traffic have led to a lot of
load on the origin servers and thereby led the content-
providers to adopt techniques that disseminate the load
on origin servers. The deployment of caching proxies
and surrogates makes the first step by moving content to
the edge of the network. The rising demand for Internet
services induces the idea of using existing caching prox-
ies for more than simply accelerating the delivery of Web
content. They seem to provide a viable location to deploy
additional services. This implies a change in the current
Internet model where the client and the server are the two
end-points of communication and the introduction of “in-
telligent” networks where intermediaries could process
certain requests and responses [2]. This suggests that the
Internet will no longer be a mere data transfer network,
more and more functionalities can be injected into the
network along the data path, ranging from the network-
layer, such as active networks [22], to application-layer,
such as CANS infrastructure [6].

2.2 CONCA Proxy Cache
CONCA (COnsistentNomadicContentAccess) [19] is
a proposed edge architecture for the efficient caching and

delivery of dynamic and personalized content to users
who access the content by using diverse devices and con-
nection technologies. CONCA attempts to exploit reuse
at the granularity of individual objects making up a docu-
ment, improving user experience by combining caching,
prefetching, and transcoding operations as appropriate.

To achieve its goals, CONCA relies on additional in-
formation from both servers and users. All content sup-
plied by servers in CONCA architecture is assumed to
be associated with a “document template” which can be
expressed by formatting languages such as XSL-FO [26]
or edge-side include (ESI) [23]. Given this information,
CONCA node can efficiently cache dynamic and per-
sonalized content by storing quasi-static document tem-
plates and reusing sharable objects among multiple users.
Moreover, based on the preference information provided
by users, a CONCA cache node delivers the same content
to different users in a variety of formats using transcod-
ing and reformatting.

Figure 1 shows the logical organization of cache stor-
age, which consists of two separate portions:sharedand
personalized. The shared portion contains static content
(e.g., objects associated with the URLwww.nyu.edu)
and the sharable subset of dynamic content (e.g., the TV
list channel associated with the URLmy.yahoo.com).
The personalized portion stores the per-user state, both
for “home” users as well as other (nomadic) users who
are temporarily using this cache. This consists of (a)
the user’s personal assistant, which contains information
about the user’s profile, devices, and transcoding prefer-
ences, (b) downloaded personalized objects, and (c) (in-
termediate) transcoded versions of these objects. Note
that although the figure shows transcoded versions of all
objects as being stored in per-user storage, in general we
may be able to share intermediate transcoded versions
of the shared objects. In response to a user request, the
cache first looks up the personal assistant associated with
the user to determine the objects of interest, then acquires
the missing objects, transcodes them as required, and fi-
nally delivers to the user a document assembled from the
various pieces.

The CONCA proxy cache is the building block of the
proposed Tuxedo caching system, augmenting with func-
tionalities such as neighbor discovery and resource shar-
ing among adaptive number of neighbors.

3 Architecture
Different from the hierarchical-based proxy caching ar-
chitecture, Tuxedo is an overlay network which charac-

my.yahoo.com

myciti.com

cs.wayne.edu

user 1

user n
temp user 1

temp user m

S
ha

re
d

lo
ca

l
te

m
pr

or
ar

y

P
er

so
na

liz
ed

S1

S2

S3

Sn

my.yahoo.com

myciti.com

etrade.com

template (desktop)

template (laptop)

template (PDA)

P1

P2

P1 P2

P1

profile (id,passwd)

S1

S2

S3

Personal Assistant

S2' S3' S4'

Figure 1: Detailed structure of a CONCA cache node, showing shared and personalized portions of the cache.

terizes itself by using efficient neighborhood propagation
and adaptive neighborhood mechanism for different Web
servers, and by using a hierarchical cache digest to store
information related to transcoded content or results of
other valuable edge services. Also, Tuxedo employs the
notion of reputationto deal with security and trust con-
cerns among peers.

3.1 Neighborhood Propagation

To ensure that neighborhood propagation is scalable, our
approach includes the following four steps:

Step1: each peer (CONCA proxy cache) configures it’s
upper-level cache as it’s neighbor.
Step2: each time when a peer makes request to its neigh-
bor node and when the neighbor node sends response,
a neighbor table (information related to peers address,
latency, bandwidth, transcode services, etc.) is piggy-
backed along with HTTP request/response header. Note
that some optimizations, e.g., diffing, are used to reduce
the network traffic.
Step3: after receiving the neighbor table from other peers,
the local Tuxedo cache filters out neighbor information
from HTTP header and inserts it in local neighbor table
according to some performance metrics, such as latency
or bandwidth.
Step4: periodically each peer sends request to these neigh-
bors to obtain accurate values for piggy-backed neighbor
data and update neighbor table with fresh values. If the la-
tency (or bandwidth) between the local cache and neigh-
bor is too long (or small for bandwidth), local cache will
remove this neighbor from it’s neighbor table.

As shown in right part of Figure 2, each tuxedo node
maintains a neighbor table which keeps the information
regarding peer id (IP address) and a pointer to the peer
information. Table 1 lists an example of all information
that a peer cache maintained, including latency, band-
width, availability of transcoded versions and results of
other services (e.g. language translated file is available
or not), etc.

Since each node (peer) maintains its own neighbor ta-
ble and receives query only once, it saves the network
from flooding effect. However, based on the informa-
tion collected through piggyback technique only, it is
hard to decide the value of latency/bandwidth between
these two new peers, and this is one of the challeng-
ing issues we are focusing currently. In our initial ap-
proach, the latency between the local cache and a new
added neighbor is calculated as the sum of two laten-
cies (upper limit) as explained in the following example.
Consider a scenario where A is neighbor of B with la-
tencyLAB, and C is neighbor of B with latencyLBC .
Now B tries to piggyback C’s information to A. While
inserting C’s information in A’s neighbor table, the la-
tency between A and C can be calculated by:LAC =
LAB + LBC . For the bandwidth, we take the minimum
asBAC = min(BAB, BBC). However, when we update
these peer information (executing step 4), we can re-sort
out the elements of neighbor table with fresh values.

www.ijk.com

3 server info
P1

No. of neighbours
with latency < server

www.stu.com

www.opq.com

www.abc.com

www.xyz.com

P2
P3
P4
P5
P6
P7
P8
P9
P10
P11

Peer ID Peer Info

Pn

 latency 4
 bandwidth b
 cache digest
 reputation r

 latency 6
 bandwidth b
 cache digest
 reputation r

 latency 6.5
 bandwidth b
 cache digest
 reputation r

 latency 12
 bandwidth b
 cache digest
 reputation r

P1

P3

P4

P2

1 server info

9 server info

2 server info

5 server info

server info

 latency 11
 bandwidth b

S1

 latency 5
 bandwidth b

S2

Server table Neighbor table

Image resizing
language translation

Image resizing
language translation

Image resizing
language translation

Image resizing
language translation

Figure 2: Two tables maintained at each Tuxedo cache node: server table and neighbor table.

PeerAddress Latency (second) Bandwidth (MBps) ImageResize LanguageTranslation Reputation
141.217.16.181 4.00 100.00 true false 0.98
141.217.16.182 6.00 110.25 true true 0.72
141.217.16.183 6.50 124.35 false true 0.83
141.217.16.184 11.00 97.62 false true 0.98

Table 1: An example of 4 neighborhood information maintained at one Tuxedo cache node.

3.2 Adaptive Neighbor Set

One of the challenging problems in peer-to-peer infras-
tructure is to find neighbors (peers) and maintain their in-
formation. In addition to the neighbor table as described
in last section, each Tuxedo node also maintains server
table for different Web server, as shown in the left part
of the Figure 2. Server table keeps two-piece of informa-
tion: (1) a pointer (integer number) to the neighbor table
and (2) original server information (latency/bandwidth).
The pointer associated with each Web server depicts the
specific neighbor set of this Web server. For exam-
ple, as shown in Figure 2, the pointer of web server
www.xyz.com is 3, which points out that it’s neighbor
set consists of the first three neighbors (P1,P2,P3). These
neighbors are chosen because their latencies to this cache
node are less than that of original server latency (11 sec
in this case). Later, the local cache can make a request
to any of these neighbors to get the requested content.
Each Tuxedo node maintains the update of neighbor ta-
ble information by periodically polling or piggyback up-
dating from these neighbors. A similar approach can be

used to update the server table information. In our cur-
rent design, we maintain two ordered neighbor tables that
indexed by latency and bandwidth respectively.

Consider a scenario where proxy cacheA receives a
request from a client to get Web content fromwww.
xyz.com . A can then contact one of his neighborPi

(i ∈ [1,m]), wherePi denotes theith neighbor in the
neighbor set,m is the number of his neighbor set. If
the size of the required content is small (latency is dom-
inant), cacheA will select/prefer a neighbor which has
minimum latency. From Figure 2, cacheA will choose
P1. Consider the other scenario in which the requested
content is a large media file (bandwidth is dominant), in
this case,A might choose/prefer a neighbor that has max-
imum bandwidth available.

To generalize this, let us assume the file size isS, and
X is a configurable threshold (intermediate size to decide
whether entries in the neighbor table should sort in terms
of latency or bandwidth). UsingLpi andLsj to denote
latencies between local cache and peeri and Web server
j, Bpi andBsj to denote bandwidth between local cache

and peeri and Web serverj, respectively, the Web site
j’s neighbor vectorVsj can be defined as,

Vsj =

{Pi|where Lpi < Lsj ; i ∈ [1, n]}, S < X;

{Pi|where Bpi > Bsj ; i ∈ [1, n]}, S ≥ X

By using the above technique we can choose a neighbor
vector for each Web server dynamically/adaptively. One
can consider latency for normal Web sites, and switch
over to choosing high bandwidth neighbors for media in-
tensive sites where large bandwidth is preferred.

Note that our adaptive neighbor set approach is differ-
ent from the approach used in Squirrel caching [8], which
was build on a distributed hash table and did not take the
bandwidth or latency into consideration for different Web
sites. Our initial results show that our approach is more
scalable and efficient than their approach.

In peer-to-peer networks, peers are join and leave fre-
quently. So it is important to keep track of this activity.
To designed proficient caching system we believe that
reputation factor should be considered. Tuxedo counts
reputation for each peer in the following manner. When
peer A contact any peer located in his/her local neigh-
bor table, and that node is not live (or not respond) can
be counted as false hit. Such node’s (peer’s) reputation
should be decrease by somex percentage as a penalty
and we can update the such information in local neigh-
bor table. So next time peer A can take reputation factor
into consideration while requesting the content from such
malicious peer and able to find other trustworthy peers.

3.3 Transcoded Content and Edge Services
As an extended version of CONCA, Tuxedo supports
computing resource sharing by using transcoding and
other edge services at other peers. Currently Tuxedo
adopts a simple approach to decide whether cached copy
of transcoded content should be accessed from neighbors
or it should perform transcoding locally. Let’s consider
Tnotrans as computation time to get a cached copy (not
transcoded),Ttrans as computation time to fetch a cached
copy (transcoded version), then such values can be cal-
culated as:Tnotrans =

∑h1
i=1 Li + Tconv andTtrans =∑h2

j=1 Lj , whereh1 equals the number of hops for orig-
inal copy,h2 equals the number of hops for transcoded
copy, Li is the latency for hopi, andTconv is time re-
quired to convert content specific to user’s end device lo-
cally. Based on the value ofTnotrans and Ttrans, one
can establish a connection with the preferred peer. We
are also investigating efficient techniques to select a peer

that deal with different scenarios by considering latency,
bandwidth, valuable edge services, reputation, and com-
putation time.

We propose to use ahierarchical cache digestap-
proach to maintain consistency and share content among
multiple peer caches. Our approach includes two parts.
First, each peer maintains a digest that depicts what kind
of services it supports in addition to original content. We
plan to use a bit vector method [3] to store this infor-
mation. Second, a cache digest is maintained for each
service supported by this cache, using the Bloom filter
algorithm [1]. The algorithm has been successfully used
in cache digest algorithms proposed in [4, 16]. For each
service supported by the cache, the corresponding di-
gest stores the information about which transcoded con-
tent (by applying this specific service) is available in this
cache. As such, this will support the reuse of transcoded
versions resulting from different valuable edge services.
Furthermore, based on these digests, alease-basedap-
proach can be used to maintain consistency among re-
mote replica and origins. The right portion of Figure 2
shows a example, where all peers support image resiz-
ing service and language translation service, and the di-
gests for the availability of resized images and translated
content are stored separately in the table. As shown in
the Table 1, it sets the flagtrue or false depending
upon the availability of such service. For example, from
the table we see peer141.217.16.181 has provided
a image resize service, since flag is set totrue .

3.4 Scalability Analysis

We argue that the proposed peer-to-peer caching archi-
tecture, Tuxedo, is highly scalable. It helps achieve scal-
ability in many ways. First, by storing the peer’s informa-
tion locally it reduces the amount of search requests that
the user needs to send out in order to locate Web con-
tent, which leads to reduction in response time (latency)
as well as diminish the network traffic. Second, adaptive
neighborhood is a scalable way to solve the increasing
number of neighbors, and it is a completely decentral-
ized approach. Moreover, Tuxedo supports asymmetric
relationship between peers, for example, Peer A can be a
neighbor of Peer B, while Peer B may not be a neighbor
of Peer A. Third, the memory space requirement for our
approach is small enough to keep all of data structure in
memory, which augments the scalability of system. Us-
ing Table 1 as an example, it stores information related to
peer id, latency, available bandwidth, availability of im-
age resize service and language translation service, and

reputation percentage of peers. We observed that to store
such information for 4 peers it requires around 1 KB of
memory space. So, we can store 1000 neighbors infor-
mation by utilizing 1 MB of memory space. Also, the
memory space required by the server table is also very
small (less than 100 bytes), so Tuxedo can support more
than one million Web sites (100 MB) very easily. Fi-
nally, the piggy-back based information update protocol
also enhances the scalability of Tuxedo.

4 Related Work
Our work on Tuxedo builds upon a large body of related
work in the general area of Web caching and peer-to peer
system. Here we will discuss only two recent efforts that
share similar goals and approaches.

Backslash [20] is a content distribution system based
on peer-to-peer overlay and used for those who do not
expect consistently heavy traffic (flash crowds) to their
sites. While Tuxedo focuses on the scalability and re-
source sharing among peer-to-peer proxy caches, lever-
aging the browser caches on the client machine to form
a peer-to-peer cache , such as Squirrel [8] and Browser-
Aware Proxy Server [25], is another approach to improve
scalability and performance. However, in their imple-
mentation, the proxy server maintains the index file of
data objects of all clients’ browser caches. So, it’s not
a totally decentralized concept and may lead to a single
entry point failure. We are maintaining such an index file
on each peer’s machine so that they can directly locate
other peers who already have these data objects in their
cache. Moreover, both Backslash and Browser-Aware
Proxy Server do not provide mechanisms for transcod-
ing or any other valuable edge services.

5 Current Status and Future Work
5.1 Current Status
At present, we have done a simulation-based proof-of-
concept of Tuxedo system, including neighbor propaga-
tion and adaptive neighbor set algorithm. We plan to in-
tegrate it into CONCA proxy cache, which is under de-
velopment at Wayne State University.

5.2 Future Work
During the simulation of Tuxedo protocols, we encoun-
tered several challenging issues that will be the focus of
our future efforts.

• Efficient mechanism to update server and neigh-
bor information: Currently we are updating infor-
mation related to peers’ latency, bandwidth, etc., by

sending requests periodically (batch jobs) or by the
piggy-back technique. But this is not efficient for
dynamic updates of information. For example, in-
formation retrieved by piggybacked approach do not
reflect the actual value (bandwidth, latency), e.g.,
triangle problem described in section 3.1. To inves-
tigate a proficient method to get such information is
a challenging research issue.

• Supporting multiple servers: The adaptive neigh-
bor set algorithm works fine for the Web site which
has only one centralized server. However, with the
prevalence of distributed server farms, application
server providers, and content distribution network,
the latency and bandwidth from one web site may
experience different values at different time, which
makes the server table in Tuxedo cache node un-
stable. Handling this issue is another aspect of our
future work.

• Optimization of computation and communica-
tion: Transcoding operations are often time con-
suming, therefore the cache node may sometimes
have to decide between (re)transcoding an object
locally and fetching the transcoded object from a
neighbor cache, even when the original version is
available locally. Similar issues crop up in trying
to decide between fetching content from a cache
node connected with a slow link that already has
the content in transcoded form, versus fetching it
from a cache node reachable via a faster link but
where one has to spend time transcoding the con-
tent. More generally, it is possible to treat the
fetch and transcode operations as components along
the path, each with their cost and effect on re-
sponse time or throughput. Therefore, the tradeoff
between computation and communication becomes
an optimization problem, with the objective being
minimization of response time or maximization of
throughput.

References
[1] B. Bloom. Space/time trade-offs in hash coding with al-

lowable errors.Communications of the ACM13(7):422–
426, July 1970.

[2] M. S. Blumenthal and D. D. Clark. Rethinking the design
of the internet: The end-to-end arguments vs. the brave
new world. ACM Transactions on Internet Technology
1(1), Aug. 2001.

[3] D. E. Culler and J. P. Singh.Parallel Computer Archi-
tecture: A Hardware/Software Approach. Morgan Kauf-
mann, Inc., 1998, chapter 12.

[4] L. Fan, P. Cao, J. Almeida, and A. Border. Summary
cache: A scalable wide-area web cache sharing protocol.
Proceedings of ACM SIGCOMM’98, pp. 254-265, Mar.
1998.

[5] A. Feldmann, R. Caceres, F. Douglis, G. Glass,
and M. Rabinovich. Performance of web proxy
caching in heterogeneous bandwidth environments.
Proc. of IEEE Conference on Computer Communi-
cations (INFOCOM’99), pp. 107-116, Mar. 1999,
http://www.douglis.org/fred/work/
papers/hetproxcache.pdf .

[6] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services Infrastructure.
Proc. of the 3rd USENIX Symposium on Internet Tech-
nologies and Systems (USITS’01), pp. 135-146, Mar.
2001.

[7] Gnutella,http://gnutella.wego.com .

[8] S. Iyer, A. Rowstron, and P. Druschel. SQUIRREL: A
decentralized, peer-to-peer web cache.Proceedings of
the 12th ACM Symposium on Principles of Distributed
Computing (PODC 2002), July 2002.

[9] KaZaA,http://www.kazaa.com .

[10] B. Krishnamurthy, C. Wills, and Y. Zhang. On
the use and performance of content distribution net-
works. Proceedings of SIGCOMM IMW 2001, pp. 169-
182, Nov. 2001, http://www.research.att.
com/˜bala/papers/imw01-abcd.pdf .

[11] J. Ledlie, J. Shneidman, M. Seltzer, and J. Huth.
Scooped, again.Proc. of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS’03), Feb. 2003.

[12] V. Mastoli, V. Desai, and W. Shi. SEE: a service ex-
ecution environment for edge services.Proceedings
of the 3rd IEEE Workshop on Internet Applications
(WIAPP’03), June 2003.

[13] MSN Messenger,http://messenger.msn.com .

[14] Napster,http://www.napster.com .

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content addressable network.
Proc. of ACM SIGCOMM’01, 2001.

[16] A. Rousskov and D. Wessels. Cache digest.Proc. of 3rd
International WWW Caching Workshop, June 1998.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large scale peer-
to-peer systems.IFIP/ACM Middleware 2001, 2001.

[18] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design.ACM Transactions on Com-
puter Systems2(4), Nov. 1984.

[19] W. Shi and V. Karamcheti. CONCA: An architecture for
consistent nomadic content access.Workshop on Cache,
Coherence, and Consistency(WC3’01), June 2001.

[20] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer
caching schemes to address flash crowds.Proc. of
the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), Feb. 2002.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications.ACM SIGCOMM’2001,
2001.

[22] D. Tennenhouse and D. Wetherall. Towards an Ac-
tive Network Architecture.Computer Communications
Review26(2), Apr. 1996,http://www.tns.lcs.
mit.edu/publications/ccr96.html .

[23] M. Tsimelzon, B. Weihl, and L. Jacobs. ESI language
sepcification 1.0, 2000,http://www.esi.org .

[24] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the scale and per-
formance of cooperative web proxy caching.Proc. of
17th ACM Symposium on Operating Systems Principles
(SOSP), pp. 16-31, Dec. 1999.

[25] L. Xiao, X. Zhang, and Z. Xu. On reliable and scal-
able peer-to-peer web document sharing.Proceedings of
2002 International Parallel and Distributed Processing
Symposium, Apr. 2002.

[26] W3C XSL Working Group,http://www.w3.org/
Style/XSL/ .

[27] Yahoo! Messenger,http://messenger.yahoo.
com.

[28] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:an
infrastructure for fault-tolerant wide-area location and
routing. Tech. Rep. UCB/CSD-01-1141, Computer Sci-
ence Division, UC Berkeley, Apr. 2001.

[29] Z. Zhu, Y. Mao, and W. Shi. Workload characteriza-
tion of uncacheable web content — and its implications
for caching. Tech. Rep. CS-MIST-TR-2003-003, Depart-
ment of Computer Science, Wayne State University, May
2003.

