
ARTICLE IN PRESS
www.elsevier.com/locate/jss

The Journal of Systems and Software xxx (2005) xxx–xxx
Performance evaluation of peer-to-peer Web caching systems

Weisong Shi *, Yonggen Mao

Mobile and Internet Systems Group, Department of Computer Science, Wayne State University, Detriot, MI 48202, USA

Received 25 February 2005; received in revised form 13 August 2005; accepted 18 August 2005
Abstract

Peer-to-peer Web caching has attracted a great attention from the research community recently, and is one of the potential peer-to-
peer applications. In this paper, we systematically examine the three orthogonal dimensions to design a peer-to-peer Web caching system,
including the caching algorithm, the document lookup algorithm, and the peer granularity. In addition to the traditional URL-based cach-
ing algorithm, we also evaluate the content-based caching algorithm for both dynamic and static Web content. Four different document
lookup algorithms are compared and evaluated in the context of four different peer granularities, i.e., host level, organization level, build-
ing level, and centralized. A detailed simulation, using the traces collected at a medium size education institution, is conducted for the
purpose of performance evaluation. Finally, several implications derived from this analysis are also discussed.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Peer-to-peer systems; Web caching; Analysis model; Latency reduction; Hit ratio; Performance evaluation
1. Introduction

Peer-to-peer networking has become a hot research to-
pic recently (Androutsellis-Theotokis and Spinellis, 2004;
Ratnasamy et al., 2001; Rowstron and Druschel, 2001; Sto-
ica et al., 2001; Zhao et al., 2001). Peer-to-peer Web cach-
ing is thought as one of the potential applications that
could be benefited from these underlying peer-to-peer sub-
strates, and has been exploited by several projects (Iyer
et al., 2002; Xiao et al., 2002). Xiao et al. (2002) proposed
a browser-aware proxy server model and evaluated using
BU-95 trace (Cunha et al., 1995) collected from Boston
University (1995) and NLANR-uc trace (2000) (IRCache
Project, 1995). In Squirrel, Iyer et al. (2002) presented a
peer-to-peer Web caching system built on top of the PAS-
TRY (Rowstron and Druschel, 2001), and evaluated using
the traces of Microsoft Research Redmond campus (1999)
(Wolman et al., 1999b) and Cambridge campus (2001)
respectively. Although these two studies showed optimistic
results for peer-to-peer Web caching, the study of Wolman
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2005.08.012

* Corresponding author. Tel.: +1 313 577 3186; fax: +1 313 577 6868.
E-mail address: weisong@wayne.edu (W. Shi).
et al. (1999b) indicated a relative pessimistic results using
the traces from Microsoft Corporation (1999) and Univer-
sity of Washington�s (1999).
The possible reasons for the controversial observation of

above studies are: (1) those studies worked with different
traces; (2) the peer granularity of these studies was differ-
ent. Squirrel and Xiao et al.�s studies were at host level,
while Wolman et al.�s study was at the organization level.
Furthermore, from the perspective of users, the latency
reduction resulted from those cooperative caching is more
important than the hit ratio, but those studies did not
quantitatively evaluate the effect of latency improvement.
On the other hand, recent studies (Barford et al., 1999;

Shi et al., 2003a) show the fast growing of the dynamic
and personalized Web content. This trend will reduce the
cacheability of cooperative Web caching significantly under
the conventional URL-based caching algorithm. Fortu-
nately, recent studies (Kelly and Mogul, 2002; Zhu et al.,
2003) show that the dynamic objects have a large portion
of repeatness based on their content digest. This repeatness
provides an opportunity to improve the cacheability, and
motivates us to propose a content-based caching algorithm
for peer-to-peer Web caching.

mailto:weisong@wayne.edu

URL-based Digest-
based

Geographic-based

Home2

Home1

Host-level

Organization-level

Building-level

Centralized-level

Caching algorithm

P2P granularity

Lookup algorithm

Fig. 1. The three dimension design space of peer-to-peer Web caching
systems.

2 W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
In this paper, we intend to evaluate the performance of
peer-to-peer Web caching systems and to examine the fu-
ture research directions of peer-to-peer Web caching. We
first develop an analysis model to calculate the speedup
of the peer-to-peer caching system based on Dykes and
Robbins�s work (2002). Then, we systematically examine
the design space of a peer-to-peer Web caching system in
three orthogonal dimensions: the caching algorithm, the
document lookup algorithm, and the peer granularity. Based
on the observation that the traditional URL-based caching
algorithm suffers considerably from the fact of cacheability
decrease caused by the fast growing of dynamic and per-
sonalized Web content, we propose to use a content-based
caching algorithm which exploits the fact of the large
repeatness of Web objects even though their URLs are dif-
ferent. In addition to comparing three existing document
lookup algorithms, we propose a simple and effective geo-
graphic-based document lookup algorithm. Four different
peer granularities, i.e., host level, organization level, building
level, and centralized, are studied and evaluated using a se-
ven-day Web trace collected from a medium-size educa-
tional institution. Using the trace-driven simulation, we
compared and evaluated all the design choices in terms of
three performance metrics: hit ratio, latency reduction,
and speedup. The reasons that we collected the trace by
ourselves instead of using existing public traces are: (1)
most available traces are lack of the latency information
which is one of performance metrics in our study; (2) the
entire Web object is required in order to calculate the con-
tent digest, which is not available in any present trace.
The experimental results suggest that: (1) ideally, the

content-based caching algorithm could improve the cache-
ability of Web objects substantially, increasing from 7.0%
(URL-based) to 62.0% (content-based); (2) the document
sharing among peers is very effective, ranging from 22.0%
(building level) to 34.2% (host level); (3) the average user-
perceived latency is reduced three to six times compared
with the measured latency at all peer granularities using
the home1 (Xiao et al., 2002) and the Tuxedo algorithm
(Shi et al., 2003b); (4) the Tuxedo algorithm at the host le-
vel has the highest speedup comparing with all combina-
tions; (5) the proposed geographic-based document
lookup algorithm has comparable hit ratio and significant
latency reduction.
Based on these observations, we derive several implica-

tions for peer-to-peer Web caching: (1) there is a need to de-
ploy the content-basedWeb caching mechanism to improve
the performance of content delivery on the Internet; (2) the
organization or building level peer-to-peer Web caching
using the Tuxedo document lookup algorithm is the most
appropriate choice; (3) the geographic-based lookup algo-
rithm should be exploited further to benefit from its supe-
rior latency reduction and easy implementation; (4) among
the seven types of dynamic Web content (see definitions in
Section 3.1), dynamic type2 (dynamically generated) and
type7 (zero value of time-to-live) are the most promising
to benefit from the content-based caching algorithm.
Our contributions of this study include: (1) developing
an analysis model to evaluate peer-to-peer Web caching
systems; (2) systematically examining the design space of
peer-to-peer Web caching; (3) validating the great potential
of the content-based caching algorithm. To our knowledge,
this work is the first performance evaluation using real
Web trace with content digest; (4) comprehensive evaluat-
ing the performance of Web caching in terms of three per-
formance metrics; (5) proposing a geographic-based

document lookup algorithm.
The rest of the paper is organized as follows. Section 2

examines the design space of peer-to-peer Web caching sys-
tems, and describes the algorithms used in the evaluation.
Section 3 describes the trace data collection, and classifica-
tion of multiple dynamic content. A comprehensive perfor-
mance evaluation and comparison of different algorithms
in terms of three performance metrics is reported in Section
4. Several implications derived from the analysis are listed
in Section 5. Related work and conclusion remarks are
listed in Sections 6 and 7, respectively.

2. Design space of peer-to-peer Web caching

As illustrated in Fig. 1, there are three orthogonal
dimensions in designing a peer-to-peer Web caching sys-
tem: the caching algorithm, the lookup algorithm, and the
peer granularity. Note that, the notion of peer, or peer
cache, in this paper is quite flexible. Unlike traditional
P2P network (Ratnasamy et al., 2001; Rowstron and Dru-
schel, 2001; Stoica et al., 2001) where the notion of peer re-
fers to a physical end host, each peer cache is defined as the
one which performs the caching function on behalf of
host(s) inside its scope and cooperates with other counter-
parts at the same level. For example, an end host itself is a
host level peer cache. It performs the caching function for
itself and cooperates with other host level peer caches. Nap-
ster (2005), Gnutella (2000), and KaZaA (2005) follow this
concept. Organization/building level peer caches perform

W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx 3

ARTICLE IN PRESS
the caching function for hosts inside their scope and coop-
erate with other organization/building level peer caches.
Centralized cache performs the caching function for all
hosts behind it and does not have any same level peer cache
to cooperate with.

2.1. Caching algorithms

Two caching algorithms, the URL-based and the con-
tent-based, are evaluated in this paper. The URL-based
caching algorithm is based on the URL of a static Web ob-
ject and its related freshness time, and has been widely used
in Web caching. The content-based caching algorithm is in-
spired by recent studies (Kelly and Mogul, 2002; Zhu et al.,
2003). In Zhu et al. (2003), we found that the static Web
content occupies only 10.2% of total Web requests, and
59.1% Web requests, which are repeatedly accessed (based
on their content digests), are traditionally perceived unc-
acheable. This implies that these uncacheable Web content
could be cached if certain protocol could be designed based
on the digest value. The basic idea of the content-based
caching algorithm is to exchange a content digest to decide
whether or not a real content communication should
happen.

2.2. Document lookup algorithms

As in any P2P networking system, the document lookup
algorithm is the core of the whole design. Four lookup
algorithms are evaluated in this paper, namely home1,
home2, geographic-based (Geo in short) and Tuxedo as
listed in Table 1. The basic idea of the home1 algorithm
is that a high level index server maintains an index file of
all Web objects stored in hosts within its scope. This proto-
col is used in Xiao et al.�s work (2002). When a host re-
quests a Web document, it first checks its local cache. If
the request misses, the host will send the request to the in-
dex server to search the index file. If the request hits at the
host i, the index server will inform the host i to send the
Web object to the request host. If the request misses again
in the index server, the request host will go to the original
server directly.
In the home2 algorithm (Iyer et al., 2002), each re-

quested document is associated with a certain host as its
logical home (based on its hash value of URL or digest).
Table 1
Description of four document lookup algorithms

Algorithms Description

home1 A hierarchical index server is used to maintain
Web content in peer�s cache (Xiao et al., 2002)

home2 A decentralized index (using hash value) is used
to locate Web content in each peer (Iyer et al., 2002)

Geo Only hosts located in the same subnet are considered.
Tuxedo An adaptive neighborhood mechanism is maintained

for different Web server and a hierarchical cache digest
is used to locate Web content (Shi et al., 2003b)
When a host requests a document, it will check its local
cache first. If a miss occurs, it will employ the P2P routing
algorithm to forward the request to the corresponding
home. The home will send the requested document back
to the client if the request is hit. If a miss occurs again,
the home will send the request to the original server and
then forward the received Web object to the request host.
In addition to using an average latency estimation, we also
implement the home2 algorithm at the host level based on
the FreePastry (FreePastry, 2003) package to evaluate the
effect of P2P routing overhead.
The Tuxedo algorithm was proposed by Shi et al.

(2003b). The novelty of this approach includes twofold:
maintaining a specific neighbor set for each Web server
and using a hierarchical cache digest approach to store mul-
tiple transcoded versions of the same content. Each Tuxedo
node maintains a server table and a neighbor table as
shown in Fig. 2. The server table keeps two pieces of infor-
mation: (1) an integer number which indicates how many
peers are closer than the origin Web server in the neighbor
table; and (2) the original server information (latency/
bandwidth). The neighbor table contains a hierarchical
cache digest information for each peer and is ordered
by the latency. In this paper, we are more interested
in the benefit of performance improvement of the algo-
rithm.
The Geo algorithm comes from our intuition that people

will have similar Web-browsing interests at the same geo-
graphic location. Currently, only the hosts located in the
same subnet are considered geographically closed and con-
tacted to query for the missing document. It can be easily
implemented using IP level multicast (if available). Other-
wise, an application-level multicast can be used here too
(Castro et al., 2003b). When a local cache missing happens,
the client first multicast its request within the subnet. If the
request hits at a host�s local cache, that host will send the
Web object back. If there is no reply, the request host will
send the request to the original server.

2.3. Peer granularity

Fig. 3 shows four possible peer granularities for a med-
ium-size institution, which has tens of building, multiple
logical organizations, and thousands of computers. Each
building could have more than one organization. In each
organization, there also possibly exist multiple subnets.
The P2P model could be applied at any of those levels.
In the performance evaluation, we implement three decen-
tralized peer-to-peer Web caching systems at different lev-
els, including host, organization, and building level. For
comparison purpose, a centralized Web caching is also
implemented. On the Internet, the peer granularity can be
larger than what we studied here, such as across institu-
tions, however, previous result (Wolman et al., 1999a)
shows that sharing across big organizations is limit. There-
fore, we will consider the peer-to-peer sharing within a big
organization only in this paper.

www.ijk.com

3 server info
P1

No. of neighbours
with latency < server

www.stu.com

www.opq.com

www.abc.com

www.xyz.com P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

Peer ID Peer Info

Pn

 latency 4

 bandwidth b
 cache digest

 reputation r

 latency 6
 bandwidth b

 cache digest

 reputation r

 latency 6.5
 bandwidth b

 cache digest

 reputation r

 latency 12
 bandwidth b

 cache digest

 reputation r

P1

P3

P4

P2

1 server info

9 server info

2 server info

5 server info

server info

 latency 11

 bandwidth b

S1

 latency 5
 bandwidth b

S2

Server table Neighbor table

Image resizing
language translation

Image resizing
language translation

Image resizing

language translation

Image resizing
language translation

Fig. 2. Two tables maintained at each Tuxedo cache node: server table and neighbor table.

P1
P3

P4

P2

S4

S3

S4

Building Organization Subnet Peer

B1

O1

O2

B2

O3

O4

S1

S2 B3S5

B3

O5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300

Object size (Kb)

S
ec

on
d

Building

Organization

Subnet

LAN

(a) (b)

Fig. 3. (a) Peer granularity and (b) the simple latency estimation model.

Table 2
The simple latency estimation model coefficient

Granularity a b

LAN 0.0001 0.0042
Subnet 0.0009 0.0066
Organization 0.0028 0.0671
Building 0.0029 0.0920

4 W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
2.4. A simple latency estimation model

To estimate the possible latency reduction of different de-
sign options, we use a simple latency model to compute the
latency between any two hosts. According to Fig. 3(a),
there are four possible host-to-host latency models: hosts
within the same LAN (in the reach of the same switch);
hosts in different LAN but within the same subnet; hosts
between different organizations but within the same build-
ing and hosts between different buildings. To measure these
latencies, we ran a client program to fetch different Web
objects, with size ranging from 1 to 256KB, against an
Apache Web server (Apache HTTP Server Project, 1999)
inside campus. We calculated the latency between the re-
quest and the last-byte of response as in Fig. 3(b). Since
these latency values include not only the delay of network,
but also the overhead of the application, we call this appli-
cation level latency. Using the minimum square linear pro-
gramming approach, we found all latencies follow a linear
model, i.e., f(x) = ax + b, where x is a variable of the file
size in kilobyte, f(x) represents the latency in second, the
corresponding parameters a and b are listed in Table 2.

W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx 5

ARTICLE IN PRESS
3. Trace generation

By examining many existing traces, we find that they are
either (1) lack of the user-perceived latency which is one of
performance metrics in our study; or (2) absence of the en-
tire Web object which is required to calculate the content
digest. We decide to collect the trace on our own. We col-
lected all inbound Web traffic and rebuilt the trace. The in-
bound Web traffic means those Web sessions originated by
the inside-campus clients and served by outside-campus
Web servers.

3.1. Trace collection

Tcpdump (tcpdump, 2001) is used to collect TCP packets
at the network entrance of a middle-size education institu-
tion, while all Web traffic through port 80 is sniffed. To ex-
tract the complete HTTP information, including both
header and content, we have developed WebTACT, a
Web Traffic Analysis and Characterize Tool (Zhu et al.,
2003). The output of WebTACT includes the hash digest
values for requested Web content, and the user-perceived
latency, which is measured as the difference between the
capture time of last packet of response and that of first
packet of request. The TTL (time-to-live) value associated
with each Web document is calculated using Squid�s (squid,
1998) implementation.
From the viewpoint of Web caching, generally Web con-

tent could be categorized as uncacheable Web object or
cacheable Web object. The cacheable Web content refers
to those infrequently changed Web objects (also known
as static Web content). The uncacheable Web content
could be further subcategorized into seven uncacheable
types, depending on the following rules:

• Type 1—NonGet: If the HTTP method, appeared in the
HTTP request header, is not a GET method, then the
corresponding HTTP object would be classified as Non-
Get subtype;

• Type 2—DynGen: If the method is GET, and the request
URL contains keywords (like ‘‘cgi’’, ‘‘asp’’, ‘‘=’’, and
‘‘?’’, � � �, etc.), which implies the HTTP response object
is probably generated dynamically, then that object
would be classified as DynGen subtype;

• Type 3—Pragma: In the cases that HTTP request/
response header part contains ‘‘Pragma: no cache’’ con-
trol information header, this object could be considered
as Pragma subtype;

• Type 4—CacheCtl: In the case that HTTP request/
response ‘‘Cache Control’’ header contains information
indicating this is a dynamic, uncacheable HTTP object,
this HTTP object is classified as CacheCtl subtype;

• Type 5—Personalized: If the HTTP request header
contains Cookie or Authorization-related headers, or
the HTTP response contains Set-Cookie header, the
corresponding HTTP content is defined as personal-
ized subtype;
• Type 6—AbnormalStatus: If the return status code
from server does not belong to 2XX or 3XX, we think
the response object is not a cacheable response and treat
it as AbnormalStatus subtype;

• Type 7—ZeroTTL: Except above six subtypes, we are
also interested in the HTTP objects whose TTL (time-
to-live) values equal to zero. This sort of objects is clas-
sified as ZeroTTL subtype.

3.2. Host traffic clustering

To cluster the inbound traffic at different peer granular-
ities, we obtained the network topology information from
Computing & Information Technology (C&IT) division
of the education institution. Based on this, we could iden-
tify the relationship between any two internal IP addresses
(two clients), and calculate the simulation latency using the
latency estimation model as described above. Note that if
two users use the same machine, we have to consider them
as one peer in the host-level caching.

4. Performance evaluation and analysis

We adopt the trace-driven approach to examine the dif-
ferent design choices of peer-to-peer Web caching, imple-
menting two caching algorithms, and four document
lookup methods at four peer granularities. The trace used
in the performance evaluation was collected at a medium
size education institution during a seven-day period (Au-
gust 25–31, 2003). Only the inbound traffic is examined
in the analysis.
Totally, there are 10,481 unique hosts observed from the

trace based on their IP addresses. These hosts belong to
110 subnets, disperse in 77 organizations that are located
in 60 buildings. In order to emulate the behavior of real de-
ployed Web caches, we set the size limit for the caches at
centralized, building, organization and host levels to
1GB, 300MB, 100MB and 10MB, respectively. We also
limit the maximum size of cacheable objects to 20% of
the corresponding cache capacity. Although cache sizes
of real deployment could be set much bigger, we are inter-
ested in the relative relationship (relative size ratio) among
caches at different levels. The least-recent used (LRU)
replacement algorithm is used in our simulation.

4.1. Performance metrics

Although most previous studies chose performance met-
rics like the hit ratio and the byte hit ratio to evaluate Web
caching, from the perspective of clients, the user-perceived
latency is the most crucial. In this study, we focus not only
on the hit ratio and the byte hit ratio, but also on the la-
tency reduction, which is the improvement of the estimated
latency compared with the measured latency. In addition to
the absolute latency reduction, we also use speedup, a rela-
tive comparison, to evaluate different Web caching systems.

6 W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
In our previous work (Mao et al., 2004), the P2P routing
overhead of the home2 algorithm is estimated based on
average latency (calculated as the average number of hops
times the average latency per application layer hop). In this
paper, we also implement a variant of the home2 algorithm
by using the FreePastry (FreePastry, 2003) package at the
host level. Our results in Section 4.3 show that the FreePas-
try introduces more latency than our estimation in (Mao
et al., 2004). Moreover, we also introduce a notion of peer
sharing gain to indicate the resource share degree between
those peers. The peer sharing gain is defined as the ratio
of the number of remote hits and the number of total hits.
Regarding to the latency reduction, it could be improved
(positive) or deteriorated (negative). We use Limprove and
Ldeteriorate to depict these two cases, respectively.

4.2. Hit ratio

In terms of the hit ratio, including both request hit ratio
and the byte hit ratio, we examine different design choices.
Fig. 4 shows that the hit ratio and the byte hit ratio of the
URL-based and the content-based caching algorithms at
four peer granularities respectively. Each item in the X-axis
represents a combination of peer granularity and document
6.05%

5.14% 5.17% 5.13%
4.66% 4.61% 4.76%

3.07% 3.07% 3.06% 3.04% 3.08%

3.81%

2.78%
1.95%

3.83%3.96%
1.03%

2.18%2.11%0.90%
1.72%1.73%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

C
en

tr
al

iz
ed

B
ui

ld
in

g_
ho

m
e1

B
ui

ld
in

g_
ho

m
e2

B
ui

ld
in

g_
T

ux
ed

o

O
rg

_h
om

e1

O
rg

_h
om

e2

O
rg

_T
ux

ed
o

H
os

t_
ho

m
e1

H
os

t_
ho

m
e2

H
os

t_
G

eo

H
os

t_
T

ux
ed

o

F
re

eP
as

tr
y

H
it

 R
at

io

Remote

Local

(a)

49.2% 45.8% 44.2% 45.4% 42.7% 41.1% 42.3% 39.3% 38.9% 39.2% 39.1% 38.5%

10.8% 12.5%
5.8% 11.7% 13.0%

6.2%
18.8% 20.2%

8.3% 10.4%

20.4%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

C
en

tr
al

iz
ed

B
ui

ld
in

g_
ho

m
e1

B
ui

ld
in

g_
ho

m
e2

B
ui

ld
in

g_
T

ux
ed

o

O
rg

_h
om

e1

O
rg

_h
om

e2

O
rg

_T
ux

ed
o

H
os

t_
ho

m
e1

H
os

t_
ho

m
e2

H
os

t_
G

eo

H
os

t_
T

ux
ed

o

F
re

eP
as

tr
y

H
it

 R
at

io

Remote

Local

(c)

Fig. 4. Comparison of hit ratios and byte hit ratios of different algorithms: (a
ratio and (d) Content-based byte hit ratio.
lookup algorithm. For example, host-geo means the geo-
graphic-based document lookup algorithm is applied at
host level. The Y-axis of Fig. 4(a) and (c) indicates the hit
ratio in percentage. The Y-axis of Fig. 4(b) and (d) shows
the byte hit ratio in percentage. In Fig. 4, each bar consists
of two parts, the local hit (lower part) and remote hit (upper
part). The local hit refers to the hit happened at the default
cache (for example, at host level the default cache is the lo-
cal cache of host itself), and the remote hit refers to the hit
happened at the requested document�s home cache (the
home1 and the home2), or neighbor within the same subnet
(the Geo). For the centralized cache, the remote hit is zero.
Note that, for the content-based caching algorithm, we

only simulate the uncacheable Web content, while this
algorithm works for the static Web content as well. Thus,
the total hit ratio or byte hit ratio of the content-based cach-
ing algorithm is the sum of that from content-based and
that from URL-based correspondingly. The URL-based
caching algorithm, as illustrated in Fig. 4(a) and (b), has
the lower cache hits in terms of the hit ratio and the byte
hit ratio compared with the content-based caching algo-
rithm as shown in Fig. 4(c) and (d). From those figures,
we observe that the local hit ratio decreases from the cen-
tralized level to the host level caused by the total cache size
5.96%

4.48% 4.52% 4.35%
3.89% 3.84% 3.87%

2.05% 2.05% 1.95% 1.98% 1.91%

2.32% 2.28%

1.66% 2.87% 2.85%
1.92%

2.65% 2.76%

1.17%
1.94%

2.62%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

C
en

tr
al

iz
ed

B
ui

ld
in

g_
ho

m
e1

B
ui

ld
in

g_
ho

m
e2

B
ui

ld
in

g_
T

ux
ed

o

O
rg

_h
om

e1

O
rg

_h
om

e2

O
rg

_T
ux

ed
o

H
os

t_
ho

m
e1

H
os

t_
ho

m
e2

H
os

t_
G

eo

H
os

t_
T

ux
ed

o

F
re

eP
as

tr
y

B
yt

e
H

it
 R

at
io

Remote

Local

(b)

26.1%
24.1% 23.7% 23.7% 22.7% 21.9% 22.2%

19.4% 19.5% 19.4% 19.4% 19.2%

6.1% 6.7%
4.7% 6.2% 6.9% 4.7% 10.2% 11.2%

4.2% 5.0%

11.1%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

C
en

tr
al

iz
ed

B
ui

ld
in

g_
ho

m
e1

B
ui

ld
in

g_
ho

m
e2

B
ui

ld
in

g_
T

ux
ed

o

O
rg

_h
om

e1

O
rg

_h
om

e2

O
rg

_T
ux

ed
o

H
os

t_
ho

m
e1

H
os

t_
ho

m
e2

H
os

t_
G

eo

H
os

t_
T

ux
ed

o

F
re

eP
as

tr
y

B
yt

e
H

it
 R

at
io

Remote

Local

(d)

) URL-based hit ratio, (b) URL-based byte hit ratio, (c) Content-based hit

W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx 7

ARTICLE IN PRESS
decreasing at each level, and the remote hit ratio increases
respectively for both the URL-based and the content-based
caching algorithms due to the sum of peers cache size
increasing. In general, the home1 has a big hit ratio than
the home2, and the Tuxedo has less hit ratio than both of
them. The reason is the home2 algorithm will store the
Web objects at both the requesting host and the home of
the requested object, which causes the disk space redun-
dancy to decrease the hit ratio. The lower hit ratio of the
Tuxedo is due to the low document lookup efficiency and
the adaptive neighbor set algorithm, as explained in Sec-
tion 4.2.2. Next, we will discuss the hit ratio and byte hit ra-
tio based on caching algorithms, document lookup
algorithms and peer granularities separately.

4.2.1. Caching algorithm

In our study, we are interested in which caching algo-
rithm could achieve higher hit ratio and byte hit ratio.
From Fig. 4(a) and (c), we find that the hit ratio of the
URL-based algorithm has the value from 5.04% to 7.03%,
while the content-based algorithm gains an order of magni-
tude additional hit ratio, ranging from 47.44% to 59.08%,
depending on different P2P granularities. The reason for
the lower hit ratio of the URL-based caching algorithm is
there are 49.6% requests whose TTL�s values are zero,
probably caused by the cache busting (Krishnamurthy
and Rexford, 2001) technique, and therefore those requests
are uncacheable for the traditional caching algorithm.
These results indicate that the content-based algorithm
has the great potential to increase the hit ratio. Fig. 4(b)
and (d) report that the byte hit ratio of the URL-based
caching algorithm is from 3.12% to 6.80%, while content-
based algorithm gains additional byte hit ratio from
23.55% to 30.22%, depending on different peer granulari-
ties. Surprisingly, it can be seen from the figure that the
byte hit ratio does not gain as much as hit ratio using con-
tent-based caching algorithms. The possible reasons are: (1)
the cache busting (Krishnamurthy and Rexford, 2001)
technique tends to apply to small object, like advertised
gif or jpeg images; (2) some very small HTTP response
heads (for example, 404 for ‘‘document not found’’ in
HTTP protocol) happen a lot of times, and they have the
same digest.

4.2.2. Document lookup algorithm

Logically, the hit ratio resulting from a document look-
up algorithm is determined by the scope of lookup and the
efficiency of the document lookup algorithm, independent
of the specific document lookup algorithm. The difference
of hit ratio for the home1, the home2 lookup algorithm,
as shown in Fig. 4, is caused by two possible reasons: (1)
the space limitation of cache size, and (2) the disk redun-
dancy of the home2 algorithm. Comparing with the home1,
the home2 will store the Web objects at two locations: one
is at the requesting host, and the other is at the logic home
of the requested object. This will cause some disk space
redundancy to decrease the hit ratio. On the other hand,
the low hit ratio of the Tuxedo (especially for the remote
hit ratio) is not caused by the space limitation, instead is
the result of the specific algorithm of Tuxedo. The Tuxedo
algorithm uses cache digests to predict the Web content
among its peers. The efficiency of prediction depends on
the size of bloom filter (for cache digests) and the frequency
of digest updating. Experiment shows that 30 min updating
interval will achieve 90% lookup efficiency, while 1 h
updating interval will get only 87% using the same trace.
Another factor to decrease the Tuxedo hit ratio is the adap-
tive neighbor set algorithm which intends to access the ori-
gin Web server if the cache peers is slower than the origin
Web server; however, we find that the loss of the hit ratio
will be compensated by the benefit of latency reduction
or speedup. Interestingly, it can be seen from the figures
that the hit ratio of the geographic-based algorithm is lower
than that of three other algorithms. This is caused by the
limited host number in each subnet searched by the Geo
algorithm. Although the Geo algorithm only has two third
of the hit ratio compared with the home1 and the home2, we
still think it as a very promising document lookup algo-
rithm because it uses only one percent of host population
on average compared with the home1 and the home2 algo-
rithms. Therefore, the Geo algorithm can scale very well.

4.2.3. Peer granularity

In this paper, we are interested in which peer granularity
level the peer-to-peer Web caching should be deployed. An
analytic result indicates that the hit ratio should increase
with the peer granularity changing from the centralized le-
vel to the host level. The increment of the hit ratio is caused
by the cache capacity increasing with the changing of peer
granularity. Fig. 4 shows that the hit ratio and the byte hit
ratio increase with peer granularity changing from the cen-
tralized level to the host level, but there are some exceptions
for the URL-based algorithm at the organization level P2P
caching. The possible culprits are: (1) the total cacheable
Web objects number is small, and their total bytes are less
than the sum of cooperative cache capacity; (2) the object
size limitation at the organization level and the host level
is 20 and 2MB, respectively, and there exist some files that
are too large to be cached. For the exception of the content-
based lookup algorithm at the organization level whose hit
ratio and byte hit ratio are less than those of building level
cache, the possible reason is that the capacity sum of the
organization level cache is 7700MB, which is less than the
capacity sum of the building level cache, 18,000MB. An-
other exception is the relative low remote hit ratio in
host-Geo scenario, which is caused by the limitation of
its neighbor population (limited by the size of subnet). De-
spite this, it still achieves a very impressive hit ratio.

4.2.4. Peer share gain

The motivation of peer-to-peer Web caching is to share
Web objects among a group of clients. We define a notion
of peer sharing gain to indicate the resource share degree
between those peers. The peer sharing gain is defined as

Table 3
The peer share gains of two caching algorithms at three peer granularities

Granularities URL-based Content-based

Peer share gain (%) Peer share gain (byte hit) (%) Peer share gain (%) Peer share gain (byte hit) (%)

Building-home1 25.2 34.1 19.1 20.1
Building-home2 24.9 33.5 22.0 22.0
Building-Tuxedo 14.9 27.6 11.2 16.6
Org-home1 31.2 42.5 21.5 21.4
Org-home2 32.0 42.5 24.1 23.9
Org-Tuxedo 17.8 33.1 12.7 17.6
Host-home1 57.5 55.5 32.4 34.4
Host-home2 55.6 57.4 34.2 36.5
Host-Geo 38.9 37.5 17.4 17.6
Host-Tuxedo 47.8 49.6 21.0 20.6
FreePastry 55.3 57.8 34.7 36.7

Table 4
The hit ratio and byte hit ratio of different dynamic types at four peer granularities

Dynamic types NonGet

(%)
DynGen

(%)
Pragma

(%)
CacheCtl

(%)
Personalized

(%)
Abnormal Status

(%)
ZeroTTL

(%)

Hit ratio

Centralized 0.17 11.94 0.33 1.36 0.06 4.93 24.66
Building 0.21 12.48 0.35 1.65 0.07 5.11 30.63
Building-Tuxedo 0.23 12.64 0.35 1.48 0.06 4.02 26.29
Organization 0.20 12.28 0.33 1.57 0.06 5.05 28.94
Organization-Tuxedo 0.21 12.40 0.36 1.37 0.06 3.97 24.23
Host 0.23 13.44 0.54 1.65 0.07 4.56 31.42
Host-Geo 0.21 12.12 0.37 1.39 0.06 3.96 23.09

Byte hit ratio

Centralized 0.11 4.35 1.83 0.78 0.22 0.61 16.35
Building 0.12 4.91 1.92 0.91 0.23 0.62 19.52
Building-Tuxedo 0.12 4.76 1.87 0.87 0.23 0.56 18.27
Organization 0.11 4.73 1.87 0.86 0.23 0.63 18.47
Organization-Tuxedo 0.13 4.59 1.82 0.81 0.23 0.56 17.17
Host 0.11 5.06 1.94 0.92 0.10 0.58 19.17
Host-Geo 0.11 4.23 1.70 0.76 0.10 0.54 14.49

8 W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
the ratio of the number of remote hits and the number of
total hits. Table 3 shows the peer share gain in terms of
both request hit and byte hit based on different peer gran-
ularities and two caching algorithms. From Table 3, we can
find that the host level caching has the highest peer share
gain for both hit ratio and byte hit ratio, for two caching
algorithms, URL-based and content-based. Table 3 also
shows that building and organization level have around
20% sharing gain for hit ratio, and 20% for byte hit ratio
when applying content-based caching algorithm. This
observation implies peer-to-peer Web caching can effi-
ciently share Web objects in terms of both hit ratio and byte
hit ratio at different peer granularities. Note that, the con-
tent-based caching algorithm actually reduce the peer share
gain in terms of both number of requests and number of
bytes. The reason is the content-based caching algorithm
will cause more number of cache replacement due to the
cache size limit. It is worth noting that the peer share gains
of the FreePastry implementation always have the highest
values in Table 3, which agrees with the guarantee of doc-
ument lookup of structured peer-to-peer systems; however,
as we will see in Section 4.3, most of the hit achieved by the
FreePastry implementation actually deteriorate the user-
perceived latency.

4.2.5. Effect of dynamic type

Although the content-based algorithm has the great po-
tential for content reusing, we are more interested in
where this benefit comes from. Therefore, we analyze
the hit ratio for dynamic types in detail and exploit which
type of dynamic content could be efficiently cached or has
higher hit ratio in our simulation. Table 4 shows the hit
ratio for seven dynamic types at different peer granulari-
ties. Table 4 indicates that there is no significant difference
of hit ratio and byte hit ratio for the four level peer gran-
ularities. ZeroTLL contributes about 50% hit ratio of to-
tal digest hit. DynGen contributes about 15% hit ratio of
total digest hit. These results imply that for content-based
caching algorithm we need to focus on DynGen and
ZeroTTL types. We also evaluate the corresponding la-
tency reduction for these two types, and we find that the
latency improvement for DynGen is 93% and for Zero-
TTL is about 84%. We think these improvements are
acceptable.

0.115
0.049

0.234

0.041 0.047

0.183

0.034 0.057
0.161

0.003 0.024

1.162

1.793

1.656 1.656

1.848

1.666 1.669

1.901

1.633 1.633 1.651

1.874

1.632

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

C
en

tr
al

iz
ed

B
ui

ld
in

g_
ho

m
e1

B
ui

ld
in

g_
ho

m
e2

B
ui

ld
in

g_
Tu

xe
do

O
rg

_h
om

e1

O
rg

_h
om

e2

O
rg

_T
ux

ed
o

H
os

t_
ho

m
e1

H
os

t_
ho

m
e2

H
os

t_
G

eo

H
os

t_
Tu

xe
do

Fr
ee

P
as

tr
y

L
at

en
cy

 T
im

e
(S

ec
o

n
d

)

Avg. Simulated Latency Avg. Real Latency

Fig. 5. The comparison of the average measured latency and the simulated (estimated) latency.

W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx 9

ARTICLE IN PRESS
4.3. Latency reduction and speedup

Now we are in the position to examine the correspond-
ing latency reduction and speedup resulting from peer-to-
peer Web caching. We use the user-perceived last-byte la-
tency as a performance metric to examine all possible cach-
ing design space. In this section, instead of examining the
speedup of both the URL-based and the content-based cach-
ing algorithms, we evaluate the URL-based algorithm only,
because the overhead of the content-based depends on spe-
cific implementation details. We first evaluate the speedup
of the different algorithms at three peer granularities, i.e.,
host level, organization level, and building level. The speed-
up is defined as the ratio of Twithout and Twith, where the
Twithout is the average response time of a client to retrieve
a Web object from its local cache L without peer cache
cooperation and the Twith is the average response time of
a client to retrieve a Web object from its local cache L
and with the cooperation of peer cache R cooperation.
Fig. 5 illustrates the average latency obtained from sim-

ulation and measurement for different caching algorithms
at all possible peer granularities. In the Figure, the average
Table 5
The percentage of latency improvement and deterioration of the URL-
based caching algorithm at four peer granularities

Granularities Limprove Ldeteriorate

Centralized 380,233 (55.1%) 309,608 (44.9%)
Building-home1 610,090 (82.7%) 127,454 (17.3%)
Building-home2 219,136 (29.7%) 519,464 (70.3%)
Building-Tuxedo 603,355 (93.2%) 44,120 (6.8%)
Org-home1 622,764 (84.8%) 111,570 (15.2%)
Org-home2 251,161 (34.1%) 485,337 (65.9%)
Org-Tuxedo 609,839 (98.1%) 11,956 (1.9%)
Host-home1 577,786 (77.6%) 167,176 (22.4%)
Host-home2 434,263 (58.4%) 309,775 (41.6%)
Host-Geo 533,895 (98.7%) 7065 (1.3%)
Host-Tuxedo 613,946 (98.3%) 10,341 (1.7%)
FreePastry 329,333 (44.6%) 408,530 (55.4%)
simulation latency is the average of all simulated latencies
(calculated from the simple latency model) resulted from
hit requests during the simulation. On the other hand,
the average measurement latency is the average of all mea-
sured latencies (calculated from the trace data) correspond-
ing to these hit requests. The host-Tuxedo scenario has the
best latency reduction except for Geo which has a less hit ra-
tio. The FreePastry has very low latency reduction compar-
ing with others. Our speedup analysis also shows it
increases the user perceived latency in average. This indi-
cates the home2 algorithm will not achieve good latency
reduction as well.
Table 5 shows the percentage of latency improvement

represented by Limprove and the latency deterioration repre-
sented by Ldeteriorate for all hit requests in different peer-to-
peer Web caching design options. Limprove represents the
number of hit requests where the simulation latency is less
than the measurement latency. Ldeteriorate represents the dif-
ference between total number of hits and Limprove. From
the table, we observe that the Tuxedo, the Geo and the
home1 have a higher Limprove ratio, but the Tuxedo has
the highest Limprove number. The speedup analysis also sup-
port this conclusion.
Table 6 shows the speedup of different document lookup

algorithms at three peer granularities. The speedup analysis
needs to consider the lookup overhead and efficiency of
each document lookup algorithm. The home1 algorithm
has no lookup overhead, but the lookup efficiency is imper-
fect. In paper (Dykes and Rabbins, 2002), they suggest
using nighttime update, and the lookup efficiency is 0.91.
Table 6
The speedup of different document lookup algorithms at three peer
granularities

Granularities home1 home2 Tuxedo Geo FreePastry

Building level 1.09 1.01 1.10 N/A N/A
Organization level 1.15 1.11 1.09 N/A N/A
Host level 1.37 1.10 1.38 1.23 0.74

10 W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
The home2 algorithm has a perfect lookup efficiency, but
has a considerable lookup overhead. In the home2 imple-
mentation, the average routing hops is used to simulate
the lookup overhead of P2P routing. Comparing with the
home2 implementation, the lookup overhead of FreePastry
is much larger, which indicates that the FreePastry does
not take the proximity into consideration efficiently, and
always route requests to a peer far away from the request-
ing host. This is a typical phenomenon of most structured
distributed hash tables (DHTs) that there is a mismatch be-
tween physical network and logic space caused by distrib-
uted hash tables. The speedup of FreePastry is 0.74,
which means the Pastry based P2P Web caching indeed in-
creases the user-perceived latency, although with a high hit
ratio, as listed in Table 3. Therefore, we will not consider
either home2 or FreePastry in later analysis. The lookup
efficiency of the Tuxedo is perfect with 6KB cache digest
for each peer at the host level. The update interval of cache
digest is 30 min and the experiment shows that it could
achieve 90% lookup efficiency. From Table 6, we observe
that the host level implementation has the higher speedup
than that of the implementations at the building and orga-
nization levels. The home1 and Tuxedo algorithms are fas-
ter than other algorithms at all peer granularities.
Next, we will discuss the latency reduction and the speed-

up in terms of document lookup algorithms, and P2P
granularities.

4.3.1. Documents lookup algorithm

Although the Geo has a significant latency reduction and
a good speedup, the performance will be impaired by the
multicast overhead of the network in the real implementa-
tion. From Fig. 5, we can see that home1 and Tuxedo algo-
rithms have very high latency reduction and a large
percentage (Limprove) as well. The speedup of the Tuxdeo
algorithm and the home1 algorithm at host level is 1.38
and 1.37, respectively. This shows Tuxedo and home1 could
efficiently reduce the user perceived latency.

4.3.2. Peer granularity

The centralized level caching has a comparable latency
reduction comparing with building level, organization level
and host level, but it will suffer scaling problem in a real
implementation with a large client population. The building
level has very similar results in terms of average latency,
speedup, and Limprove compared with organization level
cache. Although host level caches have higher speedup
(e.g., 1.38 for the Tuxedo and 1.37 for the home1) than
building level speedup (e.g., 1.10 for the Tuxedo and 1.09
for the home1), we prefer to the building level or the orga-
nization level implementation for ease management and less
overhead of updating discovery information.

5. Implications

Based on the analysis results in the last section, several
implications could be derived as follows:
• Need protocol support for deploying the content-based
Web caching mechanism: The results of the experiment
show that the content-based caching algorithm improves
the hit ratio tremendously. For example, in Fig. 4, the hit
ratio increased from 6.9% for the URL-based caching
algorithm to 62.0% for the content-based caching algo-
rithm at building level granularity. However, in our cur-
rent simulation, we assume that a client, which sends the
request, knows the digest of the request Web content in
prior. This is impractical in the real situation. Thus, to
exploit the benefit of the content-based caching algo-
rithm, an efficient mechanism is required to obtain the
content digest. DTD (Kelly and Mogul, 2002) and
VBWC (Rhea et al., 2003) are two recent efforts to
exploit this.

• Tradeoff between latency reduction and scalability: The
latency reduction is a key performance metric in our
study. Fig. 5 shows that the home1 and the Tuxedo doc-
ument lookup algorithms are always outperforms the
home2 algorithm. In the real implementation, the home1
algorithm needs a centralized index server, which is a big
obstacle of scalability for a large client population.
Although the home2 algorithm is exempted from the
scalability problem, it will increase the user-perceived
latency, because of the extra overhead of P2P routing.
Therefore, we argue that peer-to-peer Web caching at
organization or building levels using the Tuxedo lookup
algorithm is a good choice. The experiment of FreePas-
try shows that the mismatch between the logical space
exploited by Pastry and the physical space of peers does
hurt the performance, although the proximity has been
considered in Pastry�s design (Castro et al., 2003a).
Proximity in peer-to-peer routing is still an active and
open problem (Gummadi et al., 2003). Intuitively, we
think if some geographically-aware clustering technolo-
gies (Krishnamurthy and Rexford, 2001; Ratnasamy
et al., 2002) were applied on the home2 algorithm, the
latency reduction could be improved, but further study
is required.

• Exploiting the geographic-based lookup algorithm: We
propose a simple and effective geographic-based docu-
ment lookup algorithm. The results show that it has
an acceptable hit ratio and a significant latency reduc-
tion. The reason of the relative lower hit ratio compared
with the other two algorithms is due to the limited host
population participating in the geographic-based cluster.
We believe that if some geographically-aware clustering
technologies, such as network clustering (Krishnamur-
thy and Rexford, 2001), or landmark based binning
algorithm (Ratnasamy et al., 2002), are integrated with
the geographic-based lookup algorithm to increase the
client population, the hit ratio will increase greatly, while
the advantage of the latency reduction still remains
good.

• Potential of caching dynamic types: We examine the hit
ratio of dynamic content based on dynamic types. The
purpose of exploiting dynamic types is to examine the

W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx 11

ARTICLE IN PRESS
cacheability of different dynamic types according to our
classification technique. In our simulation, we assume
that all those seven types of dynamic content could be
cached based on their content digest. Intriguingly,
experiment results in Table 4 show that only DynGen,
AbnormalStatus and ZeroTTL dynamic content
have an acceptable hit ratio. AbnormalStatus repre-
sents abnormal response status, definitely not suitable
for caching. (DynGen) and (ZeroTTL) contribute about
75% of the hit ratio in the content-based caching algo-
rithm. Caching those two dynamic types will signifi-
cantly improve the Web caching performance and save
tremendous network bandwidth.

• Which peer granularity is the best?: From the perspective
of peer share gain, the experiments suggest the lower the
peer granularity the larger peer share gain, which advo-
cates the host level peer-to-peer Web caching. From the
perspective of the latency reduction or the speedup,
which is the most crucial consideration for clients, the
organization level or building level peer-to-peer Web
caching using the Tuxedo algorithm is the best one. If
there are some improvements at lookup algorithm to
reduce the latency caused by P2P routing, the host level
P2P Web caching using the home2 algorithm will be a
good choice too.

6. Related work and discussions

Peer-to-peer Web caching (also known as cooperative
Web caching) has been extensively studied in recent years
(Iyer et al., 2002; Xiao et al., 2002; Wolman et al., 1999b;
Shi et al., 2003b; Stading et al., 2002). The work presented
in this paper is inspired by the controversial observations
drawn from these earlier efforts. To the best of our knowl-
edge, our effort is the first try to systematically examine the
design space of peer-to-peer Web caching in three dimen-
sions, and quantitatively evaluate their performance in
terms of three performance metrics: hit ratio, latency reduc-
tion, and speedup.
Cooperative caching was first proposed by Dahlin et al.

in the context of memory caching sharing in file system
(Dahlin et al., 1994), which examined and compared four
different cooperative caching algorithms using a trace-dri-
ven simulation. However, we focus on Web content shar-
ing, and evaluate different peer granularities, caching
algorithms, and document lookup algorithms in this paper.
The pioneer work in cooperative caching was conducted

by Wolman et al. in 1999, using the traces from University
of Washington and Microsoft Research Redmond (Wol-
man et al., 1999b). This is the closest work to our analysis.
There are three differences exist. First, the peer grains
examined in our paper is wider than their work, which fo-
cus on the organization level only. Second, the qualitative
latency improvement analysis in (Wolman et al., 1999b)
was done by an analytical model, while we perform a quan-
titatively study. Finally, a new content-based caching algo-
rithm is proposed in this paper, distinguishing our work
from their URL-based analysis.
Recently, Iyer et al. proposed Squirrel (Iyer et al., 2002),

a peer-to-peer Web caching system built on the PASTRY
peer-to-peer routing substrate (Rowstron and Druschel,
2001). Xiao et al. studied the reliability and scalability of
a browser-aware proxy server by using a centralized index
server for multiple hosts. Our work was partially inspired
by these two previous efforts, and we implemented both
of their algorithms in this paper for comparison purposes.
In addition to hit ratio and cooperative hit ratio, this paper
compares the likely latency reduction as well. Furthermore,
the traces used in our analysis was collected on March,
2003, which is more up-to-date than the traces used in (Iyer
et al., 2002; Xiao et al., 2002). Our recent work on Tuxedo
(Shi et al., 2003b) proposed another object lookup proto-
col, called adaptive neighbor table, which compliments to
this work. Backslash (Stading et al., 2002) is a content dis-
tribution system based on peer-to-peer overlay and used
for those who do not expect consistently heavy traffic (flash
crowds) to their sites. Although it is also a peer-to-peer
Web caching system, the goal is totally different from ours.
Dykes and Robbin examined the benefits of cooperative

proxy caching (Dykes and Rabbins, 2002); however, our
work differs from theirs in threefold: (1) cooperative scope.
We look at the peer-to-peer Web caching within an auton-
omous system, while their work apply for wide area cach-
ing; (2) design space. Their work looks at both
hierarchical and mesh, while our work focuses on peer-
to-peer (mesh) only; but to the best of knowledge, we are
the first effort to systematically evaluate the design space
of peer-to-peer Web caching systems in three dimensions;
and (3) caching algorithm. Only the URL-based caching
algorithm is evaluated in their work, we focus on both
the URL-based and the content-based algorithms. The lat-
ter has a great potential for the future of Web caching.
To our knowledge, we are the first to evaluate the perfor-
mance of the content-based P2P caching using the real
traces with content digests.
The content-based caching algorithm proposed in this

paper is motivated by the fact that there exists a large
amount of content repeatness in Web traffic, i.e., the con-
tent of two Web documents are the same even though their
URLs are different. This phenomenon was observed in our
recent traffic analysis (Zhu et al., 2003) and (Kelly and Mo-
gul, 2002). The recent proposed value-based Web caching
(VBWC) by Rhea et al. (2003) shares the similar idea as
ours, but we come out this idea independently. Moreover,
the focus of VBWC is implementation details (block-level)
in the last mile, while our work is examining the potential
benefits by using digest as a general Web caching approach.
Their implementation compliments to our effort. The work
of Bahn et al. (2002) focuses on reducing the repeatness of
Web object on disk by using content digest, we are inter-
ested in peer-to-peer sharing of Web content.
Different from the content level Web sharing, at the

semantic level, recently Zhuge et al. propose a semantic

12 W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx

ARTICLE IN PRESS
link peer-to-peer (P2P) network specifies and manages
semantic relationships between peers� data schemas
(Zhuge, 2003; Zhuge et al., 2005). These data schemas
can be used as the semantic layer of a scalable Knowledge
Grid, which considers not only nodes but also the XML
structure in measuring the similarity between schemas to
efficiently and accurately forward queries to relevant peers.
Furthermore, it copes with semantic and structural hetero-
geneity and data inconsistency so that peers can exchange
and translate heterogeneous information within a uniform
view. We believe this work complements to our work very
well by considering the high level semantics. Integrating the
semantics of Web content in the Web caching is a promis-
ing direction and we plan to investigate it in our next step.
Peer lookup algorithm is a very hot research topic in re-

cent years. Chord (Stoica et al., 2001), CAN (Ratnasamy
et al., 2001), Pastry (Rowstron and Druschel, 2001) are
three representatives. In this paper, the average latency of
the home2 protocol is based on Pastry. Due to the similar-
ity of these protocols (less than O(log(n)) hops), we argue
that our analysis can be easily extended to other algo-
rithms. The simple geographic-based lookup algorithm pro-
posed in this paper produces a reasonable performance in
terms of hit ratio, and reduce the latency significantly. The-
oretically, we believe that our work will definitely benefit
from several recent work on geographically-aware cluster-
ing technologies, such as network clustering (Krishnamur-
thy and Rexford, 2001), landmark based binning algorithm
(Ratnasamy et al., 2002), and global network positioning
(GNP) service (Ng and Zhang, 2002). However, it is still
an open problem to understand how much benefits can
be obtained by employing these complicated algorithms.
This will be our future work. Recently, Canali et al. evalu-
ated the performance of two lookup algorithms, hierarchi-
cal and flat, in terms of transcoded version among
cooperative caching (Canali et al., 2003). Different from
their effort, we examine the whole design space of the
peer-to-peer Web caching in the paper.

7. Conclusions

In this paper, we have systematically examined the de-
sign space of peer-to-peer Web caching, in terms of three
design dimensions: the caching algorithm, the lookup algo-
rithm, and the peer granularity. Our study shows that the
content-based caching algorithm could greatly improve
the Web objects cacheability; peer-to-peer Web cache at
different granularities can share Web documents efficiently,
ranging from 22.0% (at building level) to 34.2% (at host le-
vel); the latency could be reduced three to six times com-
pared with the measured latency; and the Tuxedo

document lookup algorithm has a prominent hit ratio, a
significant latency reduction, and speedup. Based on these
observations, we argue that the organization/building level
peer-to-peer Web caching using the Tuxedo algorithm is
the most appropriate choice. Our trace is available for re-
search purpose at http://mist.cs.wayne.edu.
Acknowledgements

The authors would like to thank the anonymous review-
ers for providing valuable comments to improve the pre-
sentation of this paper. The authors would also like to
thank Zhaoming Zhu, for providing the Web trace, and
his comments on the earlier version of this paper. This re-
search was supported by the University Faculty Research
Grant of Wayne State University.
References

Androutsellis-Theotokis, S., Spinellis, D., 2004. A survey of peer-to-peer
content distribution technologies. ACM Computing Surveys 36 (4),
335–371.

Apache HTTP Server Project, 1999. Available from: <http://
httpd.apache.org>.

Bahn, H., Lee, H., Noh, S.H., Min, S.L., Koh, K., 2002. Replica-aware
caching for web proxies. Computer Communications 25 (3), 183–188.

Barford, P., Bestavros, A., Bradley, A., Crovella, M.E., 1999. Changes in
web client access patterns: Characteristics and caching implications.
World Wide Web, Special Issue on Characterization and Performance
Evaluation 2, 15–28.

Canali, C., Cardellini, W., Colajanni, M., Lancellotti, R., Yu, P.S., 2003.
Cooperative architectures and algorithms for discovery and transcod-
ing of multi-version content. In: Proceedings of the 8th International
Workshop on Web Caching and Content Distribution (WCW�03),
September, 2003. pp. 205–221.

Castro, M., Druschel, P., Hu, Y.C., Rowstron, A., 2003a. Proximity
neighbor selection in tree-based structured peer-to-peer overlays. Tech.
Rep. Technical Report MSR-TR-2003-52. Microsoft Research,
Cambridge.

Castro, M., et al., 2003b. An evaluation of scalable application-level
multicast built using peer-to-peer overlays. In: Proceedings of IEEE
Conference on Computer Communications (INFOCOM�03), March,
2003, Vol. 2. pp. 1510–1520.

Cunha, C., Bestavros, A., Crovella, M.E., 1995. Characteristics of WWW
client-based traces. Tech. Rep. BU-CS-95-010, July 1995. Computer
Science Department, Boston University.

Dahlin, M., Wang, R., Anderson, T., Patterson, D., 1994. Cooperative
caching: using remote client memory to improve file system perfor-
mance. In: Proceedings of the First USENIX Symposium on Oper-
ating Systems Design and Implementation, November, 1994. pp. 267–
280.

Dykes, S.G., Rabbins, K.A., 2002. Limits and benefits of cooperative web
caching. IEEE Journal on Selected Areas in Communications 20 (7),
1290–1304.

FreePastry, 2003. Available from: <http://www.cs.rice.edu/CS/System/
Pastry/FreePastry/>.

Gnutella, 2000. Available from: <http://gnutella.wego.com>.
Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S.,

Stoica, I., 2003. The impact of dht routing geometry on resilience and
proximity. In: Proceedings of ACM SIGCOMM�03, August, 2003. pp.
381–394.

IRCache Project, 1995. A distributed testbed for national information
provisioning. Available from: <http://www.ircache.net/Cache/>.

Iyer, S., Rowstron, A., Druschel, P., 2002. SQUIRREL: A decentralized,
peer-to-peer web cache. In: Proceedings of the 12th ACM Symposium
on Principles of Distributed Computing (PODC 2002), July, 2002. pp.
213–222.

KaZaA, 2005. Available from: <http://www.kazaa.com>.
Kelly, T., Mogul, J., 2002. Aliasing on the world wide web: Prevalence

and performance implications. In: Proceedings of the 11th Interna-
tional World Wide Web Conference, May, 2002. pp. 281–
292.

http://mist.cs.wayne.edu
http://httpd.apache.org
http://httpd.apache.org
http://www.cs.rice.edu/CS/System/Pastry/FreePastry/
http://www.cs.rice.edu/CS/System/Pastry/FreePastry/
http://gnutella.wego.com
http://www.ircache.net/Cache/
http://www.kazaa.com

W. Shi, Y. Mao / The Journal of Systems and Software xxx (2005) xxx–xxx 13

ARTICLE IN PRESS
Krishnamurthy, B., Rexford, J., 2001. Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching and Traffic Measurement.
Addison-Wesley, Inc.

Mao, Y., Zhu, Z., Shi, W., 2004. Peer-to-peer web caching: Hype or
reality? In: Proceedings of the 10th IEEE International Conferences on
Parallel and Distributed Systems, July, 2004. pp. 171–178.

Napster, 2005. Available from: <http://www.napster.com>.
Ng, T.S., Zhang, H., 2002. Predicting internet network distance with

coordinate-based approaches. In: Proceedings of IEEE Conference on
Computer Communications (INFOCOM�02), June, 2002, Vol. 1. pp.
170–179.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S., 2001. A
scalable content addressable network. In: Proceedings of ACM
SIGCOMM�01. pp. 161–172.

Ratnasamy, S., Handley, M., Karp, R., Shenker, S., 2002. Topologically-
aware overlay construction and server selection. In: Proceedings of
IEEE Conference on Computer Communications (INFOCOM�02),
June, 2002, Vol. 3. pp. 1190–1199.

Rhea, S.C., Liang, K., Brewer, E., 2003. Value-based web caching. In:
Proceedings of the 12th International World Wide Web Conference,
May, 2003. pp. 619–628.

Rowstron, A., Druschel, P., 2001. Pastry: Scalable, distributed object
location and routing for large scale peer-to-peer systems. In: Proceed-
ings of the IFIP/ACM Middleware, November, 2001. pp. 329–350.

Shi, W., Collins, E., Karamcheti, V., 2003a. Modeling object character-
istics of dynamic web content. Journal of Parallel and Distributed
Computing 63 (10), 963–980.

Shi, W., Shah, K., Mao, Y., Chaudhary, V., 2003b. Tuxedo: A peer-to-peer
caching system. In: Proceedings of PDPTA, June, 2003. pp. 981–987.

Squid, 1998. Squid web cache. Available from: <http://www.squid-
cache.com/>.

Stading, T., Maniatis, P., Baker, M., 2002. Peer-to-peer caching schemes
to address flash crowds. In: Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS�02), February, 2002. pp.
203–213.

Stoica, I.,Morris, R., Karger, D., Kaashoek,M.F., Balakrishnan,H., 2001.
Chord: a scalable peer-to-peer lookup service for internet applications.
In: Proceedings of the ACM SIGCOMM�2001. pp. 149–160.

Tcpdump, 2001. Tcpdump 3.7.1. Available from: <http://
www.tcpdump.org>.

Wolman, A., Voelker, G.M., Sharma, N., Cardwell, N., Brown, M.,
Landray, T., Pinnel, D., Karlin, A., Levy, H.M., 1999a. Organization-
based analysis of web-object sharing and caching. In: Proceedings of
the 2nd USENIX Symposium on Internet Technologies and Systems
(USITS�99), October, 1999. pp. 25–36.
Wolman, A., Voelker, G.M., Sharma, N., Cardwell, N., Karlin, A., Levy,
H.M., 1999b.On the scale and performance of cooperative web proxy
caching. In: Proceedings of 17th ACM Symposium on Operating
Systems Principles (SOSP), December, 1999. pp. 16–31.

Xiao, L., Zhang, X., Xu, Z., 2002. On reliable and scalable peer-to-peer
web document sharing. In: Proceedings of 2002 International Parallel
and Distributed Processing Symposium, April, 2002. pp. 23–
30.

Zhao, B., Kubiatowicz, J., Joseph, A., 2001. Tapestry: an infrastructure
for fault-tolerant wide-area location and routing. Tech. Rep. UCB/
CSD-01-1141, April, 2001. Computer Science Division, UC Berkeley.

Zhu, Z., Mao, Y., Shi, W., 2003. Workload characterization of uncache-
able web content—and its implications for caching. Tech. Rep. MIST-
TR-2003-003, May, 2003. Department of Computer Science, Wayne
State University.

Zhuge, H., 2003. Active e-document framework adf: Model and platform.
Information and Management 41 (1), 87–97.

Zhuge, H., Liu, J., Feng, L., Sun, X., He, C., 2005. Query routing in a
peer-to-peer semantic link network. Computational Intelligence 21 (2),
197–216.

Weisong Shi is an Assistant Professor of Computer Science at Wayne State
University. He received his B.S. from Xidian University in 1995, and
Ph.D. degree from the Chinese Academy of Sciences in 2000, both in
Computer Engineering. His current research focuses on dynamic Web
content delivery, trusted resource sharing in peer-to-peer systems, mobile
computing, and wireless sensor networks. Dr. Shi has published more than
40 peer-reviewed journal and conference papers in these areas. He is the
author of the book ‘‘Performance Optimization of Software Distributed
Shared Memory Systems’’ (High Education Press, 2004). He has also
served on technical program committees of several international confer-
ences, including the chairs of poster track of WWW 2005 and WWW 2006.
He is a recipient of Microsoft Fellowship in 1999, the President out-
standing award of the Chinese Academy of Sciences in 2000, one of 100
outstanding Ph.D. dissertations (China) in 2002, ‘‘Faculty Research
Award’’ of Wayne State University in 2004 and 2005, the ‘‘Best Paper
Award’’ of ICWE�04 and IPDPS�05. He is a member of ACM, USENIX,
and IEEE.

Yonggen Mao has completed his M.S. in computer science at Wayne State
University on August 2004. His research focuses on Web caching and
peer-to-peer systems. He received his B.E and M.E. degree from Hoai
University, Nanjing, China, in 1991 and 1994, respectively, both in Civil
Engineering.

http://www.napster.com
http://www.squid-cache.com/
http://www.squid-cache.com/
http://www.tcpdump.org
http://www.tcpdump.org

	Performance evaluation of peer-to-peer Web caching systems
	Introduction
	Design space of peer-to-peer Web caching
	Caching algorithms
	Document lookup algorithms
	Peer granularity
	A simple latency estimation model

	Trace generation
	Trace collection
	Host traffic clustering

	Performance evaluation and analysis
	Performance metrics
	Hit ratio
	Caching algorithm
	Document lookup algorithm
	Peer granularity
	Peer share gain
	Effect of dynamic type

	Latency reduction and speedup
	Documents lookup algorithm
	Peer granularity

	Implications
	Related work and discussions
	Conclusions
	Acknowledgements
	References

