
A Two-Tiered On-Demand Resource Allocation
Mechanism for VM-Based Data Centers

Ying Song, Yuzhong Sun, Member, IEEE, and Weisong Shi, Senior Member, IEEE

Abstract—In a shared virtual computing environment, dynamic load changes as well as different quality requirements of applications

in their lifetime give rise to dynamic and various capacity demands, which results in lower resource utilization and application quality

using the existing static resource allocation. Furthermore, the total required capacities of all the hosted applications in current

enterprise data centers, for example, Google, may surpass the capacities of the platform. In this paper, we argue that the existing

techniques by turning on or off servers with the help of virtual machine (VM) migration is not enough. Instead, finding an optimized

dynamic resource allocation method to solve the problem of on-demand resource provision for VMs is the key to improve the efficiency

of data centers. However, the existing dynamic resource allocation methods only focus on either the local optimization within a server

or central global optimization, limiting the efficiency of data centers. We propose a two-tiered on-demand resource allocation

mechanism consisting of the local and global resource allocation with feedback to provide on-demand capacities to the concurrent

applications. We model the on-demand resource allocation using optimization theory. Based on the proposed dynamic resource

allocation mechanism and model, we propose a set of on-demand resource allocation algorithms. Our algorithms preferentially ensure

performance of critical applications named by the data center manager when resource competition arises according to the time-varying

capacity demands and the quality of applications. Using Rainbow, a Xen-based prototype we implemented, we evaluate the VM-based

shared platform as well as the two-tiered on-demand resource allocation mechanism and algorithms. The experimental results show

that Rainbow without dynamic resource allocation (Rainbow-NDA) provides 26 to 324 percent improvements in the application

performance, as well as 26 percent higher average CPU utilization than traditional service computing framework, in which applications

use exclusive servers. The two-tiered on-demand resource allocation further improves performance by 9 to 16 percent for those critical

applications, 75 percent of the maximum performance improvement, introducing up to 5 percent performance degradations to others,

with 1 to 5 percent improvements in the resource utilization in comparison with Rainbow-NDA.

Index Terms—Data centers, virtual machines, on-demand resource allocation, optimization, algorithm, model

Ç

1 INTRODUCTION

WE have witnessed the rapid growth of data centers in
the past few years, and expect the number of data

centers will triple by 2020. Fighting for green data centers is
the biggest challenge faced by computer scientists and
practitioners. Google argues that more requests served by
the same platform is another path to green data centers [55].
Thus, one of the efficient solutions for the green data centers
is improving the throughput as well the resource utilization
by server consolidation based on virtualization technology,
which is verified by several previous efforts [1] and our
previous work [35]. With effective isolation and agile
resource management provided by virtualization technol-
ogy, virtualized data center is also the infrastructure of most
cloud platforms. In such a shared virtual computing
environment, dynamic load changes as well as different
quality requirements of applications in their lifetime give

rise to dynamic and various capacity demands (e.g.,
computing, storage, and communication capacities), which
result in lower resource utilization and lower application
quality using the existing static resource allocation.
Furthermore, the total required capacities of all the hosted
applications in current enterprise data centers (e.g., Google)
may surpass the capacities of the platform. Thus, the
existing techniques by turning on or off servers with the
help of virtual machine (VM) migration is not enough.
Instead, finding an optimized dynamic resource allocation
method in server consolidation scenarios to solve the
problem of on-demand resource allocation is the key to
improve the resource utilization and throughput, so as to
optimize power efficiency of data centers.

Most contemporary virtual machine monitors (VMMs,
such as Xen [3] and VMware [40]) provide the technical

support [41] rather than strategies for on-demand resource
allocation to VMs. To optimize the usage of resources and

improve the quality of the hosted applications, many
researchers [30], [40] are focusing on the local resource

allocation to VMs within a server. However, in a VM-based

data center, a number of VMs distributed onto various
servers host copies of the same application. Each server

independently allocates resources to VMs using its local
optimization, which may readily result in unbalance of

resource allocation among applications so as to limit the
efficiency of data centers. This means that local optimiza-

tion cannot always lead to global optimization [23]. To

116 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

. Y. Song and Y. Sun are with the State Key Laboratory of Computer
Architecture, Institute of Computing Technology, Chinese Academy of
Sciences, No. 6 Kexueyuan South Road, Zhongguancun, Haidian District,
Beijing 100190, China.
E-mail: songying@ncic.ac.cn, yuzhongsun@ict.ac.cn.

. W. Shi is with the Department of Computer Science, Wayne State
University, 5057 Woodward Ave, Suite 14102, Detroit, MI 48202.
E-mail: weisong@wayne.edu.

Manuscript received 13 June 2010; revised 7 Dec. 2010; accepted 20 May
2011; published online 16 June 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2010-06-0086.
Digital Object Identifier no. 10.1109/TSC.2011.41.

1939-1374/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

optimize resource allocation in the data center, it is
necessary to provide a global resource scheduling. How-
ever, current VMMs do not support the resource allocation
to VMs residing in remote servers. Under this technical
limitation, Wang [45] optimized the global resource alloca-
tion only using a central controller. Yet, such central
optimization has the problems of complexity, single-point
failure, and nontimeliness. However, hosted web-based
applications with sudden resources demand spikes affect
each other because of resource competition. Slow response
on the resource allocation cannot introduce the optimized
allocation. Thus, optimizing the global resource allocation is
a challenge for VM-based data centers.

To optimize the resource allocation in a data center, we
propose a two-tiered on-demand resource allocation me-
chanism, including the local and global resource allocation,
based on a two-level control model. A well-designed on-
demand resource allocation algorithm may minimize the
waste of resources as well as guarantee the quality of the
hosted applications. In our study, the local on-demand
resource allocation on each server optimizes the resource
allocation to VMs within a server taking the allocation
threshold into account, while the global on-demand re-
source allocation optimizes the resource allocation among
applications at the macro level by adjusting the allocation
threshold of each local resource allocation. To guide the
design of the on-demand resource allocation algorithms, we
model the resource allocation using optimization theory.
These algorithms dynamically allocate resources to VMs
according to the time-varying capacity demands and the
quality requirements of applications. All the on-demand
resource allocation algorithms preferentially ensure perfor-
mance of the critical applications named by the manager
when resource competition arises.

We implement a Xen-based prototype, Rainbow, to
evaluate the VM-based server consolidation and the two-
tiered on-demand resource allocation algorithms on a
workload scenario reflecting the resource demands in a
enterprise environment. The experimental results show that
server consolidation without dynamic resource allocation
(Rainbow-NDA) provides 26 to 324 percent improvements
in the application performance, as well as 26 percent higher
average CPU utilization than traditional exclusive comput-
ing framework (TSF, illustrated in Fig. 1a) in typical
enterprise environments. The two-tiered on-demand re-
source allocation further improves the performance by 9 to
16 percent for those critical applications, which are up to
75 percent of the maximum performance improvement,
while introducing up to 5 percent performance impairment
to others, with 1 to 5 percent improvements in the resource
utilization in comparison with Rainbow-NDA. These results
indicate that the our on-demand resource allocation im-
proves the resource utilization and quality of applications
with inappreciable overheads.

This paper has the following contributions: 1) We
propose a novel two-tiered on-demand resource allocation
mechanism with feedback to optimize the resource alloca-
tion for VM-based data centers. 2) In order to guide the
design of the on-demand resource allocation algorithm, we
model the resource allocation using optimization theory.

3) Base on the two-tiered on-demand resource allocation
mechanism and model, we propose local and global
resource allocation algorithms to optimize the dynamic
resource provision for VMs.

2 BACKGROUND AND RELATED WORK

2.1 Background

It’s a new trend for enterprise data centers to concurrently
provide web-oriented applications. We observe that diverse
applications in such data centers may greatly vary in
resource intensity. For example, VoD is I/O intensive, and
database is CPU intensive. Furthermore, we obtain another
observation that diverse applications may have various
time-varying capacity demands as the result of request
arrival distributions [43], [50]. We also observe that the total
required capacities of the hosted applications, for example,
Google, may surpass the capacities of the platform. Those
three observations motivate our design of a novel capacity
service computing framework, CSCF [34] (illustrated in
Fig. 1b), to improve the resource utilization of the platform
and the quality of application. Different from the traditional
service computing framework (TSF, illustrated in Fig. 1a) in
which one application runs on a set of dedicated servers,
CSCF uses virtualization to isolate concurrent applications
in a shared platform. In order to minimize the interaction
among the hosted applications due to their competitions for
resources, CSCF distributes applications with the same
resource intensity onto different servers. In CSCF, all the
VMs serving the same application constitute an application
domain. CSCF distributes VMs belonging to a single
application domain onto various servers, while each server
hosts VMs belonging to different application domains.
Between the application request layer and the physical
resource layer, there are mappings from requests to VMs
and from virtual resources in VMs to physical resources in
servers. This work focuses on the second mapping to
provide on-demand resource allocation among VMs, which
may allow better resource utilization and quality of
applications compared to previous proposals [30] in
scenarios where there are competitions for the same
resource by applications with similar resource intensity.

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 117

Fig. 1. The evolution of service computing framework.

2.2 Related Work

Currently, a large body of research is about managing VM-
based data centers, such as HP’s SoftUDC [18], Microsoft’s
DSI initiative [27], and VMware DRS [40]. We classify such
research into two subfields: VM lifecycle management and
VM-based resource management.

VM lifecycle management [12], [13], [18], [20], [22], [33].
These works manage the VM lifecycle by operations such as
VM creating, starting, stopping, and migrating. Virtuoso
[33] creates a marketplace in which resource providers sell
resources in the form of VM. Entropy [12] performs a
globally optimized placement including the VM runnning,
migrating, suspending, resuming, and stoping operations
according to cluster resource usage. Some researchers focus
on using VM migration to provide automatic load balancing
[48] as well as to reduce the power waste with the help of
turning on or off servers [5], [21], for example, SoftUDC [18]
and VMware’s VMotion [28]. However, the CPU and
network overheads of VM migration may reduce the
performance of the hosted applications, and VM migration
is the simultaneous reallocation of a set of resources
including CPU, memory, and so on, not reallocation of
only one type of resource.

VM-based resource management [2], [16], [30], [40].
These works optimize resource allocation to VMs. Our work
belongs to this subfield. We classify a large body of works
in this subfield into the following three parts:

Providing on-demand resources at the granularity of physical
or virtual servers [2], [44]. Oceano [2] dynamically allocates
resources for an e-business computing utility at the
granularity of a server. Wang et al. [44] dynamically allocate
resources to applications via adding or removing VMs on
servers. All these works are in contrast to our on-demand
resource allocation that controls resource allocation at the
granularity of resource component, for example, memory.

The technical support on resource reallocation to VMs [3],
[31], [41]. VMware proposes Balloon drivers [41] to over-
book memory and dynamically reallocate memory from one
VM to another. Xen [3] uses credit scheduler to allocate
CPU time slots to vCPU. These technologies provide
support to allocate fine-grained resources to VMs. Based
on these technical support, our work propose policies for
on-demand resource allocation to achieve the goal of high
resource utilization and good quality of applications.

Providing on-demand fine-grained resources in a virtualized
platform [7], [10], [16], [17], [29], [49]. IBM’s PLM [16] and
VMware DRS [40] dynamically allocate resources to VMs
according to the resource utilization and the statical shares.
Padala et al.’s work [30], [29] dynamic allocates CPU and
disk based on the VM utilization and application-level QoS
metrics. Zhao and Wang [51] introduce Memory Balancer
(MEB) which dynamically monitors the memory usage of
each VM, predicts its memory needs, and periodically
reallocates memory. In Menasce’s work [26], the authors
present an autonomic controller to optimize a utility
function within a physical server for the virtualized
environment. In Weng’s work [47], the authors present a
hybrid scheduling framework for the CPU scheduling in
VMM. They adopt different scheduling algorithms corre-
spondingly for two types of VMs. Xu et al. [49] propose a

two-level resource management system with local control-
lers at the VM level and a global controller at the server
level. These local and global controllers only correspond to
the local resource scheduler in our work limiting the scope
of resource allocation within a server. Such two-level
resource management could not optimize resource provi-
sion for various applications hosted in the entire system
with several servers. We also propose the similar two-level
schedulers [54] to Xu’s work in 2007. Besides the server-
level scheduler, this work proposes a system-level sched-
uler, named global resource scheduler to optimize resource
allocation in the entire system, which is the next step of Xu’s
work and our previous work [54]. In Cunha et al.’s work [7]
and Jung et al.’s work [17], the authors address the dynamic
resource allocation in multitier virtualized service hosting
platforms. Wang et al. [46] evaluate the overhead of a
dynamic allocation scheme. All the above works only focus
on the resource allocation among VMs within a server
ignoring the resource optimization among applications in
the entire data center. In this paper, we not only care about
the local scheduling in a server but also deal with the global
scheduling to optimize the resource allocation among
applications.

In Wang et al.’s work [45], the authors optimize the
global resource allocation for multitier applications. This
optimization is a central control, which has the problems of
complexity (collecting and computing resource allocation to
each VM hosted in every VMM), availability (the single
point failure), and nontimeliness (the execution intervals
(22 minutes) could not be small enough because of the
scalability). However, the hosted web-based applications
may interact because of their sudden demands on re-
sources. Such slow response on the fine-grained resource
allocation could not satisfy the sudden changes of resource
requirement in realistic workloads. In contrast, our work
attempts to address these issues using a two-tiered resource
allocation mechanism. The local resource scheduler con-
trolling resource allocation locally with the simple function
works in small intervals (e.g., 1 second) in each server,
which could quickly respond to the sudden changes of
resource demand by the hosted applications. The global
scheduler controlling resource allocation globally with the
simple function works in 1 or 5 minutes intervals as a
complement to the local scheduler. All these schedulers
work independently. Any scheduler’s failure (even the
global scheduler) could not lead to the failure of the
resource allocation in the system.

To the best of our knowledge, no other works propose
the same two-tiered on-demand resource allocation me-
chanism and algorithms as ours to optimize the fine-
grained resource allocation in VM-based data centers.

3 TWO-TIERED ON-DEMAND RESOURCE

ALLOCATION MECHANISM AND CONTROL MODEL

We aim to propose on-demand resource allocation strate-
gies. A resource allocation strategy should solve four
problems: Which resource will be allocated? When will
such resource be allocated? Which VMs will be the source
or target of allocating? How many resources will be

118 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

allocated? To answer these problems, we first design the
resource allocation mechanism, then we use control theory
to model and design our feedback-driven two-tiered
resource allocation.

Inspired by the multilevel optimization-based techni-
ques for managing distributed computing systems (e.g.,
Cluster Reserves [52], Neptune [53], MBRP [56], and
Kandasamy et al.’s work [19]), we introduce the multilevel
management idea into the on-demand resource allocation
in VM-based computing environment. Virtualization tech-
nology can encapsulate an application into an operating
system and dynamically allocate resources to the hosted
applications agilely with more abundant feedback informa-
tion, for example, characteristics of application workloads
and resource utilizations of VMs, compared with the
traditional large-scaled distributed computing environ-
ment. Kandasamy et al. [19] propose a structure of three
level controllers aimed at operating the cluster in energy-
efficient fashion while satisfying the QoS goal. In their
work, only one level controller controls the resource
allocation in each computer, and other two levels are
responsible for workload distribution. However, we do not
care about the workload distribution, our two-tiered
controllers both focus on the resource allocation in a
virtualized computing environment.

3.1 Two-Tiered Resource Allocation Mechanism

The goal of on-demand resource allocation is to optimize
the dynamic resource provision for VMs. Fig. 2 illustrates
the two-tiered on-demand resource allocation mechanism
(Fig. 2b) as well as the traditional resource management
(Fig. 2a). After comparing Figs. 2a and 2b, we can easily
find that the two-tiered on-demand resource allocation
mechanism differs from the traditional resource manage-
ment in adding a resource management level for VMs.
Each application (“application #1” ...“application #S” in
Fig. 2b) has multiple instance copies each of which is
encapsulated in a VM. The VMs hosting instance copies of
the same application constitute an application domain.

Each server hosts VMs belonging to multiple application
domains. In such a scenario, workloads in VMs residing in
the same server are time varying and different from each
other, resulting in the requirement of dynamic resource
allocation among VMs within a server. Furthermore,
workloads of each application running on various servers
are also time varying and different from other applications,
resulting in the requirement of on-demand resource
allocation among applications. Based on the technical
support on dynamic resource allocation to VMs within a
server provided by the current VMMs, we can indepen-
dently control resource allocation to VMs in each server.
However, only such independent control in each server
may readily result in unbalance of resource allocation
among applications so as to limit the efficiency of data
centers. Currently, there is no technological support on the
resource allocation by VMM on a server to a VM residing
in another server. Thus, it is necessary to provide a global
resource optimization based on the existing virtualization
technology in such shared environment. We propose a two-
tiered on-demand resource allocation mechanism imple-
mented by the local resource scheduler and global resource
scheduler in Fig. 2b.

The local resource scheduler controls resource allocation
to VMs within a server. It adds a set of on-demand resource
allocation algorithms based on the technical support on
dynamic resource allocation provided by the existing
VMMs. To maintain high resource utilization as well as
guarantee the quality of applications, the local resource
scheduler automatically optimizes the resource allocation
to VMs via adjusting CPU time slots and memory assigned to
each VM, according to its resource utilization as well as
quality and activity of the application hosting in the VM.
(Activity denotes the threshold of resource allocation, e.g., if
the CPU activity of an application is 90 percent, some CPU
resource will be allocated to it when its CPU utilization
reaches 90 percent.) To allocate resources in a timely manner,
the local resource scheduler works at short intervals, for
example, 1 second. In the local resource scheduler, the
activity of an application is the resource utilization thresh-
old. When the resource utilization of a VM hosting such an
application reaches the threshold, some resources should be
allocated to the application. Thus, activities are the key
parameters effecting the resource allocation.

The global resource scheduler indirectly controls re-
source allocation among applications in the entire system
by adjusting activities of the applications in each local
scheduler. In our scenario, each application may have
several copies running on multiple servers so that each
application can indiscriminately use resources of these
servers via on-demand resource allocation controlled by the
local scheduler. Adjusting activities of applications influ-
ences resource allocation among VMs within each server,
resulting in dynamic resources allocation among these
applications. The global resource scheduler systematically
optimizes resource allocation among applications by peri-
odically adjusting the activity of each application. Thus, the
activities of applications are the bridge between the local
resource scheduler and the global resource scheduler in our
mechanism. Differing from the local resource scheduler, the

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 119

Fig. 2. Two-tiered on-demand resource allocation mechanism versus
traditional resource management. (Virtual resource layer results in two-
tiered resource allocation.)

global resource scheduler optimizes the resource allocation
at a longer interval, for example, 30 seconds.

3.2 Two-Level Control Model

We use the control theory as the basis of modeling and
designing our feedback-driven closed-loop resource alloca-
tion algorithms. An object to be controlled is typically
represented as an input-output system, where the inputs are
the control knobs and the outputs are the metrics being
controlled. We employ a two-level control model (illustrated
in Fig. 3) for our two-tiered on-demand resource allocation
mechanism. Controller-L and Controller-G correspond to
the local and global resource scheduler, respectively.

Controller-L controls resource allocation in a server
according to the resource utilization (UiðtÞ) of each VM,
the static priority (SPi), and the activity (AiðtÞ) of each
application. The resource utilization refers to the CPU
utilization and the idle memory. As the output, Ciðtþ 1Þ
refers to the resource assigned to VMi at time tþ 1, where
Ciðtþ 1Þ should be a value between the maximum and
minimum available resource thresholds of VMi to avoid
the huge interaction among applications. As the actuator,
the local resource allocation algorithm controls the resource
allocation to VMs in a server.

Controller-G adjusts activities of applications. Resources
allocated to each application (Ciðt� 1Þ), static priority (SPi),
workloads (Wiðt� 1Þ), and the feedback activity (Aiðt� 1Þ)
of each application are the inputs. As the output, activity
(AiðtÞ) of each application is the key parameter to control
resource allocation in Controller-L. A feedback control loop
requires an actuator to implement the changes indicated by
the control knobs. The global resource allocation algorithm
is its actuator.

4 THE ON-DEMAND RESOURCE ALLOCATION

MODEL

We consider the problem of on-demand resource allocation
to VMs and model it using optimization theory. We model
the K-VM-1-PM (PM denotes physical machine) problem
and the K-VM-N-PM problem to depict the resource
allocation to K VMs within a server and to K VMs residing
in N servers, respectively. These two models are general
ones, and CPU or other resource allocations can, respectively,
use them. Based on theK-VM-1-PM model, we propose a set
of priority-based resource allocation algorithms to provide
on-demand resources to the hosted applications.

In the on-demand resource allocation model (illustrated
in Fig. 4), the number of request queues equals the number

of VMs, and the granularity of allocation is resource
components (e.g., memory). The resource allocation should
make decisions on which resource will be allocated, how
many resources will be allocated, and so on to improve the
quality of applications.

4.1 The K-VM-1-PM Model

The K-VM-1-PM problem depicts the on-demand resource
allocation to K VMs within a server. Thus, we model it to
guide the algorithm design for the on-demand resource
allocation to VMs within a server. First, we introduce the
following notations:

. K is the number of VMs residing in the server.

. Ci�min is the minimum threshold of resources
allocated to VMi. We use Ci�min to avoid huge
interaction among the VMs when the competition
for resources arises.

. R is the total CPU or other resources that are
available to all VMs in a server. Rout is the amount of
resources allocated to all the hosted VMs. Rit is the
amount of resources allocated to VMi at time t,
where R �

PK
i¼1 Rit and Rit � Ci�min > 0.

. Dit is the resource demand of VMi at time t, and it is
proportional to the request arrival rate.

. SPi is the static priority of an application hosted in
VMi. It indicates how critical the requirement for
quality of this application. The smaller the SPi is, the
more preferential the application gains. The admin-
istrator determines SPi before running the applica-
tions. It does not change during the runtime.

. �i is the tolerable quality threshold of the applica-
tion hosted in VMi.

. Qit is the quality of application hosted in VMi at
time t, which is the performance metric. The smaller
the Qit is, the better quality the application gains. As
we all know, the resources which it demands for
(Dit) and the resources allocated to it (Rit) determine
the quality of an application (Qit), for example, the
response time. In other words, Qit is a function of Dit

and of Rit, namely, Qit ¼ fiðRit;DitÞ.
To fairly weight different applications using their

respective qualities, we use the quality rate of application
hosted in VMi at time t and of the tolerable quality of such
application (Qit=�i, “Q-rate” for short) to normalize the
qualities of applications. Ci�min is used to guarantee the
tolerable quality of application i using the relationship
among Qit, Dit, and Rit, as well as taking SPi into account,

120 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 3. Two-level feedback control model consisting of Controller-L
and Controller-G (of local resource scheduling and global resource
scheduling).

Fig. 4. The on-demand resource allocation problem.

which is set by experience in our experiments, and we will
justify it in the near future.

The goal of the resource allocation is to optimize the
qualities of the hosted applications taking their priorities
into account, giving the limited resources. It is an optimiza-
tion problem with limiting conditions. Thus, we select the
programming model of optimization theory to model
the on-demand resource allocation. To provide the resource
allocation with a utility function [26] that maps application
quality of the target to a benefit value, we define the utility
function UFt. UFt is related to the static priorities and Q-
rates of the hosted applications

UFt ¼
XK
i¼1

Qit

�i
� SPi ¼

XK
i¼1

fiðRit;DitÞ
�i

� SPi: ð1Þ

The on-demand resource allocation problem is how to
control the resource allocation to VMs with the goal of
minimizing the utility function UFt, giving the limited
resources, formulated as follows:

min UFt ¼
XK
i¼1

fiðRit;DitÞ
�i

� SPi

s:t:

XK
i¼1

Rit � R

Rit � Ci�min ði ¼ 1; 2; . . . ; KÞ:

8><
>: ð2Þ

Our former work [34] gave the functions Qit ¼
fiðRit;DitÞ of several typical enterprise applications includ-
ing the web, database, and office applications, and of
different resources such as CPU and memory with plentiful
experiments as follows: fijðRit;DitÞ ¼ aijDit þ bijRit þ gij,
Uiðj� 1Þ < Dit � Uij, where fijðRit;DitÞ denotes the jth
stage of function fiðRit;DitÞ, aij, bij, and gij refers to the
coefficients in function fijðRit;DitÞ, and Uij denotes the
upper threshold of resources for application i at stage j.
Putting these functions into our model, we get the
following formulation:

minUFt ¼
XK
i¼1

Pm
j¼1 aij �Dit þ bij �Rit þ gij

�i
� SPi

s:t:

XK
i¼1

Rit � R

Rit � Ci�min ði ¼ 1; 2; . . . ; KÞ;

8><
>: ð3Þ

where m denotes the maximum number of stages for
fiðRit;DitÞ. As for the on-demand resource allocation
problem, we may resolve the above model to get the
close-to-optimal resource allocation Rit at time t using the
Simplex Method.

4.2 The K-VM-N-PM Model

The K-VM-N-PM problem depicts on-demand resource
allocation to K VMs residing in N servers, where each VM
may use resources in more than one server concurrently.
Thus, we model it to guide the design of algorithm of the
on-demand resource allocation among VMs each of which
may use resource in various servers concurrently, which is

similar to the K-VM-1-PM model. First, we introduce the

following notations:

. R is the total CPU or other resources that are
available to all VMs in N servers. Ri is the total CPU
or other resources that are available to the hosted
VMs in server i, where 1 � i � N and R ¼

PN
i¼1 Ri.

. K is the number of VMs residing in the N servers. Ki

is the number of VMs residing in server i, where
1 � i � N and K ¼

PN
i¼1 Ki.

. RNijt is the native resources allocated to VMij in
server i (VMij denotes the jth VM in server i). ROx

ijt

is the amount of resources allocated to VMij in
server x, namely, the amount of remote resources
(located in server x) allocated to VMij, where
1 � x � N .

. Cij�min is the minimum threshold of resources
allocated to VMij. We use Cij�min to avoid huge
interaction among the VMs hosting applications
when the competition for resources arises.

. Rijt is the amount of resources allocated to VMij at
time t, where Rijt ¼ RNijt þ

PN
x¼1 RO

x
ijt. Rijt obeys

the rules as follows:

R �
XN
i¼1

XKN

j¼1

Rijt

and Rijt � Cij�min � 0 (i ¼ 1; . . . ; N ; j ¼ 1; . . . ; KN).
. Dijt is the resource demand of VMij at time t, and it

is proportional to the request arrival rate.
. SPij is the priority of application hosted in VMij. It

indicates how critical the requirement for quality of
this application. The administrator determines SPij.

. �ij is the tolerable quality threshold of the applica-
tion hosted in VMij.

. Qijt is the quality of application hosted in VMij at
time t, which is the performance metric. The smaller
the Qijt is, the better quality the application gains. As
we all know, the quality of an application (Qijt), such
as the response time, is decided by the resources it
demands for (Dijt) and the resources allocated to it
(Rijt). In other words, Qijt ¼ fijðRijt;DijtÞ.

Similar to the K-VM-1-PM model, we use Q-rate

(Qijt=�ij) to normalize the quality of different applications,

and we get the following model using the same method in

Section 4.1:

min UFt ¼
XN
i¼1

XKi

j¼1

fijðRNijt;
PK

x¼1 RO
x
ijt; DijtÞ

�ij
� SPij

s:t:

XN
i¼1

XKi

j¼1

Rijt � R

Rijt � Cij�min
ði ¼ 1; 2; . . . ; N ; j ¼ 1; 2; . . . ; KiÞXKi

j¼1

RNijt þ
XKi

j¼1

ROi
ijt � Ri

Rijt � 0
ði ¼ 1; 2; . . . ; N; j ¼ 1; 2; . . . ; KiÞ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 121

where

Qijt ¼ fijðRijt;DijtÞ ¼ fij RNijt;
XK
x¼1

ROx
ijt; Dijt

 !
:

The third condition in formulation 4 denotes that the
total resources provided by a server are no less than
the sum of the resources allocated to the native VMs and
the resources allocated to the remote VMs. When a VM on
one server uses the remote resources, some performance
impairment may come out compared with using the same
amount of local resources. We can measure such perfor-
mance impairment offline based on our ongoing distributed
VMM (DVMM). Using such performance impairment, the
conversion from ROx

ijt to RNijt can be calculated. Thus, Qijt

in the K-VM-N-PM model is converted to Qit in the
K-VM-1-PM model.

We may use the same method to solve the K-VM-N-PM
model as the K-VM-1-PM model. Now, we can only verify
the K-VM-1-PM model using the following algorithms.
However, now we can neither determine the function
fijðRijt;DijtÞ nor verify the K-VM-N-PM model, because
current VMMs have no technical support on using remote
resources by a VM (namely, one VM using resources in
more than one server concurrently). Developing a DVMM
to support such remote resource access is one of the trends
in virtualization field, for example, HP’s SoftUDC [18],
which is also our on-going project. Thus, in the future, we
will evaluate the K-VM-N-PM model and the correspond-
ing algorithms based on our DVMM project.

5 ON-DEMAND RESOURCE ALLOCATION

ALGORITHMS

We propose local and global on-demand resource allocation
algorithms based on the K-VM-1-PM model. From the local
perspective, we simplify the K-VM-1-PM model to design a
priority-based local on-demand resource allocation algo-
rithm within a server. Based on the K-VM-1-PM model, we
propose a global on-demand resource allocation algorithm
to optimize the resource allocation among applications. The
efficacy of our algorithms intimately depends on how well
it can predict the resource utilization and the number of
arrival requests. While it is certainly tempting to try
sophisticated prediction techniques, we take a simple low-
overhead last-value-like prediction as reference [10] does,
in which we use the resource utilization of VMs and the
number of arrival requests during the last interval as a
predictor at the next interval.

5.1 The Local Resource Allocation Algorithm

We propose a set of local on-demand resource allocation
algorithms (“ResourceFlow-L” for short), based on the
above control model and the simplified K-VM-1-PM model.
In the simplified K-VM-1-PM model, all functions
fiðRit;DitÞ=�i are set as follows: If Dit > Rit, fiðRit;DitÞ=
�i ¼ Dit �Rit; else, fiðRit;DitÞ=�i ¼ 0. Applying the Sim-
plex Method, we get the resolution of this simplified model.
If D � R, Rit ¼ Dit; else, we give priority to allocating
resources to VMs with higher priority. The resource
utilization of VMi directly reflects the relationship between

Dit and Rit. Thus, ResourceFlow-L control resource alloca-
tion according to the resource utilization of each VM and
the static priority of each application. ResourceFlow-L
includes the local on-demand CPU allocation algorithm
(CpuFlow-L) and the local and lazy on-demand memory
allocation algorithm (MemFlow-L). We simply introduce
these algorithms as follows.

5.1.1 The Local CPU Allocation Algorithm

The hypervisor (Xen) we used provides a credit scheduler
[6], which is a general CPU scheduler in current VMMs, to
allocate CPU to VMs in proportion to their weights. The
local on-demand CPU allocation algorithm (CpuFlow-L)
dynamically adjusts the weights of VMs according to their
static priorities, resource utilizations, and activities of the
hosted applications. It preferentially guarantees some
critical applications with the rapidly increased weights,
while other applications may suffer performance degrada-
tion via the slowly increased weights when the competition
for CPU arises. The increased weights are in proportion to
their static priorities. To avoid the huge negative effect
among the hosted applications, the amount of resources
allocated to a VM should be a value between the maximum
and minimum available resource thresholds of the VM.

CpuFlow-L controls CPU allocation, which answers the
above four problems about the on-demand resource alloca-
tion. Based on the periodically collected CPU utilization of
each VM, CpuFlow-L determines if there is CPU overload in
a VM. We choose Tu as the threshold of CPU overload
(activity of the hosted application) and Td as the desired CPU
utilization level. If the CPU utilization of VMi reaches Tu,
some more CPU resources should be allocated to VMi.
CpuFlow-L increases the weight of VMi to increase the CPU
allocated to this VM. If the CPU utilization of VMj is lower
than Td, CpuFlow-L decreases the weight of VMj to decrease
the CPU allocated to this VM.

5.1.2 The Local and Lazy Memory Allocation Algorithm

The local and lazy on-demand memory allocation algorithm
(MemFlow-L) dynamically controls memory allocation,
which answers the above four problems about the on-
demand resource allocation. Based on the static priority and
the periodically collected idle memory (“IM” for short) of
each VMi, MemFlow-L determines whether there is
memory overload in a VM or not. The activity � refers to
the threshold of idle memory for memory overload. If idle
memory (IM) of each VM is higher than �, no memory
need to be reallocated. If IMi is lower than �, MemFlow-L
increases memory for VMi, as long as there is another VM
that can give some of its memory to VMi.

5.2 The Global Resource Allocation Algorithm

When guiding the design of the global on-demand resource
allocation algorithm (ResourceFlow-G), the K-VM-1-PM
model evolves to optimize resource allocation among
applications in the entire system. In our scenario, we may
distribute the VMs hosting the same application onto all
servers, so that each application can indiscriminatingly use
resources from these servers. It resembles that each VM can
indiscriminatingly use resources of the server in the
K-VM-1-PM model. After replacing VM by application, as

122 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

well as replacing one server by the entire system, the

K-VM-1-PM model and its solution could be used by

ResourceFlow-G. Using the K-VM-1-PM model, Resource-

Flow-G calculates the optimized resource allocation scheme

for each application, namely, the resources which should be

allocated to each application (Rit).
To control the resource allocation systematically, Re-

sourceFlow-G adjusts the activity of each application

according to the monitored resources that should really be

allocated to each application (Rr
it) and the resources that

should be allocated to the application (Rit). In most cases,

Rr
it does not equal Rit. Thus, we define a resource threshold

(�) that actuates the activity adjustment of VMs, to avoid

frequent activity adjustment. Only when the difference

between Rr
it and Rit exceeds �, ResourceFlow-G will adjust

the activity. If Rr
it is larger than Rit, ResourceFlow-G

decreases the activity of VMi at time t. Conversely,

ResourceFlow-G increases the activity of VMi at time t.
To address the single-point failure problem of the global

scheduler running the global resource allocation algorithm,

we dynamically select a server to run it. If the server

running the global scheduler fails (monitored by heartbeat),

we randomly select another server to run this scheduler.

Even if the global scheduler fails and no other global

scheduler replaces it to work, all the local schedulers could

continue working to allocation resource to the hosted VMs

without the optimization at the macro level by the global

scheduler. In a word, the global scheduler’s failure could

not lead to the failure of the resource allocation in the

system. As to the scalability problem, the computation scale

of the global scheduler is in direct proportion to the number

of applications corresponding to i in the K-VM-1-PM

model, because the proposed constrained optimization in

the K-VM-1-PM model is linear. Thus, the global scheduler

is not the bottleneck even in a large-scale computing

environment. From the above analysis, we can see that

our two-tiered on-demand resource allocation addresses the

problems of availability and scalability faced by the

previous work [45].

6 PERFORMANCE EVALUATION

In this section, we first introduce the prototype, Rainbow,

we implemented based on Xen. Then, we evaluate our VM-

based shared platform as well as on-demand resource

allocation algorithms in Rainbow.

6.1 Rainbow Prototype

The implementation of the Rainbow prototype is based on

Xen. In the server pool of our prototype, there are four

physical servers, each of which has two 2,190 MHz Dual

Core AMD Opteron(tm) processors with 1,024 KB of cache

and 4 GB of RAM. We use CentOS4.4 and Xen-3.0.4. We use

other four machines to generate workloads of applications,

for example, web application. The systems are connected

with a Gigabit Ethernet. Rainbow is responsible for

creating, monitoring, and managing VMs in a distributed

computing environment, as well as allocating resources to

these VMs.

6.2 Performance Evaluation

We evaluate the Rainbow in the three groups of experiments
in the two cases, the one is without dynamic resource
allocation called Rainbow-NDA, another one is with two-
tiered on-demand resource allocation called Rainbow-DA. In
the first group of experiments, we compare Rainbow-NDA
with TSF to evaluate the server consolidation. We evaluate
our on-demand resource allocation algorithms in the last two
groups of experiments, we compare Rainbow-DA with
Rainbow-NDA in the second group of experiment. In the
last group of experiment, we compare Rainbow-DA with
[30]. All experiments use some of the following applications.

. Web application—The web server is Apache [9]. LVS
[25] dispatches requests among the web VMs (xxx
VM denotes VM hosting xxx application in this
paper.) adopting round robin algorithm. We use the
e-commerce workloads of SPECWeb2005 [37] for the
web application. The average response time is its
performance metric.

. HPC application—We use Condor [38] to dispatch
Linpack [24] jobs to the HPC VMs, and we evaluate
the HPC application by the throughput (the number
of completed Linpack jobs during 3 hours).

. Office application—Another one of our products
provides the office application, which distributes
office application workloads to VMs according to the
resource utilization of these VMs. We use Xnee [32]
to emulate the real-world office application work-
loads based on the trace collected by our work [42].
As to the office application, the response time,
including the starting up time of an application
and the time of executing an operation in applica-
tion, is the key metric to evaluate its performance.
The starting up time of an application is sensitive to
both CPU and memory. Thus, we collect the starting
up time of eight typical applications such as FTP,
Mozilla, and OpenOffice for four times as the
performance metric, captured by the modified
VNC. We compare the average starting up time of
all the applications to avoid randomicity.

. VoD application—The VoD server uses Helix [11].
We generate the VoD workloads according to Yu
et al.’s work [50]. The average packet loss percentage
is the performance metric.

. Database (“DB” for short) application—We use
MySQL [8] and Apache Tomcat [39] for the DB
server, and LVS dispatches requests among the DB
VMs adopting round-robin algorithm. TPC-W [4]
is the DB workloads generator. The total size of the
data base files is 2.7 G. We evaluate the DB
application in terms of the average WIPS (the
number of web interactions per second).

We introduce the three groups of experiments, respec-
tively, in the following sections.

6.2.1 Rainbow-NDA versus TSF

We evaluate the strengths and weaknesses of Rainbow-
NDA in the following two comparisons with various
experimental scenarios. Comparison-I compares Rainbow-
NDA with TSF using three applications with different

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 123

resource intensities, whereas Comparison-II evaluates the
influence of the size of memory in Domain0 on Rainbow-
NDA, and compares Rainbow-NDA with TSF using two I/
O-intensive applications and one CPU&memory-intensive
application. First, we introduce the experiments and results
of these comparisons. Then, we give the analysis on them.

Comparison-I. We compare Rainbow-NDA with tradi-
tional service computing framework (TSF, namely, one
application per set of dedicated servers) in the same
physical server environment hosting three typical enter-
prise applications with diverse resource intensities, namely,
a web application with CPU and I/O intensity, an HPC
application with CPU intensity, and an office application
with CPU AND memory intensity. On each server, we
create three VMs, each of which has one vCPU and 1 GB
memory. We distribute VMs devoted to each application
onto the four servers. The experimental results show that
Rainbow-NDA provides 28 to 324 percent improvements in
the application performance and 26 percent improvement
in the CPU utilization over TSF.

Comparison-II. We evaluate Rainbow-NDA by hosting
office application with CPU and memory intensity and two
I/O-intensive applications, namely, VoD and web applica-
tions. We first evaluate the performance effect caused by
memory in Domain0 via comparing the performance of
these applications in the cases of Domain0 with 512 and
1,024 MB memory denoted by Rainbow-dom0-512 and
Rainbow-dom0-1024, respectively, in Figs. 5a, 5b, and 5c.

These figures illustrate that the difference in memory of
Domain0 leads to tiny or no effect on the application
performance. Thus, Domain0’s memory is not the bottle-
neck in this experiment.

Then, we compare TSF and Rainbow-NDA in the case of
Domain0 with 1,024 MB memory denoted by Rainbow-
dom0-1024 and TSF-dom0-1024, respectively in Figs. 5a, 5b,
and 5c. Fig. 5a illustrates the comparison of the average
packet loss percentage of VoD. It shows that TSF-dom0-1024
is much better than others, while other cases are similar in the
performance of VoD. This figure also implies that the VoD
performance degrades up to 46 percent between the 600th
and 900th sessions of the VoD when it shares the platform
with the web and office applications. After the 900th session
of VoD, such impairment disappears.

We analyze the reason why Rainbow-NDA degrades the
performance of VoD so remarkably with Figs. 5b, 6, 7, and 8.
Figs. 6a and 6b conclude CPU is not the bottleneck resource
of the VoD and web applications. Fig. 5b illustrates the
throughput comparison of web application between Rain-
bow-NDA and TSF. This figure implies that the performance

124 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 5. The comparison between TSF and Rainbow-NDA.

Fig. 6. CPU utilization of VMs and Domain0 in Rainbow.

of web application in the first two iterations degrades
minutely (1 to 5 percent), while it impairs hugely (30 to
60 percent) in the last iteration, resulting in 36 percent
degradation in average when Rainbow-NDA compares
with TSF. Figs. 6a and 6b show that the workloads of VoD
enter their peaks when the workloads of the web application
enter the third iteration. In this period, the effect between
these two applications is huge, which results in the huge
performance degradation of VoD when it shares resources
with the other applications.

What resources do they compete for in case of the such
performance degradation? Figs. 6a, 6b, 6c, 7, and 8 help to
answer this question. In these figures, blue (dark color) lines
denote the CPU utilization, and red (light color) lines
denote the utilization of CPU used to wait I/O. Fig. 6
illustrates the CPU utilization of VMs and Domain0 in
Rainbow-NDA during the test. Figs. 6 and 8 illustrate the
CPU utilization in TSF which exclusive hosts the VoD and
web applications, respectively. These figures show that the
requirement on I/O resource by VoD (Figs. 6a and 7a) and
web applications (Figs. 6b and 8a) is remarkable, and most
CPU time slots of Domain0 are used to wait for I/O
operations (Figs. 6d, 7b, and 8b), which means that I/O is
the bottleneck resource of the VoD and web applications.
After comparing Figs. 6d, 7b, and 8b, we find that the
concurrency of VoD and web applications results in
5.3 times and 1.4 times more CPU slots used to wait I/O
in Domain0. Thus, frequent competitions for I/O lead to
huge negative effect between the VoD and web applications
in Rainbow-NDA.

Fig. 5c illustrates the comparison of the average response
time of opening office applications in the same cases as
above. Rainbow-NDA increases less than 1 second in the
average response time resulting from the competitions for
CPU resource. Such delayed response can be ignored by
the clients. Fig. 6c shows that the office application is low on
I/O intensity, which results in no significant performance
effect caused by the VoD and web applications.

Analysis and conclusion. The applications in Compar-
ison-I are with different resource intensities, their resource
bottlenecks are various. Distributing copies of the same

application onto multiple servers reduces the demands on
its bottleneck resource on each server. On the other hand,
each server hosts concurrently multiple applications with
different resource intensities, which avoids frequent com-
petitions for the same resource. Thus, Rainbow-NDA
provides huge improvements when the hosted applications
are with different resource intensities. The two I/O-
intensive applications in Comparison-II frequently compete
for the I/O resource when they share a server. Frequent
competitions for I/O resource and Xen’s I/O overhead lead
to huge negative effects between these applications in
Rainbow-NDA.

6.2.2 Rainbow-DA versus Rainbow-NDA

We evaluate our resource allocation algorithms including
ResourceFlow-L and ResourceFlow-G via the comparison
between Rainbow-DA and Rainbow-NDA.

Rainbow with ResourceFlow-L versus Rainbow-NDA.
We compare Rainbow-NDA with Rainbow with Resource-
Flow-L in the same experimental scenario as comparison-I of
Section 6.2.1. On each physical server, we create three VMs.
We initially allocate different resources to VMs (illustrated in
Table 1, where “BN : A” denotes that resource A is the
bottleneck resource when applications reach their peaks of
workloads) to provide different test conditions.

ResourceFlow-L optimizes the resource allocation to VMs
within a server. In order to compare the system performance
without manual control, the baseline system Rainbow-NDA
provides static resource allocation to each VM. CpuFlow-L
refers to Rainbow adopting the local on-demand CPU

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 125

Fig. 7. CPU utilization of VoD VM and Domain0 in TSF. Fig. 8. CPU utilization of web VM and Domain0 in TSF.

TABLE 1
Initial Resource Allocation to VMs on Various Conditions

allocation algorithm. MemFlow-L adopts the local on-
demand memory allocation algorithm in Rainbow. Resour-
ceFlow-L denotes adding CpuFlow-L and MemFlow-L in
Rainbow. According to characteristics of the applications,
we initialize SPoff :SPweb:SPhpc to be 4:3:1 (suffixes off, web,
and HPC denote office, web, and HPC applications,
respectively). Under the similar time-varying workloads
we execute the comparisons illustrated in Table 2. We collect
the CPU utilization and idle memory of VMs as the feedback
every 1 second and 5 seconds, respectively. The response
time of the CPU and memory allocation is within 1 and
5 seconds.

Table 2 illustrates the comparison results between various
resource allocation algorithms and Rainbow-NDA on var-
ious conditions. The results show that ResouceFlow-L
provides up to 25 to 42 percent improvements in the
performance of the office application and up to 2 percent
improvements in the performance of the web application,
while introducing up to 7 percent impairments in the
performance of the HPC application. This is the result that
ResourceFlow-L preferentially ensures the performance of
the office application by degrading the performance of the
web and HPC applications to some extent, and it gives
preference to the web application when the web application
competes for resources with the HPC application. Table 2
also shows that ResourceFlow-L causes 2 to 8 percent
improvements in the average resource utilization. These
results imply that ResourceFlow-L in Rainbow can utilize the
hardware rationally based on the application differentiation.

Rainbow with ResourceFlow-G versus Rainbow-NDA.
We compare Rainbow with ResourceFlow-G (adding Resour-
ceFlow-G in Rainbow with ResourceFlow-L) with Rainbow-
NDA adopting three typical enterprise applications,
namely, the web, database, and office applications. On each
physical server, we create three VMs. We initially allocate
700 M memory and one vCPU to each VM. To ensure that
the CPU is the bottleneck resource when the applications
reach their peaks of workloads, we pin all the vCPU of the
three VMs running on one server to the same physical core.
Domain 0 of Xen uses the other one core, while the rest
cores are idle.

According to the characteristics of these applications,
SPDB:SPoffice:SPweb is initialized to be 4:2:1 (suffixes DB,
office, and web refer to, respectively, DB, office, and web
applications). The global scheduler is invoked every 30 sec-
onds. “ResourceFlow-G” denotes adding ResourceFlow-G in
Rainbow with ResourceFlow-L.

Table 3 gives the performance comparisons of adding
different resource allocation algorithms in Rainbow against
Rainbow-NDA. This table illustrates that ResourceFlow-L
provides up to 6 and 16 percent improvements in the

performance of the DB and office applications, while
introducing 1 percent degradation in the performance of
the web application compared with Rainbow-NDA. Com-
pared with ResourceFlow-L, ResourceFlow-G further
achieves 3 percent improvement, namely achieves 9 percent
improvement compared with Rainbow-NDA, in the perfor-
mance of DB application by slightly reducing the rate of the
performance improvement for the office application
(10 percent improvement) as well as degrading the perfor-
mance of the web application by up to 2 percent. Compared
with Rainbow-NDA, the maximum improvement space for
DB application is 12 percent in the case that all resources
shared by all applications are exclusively allocated to this
application. Thus, compared with Rainbow-NDA, the
performance improvement for the DB application intro-
duced by ResourceFlow-G is up to 75 percent of the
maximum performance improvement. In Comparison-I of
Section 6.2.1, ResourceFlow-L provides 42 percent improve-
ment in the performance of the most critical application,
while introducing up to 7 percent degradation to the
performance of other applications. Thus, the hosted applica-
tions and their workloads affect the improvement provided
by the on-demand resource allocation algorithms. Table 3
also shows that Rainbow-DA causes up to 5 percent
improvements in the average resource utilization. These
results imply that Rainbow-DA utilizes the hardware more
rationally based on the application differentiation.

We analyze the reason why Rainbow-DA outperforms
Rainbow-NDA in qualities of applications and resource
utilization by collecting of the allocated and used resources
in each VM in the cases of Rainbow-DA and Rainbow-NDA.
When the resource demands of some application increase,
Rainbow-DA increase the resource allocated to VMs hosting
the application in the case that no resource competition
arises. On the other hand, when the resource competition
arises, Rainbow-DA controls much resource allocating to the
VM with higher priority, which results in more resources
allocated to the VM with higher priority than other VMs. In
Rainbow-DA, ResourceFlow-G dynamically adjusts activity
of each application in each ResourceFlow-L to optimize the
resource allocation among applications. In the above
experiment, compared with ResourceFlow-L, Resource-
Flow-G further achieves improvement in the performance
of DB application by increasing the activity of DB applica-
tion during the test.

6.2.3 Rainbow-DA versus Reference [30]

We compare Padala’s work [30] with our Rainbow-DA in
Table 4. Both works focus on the resource allocation taking
quality of the hosted applications into account based on the

126 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

TABLE 2
Local Resource Allocation Algorithms versus Rainbow-NDA

TABLE 3
The Results of Two-Tiered On-Demand Resource

Allocation Mechanism Compared with Rainbow-NDA

application differentiation. We compute the average im-
provement and degradation introduced by Padala et al.’s
work [30] according to its figures of the response time with
and without their controller [30, Figs. 14 and 15]. Their work
[30] provides about 28 percent improvement in the
performance of the critical application while introducing
about 41 percent performance degradation to another one.
Although the total improvement provided by their work
(28 percent) is slightly larger than that provided by
Rainbow-DA (20 percent), the total degradation introduced
by their work (41 percent) is much larger than that
introduced by Rainbow-DA (5 percent). We cannot evaluate
such algorithms of application differentiation only using
the performance improvements of some applications. The
performance degradation of other applications should be
considered. Thus, in order to fairly compare Padala’s work
and Rainbow-DA in terms of guaranteeing quality of the
concurrent applications, we take both the total performance
improvement and the total performance degradation
provided by these algorithms into account. The comparison
of the performance improvement and degradation illu-
strated in Table 4 implies that Rainbow-DA, greatly
improving the performance of critical applications at the
cost of slightly degrading the performance of others, is
better than Padala et al.’s work, which greatly improves the
performance of critical applications at the cost of even more
hugely degrading the performance of others, in the aspect
of assuring quality of applications.

Let’s analyze the reason. Padala et al.’s work [30] only
focuses on the CPU allocation among VMs within a server
and uses the fixed allocation threshold according to the
experience. On the other hand, Rainbow-DA focuses on
both CPU and memory dynamic allocation not only among
VMs within a server but also among applications in the
entire platform. Rainbow-DA automatically adjusts the
allocation threshold (activity) according to the time varying
workloads of hosted applications. The working intervals of
Rainbow-DA are 1 second for CPU and 5 seconds for
memory, which are much smaller than that of Padala’s work
(10 seconds). This implies that Rainbow-DA has quicker
response to the change of the resource requirements by
applications. As we all know, the Internet-based applica-
tions are interactive with burst workloads. As to such
applications, quicker response leads to better quality.

The interval of the resource reallocation depends on
workload distributions of the concurrent applications. In
our experiments, it ranges from 1 to 1,118 seconds for CPU,
and ranges from 5 to 2,555 seconds for memory. Our
method leads to the overhead of learning from the feedback
and controlling resource reallocation. Learning from the
feedback leads to 0.2 percent (0:2% � 4 G ¼ 8 M) memory

and 0 percent CPU overhead. Controlling resource realloca-
tion leads to 0 to 0.3 percent CPU and 0 percent memory
overhead per resource reallocation. We can ignore such
overhead because it is inappreciable to the system.

7 DISCUSSIONS

In order to ensure Rainbow works smoothly in the case that
workloads are beyond the limits of the available system
resources, we may add an admission controller in the
application level to drop some new incoming requests.
Thus, we propose a global admission control algorithm
(AdmisCon-G) in combination with our on-demand re-
source allocation algorithms. The admission control algo-
rithm drops some new incoming requests for the
applications with lower priority to guarantee quality of
the accepted requests in our Rainbow, when the total arrival
requests surpass the total acceptable requests.

The main idea of AdmisCon-G is as follows: According
to the quantity of the resources allocated to each applica-
tion, AdmisCon-G computes the number of acceptable
requests for such application and drops extra requests
based on the functions of Qit ¼ fiðRit;DitÞ gained in
Section 5 of our previous work [36].

We evaluate the global admission algorithm using the
same experimental scenario as Section 6.2.3. After adding
AdmisCon-G in Rainbow-DA, dropping some requests of
the web application degrades its performance by up to
3 percent, while the DB and office applications gain
improvements in performance by 1 percent in return. It
reflects the objective of admission control, that is, dropping
some noncritical requests to ensure the quality of the
accepted requests when resource requirement by workloads
surpasses the resource provided by the platform. In our
experiment, the percentage of dropping requests is roughly
1 percent. These experimental results show that the global
admission algorithm can be a complement to the on-
demand resource allocation algorithms, helping to guaran-
tee the platform work smoothly.

8 CONCLUSIONS

This paper proposes a novel two-tiered on-demand resource
allocation mechanism with feedback for VM-based data
centers. We model the on-demand resource allocation via the
K-VM-1-PM problem and the K-VM-N-PM problem. Based
on the K-VM-1-PM model, we design a set of algorithms to
control the dynamic resource allocation among VMs
according to the time-varying resource demands and quality
goals of the hosted applications. We evaluate the VM-based
shared platform as well as the on-demand resource alloca-
tion algorithms using a Xen-based prototype, Rainbow. The
experimental results indicate that Rainbow-NDA improves
26 to 324 percent in the application performance as well as
26 percent in the CPU utilization over TSF in the typical
enterprise IT environment, while introducing degradation in
the case of hosting multiple I/O-intensive applications with
high workloads. Such degradation results from their
competition for I/O and Xen’s I/O overhead. Compared
with Rainbow-NDA, the two-tiered on-demand resource
allocation in Rainbow further improves in the performance
of the critical applications by up to 9 to 16 percent, which is

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 127

TABLE 4
Comparison between Rainbow-DA and [30]

up to 75 percent of the maximum performance improve-
ment, while introducing at most 5 percent degradations in
the performance of others, with up to 5 percent improve-
ments in the resource utilization. These results confirm that
the two-tiered on-demand resource allocation gains its goal
of improving the resource utilization as well as ensuring
quality of the hosted applications.

We only focus on the two-tiered on-demand resource
allocation in this paper. However, the application work-
loads scheduling is also important, in which we simply
apply round robin policy to dispatch requests to VMs
hosting the application. Our local and global resource
schedulers reallocate resources by evaluating the arriving
workloads but unaware of the request dispatch of each
application, which may result in the mismatch between the
on-demand resource allocation and the workloads dispatch.
For example, just after some resources of a VM allocating to
other VMs, workloads of applications hosted by this VM
may arrive continuously and hugely, and vice versa. It
cannot achieve the load balance if the workload switch is
unaware of the on-demand resources allocation, and this
may result in an inefficient usage of the resources and may
degrade the quality of applications. Thus, the workload
switch and the on-demand resource allocation should
cooperate together to manage the workloads and resources
in the virtualized computing environment, which is our
future work.

In the future, we will propose and evaluate distributed
resource allocation algorithms to control on-demand
resource allocation among VMs each of which may use
resources in different servers concurrently based on the
K-VM-N-PM model and our on-going DVMM project.
Analyzing the potential of each tier in the resource
allocation mechanism is also our future work.

ACKNOWLEDGMENTS

This work was supported in part by the project of NSFC

under grants 61202060, 912183001 and 60921002, the Na-

tional High-Tech Research and Development Program (863)

of China under grants 2012AA011003 and 2013AA01A212,

and the National Science and Technology Major Project

under grant 2011ZX03002-001-01.

REFERENCES

[1] P. Apparao et al., “Characterization & Analysis of a Server
Consolidation Benchmark,” Proc. Fourth ACM SIGPLAN/SIGOPS
Int’l Conf. Virtual Execution Environments (VEE ’08), pp. 21-29, Mar.
2008.

[2] K. Appleby et al., “Oceano-SLA Based Management of a
Computing Utility,” Proc. IFIP/IEEE Int’l Symp. Integrated Network
Management, pp. 855-868, 2001.

[3] P. Barham et al., “Xen and the Art of Virtualization,” Proc. 19th
ACM Symp. Operating Systems Principles (SOSP), pp. 164-177, 2003.

[4] H.W. Cain et al., “An Architectural Evaluation of Java TPC-W,”
Proc. Seventh Int’l Symp. High-Performance Computer Architecture
(HPCA), pp. 229-240, 2001.

[5] G. Chen et al., “Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services,” Proc.
Fifth USENIX Symp. Networked Systems Design and Implementation
(NSDI ’08), pp. 337-350, 2008.

[6] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the
Three CPU Schedulers in Xen,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 35, no. 2, pp. 42-51, 2007.

[7] I. Cunha et al., “Self-Adaptive Capacity Management for Multi-
Tier Virtualized Environments,” Proc. IFIP/IEEE Int’l Symp.
Integrated Network Management (IM ’07), pp. 129-138, 2007.

[8] P. Dubois, “MySQL,” NewRiders, Dec. 1999.
[9] R.T. Fielding and G. Kaiser, “The Apache HTTP Server Project,”

IEEE Internet Computing, vol. 1, no. 4, pp. 88-90, July 1997.
[10] S. Govindan, A.R. Nath, and A. Das, “Xen and Co.: Communica-

tion-Aware CPU Scheduling for Consolidated Xen-Based Hosting
Platforms,” Proc. ACM Third Int’l Conf. Virtual Execution Environ-
ments (VEE), pp. 126-136, 2007.

[11] Helix, http://www.realnetworks.com, 2012.
[12] F. Hermenier et al., “Entropy: A Consolidation Manager for

Clusters,” Proc. ACM Int’l Conf. Virtual Execution Environments
(VEE ’09), pp. 41-50, 2009.

[13] M. Hines and K. Gopalan, “Post-Copy Based Live Virtual
Machine Migration Using Adaptive Pre-Paging and Dynamic
Self-Ballooning,” Proc. ACM Int’l Conf. Virtual Execution
Environments (VEE ’09), pp. 51-60, 2009.

[14] “HP Utility Data Center - Technical White Paper,” white paper,
Hewlett-Packard, 2001.

[15] Httperf, http://www.hpl.hp.com/research/linux/httperf/, 2012.
[16] IBM Redbook, “Advanced POWER Virtualization on IBM System

p5: Introduction and Configuration,” Jan. 2007.
[17] G. Jung et al., “Generating Adaptation Policies for Multi-Tier

Applications in Consolidated Server Environments,” Proc. Int’l
Conf. Autonomic Computing (ICAC ’08), pp. 23-32, 2008.

[18] M. Kallahalla et al., “SoftUDC: A Software-Based Data Center for
Utility Computing,” Computer, vol. 37, no. 11, pp. 38-46, Nov.
2004.

[19] N. Kandasamy et al., “A Hierarchical Optimization Framework
for Autonomic Performance Management of Distributed Comput-
ing Systems,” Proc. IEEE 26th Int’l Conf. Distributed Computing
Systems (ICDCS), p. 9, 2006.

[20] S. Kumar and K. Schwan, “Netchannel: A VMM-Level Mechanism
for Continuous, Transparent Device Access during VM Migra-
tion,” Proc. ACM Fourth Int’l Conf. Virtual Execution Environments
(VEE ’08), 2008.

[21] D. Kusic et al., “Power and Performance Management of
Virtualized Computing Environments via Lookahead Control,”
Proc. Int’l Conf. Autonomic Computing (ICAC), pp. 3-12, 2008.

[22] H.A. Lagar-Cavilla et al., “SnowFlock: Rapid Virtual Machine
Cloning for Cloud Computing,” Proc. Fourth ACM European Conf.
Computer Systems (Eurosys), pp. 1-12, 2009.

[23] L.S. Lasdon, Optimization Theory for Large Systems. Courier Dover,
2002.

[24] Linpack, http://www.netlib.org/benchmark/hpl/, 2012.
[25] LVS, http://www.linuxvirtualserver.org/, 2012.
[26] D.A. Menasc and M.N. Bennani, “Autonomic Virtualized Envi-

ronments,” Proc. Int’l Conf. Autonomic and Autonomous Systems
(ICAS), p. 28, 2006.

[27] Microsoft, http://www.microsoft.com/management/, 2012.
[28] M. Nelson et al., “Fast Transparent Migration for Virutal

Machines,” Proc. Ann. Conf. USENIX Ann. Technical Conf. (ATC),
pp. 391-394, 2005.

[29] P. Padala et al., “Automated Control of Multiple Virtual
Resources,” Proc. Fourth ACM European Conf. Computer Systems
(Eurosys), pp. 13-26, 2009.

[30] P. Padala et al., “Adaptive Control of Virtualized Resources in
Utility Computing Environments,” Proc. Second ACM European
Conf. Computer Systems (Eurosys ’07), pp. 289-302, 2007.

[31] M. Rosenblum, “VMware’s Virtual Platform: A Virtual Machine
Monitor for Commodity PCs,” Proc. 11th Hot Chips Conf. (Hot
Chips ’11), 1999.

[32] H. Sandklef, “Testing Applications with Xnee,” Linux J., vol. 2004,
no. 117, p. 5, Jan. 2004.

[33] A. Shoykhet et al., “Virtuoso: A System for Virtual Machine
Marketplaces,” Technical Report NWU-CS-04-39, Dept. of Com-
puter Science, Northwestern Univ., July 2004.

[34] Y. Song et al., “A Service-Oriented Priority-Based Resource
Scheduling Scheme for Virtualized Utility Computing,” Proc.
Int’l Conf. High Performance Computing (HiPC), pp. 220-231,
2008.

[35] Y. Song, Y. Zhang, Y. Sun, and W. Shi, “Utility Analysis for
Internet-Oriented Server Consolidation in VM-Based Data Cen-
ters,” Proc. IEEE Int’l Conf. Cluster Computing and Workshops, pp. 1-
10, 2009.

128 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2013

[36] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-Tiered On-
Demand Resource Scheduling for VM-Based Data Center,” Proc.
IEEE Ninth Int’l Symp. Cluster Computing and the Grid (CCGrid 09),
pp. 148-155, May 2009.

[37] SPECweb2005, http://www.spec.org/web2005/, 2012.
[38] T. Tannenbaum et al., “Condor - A Distributed Job Scheduler,”

Beowulf Cluster Computing with Linux, Thomas Sterling, ed.,
pp. 307-350, MIT Press, 2002.

[39] Tomcat, http://tomcat.apache.org/, 2012.
[40] VMware, “Resource Management with VMware DRS,” technical

paper, 2006.
[41] C.A. Waldspurger, “Memory Resource Management in VMware

ESX Server,” Proc. Fifth Symp. Operating Systems Design and
Implementation (OSDI ’02), pp. 181-194, 2002.

[42] J. Wang, Y. Sun, and J. Fan, “Analysis on Resource Utilization
Patterns of Office Computer,” Proc. IASTED Int’l Conf. Parallel and
Distributed Computing and Systems, pp. 626-631, 2005.

[43] Q. Wang and D. Makaroff, “Workload Characterization for an
E-Commerce Web Site,” Proc. Conf. Centre for Advanced Studies
Conf. Collaborative Research (CASCON ’03), pp. 313-327, 2003.

[44] X. Wang et al., “Appliance-Based Autonomic Provisioning Frame-
work for Virtualized Outsourcing Data Center,” Proc. IEEE Fourth
Int’l Conf. Autonomic Computing (ICAC ’07), p. 29, 2007.

[45] X. Wang et al., “A Resource Management Framework for Multi-
Tier Service Delivery in Autonomic Virtualized Environments,”
Proc. IEEE Network Operations and Management Symp., pp. 310-316,
2008.

[46] Z. Wang et al., “Capacity and Performance Overhead in Dynamic
Resource Allocation to Virtual Containers,” Proc. IFIP/IEEE Int’l
Symp. Integrated Network Management (IM ’07), pp. 149-158, 2007.

[47] C. Weng, Z. Wang, M. Li, and X. Lu, “The Hybrid Scheduling
Framework for Virtual Machine Systems,” Proc. ACM SIGPLAN/
SIGOPS Int’l Conf. Virtual Execution Environments (VEE ’09),
pp. 111-120, 2009.

[48] T. Wood, “Black-Box and Gray-Box Strategies for Virtual Machine
Migration,” Proc. Fourth USENIX Conf. Networked Systems Design
and Implementation (NSDI), 2007.

[49] J. Xu et al., “On the Use of Fuzzy Modeling in Virtualized Data
Center Management,” Proc. Int’l Conf. Autonomic Computing
(ICAC ’07), p. 25, 2007.

[50] H. Yu et al., “Understanding User Behavior in Large-Scale Video-
on-Demand Systems,” Proc. First ACM SIGOPS/EuroSys European
Conf. Computer Systems (EuroSys ’06), pp. 333-344, 2006.

[51] W. Zhao and Z. Wang, “Dynamic Memory Balancing for
Virtual Machines,” Proc. Int’l Conf. Virtual Execution Environ-
ments (VEE ’09), pp. 21-30, 2009.

[52] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A
Mechanism for Resource Management in Cluster-Based Network
Servers,” Proc. ACM Joint Int’l Conf. Measurement and Modeling of
Computing Systems (SIGMETRICS ’00), pp. 90-101, June 2000.

[53] K. Shen, H. Tang, T. Yang, and L. Chu, “Integrated Resource
Management for Cluster-Based Internet Servcies,” Proc. Fifth
Symp. Operating Systems Design and Implementation (OSDI ’02),
Dec. 2002.

[54] Y. Song et al., “An Adaptive Resource Flowing Scheme amongst
VMs in a VM-Based Utility Computing,” Proc. IEEE Seventh Int’l
Conf. Computer and Information Technology (CIT ’07), pp. 1053-1058,
2007.

[55] X. Fan, W.D. Weber, and L.A. Barroso, “Power Provisioning for a
Warehouse-Sized Computer,” Proc. 34th Ann. Int’l Symp. Computer
Architecture (ISCA ’07), pp. 13-23, 2007.

[56] R.P. Doyle, J.S. Chase, and W. Jin, “Model-Based Resource
Provisioning in a Web Service Utility,” Proc. Fourth Conf. USENIX
Symp. Internet Technologies and Systems (USITS ’03), 2003.

Ying Song received the PhD degree in compu-
ter engineering from the Institute of Computing
Technology (ICT), Chinese Academy of
Sciences. She is an assistant professor at the
State Key Laboratory of Computer Architecture
at ICT. Her work thus far has covered topics
such as performance modeling, resource man-
agement, and cloud computing. Her main
research interests include computer architec-
ture, parallel and distributed computing, and

virtualization technology. She has authored or coauthored more than 10
publications in these areas since 2007, and she served in various
academic conferences.

Yuzhong Sun received the PhD degree in
computer engineering from the Institute of
Computing Technology (ICT), Chinese Acad-
emy of Sciences. He is a professor in the
State Key Laboratory of Computer Architec-
ture at ICT in Beijing, China. His research
interests focus on distributed system software
and computing/programming models. He has
authored and coauthored more than 50 pub-
lications, and he has served in various

academic conferences and journals. He is a member of the IEEE
and the IEEE Computer Society.

Weisong Shi received the PhD degree in
computer engineering from the Chinese Acad-
emy of Sciences in 2000. He is an associate
professor of computer science at Wayne State
University. His current research focuses on
computer systems, mobile computing, and high-
performance computing. He has published more
than 100 peer-reviewed journal and conference
papers in these areas. He has also served on
technical program committees of several inter-

national conferences, including WWW, ICDCS, and MASS. He was a
recipient of the Microsoft Fellowship in 1999, the President Outstanding
Award of the Chinese Academy of Sciences in 2000, one of 100
outstanding PhD dissertations (China) in 2002, the Faculty Research
Award of Wayne State University in 2004 and 2005, and the Best Paper
Award of ICWE ’04 and IPDPS ’05. He is a recipient of the US National
Science Foundation (NSF) CAREER award and Wayne State University
Career Development Chair award. He is a senior member of the IEEE.

SONG ET AL.: A TWO-TIERED ON-DEMAND RESOURCE ALLOCATION MECHANISM FOR VM-BASED DATA CENTERS 129

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

