
1

DIMM: A Distributed Metadata Management for
Data-Intensive HPC Environments

Brandon Szeliga, John Cavicchio and Weisong Shi
Wayne State University

{aj3638, ba6444, weisong}@wayne.edu

Abstract—
Within the scientific community many high performance

applications are used in order to run experiments on data
sets. These data sets can be very large in size or in number.
Both of these situations can cause problems to the centralized
manager scheduling the system. In our approach we minimize
the role of the manager by using a distributed hash table. This
way all files have a given “home” location to be at if they
are going to be used which reduces location maintenance. We
further reduce the strain on the central manager by using a
counter-based bloomfilter. This allows the central manager to
quickly and easily see if a given data set exists in the system
without having to use the large storage space of a database.
By adding false positive detection in the form of locality checks
to the bloomfilter, we can reduce the probability of a false
positive causing a problem in our system. In this fashion we can
move away from a centralized manager to a more distributed
one while reducing the amount of additional metadata the
manager needs to maintain. With our approach we show that
the workload of the centralized manager directory has been
reduced significantly. Not only are we capable of reducing the
number of files that must be migrated into the system by up to
nearly 90% compared to a centralized storage-aware scheduling
but it is also possible to achieve greater hit rates than a standard
cache if job placement is influenced by data location. We also
show that a significant number of false positives can be detected
from the bloomfilter (at least 25%) at the cost of allowing
smaller false negative instances to occur at an increased rate.

I. INTRODUCTION

With the increase in availability of high performance com-
puting platforms there has been an increase in the importance
of job scheduling as increasing numbers of users utilizing
system resources. This is a natural side effect of having
more people using these resources. As more people use the
available system resources, it becomes more pertinent to
schedule their jobs in a manner such that the total elapsed
time of job execution commonly known as the job makespan,
or wall clock time, is minimized.

Systems such as this usually have a centralized manager
that is responsible for determining this schedule of execution.
This manager is then responsible for making sure the code
executes on the scheduled machine, has its necessary input
data, and finally retrieves the result and sends it back to the
user. If the system becomes very large (in the number of
machines, the number of input files, the number of jobs, and
so on), this can create a bottleneck on the manager.

In recent years, the amount of scientific data collected has
reached levels that no longer are capable of being stored (e.g.,
petabytes) on local computer centers. In several applications,
such as High Energy Physics, data stored in back-end tapes
is fetched using an on-demand fashion by 100s-1000s of
scientists worldwide. We envision that in the foreseeable
future, the access of data out of tape for analysis is usually
the main bottleneck, rather than computing resources.

Within this paper we have three contributions. First we pro-
pose DIMM, a DIstributed Metadata Management scheme,
for high performance computing environments leveraging
distributed hash table (DHT) and bloomfilter. Second we sys-
tematically investigate the impact of false positives and false
negatives in a bloomfilter and propose solutions respectively
by using a neighborhood based locality checks and using a
counter-based bloomfilter. Finally we compare DIMM with
a centralized metadata scheduler in the context of storage-
aware job scheduling and found a greater hit rate for data is
possible, but more importantly the number of file migrations
into a system can be reduced greatly.

The rest of the paper is organized as follows. First we
will discuss some necessary background information about
the general scheduling architecture in Section II. Then our
solution will be discussed in Section III. After this our
performance and evaluation will be discussed in Section IV.
Related work will be mentioned in Section V. Finally we
will conclude this paper with a summary of our results and
give a list of future work in Section VI.

II. A GENERAL SCHEDULING ARCHITECTURE

In a high performance computing site, many computers are
connected and controlled by a single centralized manager.
This manager is in charge of many aspects of this system.
These functionalities include:
Scheduling Execution As jobs are submitted, it plans out
on what machine these jobs execute, and how other jobs are
affected by this. The computation of this execution schedule
can require a lot of time to determine if the system is busy.
The scheduling for jobs is the most important function that
this system needs to consider.
Data Monitor The manager needs to be able to monitor
where data is and if it is in use. This way it can determine if



a job that needs the data can start its execution, or if it needs
to wait longer for staging in/out the data.
Data Movement The data, input and output, needs to be
able to get moved around the system in a reliable way.
The centralized manager takes control of this controlling
machines where to send data for use.
Data Replication If multiple jobs need to access some data
the central manager is also in charge of replicating the data
across the system. With this it is able to have multiple jobs
accessing the same data set.
Machine Monitor The manager doesn’t only monitor the
data, it also has to be aware of the other machines available
in the system. This way it can make accurate decisions on
where jobs should be scheduled in the event of system churn.

This system works well when not dealing with large data
sets. However many scientific systems are beginning to (if
not already) operate on sets large enough to be problematic.
When the data sets become numerous the manager needs
to monitor more pieces during the execution and scheduling
of jobs. This can lead to an increase in the amount of
computational power and storage capacity needed to maintain
the database of status on all of the data sets. With this
increase in computational power and storage sizes, the overall
execution latency is likely to increase.

Furthermore, if the data sets become large in size then
managing the data movement will bottleneck the system. In
this situation, the manager will experience an increase in the
latency to stage the data to the machine it needs to reside on
for job execution, which will affect the entire system.

In an attempt to minimize the latencies associated with data
movement and management, the goal of an ongoing project
of ours is to develop a scheduler that takes data movement
into account prior to making scheduling decisions. In such
a system if the file movement is the major bottleneck of the
system, this consideration can greatly affect the throughput
of the system. This proposed scheduling system is called
Storage-Aware Job Scheduling (SWAP) [1].

In the SWAP system, the scheduling is done with consid-
eration to what files are already existing within the system.
Therefore jobs that require popular data files already existing
within the system will have the benefit to execute before
jobs that require data to be migrated into the system. These
systems are proposed to lower the required bandwidth in the
system and allow for a better throughput.

We propose a method by which the data related workloads
of the manager are reduced. It is worth noting that the pro-
posed DIMM works perfect with SWAP, however, it works
well with conventional scheduling schemes by reducing the
the extra latencies incurred by managing data sets.

III. DESIGN OF DIMM
We will now introduce the major concepts of DIMM and

how these concepts are capable of reducing the load on the
centralized manager (a.k.a. computing farm).

In order to reduce the bottleneck from data management
the key idea is to move some of the functionality away
from the manager. However, these functions need to still be
available to the units that need them. This way the stress these
functions cause on the centralized manager will be removed
and it can be used more efficiently for its remaining tasks.

There are two separate approaches we use to reduce this
bottleneck on the manager. First, we intend to remove some
responsibility from it by using a distributed hash table (DHT)
[2]. Secondly, we intend to make some of its remaining
functions easier by using a bloomfilter.
DHT A DHT is a distributed service system where the nodes
are capable of doing a file lookup. In order to do this lookup
a file name is hashed and then according to this output, there
is a corresponding “home” location within the participating
nodes. This allows all participating nodes to determine where
a file will be located if it exists within the system.

Using a DHT allows us to remove the location responsi-
bilities from the manager. The manager will no longer need
to find and store a location for a file used during execution.
Since every file is given a “home” location based on its hash
value (which is determined by the filename), the manager
can always expect the file to be at this location if it is in the
system. This will allow the manager to decrease the amount
of overhead metadata it will need to store within the system.

Each node in the system needs to be able to store the files
for which it is the ”‘home”’ node, but also it needs to be able
to store files that it is using for which it is not the ”‘home”’
location. For this reason each node has its disk divided into
two partitions that are used for this purpose. We refer to
these separate location as the home storage location and the
replication storage location.

Data locality is the most important for data-intensive
computing. Thus, it is preferable for a scheduler to distribute
the jobs close to where the data locates. This requires the
scheduler to keep track of or query another directory manager
every time to figure out the location of data before schedul-
ing, generating a lot of communication traffic, including
between the scheduler to directory manager and between the
directory manager and computing nodes (if there is a miss
on local disk), resulting in a very complicated system. In a
DHT, the location of data is determined by it’s name. Thus
no extra communication traffic is required to locate the files.
However the problem with this is that consecutive files can
be hashed to different locations and thus the locality can be
lost. In order to prevent this, we propose an increased chunk
size whereby multiple files will be hashed as one and thus
reside on the same node. Another solution we propose is to
have job migration among the locations where the files may
reside.

In order to allow the above situation to work the manager
still needs to be able to tell what jobs are in the system.
If the manager cannot tell this, then it will be consistently
requesting file movements that may not be necessary. This

2



will waste unnecessary bandwidth and downgrade the rate at
which necessary files are moved into the system. In order
to allow the manager quick and low cost access to the files
located in the system it will use a bloomfilter structure as
opposed to a database.
Counter-based Bloomfilter A bloomfilter is a data structure
that is capable of telling what data from a set A also exist in
a separate set B (B ⊂ A) [3]. It consists of a bit array that is
a constant size (k) larger than the size of A all set to 0. For
every item a that exists in A (a ∈ A), if a wants to be added
into B then it is hashed by h hash functions. For each hash
function, the corresponding bit in the array will be set to 1.
When these bits have been set it can be recognized that item
a may exist in B (a ∈ B). For an example of a bloomfilter
insertion see Figure 1(a).

There are two advantages to using a bloomfilter in this
situation. The first one is that the storage for such a structure
is low. This is because the array in use is only a bit array
which makes the overhead low. The second advantage is that
the access times for an item in the bloomfilter is fast. This is
because the hash functions are designed to be very fast and
the rest of the structure is setting a bit or checking to see
if it is set. This allows for the fast access times that will be
needed by the manager.

However, there do exist problems with bloomfilters. One
problem is if we attempt to update the list after a file is
removed from the system. In this situation if the hash of file a
and the hash of file b have an intersection then if one of these
files is removed the other will also be (h(a)∩h(b)−h(a) 6=
h(b)). For an example look at how Figure 1(a) is affected by
the removal of file b in Figure 1(b). If we check if file a is
in the system we would receive a negative response

A simple bloomfilter can only accept entry into a set, not
removal from it. The only way to remove items in a simple
bloomfilter is to clean the entire set and then reinsert items,
but this can be costly. In order to accommodate for this, an
extended version of the bloomfilter is chosen, a counter-based
bloomfilter[4]. Instead of containing just a bit, this structure
has an integer field. As items are added to the structure, the
integer value will be incremented. On the other hand, if an
item is removed from the structure the integer value will be
decreased and if the value has reached zero then that hash
value no longer has a file existing in the system. This way
we can see how many times a bit has been set and allow
the system to remove files from the system as they become
no longer used. This bloomfilter will continually allow for
fast lookups, inserts, and removals from a system, but it will
take up more storage in the manager. However the increase
in storage is negligible for a high performance machine as
it is basically a large array of integers, which is validated in
our simulation results in Section 4.

A second problem with any bloomfilter structure is its
tendency to have false positives. An example of a false
positive is when a file is said to exist in the system when

it really does not. This can occur when the hash values from
file a and file b have the hash values from file c as a subset
(h(c) ⊂ h(a) ∪ h(b)). This situation is a large concern in our
system, because the manager and machines will proceed like
normal until the point where the job is ready to execute on
the designated node, and then it becomes clear the file is not
already there for execution. In this case, the system will face
a major slowdown as everything needs to stop and receive
the file before normal execution can take place.

Given the size of the bloomfilter k, the number of hash
functions h, and the number of items added into the set n, it
is possible for us to compute the false positive probability.

(
1− e

−hn
k

)h

(1)

In order to reduce this probability there are two options;
one could increase the size of the bloomfilter or one could
increase the number of hash functions. However if the size
of the set A is increasing throughout system operation, it is
unrealistic to frequently halt the system in order to implement
more hash functions or increase the size of the bloomfilter.

In order to control the probability of a false positive our
bloomfilter also has a locality check included in it. In order to
achieve this locality check, for every file that the bloomfilter
says is in the system, we check a certain number, or distance,
of neighboring files determined by alphabetic order of path.
For each of these checked files, if they are also in the system,
then a certain degree of confidence can be determined for the
original file. With this locality check, a system can now make
a more informed choice as to whether the desired dataset
exists in the system or whether it is a false positive by
comparing it to an established threshold (confidence above
the threshold implies the file is likely in the system, and vice
versa). The problem is in doing so we are actually introducing
the possibility of a false negative into the system. An example
of this situation would be a file in the system that is not
neighboring to any other files in the system. The locality
information on this file would say that since no neighbors
of it are in the system, then odds are this file is not in the
system either.

A false negative scenario is not a concern when using
distributed hash table to move the files. This is because a false
positive is a much larger bottleneck than a false negative. If
a false negative does occur, the scheduling node will believe
that the file does not exist within the system. It will then try
to move the file into the system by contacting the distributed
hash table system to stage it onto its home location. Once the
distributed hash table system, notices that the file is already
staged in its home directory, it will not do anything. The
manager will then be notified that the job is there and it can
add (or correct in this case) it to the bloomfilter, at which
point the job will be ready to be scheduled.

3



0 01 1 0 11 0 0 10 0 0 1 1

h
1
(file a)

file a

h
2
(file a) h

3
(file a) h

4
(file a) h

1
(file b)

file b

h
2
(file b) h

3
(file b) h

4
(file b)

(a) Two files (a and b) are being inserted into a bloomfilter of length
15 using 4 hash functions.

0 01 0 0 00 0 0 10 0 0 0 1

h
1
(file a)

file a

h
2
(file a) h

3
(file a) h

4
(file a)

(b) This figure is the result when the file b is removed from the
Figure 1(a).

Fig. 1. An example of using counter-based bloomfilter.

IV. PERFORMANCE EVALUATION

A. The System Evaluation

In order to evaluate our system we have created a simulator
that can be used to simulate the execution of a centralized
scheduler without DIMM mechanisms included versus a
scheduler with the DIMM mechanisms. In this experiment
we designed over ten thousand jobs. Each of these jobs then
have a set of input files associated with them. The number
of input files was chosen from a normal distribution with a
mean of 500 and a standard deviation of 22.1 However the
actual files associated with the job are chosen from a uniform
distribution between zero and 100,000. Each of these jobs
were then scheduled according to the SWAP mechanism [1]
on a 400 node system. This scheduling is then used as the
input for the evaluation of how our mechanism maintains the
input files at each of the nodes.

For the evaluation of our mechanisms, we have set the
number of files a node is capable of maintaining at 2,500.
This number is obtained by assuming the local disk is 250GB,
and each file is 100MB. This number is then divided into the
relative ratios for the number of files in the home storage
to the cache storage. In order to evaluate we compared four
different data management schemes: SWAP with all storage
being considered cache space, DIMM with only the home
location being used to maintain files (DIMM_h), DIMM
with the home location and the replication locations being
used to maintain files (DIMM_hr), and DIMM used with
a data oriented job migration technique (JobMig). In this
technique each job will be migrated among all nodes that
contain the data it requires. Thus if a file exists in the system
the job will migrate to the file rather than the reverse. All
of these techniques employ the least recently used (LRU)

1These numbers are chosen based on our oral conversation with the people
working on the STAR project.

algorithm for their required replacement strategies. The last
two variations are discussed in the next subsection.

As previously mentioned (Section II) the SWAP schedul-
ing works such that jobs are scheduled on nodes in the
system that achieves the smallest makespan (or maximum
speedup). The algorithm considers a number of factors, most
prominently the impact of the caching of existing files in
the system. When a job is submitted, the scheduler considers
the list of currently available nodes for each job, generating a
scheduling execution estimate. During the estimation process,
an estimate is generated for a reference node configuration
that is intended to be representative of the average capability
of a system node. Using this information, the job speedup
ratio is calculated for each node. The speedup ratio allows
the algorithm to position jobs on nodes that offer the greatest
speedup improvement. Once we received the positioning of
our jobs through this mechanism we started to compare our
SWAP mechanism with and without our DIMM mechanisms.
More details can be found at [1].

Figure 2 reports the comparison between these data man-
agement schemes where the x-axis represents the ratio of
home to cache area storage capability and the y-axis is the
percentage of data hits observed. A hit is defined as an input
file existing at a node for a job without steps taken to bring it
there. For the first step of the evaluation we can see that the
number of hits incurred in the SWAP scheduling performed
better than the DIMM mechanism when we consider keeping
data only in the home storage of the node. This is because
with the DIMM_h we are limiting the data that is capable of
being stored at each node, whereas in SWAP data is capable
of being stored at any and every node.

Figure 3 lists the comparison between these data manage-
ment schemes where the x-axis represents the ratio of home
to replication area storage capability and the y-axis is the
percentage of data migrations from archival storage observed.

4



0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 : 24 1 : 9 1 : 2 1 : 1 2 : 1

F
ra

c
ti

o
n

 o
f 

D
a
ta

 A
c
c

e
s
s

e
s
 H

it

Home Storage : Cache Storage

SWAP

DIMM_h

DIMM_hr

Fig. 2. The percentage of input files that hits for different home to cache
ratios, represented X (home) : Y (cache) for each algorithm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 : 24 1 : 9 1 : 2 1 : 1 2 : 1

F
ra

c
ti

o
n

 o
f 

 M
ig

ra
ti

o
n

 R
e
q

u
ir

e
d

Home Storage : Cache Storage

SWAP

DIMM

JobMig

Fig. 3. The percentage of input files where migration is necessary for
different home to cache ratios per each algorithm.

One interesting thing worth noting is that the number of
input files that must be migrated is decreased by using the
DIMM_h. This is due to that fact that for every file that must
be brought to a node, DIMM works by bringing a copy of
that file to the home location prior to sending it to the node it
is going to be used at. Therefore in future accesses if the file
is still available in the home node, no migration is necessary
and we can achieve a 15% reduction in migrations necessary,
as the increase of the home portion in local disk, the fraction
of migration is reduced significantly.

B. Bloomfilter Size vs. Database Size

One of the key features of a bloomfilter is the reduction
in storage size per item existing in it. However a problem
exists because the total size of the bloomfilter needs to be
a multiple of the total number of files possible to exist in
it the system, in order to have less false positives. Both of

these conditions are opposite to a database which contains a
large storage size per item existing in the system and changes
size depending on the total number of items in the system.
In order to evaluate our system fully we need to make sure
that the cost of implementing a bloomfilter is less than that
of maintaining the database.

In our implementation the bloomfilter per item size is the
size of a small integer. We can safely allow this to be a
byte and therefore allow a single hash value to be set a total
of 255 times. Whereas in a database system, we need to
monitor which machine is currently holding every data item
in the system. In order to do this we will need to maintain
the IP address (or node id) of the machine that the file is
residing on and which file that happens to be. This means
that 4 bytes will be needed to store the IP address of a file
and an additional lg(n) where n is the number of files in the
system. This additional lg(n) is the least number of bytes
possible to differentiate n possible files.

Figure 4 reports the comparison of storage requirements
between a centralized database and several configurations of
bloomfilter. Before 500 files exist in the system, a bloomfilter
with 5 times the storage as the number of files and a
bloomfilter with 10 times the storage as the number of files
are less storage than a centralized database. Furthermore, it’s
not shown, but after 65,536 files the bloomfilter with 20 times
the storage will cost less than the database. This is due to
the size adjustments for the file identifications.

This shows that as the number of files increase in the
system (due to storage of older data and collection of new
data), the bloomfilter approach results in less storage than
the minimal way to store in a database format.

0

20

40

60

80

100

120

St
o

ra
ge

 R
e

q
u

ir
e

m
e

n
ts

 (
K

B
)

Number of Possible Entries

Centralized Dimm(5x)

DIMM(10x) DIMM(20x)

Fig. 4. The total size of a database and bloomfilters (with different size
constants) relative to the number of files in the system.

C. Bloomfilter with Locality Checks

In order to test the effectiveness of locality checks on false
positives/negatives, we created a pool of one million files for

5



bloomfilter array sizes of 10,000,000, 1,000,000, 500,000,
and 250,000. The bloomfilter used three SHA-1 functions
with different seeds and a MD5 function to create the four
hash values. These hash values were then used to determine
the position in the bloomfilter to set.

We then ran a normal distribution selecting a total of a
100,000 files from this pool. If the selected file doesn’t exist
in the bloomfilter, we would input it into the bloomfilter and
mark it in an extensive list of all the files (an array consisting
of all the files and an on/off bit). On the other hand if the
file does exist we would carry out the locality check and
determine the percentage of there not being a false positive.
We would also check the extensive list and see if there was
a real false positive or was there a check on a file existing
in the bloomfilter and what was the result.

The normal distribution selecting the files ran with a
constant mean value of 500,000. The variance was tested
with different parameters of 250, 1,000, 5,000, 10,000,
25,000, 50,000, 75,000, 100,000, 125,000, 250,000, 375,000,
500,000. By changing the variance we can influence the
degree of locality a file must have with the rest of the system.
Therefore a low variance implies that files are very heavily
related and exhibit a great amount of locality, whereas a high
variance implies the files do not exhibit a strong locality.

0

2

4

6

8

10

12

A
v

e
ra

g
e

 N
u

m
b

e
r 

o
f 

F
a

ls
e

 
P

o
s

it
iv

e
s

 (
x

1
0

0
0

)

Variance between File References

Bloomfilter Size 250000

Bloomfilter Size 500000

Bloomfilter Size 1000000

Bloomfilter Size 10000000

Fig. 5. The average percentage of false positives relative to the number of
entries.

Figure 5 summarizes our results as to the number of
false positives generated in each scenario. There are several
observations that can be implied from this figure. First this
supports the equation for the probability of false positives
(as the size of the bloomfilter is increased the number of
false positives is decreased). Second we can see that as
the variance increases more false positives are incurred.
This is due to the fact that more files are available to be
inserted into the bloomfilter (see Figure 6 which displays
the average number of entries added to each bloomfilter for
different variances). These additional files inserted increase

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 E
n

tr
ie

s 
(x

1
0

0
0

)

Variance between File References

Bloomfilter Size 250000

Bloomfilter Size 500000

Bloomfilter Size 1000000

Bloomfilter Size 10000000

Fig. 6. The average number of entries for a given variance for varying
bloomfilter sizes.

the probability of false positives in the bloomfilter.
Now that a baseline for the number of false positives

generated has been created we are able to analyze the locality
check for its impact on the performance. Figure 7(a) illus-
trates the percentage of the false positives that were correctly
identified whereas Figure 7(b) displays the percentage of
entries incorrectly identified as false positives. Both of these
figures are for different combination of distances (D) and
thresholds (T). From Figure 7(a) it is possible to see that
even in our weakest test of locality (a distance of 1 and a
threshold of 50%) it is possible to identify over half of the
false positives (when the number of entries and the variance
among them is large). In the worse case, however, this locality
test can backfire and not identify any of the false positives
(as in the case of low number of entries and low variance
among them). Both of these situations are extreme and we
can see that generally the test performs in the range 25-45%
reduction depending on the variance among the data.

The above conclusions are only for the bloomfilter of size
250,000, but similar results have been obtained from the
other bloomfilter sizes (they have been omitted due to page
restrictions). However one thing worth noticing is that as the
bloomfilter size increases the performance of the simplest
locality check performs better. It consistently performs the
same at the low variances, but as the size increases it
performs better during the higher variances.

Another conclusion we can make from this data is that
in order to make a more accurate detection of false positives
either the distance checked or the threshold compared against
need to be increased. This is expected as this is how the
locality check was designed to perform.

Up until now we have only focused on the performance
of this technique to catch the false positives. Looking at
Figure 7(b) we can see the performance of this technique at
inducing false negatives. First focusing on the variance range

6



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti

o
n

 o
f 

R
e
fe

re
n

c
e

s
 I

d
e

n
ti

fi
e

d
 

a
s

 F
a

ls
e

 P
o

s
it

iv
e

s

Variance between File References

D = 1;T = 0.50

D = 1;T = 0.75

D = 2;T = 0.50

D = 2;T = 0.75

D = 3;T = 0.50

D = 3;T = 0.75

(a) The average percentage of false positives identified for distance (D)
and Threshold (T).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti

o
n

 o
f 

N
u

m
b

e
r 

o
f 

F
a

ls
e

 
N

e
g

a
ti

v
e

s
 f

ro
m

 R
e

fe
re

n
c

e
s

 

Variance between File References

D = 1;T = 0.50

D = 1;T = 0.75

D = 2;T = 0.50

D = 2;T = 0.75

D = 3;T = 0.50

D = 3;T = 0.75

(b) The average percentage of false negatives identified for distance
(D) and Threshold (T).

Fig. 7. The effects of locality checking in a bloomfilter of size 250,000.

of [250-10,000], we can see that the number of false negatives
induced in this range is maxed at approximately 10% of the
total number of references to data for a distance of 1 and
a threshold of 50%. If this is compared to the maximum
percentage of false positives identified in this range (25%)
then we can see that by injecting more units of small traffic
into the network we can account for the total amount of
overhead in large network traffic when scheduling.

If we change our focus to the high end of the variance
range ([100,000-500,000]) we can see that the number of
false negatives is 50-60% of the total number of references.
Comparing this to false positive identification we are iden-
tifying 45-50% of the total false positives. At this point the
performance gain of being able to identify false positives may
not outweigh the amount of false negative traffic created in
the network. A situation where this could be the case is when
the data sets take relatively small time to transfer or when
the network is relatively slow and false negative messages
take increasingly longer time.

Once again these evaluations are only based on the
bloomfilter of size 250,000, but the other bloomfilter sizes
behave similarly (again results have been omitted due to page
length). All of the graphs have similar low false negatives
identified for low variances, and higher false negative rates
for higher variances. Comparing across the graphs it is
interesting to note that as the bloomfilter size increases the
false negative rate also increases.

This leads us to conclude that in order to take advantage
of this approach several parameters must be known about
the systems performance. First, the variance at which the
files are referenced, second the time taken to transfer files
into the system, and third the time taken to check if a file
is in the system. Once these things are known in advance,
then it will be possible for the administrator of the system

to determine the best way to utilize false positive detection
while not degrading the system with false negatives, i.e.,
choose the right parameters for bloomfilters.

D. Summary

To this end we have showed that DIMM is capable
of reducing the necessary number of file migrations into
the system by anywhere from 15% to up to nearly 90%
depending on the setup of the system.

We have also shown that although the initial costs of using
a bloomfilter is greater than that of using a database, this cost
is offset after a small number of files. After the number of
files in the system has been surpassed, the cost of maintaining
a database actually becomes greater than that of a bloomfilter.

We have further shown that our method of detecting false
positives is an efficient method if the induction of false
negatives can be tolerated by the system. This method works
better for a lower variance among the files where it can
catch 25% of the false positives and approximately 10% false
negatives, but it is still capable of use when the variance
among the files becomes quite large. The parameters used
in this locality check are dependent on the characteristics
of the system, but are configurable in order to reach the
desired degree of data checking (keeping in mind that a larger
distance and a larger percentage threshold are more strict at
identifying items that exist in the data set).

V. RELATED WORK

This paper is built on top of many previous efforts, includ-
ing bloomfilter, distributed hash table, and job scheduling.
The former has already been discussed in the paperShankar
et al. [5] propose additions to Condor for data caching and
work flow data scheduling. However they are looking at the

7



data movement among a work flow and not among the entire
system as we are, also the metadata contained within their
system is part of a large database, whereas ours is distributed
among the system in DHT.

Bright and Maier [6] propose a hybrid scheduling algo-
rithm that takes into account data locations in the scheduling
of data workflows. It does not focus on the storage of the
necessary information to deliver their approach nor on how
to assign the initial data storage in the workflow.

Work is also being done for data movement management.
In GridFTP [7] a method of data movement is provided
that is a built on top of the standard File Transfer Protocol
(FTP). This system does not have a relationship with job
scheduling. In HPSS [8] the system works well with moving
data in a high performance system, but a problem exists with
the increase in the amount of time to move data from low
level storage locations to a computational node. This problem
is especially apparent when the data is already located at
another computational node. Also the metadata management
in HPSS needs improvement [9].

Investigation into distributed job scheduling is also taking
place [10]. This paper focuses on the distributed nature of
scheduling whereas we are focusing on the distribution of the
metadata available to the scheduler. In recent work done by
Zhang et al. they research methods for job recovery within a
scheduled environment [11]. This work complements to ours
well, as it allows for jobs to be recovered in the event of
failures, but it does not address the management of metadata
within these scheduling environments.

There are also proposals for data management within
scheduling environments. Ailamaki et al. propose a method
of data management using databases [12]. This is orthogonal
to our work as we are trying to remove the storage costs of
maintaining a database on the centralized manager.

A similar work to ours is the Google BigTable [13]. In
this work the goal is to manage the metadata associated
with data in a reliable and efficient manner while distributing
these management roles across multiple nodes. However in
their approach, they utilize large amounts of metadata stored
on a centralized node. Having a comprehensive comparison
between DIMM and Google’s approach in a large scale is an
interesting direction.

Perhaps the most similar work to our own is Chervnak
et al. Giggle system [14]. This system is also concerned
with controlling the replicas among a system in a distributed
fashion. However, a decentralized state is not native to their
system, and depends on user intervention. Another work
similar to ours is the L-Store File System [15]. This work
however concentrates on the files at the block level.This
approach does not allow for nodes that contain these blocks
to access without the cost of having to retrieve the other
blocks as well.

VI. CONCLUSIONS AND FUTURE WORK

Job scheduling within a high performance environment is
still a very important research area, and as the knowledge of
system status grow more things can be taken into account
for the job scheduling. However as more things are taken
into account the amount of metadata used in the scheduling
increases. Therefore we proposed a method by which the
typical centralized manager in a high performance environ-
ment can be turned into a more decentralized one through the
use of distributed hash table. We also proposed a bloomfilter-
based method by which the centralized manager is capable of
getting the amount of metadata it needs to maintain decreased
to allow for better execution.

Following this work, we intend to further investigate the
relationship between data movement and scheduling. We are
implementing DIMM using openDHT. We plan to integrate
DIMM into a real product scheduler in a high performance
computing environment, e.g., the STAR scheduler [16].

REFERENCES

[1] J. Cavicchio, B. Szeliga, and W. Shi, “Stroage-aware job scheduling
for data-intensive applications,” Wayne State University, Tech. Rep.
Technical Report MIST-TR-2007-012, Nov 2007.

[2] D. Karger, E. Lehman, T. Leighton, M. Levin, D. Lewin, and R. Pan-
igrahy, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proc.
of ACM STOC, 1997.

[3] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
July 1970.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, 2000.

[5] S. Shankar and D. J. DeWitt, “Data driven workflow planning in cluster
management systems,” in HPDC 2007. New York, NY, USA: ACM
Press, 2007, pp. 127–136.

[6] L. Bright and D. Maier, “Efficient scheduling and execution of scien-
tific workflow tasks,” in SSDBM’2005. Berkeley, CA, US: Lawrence
Berkeley Laboratory, 2005, pp. 65–74.

[7] B. Allcock et al., “Data management and transfer in high-performance
computational grid environments,” Parallel Comput., vol. 28, no. 5,
pp. 749–771, 2002.

[8] R. A. Coyne, H. Hulen, and R. Watson, “The high performance storage
system,” in Supercomputing ’93. New York, NY, USA: ACM, 1993,
pp. 83–92.

[9] R. W. Watson, “High performance storage system scalability: Archi-
tecture, implementation and experience,” in MSST ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 145–159.

[10] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan,
“Distributed job scheduling on computational grids using multiple
simultaneous requests,” in HPDC 2002. Washington, DC, USA: IEEE
Computer Society, 2002, p. 359.

[11] Z. Zhang et al., “Optimizing center performance through coordinated
data staging, scheduling and recovery,” in Supercomputing ’07, 2007.

[12] A. Ailamaki, Y. E. Ioannidis, and M. Livny, “Scientific workflow
management by database management,” in SSDBM ’98. Washington,
DC, USA: IEEE Computer Society, 1998, pp. 190–199.

[13] F. Chang et al., “Bigtable: A distributed storage system for structured
data,” in OSDI 2006, Nov. 2006.

[14] A. Chervenak et al., “Giggle: a framework for constructing scalable
replica location services,” in Supercomputing ’02. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2002, pp. 1–17.

[15] A. Tackett et al., “Qos issues with the l-store distributed file system,”
Oct 2006.

[16] [Online]. Available: http://www.star.bnl.gov/

8


