
Future Generation Computer Systems 102 (2020) 514–523

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

π-Hub: Large-scale video learning, storage, and retrieval on
heterogeneous hardware platforms✩

Jie Tang a,∗, Shaoshan Liu b, Jie Cao c, Dawei Sun b,d, Bolin Ding e, Jean-Luc Gaudiot f,
Weisong Shi c
a South China University of Technology, Guangzhou, PR China
b PerceptIn, United States of America
c Wayne State University, Detroit, United States of America
d TSingHua University, Beijing, PR China
e Alibaba DAIL Lab, United States of America
f University of California, Irvine, United States of America

a r t i c l e i n f o

Article history:
Received 31 May 2019
Accepted 5 August 2019
Available online 28 August 2019

Keywords:
Robotic cloud
Video retrieval
Internet of Things
Heterogeneous platform

a b s t r a c t

The burgeoning of Internet of Things (IoT) and camera-equipped mobile devices contributes a
tremendous amount of video data generated at the edge of the network. At the same time, we have
witnessed the fast deployment of many video-based application services, such as plate recognition for
public safety, intelligent transportation, Industry 4.0 and so on. The success of these services, in turn,
requires large-scale video data being learned, stored, and retrieved in a more efficient way. A generic
software and hardware framework for large-scale IoT video analysis and service support is still missing.
To address this challenge, we present π-Hub, PerceptIn’s robotic cloud solution which supports large-
scale video data analysis, storage, and query by implementing the learn-store-retrieve paradigm.
Interestingly, we found that among the learning, storage, and retrieval services each of them stresses
one type of resources on heterogeneous computing servers, i.e., GPU, CPU, and Memory, respectively,
therefore it is extremely cost-efficient to co-locate these services together to fully utilize the resources.
In addition, several optimization techniques for data writing, reading, and data reduction are proposed
and evaluated. The evaluation results show that these techniques improve the performance of the
learning, storage and retrieval services significantly as well as notably reduce the cost of the system.
We also verify π-Hub’s scalability by reliably running a 1000-machine deployment to support up to
one million users. Finally, we conclude the paper by discussing several lessons learned from this study
and future work.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The rise of IoT applications has imposed tremendous pressure
on our existing cloud infrastructure [1]. For instance, every day, a
mobile phone sends out at least 30 MB of data to the clouds of the
service provider, the application operators, etc. In contrast, even
a very simple robot can easily generate over 1 GB of video data
per day. An extreme form of robot, driver-less cars, can generate
as much as 2 GB of video data per second [2]. The pervasive
deployment of video surveillance cameras in major cities also
collect a tremendous amount of video data for traffic manage-
ment, crime control, and public services, to name a few [3–6]. For

✩ This work is supported by Guangzhou Technology Grant No.
201707010148, Guangdong NSF Grant No. 2018A030310408, and GuangDong
Rearch and Development key Project of China Grant No.2018B010107003.

∗ Corresponding author.
E-mail address: cstangjie@scut.edu.cn (J. Tang).

instance, in a real-world scenario, in-city service robots may act in
a surveillance role, patrolling residential area and recording cap-
tured videos. Then, residents and citizen demand the capability of
video playback based on intelligent queries using time, location,
as well as objects in the scene as inputs. Several new challenges
raised for video analysis and streaming systems in this typical use
case

Many research efforts of IoT video analysis have been con-
tributed to the community [7–13]. The task for analyzing, stor-
age, and service query of the video collected from a large scale
of cameras and robots could be very resource hungry [14–17].
In video network systems the performance requirements are
multi-dimensional and diverse notably. Traffic control applica-
tions usually require long time data storage [18–20]. However,
AMBER Alerts desire a large coverage area or a large scale video
source [21]. Autonomous vehicles have need for real-time video

https://doi.org/10.1016/j.future.2019.08.006
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.08.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.08.006&domain=pdf
mailto:cstangjie@scut.edu.cn
https://doi.org/10.1016/j.future.2019.08.006

J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523 515

Fig. 1. A typical use case of π-Hub in home environment.

processing [22–24]. Public service systems for video streaming
usually stress from the large number of queries [25,26]. In order
to meet the specific performance requirements, heterogeneous
resources including network bandwidth, GPU, CPU, and storage
are usually allocated for traditional video analysis applications in
the cloud [27]. In [28], researchers present a Cloud-based system
to share the video data among various applications.

To the best of our knowledge, a generic cloud infrastruc-
ture which can process and store video collected from multiple
sources, in the meanwhile support a large scale of queries si-
multaneously is still missing [29]. Moreover, to implement and
deploy this infrastructure, efficient resource allocation mecha-
nism is another challenge. To efficiently process and store the
massive video data, we present π-Hub, PerceptIn’s robotic cloud
solution for large-scale video learning, storage, and retrieval with
efficient resource utilization on heterogeneous hardware plat-
forms [30]. π-Hub supports the learning, storage, and retrieval
services, where learning is about how to automatically under-
stand the video data and convert it into structured information;
storage is about how to effectively store the massive amount of
video data; while retrieval is about how to efficiently retrieve the
data when needed.

Fig. 1 illustrates a typical scenario of using π-Hub in a resi-
dential environment. In this case, a robot captures a video while
generating the map of the environment and sends the video
to the cloud. Then π-Hub would be able to extract semantic
information from the video, in this case, it extracts the objects
sofa and door from the video and associate location information
(⟨x, y⟩coordinates) with the detected labels.

The performance evaluation of π-Hub shows that it can co-
locate the learning, storage and retrieval services on the same
server with full utilization of CPU, GPU, memory, and disk re-
sources. Also π-Hub can be scaled up to support one million
users. To further optimize the performance of π-Hub, we propose
and evaluate several techniques in data writing, reading, and data
reduction.

The contributions of this work are as follows:

(1) We designed and built π-Hub, which is a system for large-
scale video data learning, storage, and retrieval;

(2) π-Hub can be deployed on one server and fully utilize
its heterogeneous hardware resources, such as CPU, GPU,
memory, and disk;

(3) We run a series of stress test to evaluate the performance
of π-Hub comprehensively, results showed that π-Hub
can be scaled up to support 1 million users reliably on a
1000-machine cluster.

(4) We introduced several approaches to improve the effi-
ciency of data reading and writing. These approaches op-
timized the performance of π-Hub’s storage layer and can
also be applied to other IoT systems.

The rest of this paper is organized as follows. In Section 2,
we introduce the design of π-Hub, which implements the learn-
store-retrieve paradigm, and discusses how π-Hub can meet the
challenges in data understating, storing, and retrieving. Section 3
evaluates the performance of π-Hub from aspects of data pro-
cessing, storage, and network. We also validate the scalability of
π-Hub in Section 3. Section 4 introduces the implementation and
evaluation of several techniques for performance optimization. In
Section 5, we discussed multi-layer deployment of π-Hub as a
solution for hybrid Cloud-Edge analytics in the future. Finally, the
paper concludes in Section 6 .

2. System description

In this section, we present high-level architecture of π-Hub
and discuss the learning, storage, and retrieval services in π-Hub.

2.1. System requirements

Before introduce the architecture of π-Hub, we would like to
list the requirements of the system first.

(1) Large-scale video processing. As we have discussed above,
we would like to deploy π-Hub to handle massive IoT video
data. Specifically, we want an individual π-Hub instance on
an ordinary server machine be able to learn and store video
data from 10 robots as well as simultaneous video retrieval
request from 100 users. Moreover, to reach the goal of 1
million user support, π-Hub is also required to be robustly
running on a 1000-machine cluster.

(2) Response time. For the learning service, we target to have
each deployment of π-Hub supporting at least 10 robots,
and each robot streams images once every two seconds,
this means that each second π-Hub performs learning on
at least five images, or having a processing time of less
than 0.2 s per image. For the storage service, we require
an average write throughput of at least 100 MB/s to make
sure that the multimedia data gets stored. For the retrieval
service, to provide good user experiences, we require at
least 90% of all queries to be completed within 30 s.

(3) Cost effectiveness. The deployment and maintenance of a
large-scale server cluster is high-priced. To control the cost
of π-Hub and support as many video producers/
consumers as possible, π-Hub is required to fully utilize
all the available computing resource including CPU, GPU,
memory, disk, and network.

2.2. π-Hub architecture

Fig. 2 shows the architecture of π-Hub. From the service
point of view, π-Hub supports three services, which are learning,
storage, and retrieval. From the system point of view, π-Hub
consists of the following components:

• Client Devices: these devices capture multimedia feeds and
send the feeds to the cloud along with their meta-data.

• Streaming Server: it handles multimedia and streams on-
demand live multimedia feed to users as requested.

• Object Recognition: deep-learning evaluation engine for au-
tomatic extraction of semantic information from incoming
videos.

• Key–Value Store: this key–value store organizes the video
feeds along with the learned/extracted semantic informa-
tion.

• Query Engine: this query engine supports retrieval of video
feeds. One can search using any combination of time, loca-
tion, as well as extracted labels.

516 J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523

Fig. 2. The π-Hub system architecture.

Fig. 3. Video stream processing.

• Business Analytics Engine: this engine generates high-level
statistics of all multimedia data. For example, one can be
interested in knowing which are the most common objects
appear in living rooms, etc.

• Storage Layer: the storage layer needs to provide high
throughput for data persistence and low latency for fast
retrieval of video feeds. Also, it must manage heteroge-
neous storage systems including S3, GCS, Swift, HDFS, OSS,
GlusterFS, and NFS.

2.3. Learning service

As multimedia data comes into the cloud system, the first task
is to learn from the raw data and to extract semantic information
out of the multimedia data. For video streams, we can extract
object labels from frames and associate these labels with the
video stream. For audio streams, we can extract sentences of the
spoken language. Then this semantic information can be used
as keys, and the raw data streams can be used as values, and
together they are stored in the key–value store.

As presented in Fig. 3, we need a learning engine that ex-
tracts object labels from a video stream. This engine needs to be
accurate in terms of recognition rate, and this engine needs to
be fast in order for us to capture as many objects as possible in
the video. Therefore, in this implementation, we utilize faster r-
cnn [31] network running on Caffe [32]. Faster r-cnn introduces
a Region Proposal Network (RPN), a fully convolutional network
that simultaneously predicts.

2.4. Storage service

After extracting the semantic information from the raw mul-
timedia data, the extracted labels, along with the raw data get

Fig. 4. Storage layer architecture.

stored in the key–value store for easy retrieval, as shown in Fig. 4.
We implemented the key–value store using MongoDB [33]. In this
case, the key is the meta-data including ⟨sessionID, timestamp,
duration, location, ⟨list of labels⟩⟩, and the value is a file path of
the raw data in the storage layer.

This poses two challenges: first, in real-world scenarios, users
vary in their choice of persistent storage for their data. Some
prefer Amazon S3, some their own deployment of HDFS, others
Ceph, etc. One way to get around this problem is to create a
set of APIs for each persistent storage, but this would become
impossible to manage as the number of persistent storage options
grows. A second, and probably better way, to handle this is to
create a unified storage layer to abstract all underlying storages.
To this end, Alluxio enables effective data management across dif-
ferent storage systems through its use of transparent naming and
mounting API [34]. Transparent naming maintains an identity be-
tween the Alluxio namespace and the underlying storage system
namespace. When users create objects in the Alluxio namespace,
they can decide whether these objects should be persisted in
the underlying storage system. For objects that are persisted,
Alluxio preserves the object paths, relative to the underlying
storage system directory in which Alluxio objects are stored. With
this feature, we can now manage multiple persistent storages
using a single set of storage layer API, which greatly simplifies
the management of the storage part of the π-Hub computing
paradigm. The second challenge is that the write throughput
directly impacts the performance of the whole system. If the
write speed of the storage is slower than the detection speed in
the learning stage, then it becomes the bottleneck and leads to
‘‘memory loss’’. We will discuss in the next section how we can
use Alluxio’s tiered storage feature, along with write optimization
to improve write throughput.

2.5. Retrieval service

The last stage is retrieve, as shown in Fig. 5. By Query semantic
process, users can use any combination of meta data, such as
time, location, or detected labels to accurately retrieve the target
multimedia data. In our implementation, we use MongoDB to
perform the intelligent search using the meta-data as keys to first
retrieve a file path of the storage layer. Then we issue another
request to retrieve the raw data using the file path.

Therefore, the performance of the retrieve stage greatly de-
pends on the read performance of the storage layer. It is helpful to
exploit locality of the storage layer to improve read performance.
Ideally, the performance is highest if the requested data is located
in the memory of the local machine. However, it is impossible to
store all data in the memory of the local machines. We need a
mechanism to provide a cache-like structure such that we have
different levels of the storage at a different speed, including local

J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523 517

Fig. 5. Retrieve architecture.

memory, local Solid State Drives (SSD), local Hard Disk Drives
(HDD), and remote storage.

This requirement can be fulfilled by Alluxio’s tiered storage
feature. With tiered storage, Alluxio can manage multiple storage
layers including Memory, SSD, and HDD. Using tiered storage
Alluxio can store more data in the system at the same time,
since memory capacity may be limited in some deployments.
With tiered storage, Alluxio automatically manages blocks be-
tween all the configured tiers, so users and administrators do not
have to manually manage the locations of the data. Users may
specify their own data management strategies by implementing
allocators and evictors.

In a way, the Memory layer of the tiered storage serves as the
top level cache, SSD serves as the second level cache, HDD serves
as the third level cache, while it is the persistent storage is the
last level storage. We will discuss Alluxio’s tiered storage along
with prefetching optimization later.

3. Performance evaluation

In this section, we delve into the details of the performance
and scalability of the implementation of π-Hub. The machine
configuration used in this implementation consists of an Intel
Core-i7 CPU running at 3 GHz, and a Titan X GPU with 12 GB
of graphics memory, and 32 GB of system memory.

3.1. Object recognition performance

We look at the performance of the object recognition engine.
We stress the engine by feeding it video streams and measure its
performance. As shown in Fig. 6, when under stress, on a single
server, it takes an average of 0.16 s to process an image. Also, this
workload is GPU-bound, as it uses 95% of GPU resources, but only
23% of CPU resources and 3% of system memory.

In our real-world use case, the in-home service robots move
at a speed of about 30 centimeters per second. Therefore, in most
cases, we only need to extract labels from an image every two
seconds without missing an object in the scene. This implies that
with each server, we could support 10 simultaneous incoming
video streams. This can be further tuned based on the robot speed
and user requirements.

3.2. Query engine performance

We now examine the performance of the query engine. We
stress the engine by launching 100 clients repeated send queries
to the query engine and we measure the response time. As shown
in Fig. 7, when under stress, on a single server, it takes on average
of 4 ms to process a query. This workload is CPU-bound, in that
it uses 98% of CPU resources, none of the GPU resources, and 2%
of system memory. This confirms that with one server, we could
easily handle over 100 users simultaneously.

Fig. 6. Faster RCNN detection stress test.

Fig. 7. MongoDB query stress test.

Fig. 8. Alluxio stress test.

3.3. Storage performance

Then we examine the performance of the storage engine. We
first compare the throughput of a copy operation with Alluxio,
with the Native File System, and with Remote HDFS. This param-
eter is critical as it determines how fast we can write a video
feed to storage. If the throughput is too low, then the storage
layer may become the bottleneck of the whole multimedia data
pipeline. As shown in Fig. 8, with Alluxio’s in-memory storage
engine, we could easily achieve greater than 650 MB/s throughput
whereas, with Native File System, we could only achieve 120
MB/s. Using remote HDFS, the performance is the worst, only
sustaining less than 20 MB/s throughput. This result indicates that
for the storage engine not to become the bottleneck of the storage
part, it is important to keep most of the write operations to hit
the in-memory storage layer.

Then we evaluate the video retrieval latency, using Alluxio’s
in-memory storage engine, we are able to retrieve a video within
500 ms. However, when the video is stored on remote machines,
the latency can be as high as 20 s. Therefore, using Alluxio to
buffer ‘‘hot’’ video data could reduce retrieval latencies by as

518 J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523

Table 1
Resource utilization.

CPU% GPU% MEM%

Faster RCNN 3 95 3
MongoDB stress 98 0 2
Alluxio stress 3 0 95

Fig. 9. Deployment architecture.

much as 40 folds, which is quite critical to the user experience,
especially in the retrieve stage.

3.4. Deployment

After understanding the performance of the individual com-
ponents, we take a look at the deployment setup as well as the
scalability of this architecture.

First, Table 1 summarizes the resource utilization of the three
components under stress. It is interesting that each component
stresses one type of system resource: the faster R-CNN recogni-
tion engine stresses the GPU, MongoDB stresses the CPU, while
Alluxio stresses the system memory. This indicates that it is
best to co-locate these three services on the same servers. This
approach provides the following benefits:

• Cost Efficiency: as we co-locate the services, we reduce
costs.

• Performance: the storage layer, Alluxio, is now co-located
with the same servers as the learning engine and the query
engine, which ensures high write throughput and low read
latency.

The deployment architecture is shown in Fig. 9. It is divided
into two parts, the front-end servers and the back-end storage
servers. The frontend servers process the incoming data and write
the raw data in Alluxio. Alluxio then asynchronously persists the
raw data in the backend storage servers. Also, when the users
generate new queries, the frontend servers process the queries
and retrieve the raw data from Alluxio. If the requested data is
buffered in Alluxio’s tiered storage, it is immediately returned to
the user. Otherwise, it is a cache miss and Alluxio requests the
data from the backend storage servers.

For Alluxio, we use a two-level deployment, allocating 20 GB
of memory in the top tier and 200 GB of HDD in the second
tiered. With a 10-machine deployment, we provide 2.2 TB of
cache space. Assuming 10 MB average video file size, the system
can buffer around 200,000 video files. Also, with ten machines, we

can simultaneously support 100 video streams as well as 1000
simultaneous queries. From our experiences, at any moment in
time, at most 10% of all users will be active, therefore with this
setup, we are able to handle 10,000 users.

3.5. Scalability

Next, we seek to answer the question as to whether we could
support 1 million users. As mentioned above, with 10 machines,
we can support 10,000 users, therefore, whether we can support
1 million users is really a question of whether we can have a
stable 1000-machine deployment. To verify this, we deployed a
1000-machine Alluxio cluster and conducted a stress test using
a background script to repeatedly write to and read from the
system. As shown in Fig. 10a, the stress test consists of three
items:

• The block read test repeatedly reads a block from the storage
system, and thus repeatedly stress one storage node.

• The block write test repeatedly writes a block to the storage
system, therefore, not only stress test the storage nodes but
also the underlying storage as well (when the storage nodes
are full). Note that for the block read test and block write
test throughput and latency numbers, we have reported
those in the deployment section and will provide more
details in the Optimization section.

• The master stress test, in this test we start 100 threads
to perform small file reads/writes simultaneously, and the
purpose is to try to crash the master node, and therefore
bringing down the whole system. A snapshot of the test re-
sults is shown in Fig. 10b, indicating with 100 threads simul-
taneously stressing the master, all requests were completed
within 30 s.

Note that we repeatedly ran these test for two weeks, and
within the two weeks we did not observe any master node crash
or storage node crash, and therefore we were able to confirm
that Alluxio could reliably scale to 1000 instances. This confirms
that we can use Alluxio to support one million users as our
implementation scales.

4. Optimization

As mentioned in Section 2, the storage layer write throughput
is critical to the performance of the storage stage and the storage
layer read latency is critical to the performance of the retrieve
stage. In this section, we delve into the optimizations we imple-
ment in the storage layer to improve both write throughput and
read latency.

4.1. Write optimization

With the default Alluxio tiered storage implementation, when
a user writes a new block, it is written to the top tier by default,
as shown in Fig. 11a. If there is not enough space for the block
in the top tier, the system checks for free space in the next layer.
This gets repeated for each layer until free space is found. For
instance, if both the memory layer and the SSD layer are full, free
space may be found in the HDD layer. Then, the evictor moves a
block in the SSD layer to the HDD layer and then moves a block
in the memory layer to the SSD layer. Finally, the block can be
written back to the memory layer.

This approach is inefficient when the tiered storage is fully
occupied as each time a new block is written, the evictor needs to
move blocks across all layers before the new block can be written.
This greatly reduces the write throughput as it takes a long time
to write each block in the storage layer.

J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523 519

Fig. 10. Stress test of π-Hub on 1000 machines.

To allay this problem, we implement a Direct-Write allocator,
such that it writes a block to the first layer that has free space,
as shown in Fig. 11b. When we run a stress test to continually
write blocks into Alluxio, compared to the default allocator, our
Direct-Write approach reduces the write latency by half and
consequently doubling the write throughput.

One could argue that the Write-Direct approach impacts read
performance since the new block is now not in the top tier.
However, in our experiences, it is very rare that a block gets read
right after being written to storage. Also, if the block gets read, say
ten minutes later, by that time, it is highly likely that the block
has already been evicted to lower level of the storage layer.

4.2. Read optimization

To optimize read performance, we strive to keep as much data
in the frontend servers as possible, thus avoiding the latency of
fetching data blocks from remote backend storage servers. We
have collected over six months of text-based query data from
over 1000 users. We discovered that, without any optimization,
we reached a hit rate of about 50%, meaning that 50% of the
queries are satisfied the frontend servers without hitting the
remote backend storage servers, while the other 50% end up
hitting the remote servers, thus leading to high latency.

An effective approach to improve this situation is to use
prefetching [35]. A simple improvement, when the frontend
servers are less busy, we prefetch data from the most requested
table into the frontend servers. This simple improvement imme-
diately boosts the hit rate to 70%. For the next step, we break
the day into 6 time periods, each is four-hour long. For each
time period, we prefetch the most requested table from the same

Fig. 11. Write optimization in π-Hub.

period in the previous day. By doing this, we boost the hit rate to
80%, as shown in Fig. 12.

This verifies that prefetching is indeed a very effective tech-
nique for improving read latency. As we get more queries for mul-
timedia data in our storage, we plan to design more fine-grained
prefetching techniques to further improve the performance of
reading operations. Some of the prefetching strategies we plan
to use include:

• Label: since we now have label information associated with
each video stream, and we observe an initial trend that
people tend to search for certain labels, such as a dog.
Prefetching the videos with the ‘‘hottest’’ label will be an
effective way to improve read performance.

520 J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523

Fig. 12. Read optimization in π-Hub.

• Location: also, now that each video stream is associated with
location information, such as bedroom, living room, etc., it
will also be effective to prefetch the most searched locations
into the frontend storage servers. We will explore these
options in the next step.

4.3. Data reduction

As mentioned in the introduction, the volumes of data col-
lected from robotic devices can easily grow exponentially over
time, which on one hand, enables our π-Hub to provide data-
analytics and decision-support services to users, but on the other
hand, imposes performance challenges on all the three stages,
learn-store-retrieve, in terms of both storage and query response
time. Although the architecture presented in this paper is opti-
mized for robotic workloads, with a fixed and limited budget of
computing resources, the users eventually have to discard more
and more data and tolerate longer response time.

4.3.1. Data reduction techniques
Data reduction techniques, e.g., sampling, can be a feasible

solution to handle the above issue on π-Hub, especially when
small errors are tolerable. For example, when the data collected
from robots is used to estimate traffic volume/speed or to learn
trajectory patterns, small errors in the results are usually in-
evitable anyway due to the noise in the initial data collection
and in the learning stages. For such tasks, the goal of our π-Hub
is to provide data-analytics services with low storage cost and
interactive query response time at the cost of small errors in the
analytical results and answers.

To achieve this, we utilize techniques from approximate query
processing (AQP), which has been studied for decades mostly in
the context of relational databases. The goal of AQP is to provide
approximate answers to a subclass of SQL queries with interactive
response time and estimated error bounds. This line of work has
become very active recently because of the explosion of data.
The recent efforts result in both innovative techniques and more
mature sampling-based systems, e.g., BlinkDB [36], QuickR, and
Sample+Seek.

Interested readers can refer to for a brief survey of the
progress. Sampling-based AQP techniques can be characterized
by where the sampler (for the data-reduction purpose) is in the
whole pipeline. In one way, the sampler can be placed right
before the data is streamed into the query execution engine,
or even pushed to the nodes of a query plan tree with the
execution engine (e.g., QuickR). In the other way, samplers are
used pre-computed samples of the data tables, and SQL queries
are rewritten to be executed on these sample tables for fast
response (e.g., BlinkDB and Sample+Seek).

4.3.2. Usages in π-hub
In a π-Hub, we have more options about where to place

the samplers and more considerations to be addressed for each
option. Following are our preliminary proposals.

• Sampling before learning. We can reduce the amount of
raw data collected from users by placing samplers in the
client devices or the streaming server. A tuple (e.g., an
image) in the raw data is selected into the object recogni-
tion component only with some probability, which is deter-
mined by some light-weight calculation based on the tuple’s
meta-data, e.g., time and location.

• Sampling before storage. After the semantic information is
extracted from the raw data tuples, we can pre-compute
and store only a subsample into the key–value store. For ex-
ample, a row ⟨sessionID, timestamp, duration, location, ⟨list
of labels⟩⟩ is selected into the store with a probability de-
termined by the ‘‘list of labels’’—we can select more sample
rows for some hot and more important labels and fewer
sample rows for the others.

• Online sampling during retrieval. When a query is issued
in the retrieve stage, we can invoke a sampler to select
only a subset of rows from the key–value store into the
query execution engine (and of course, rewrite the query to
rescale the answer). For example, we may want to count the
number of times a label appears between a time interval.
A number of samplers can be borrowed from AQP systems
to provide estimates of answers and error bounds for such
queries.

In our experiences, after reaching a significant scale (e.g. one
million users), data reduction sampling techniques are able to re-
duce 90% of data processing. As discussed in Section 2, with 1000-
node deployment, the proposed architecture can support up to
one million users; also, from our experiences, the operation cost
of each server per year is around $3000. In Table 2, we summa-
rize the estimations of the cost reduction and performance gain
of deploying the sampling techniques. When sampling happens
before the learning service, we reduce the whole data processing
pipeline’s workload by 90%, and thus we can reduce 90% of the
deployed servers, leading to an annual saving of 2.7 million USD,
and we boost the performance of all stages by 10X. When sam-
pling happens before the storage service, we cannot reduce the
number of servers needed with the current server configuration,
but we boost the storage stage and the retrieve stage by 10X.
Lastly, when sampling happens in the retrieve stage, only the
retrieve performance will be boosted by 10X. The observation
from this is that the early we apply data reduction techniques,
the more we can reduce operation cost and boost performance.
As a next step, we will study how data reduction techniques can
be applied at the computing edges to further reduce cost and
improve performance, more will be discussed in the future works
section.

4.3.3. Property of data reduction schema
Fig. 13 shows a simple data reduction schema that can be

used in robotic clouds. Offline samples are drawn from KV Store
and are maintained in a separate in-memory store so that query
engine can efficiently retrieve them to process analytical queries.
When a query has a very selective predicate, e.g., to select data
with an extremely rare label or during a short time period, offline
samples can become useless (because very few tuples satisfying
the predicate will appear in the offline samples). Therefore, we
also need an online sampler to aid the query engine, to draw
a sample in an online fashion for a given analytical query with
selective predicates. For both cases, in order to achieve interactive

J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523 521

Table 2
Cost reduction and performance gain of the sampling techniques.

Cost reduction
(thousand $)

Performance gain
in learning

Performance gain
in storage

Performance gain
in retrieve

Sampling before learning 2700 ×10 ×10 ×10
Sampling before storage 0 0 ×10 ×10
Online sampling during retrieve 0 0 0 0

Fig. 13. Data reduction schema and property.

response time, the query engine takes samples of tuples with size
only sublinear in the store size n, e.g., O(

√
n).

On the other hand, it is important to note that we always want
to guarantee that the errors are no more than some threshold in
our analytical results or answers, or at least, we want to provide
estimates of the errors. Such guarantees or estimations are rela-
tively easier for SQL-like aggregation queries (e.g., counting the
number of cars on a street). For example, for both online sampler
and offline samples, we can use measure-biased sampling and
priority sampling to processing Group-By queries and Subset Sum
queries, respectively, on only O

(
1/e2

)
sample tuples to obtain

e-approximations to the query answers. It is, however, more
challenging for complex tasks (e.g., predicting the trajectory of
a car) to achieve the above precision guarantees.

We will start with adopting the sampling-based data reduc-
tion techniques in our robotic cloud to provide cheap and fast
data-analytics services for users with relatively simpler analyti-
cal workloads, and extend our services for more complex tasks
(e.g., building ML models) in future.

5. Lesson learned and future work

In this section, we first discuss the lessons learned in this
work, followed by the description of potential future direction.

5.1. Lessons learned

There are several lessons learned from this study:

(1) Co-location of services lead to cost-efficiency and perfor-
mance gain: with heterogeneous computing architectures,
we can co-locate different services, each stresses one type
of computing resource, this greatly reduces the number of
servers required, leading to cost-efficiency. In addition, by
co-locating services, the system has fewer data to move
over the network, and thus less prone to network insta-
bilities. Based on this observation, we plan to deploy more
heterogeneous computing servers, one ongoing work is to
add FPGA to our server architecture to handle the robot
trajectory generation tasks.

(2) Unified storage architecture with caching capability is impera-
tive: when there is a huge influx of different types of multi-
media data, heterogeneous backend storage infrastructures
may be necessary, but managing heterogeneous backend

infrastructures often incur significant RD and maintenance
overheads, a unified storage interface that shields the de-
tails of the heterogeneous storage backend infrastructures
from the users and system administrators is key to scalabil-
ity. In addition, the communications between the frontend
services and the backend storage infrastructure are prone
to network instabilities. A caching layer in the unified
storage interface (e.g. delayed write and buffering of hot
datasets) has proven to be a great solution to this problem.

(3) Data reduction is an effective means for performance and
cost optimization: we have developed effective mechanisms
to reduce the amount of data before calling the learn-
ing service, before calling the storage service, as well as
online sampling during retrieval. These mechanisms all
lead to significant reduction of required computing and
storage resources, as well as performance gains. Specifi-
cally, the impact is greater when data reduction techniques
are applied early in the whole data processing pipeline.
Therefore, we are currently working on designing and im-
plementing a hybrid edge-cloud robotic data analytic ar-
chitecture, by moving more data processing capabilities to
the edge, we can use a much thinner and cost-effective
cloud infrastructure for performing the learn-store-retrieve
services.

5.2. Future work

Edge computing as a new computing paradigm has been
pushed by the burgeoning of the Internet of Things and the
success of rich cloud services. With the increasing number of
devices added to the Edge of the network, massive video data
will be collected and shared among a number of services at the
Edge of the network. Real-time video analytics is channeled as
the killer application for Edge Computing.

In the future, we would like to deploy π-Hub under the hybrid
Cloud-Edge paradigm, as shown in Fig. 14. π-Hub will be running
not only on the cloud server, but also on various computation
devices at the edge of the network, such as mobile devices,
robots, gateways, local data center, or base stations, and so on.
On different layers in the edge computing paradigm, π-Hub could
perform video learning and storage to different degree based on
the available resources and service requirements. For instance, on
edge devices such as mobile phones or robots, data prepossessing
tasks could be performed to reduce the data quantity and stress of
the network. Data learning algorithms requires more computing
resources and larger storage space could be running on the higher
layer such as local data center. On the Cloud, π-Hub will support
data sharing among multiple applications for retrieval and query.
We foresee that this deployment could serve more users and
applications under edge Computing meanwhile save resources
such as bandwidth, storage space, and computing power.

6. Conclusion

We have witnessed the rapid growth of camera-equipped
mobile devices and things in the last decade, which generate a
tremendous amount of video data on the network. Several new

522 J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523

Fig. 14. π-Hub in edge computing.

challenges are raised to efficiently analyze, store, and retrieve the
large amount of video data. In this paper, we take the challenges
and introduce a learn-store-retrieve infrastructure called π-Hub
for video analysis, storage, and retrieve. Our comprehensive eval-
uation results show that the optimization techniques improve the
performance of the learning, storage and retrieval services signif-
icantly as well as notably reduce the cost of the system. We also
verify π-Hub’s scalability by reliably running a 1000-machine
deployment to support up to one million users. Several lessons
learned from this study and future work are also discussed.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A
vision, architectural elements, and future directions, Future Gener. Comput.
Syst. 29 (7) (2013) 1645–1660.

[2] J. Tang, D. Sun, S. Liu, J.-L. Gaudiot, Enabling deep learning on IoT devices,
Computer 50 (10) (2017) 92–96.

[3] H. Aghajan, A. Cavallaro, Multi-Camera Networks: Principles and
Applications, Academic Press, 2009.

[4] L. Calavia, C. Baladrón, J.M. Aguiar, B. Carro, A. Sánchez-Esguevillas, A se-
mantic autonomous video surveillance system for dense camera networks
in smart cities, Sensors 12 (8) (2012) 10407–10429.

[5] G. Hancke, B. Silva, G. Hancke Jr, et al., The role of advanced sensing in
smart cities, Sensors 13 (1) (2013) 393–425.

[6] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, S.
Pankanti, Smart video surveillance: exploring the concept of multiscale
spatiotemporal tracking, IEEE Signal Process. Mag. 22 (2) (2005) 38–51.

[7] X. Chang, Y.-L. Yu, Y. Yang, E.P. Xing, Semantic pooling for complex event
analysis in untrimmed videos, IEEE Trans. Pattern Anal. Mach. Intell. 39
(8) (2016) 1617–1632.

[8] G. Kokkonis, K.E. Psannis, M. Roumeliotis, D. Schonfeld, Real-time
wireless multisensory smart surveillance with 3D-HEVC streams for
internet-of-things (IoT), J. Supercomput. 73 (3) (2017) 1044–1062.

[9] Z. Liu, T. Yan, Study on multi-view video based on IOT and its application in
intelligent security system, in: Proceedings 2013 International Conference
on Mechatronic Sciences, Electric Engineering and Computer, MEC, IEEE,
2013, pp. 1437–1440.

[10] C. Long, Y. Cao, T. Jiang, Q. Zhang, Edge computing framework for cooper-
ative video processing in multimedia IoT systems, IEEE Trans. Multimed.
20 (5) (2017) 1126–1139.

[11] S. Rani, S.H. Ahmed, R. Talwar, J. Malhotra, H. Song, IoMT: A reliable cross
layer protocol for internet of multimedia things, IEEE Internet Things J. 4
(3) (2017) 832–839.

[12] M. Satyanarayanan, P.B. Gibbons, L. Mummert, P. Pillai, P. Simoens, R.
Sukthankar, Cloudlet-based just-in-time indexing of IoT video, in: 2017
Global Internet of Things Summit (GIoTS), IEEE, 2017, pp. 1–8.

[13] A.R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum, M.
Parashar, Deadline constrained video analysis via in-transit computational
environments, IEEE Trans. Serv. Comput. (2017).

[14] D. Acharya, K. Khoshelham, S. Winter, Real-time detection and tracking
of pedestrians in CCTV images using a deep convolutional neural network,
in: Proceedings of the 4th Annual Conference of Research@ Locate, Sydney,
Australia, 2017, pp. 3–6.

[15] Z. He, D. Wu, Resource allocation and performance analysis of wireless
video sensors, IEEE Trans. Circuits Syst. Video Technol. 16 (5) (2006)
590–599.

[16] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez,
T. Vojir, G. Hager, G. Nebehay, R. Pflugfelder, The visual object track-
ing vot2015 challenge results, in: Proceedings of the IEEE International
Conference on Computer Vision Workshops, 2015, pp. 1–23.

[17] K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition, 2014, arXiv preprint arXiv:1409.1556.

[18] E. Bas, A. Tekalp, F. Salman, Automatic vehicle counting from video for
traffic flow analysis, in: 2007 IEEE Intelligent Vehicles Symposium, IEEE,
2007, pp. 392–397.

[19] M. Bramberger, J. Brunner, B. Rinner, H. Schwabach, Real-time video
analysis on an embedded smart camera for traffic surveillance, in: Pro-
ceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2004, IEEE, 2004, pp. 174–181.

[20] V. Kastrinaki, M. Zervakis, K. Kalaitzakis, A survey of video processing
techniques for traffic applications, Image Vis. Comput. 21 (4) (2003)
359–381.

[21] W. Wu, E.A. Bernal, R.P. Loce, M.E. Hoover, Multi-resolution video analysis
and key feature preserving video reduction strategy for (real-time) vehicle
tracking and speed enforcement systems, US Patent 8, 953, 044, 2015.

[22] J. Evans, P. Redmond, C. Plakas, K. Hamilton, D. Lane, Autonomous docking
for intervention-AUVs using sonar and video-based real-time 3D pose
estimation, in: Oceans 2003. Celebrating the Past... Teaming Toward the
Future, IEEE Cat. No. 03CH37492, Vol. 4, IEEE, 2003, pp. 2201–2210.

[23] J.P. How, B. Behihke, A. Frank, D. Dale, J. Vian, Real-time indoor au-
tonomous vehicle test environment, IEEE Control Syst. Mag. 28 (2) (2008)
51–64.

[24] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, S. Russell,
Towards robust automatic traffic scene analysis in real-time, in: Proceed-
ings of 12th International Conference on Pattern Recognition, Vol. 1, IEEE,
1994, pp. 126–131.

[25] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, M. Satyanarayanan, Scalable
crowd-sourcing of video from mobile devices, in: Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and
Services, ACM, 2013, pp. 139–152.

[26] T. Zhang, A. Chowdhery, P.V. Bahl, K. Jamieson, S. Banerjee, The design and
implementation of a wireless video surveillance system, in: Proceedings
of the 21st Annual International Conference on Mobile Computing and
Networking, ACM, 2015, pp. 426–438.

[27] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, M.J.
Freedman, Live video analytics at scale with approximation and delay-
tolerance, in: 14th {USENIX} Symposium on Networked Systems Design
and Implementation, {NSDI} 17, 2017, pp. 377–392.

[28] S. Jain, V. Nguyen, M. Gruteser, P. Bahl, Panoptes: Servicing multiple appli-
cations simultaneously using steerable cameras, in: 2017 16th ACM/IEEE
International Conference on Information Processing in Sensor Networks,
IPSN, IEEE, 2017, pp. 119–130.

[29] I. Stoica, D. Song, R.A. Popa, D. Patterson, M.W. Mahoney, R. Katz, A.D.
Joseph, M. Jordan, J.M. Hellerstein, J.E. Gonzalez, et al., A Berkeley view of
systems challenges for ai, 2017, arXiv preprint arXiv:1712.05855.

[30] L. Shaoshan, S. Dawei, Perceptin robotics get a performance boost from al-
luxio distributed storage, 2019, https://thenewstack.io/powering-robotics-
clouds-alluxio. (Accessed 15 February 2019).

[31] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object de-
tection with region proposal networks, in: Advances in Neural Information
Processing Systems, 2015, pp. 91–99.

[32] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature
embedding, in: Proceedings of the 22nd ACM International Conference on
Multimedia, ACM, 2014, pp. 675–678.

[33] K. Chodorow, MongoDB: the definitive guide: powerful and scalable data
storage, O’Reilly Media, Inc., 2013.

[34] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica, Tachyon: Reliable, memory
speed storage for cluster computing frameworks, in: Proceedings of the
ACM Symposium on Cloud Computing, ACM, 2014, pp. 1–15.

http://refhub.elsevier.com/S0167-739X(19)31427-X/sb1
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb1
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb1
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb1
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb1
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb2
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb2
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb2
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb3
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb3
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb3
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb4
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb4
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb4
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb4
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb4
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb5
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb5
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb5
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb6
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb6
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb6
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb6
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb6
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb7
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb7
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb7
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb7
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb7
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb8
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb8
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb8
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb8
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb8
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb9
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb10
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb10
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb10
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb10
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb10
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb11
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb11
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb11
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb11
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb11
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb12
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb12
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb12
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb12
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb12
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb13
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb13
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb13
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb13
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb13
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb15
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb15
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb15
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb15
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb15
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb18
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb18
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb18
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb18
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb18
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb19
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb20
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb20
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb20
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb20
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb20
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb22
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb23
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb23
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb23
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb23
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb23
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb24
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb25
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb26
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb28
http://arxiv.org/abs/1712.05855
https://thenewstack.io/powering-robotics-clouds-alluxio
https://thenewstack.io/powering-robotics-clouds-alluxio
https://thenewstack.io/powering-robotics-clouds-alluxio
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb31
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb31
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb31
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb31
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb31
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb32
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb33
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb33
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb33
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb34
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb34
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb34
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb34
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb34

J. Tang, S. Liu, J. Cao et al. / Future Generation Computer Systems 102 (2020) 514–523 523

[35] V.N. Padmanabhan, J.C. Mogul, Using predictive prefetching to improve
world wide web latency, ACM SIGCOMM Comput. Commun. Rev. 26 (3)
(1996) 22–36.

[36] S. Agarwal, Queries with Bounded Errors & Bounded Response Times on
Very Large Data (Ph.D. thesis), UC Berkeley, 2014.

Dr. Jie Tang is currently an associate professor in
School of Computer Science and Engineering of South
China University of Technology, Guangzhou, China. She
received her B.E. degree From University of Defense
Technology in 2006, and Ph.D. degree from the Beijing
Institute of Technology in 2012, both in Computer
Science. She was previously a visiting researcher at the
Embedded Systems Center at University of California,
Irvine, USA, and a research scientist at Intel China
Runtime Technology Lab. Dr. Tang is mainly doing re-
search on Computer Architecture, Autonomous Driving,

Cloud and Run-time System. She is a founding member and secretary of the
IEEE Computer Society Special Technical Community on Autonomous Driving
Technologies.

Dr. Shaoshan Liu is Founder and CEO of PerceptIn
(www.perceptin.io), a company focusing on providing
visual perception solutions for autonomous robots and
vehicles. Before founding PerceptIn, Dr. Shaoshan Liu
was a founding member of Baidu U.S.A. as well as the
Baidu Autonomous Driving Unit, in charge of system in-
tegration of autonomous driving systems. Dr. Shaoshan
Liu received Ph.D. in Computer Engineering from Uni-
versity of California, Irvine. His research focuses on
Computer Architecture, Deep Learning Infrastructure,
Robotics, and Autonomous Driving. Dr. Shaoshan Liu

has published over 40 high-quality research papers and holds over 150 U.S.
international patents on robotics and autonomous driving, he is also the lead
author of the best selling textbook ‘‘Creating Autonomous Vehicle Systems’’,
which is the fifirst technical overview of autonomous vehicles written for a gen-
eral computing and engineering audience. In addition, to bridge communications
between global autonomous driving researchers and practitioners, Dr. Shaoshan
Liu co-founded the IEEE Special Technical Community on Autonomous Driving
Technologies and serves as the Founding Vice President. Dr. Shaoshan Liu is
a senior member of IEEE, an ACM Distinguished Speak, and a IEEE Computer
Society Distinguish Speaker.

Jie Cao is an Assistant Professor of School of Infor-
mation Security and Applied Computing at Eastern
Michigan University. He received his Ph.D. and M.S.
in Computer Science Department at Wayne State Uni-
versity. His research interests span the areas of Edge
Computing, smart home, connected health, and au-
tonomous vehicle. Especially, his work focuses on data
management of IoT systems, including data quality,
semantic annotation, data privacy, and security. Cur-
rent, his team is investigating the vulnerability and
protection of the autonomous vehicle. His research has

been published in prestigious venues, including IEEE Internet of Things Journal
and ICDCS, winning HealthCom Best Student Paper Award and an IEEE Best
Paper Award. His book ‘‘Edge Computing: A Primer’’ by Springer concludes his
research on Edge Computing.

Dawei Sun receieved his BE degree from the Depart-
ment of Automation at Tsinghua University. He is a
researcher working on machine learning and computer
vision. This work was done when Dawei interned at
PerceptIn.

Dr. Bolin Ding is a research scientist/director in the
Data Analytics and Intelligence Lab (DAIL) at Alibaba
DAMO Academy. Prior to joining Alibaba, he was a
researcher in DMX group at Microsoft Research. I
completed my Ph.D. in Computer Science at University
of Illinois at Urbana-Champaign. His research goals
and interests center on large-scale data management
and analytics, including interactively querying and min-
ing "big" data, privacy-preserving data analytics, and
optimizations in databases and machine learning. He
is particularly interested in algorithms which have

guarantees in theory, and are effective and implementable in practice.

Dr. Jean-Luc Gaudiot is a Professor in Department of
Electrical Engineering and Computer Science, University
of California-Irvine. He is Fellow, IEEE, Fellow, AAAS,
and 2017 IEEE Computer Society President, Eta Kappa
Nu, Honor Society of IEEE, Professional Member.

His research interests include multithreaded archi-
tectures, fault-tolerant multiprocessors, and implemen-
tation of reconfigurable architectures. He has published
over 200 journal and conference papers. His research
has been sponsored by NSF, DoE, and DARPA, as well
as a number of industrial organizations.

Dr. Weisong Shi (Fellow, IEEE) received the B.S. degree
in computer engineering from Xidian University, Xi’an,
China, in 1995, and the Ph.D. degree in computer
engineering from the Chinese Academy of Sciences,
Beijing, China, in 2000. He is currently the Charles H.
Gershenson Distinguished Faculty Fellow and a Profes-
sor of computer science with Wayne State University,
Detroit, MI, USA. His current research interests include
edge computing, computer systems, energy efficiency,
and wireless health. Dr. Shi was a recipient of the
National Outstanding Ph.D. Dissertation Award of China

and the NSF CAREER Award.

http://refhub.elsevier.com/S0167-739X(19)31427-X/sb35
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb35
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb35
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb35
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb35
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb36
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb36
http://refhub.elsevier.com/S0167-739X(19)31427-X/sb36
http://www.perceptin.io

	π-Hub: Large-scale video learning, storage, and retrieval on heterogeneous hardware platforms
	Introduction
	System description
	System requirements
	-Hub architecture
	Learning service
	Storage service
	Retrieval service

	Performance evaluation
	Object recognition performance
	Query engine performance
	Storage performance
	Deployment
	Scalability

	Optimization
	Write optimization
	Read optimization
	Data reduction
	Data reduction techniques
	Usages in -hub
	Property of data reduction schema

	Lesson learned and future work
	Lessons learned
	Future work

	Conclusion
	Declaration of competing interest
	References

