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In Cloud, Can Scientific Communities Benefit
from the Economies of Scale?
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Abstract—The basic idea behind cloud computing is that resource providers offer elastic resources to end users. In this paper, we
intend to answer one key question to the success of cloud computing: in cloud, can small-to-medium scale scientific communities benefit
from the economies of scale? Our research contributions are three-fold: first, we propose an innovative public cloud usage model for
small-to-medium scale scientific communities to utilize elastic resources on a public cloud site while maintaining their flexible system
controls, i.e., create, activate, suspend, resume, deactivate, and destroy their high-level management entities—service management
layers without knowing the details of management. Second, we design and implement an innovative system—DawningCloud, at the
core of which are lightweight service management layers running on top of a common management service framework. The common
management service framework of DawningCloud not only facilitates building lightweight service management layers for heterogeneous
workloads, but also makes their management tasks simple. Third, we evaluate the systems comprehensively using both emulation
and real experiments. We found that for four traces of two typical scientific workloads: high throughput computing (HTC) and many
task computing (MTC), DawningCloud saves the resource consumption maximally by 59.5% and 72.6% for HTC and MTC service
providers, respectively, and saves the total resource consumption maximally by 54% for the resource provider with respect to the
previous two public cloud solutions. To this end, we conclude that small-to-medium scale scientific communities indeed can benefit
from the economies of scale of public clouds with the support of the enabling system.

Index Terms—Cloud, Scientific Communities, Economies of Scale, Many-Task Computing, and High Throughput Computing.
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1 INTRODUCTION

C Loud computing has attracted a lot of attention
in the last few years [2] [4] [13] [20] [28]. From

the perspective of resource providers, such as Amazon
and Google Apps, cloud computing introduces a new
computing paradigm: infrastructure-as-a-service (IaaS) or
platform-as-a-service (PaaS). Usually, clouds are classified
into three categories [4] [28]: public clouds offer a pub-
licly accessible remote interface for masses’ creating
and managing resources, e.g., virtual machine instances;
private clouds give local users a flexible and agile private
infrastructure to manage workloads on their own cloud
sites; a hybrid cloud model enables supplementing local
infrastructures with the computing capacity from an
external public cloud.

In scientific communities, more and more research
groups show great interests in utilizing open source
cloud computing tools to build private clouds [19] [28]
[34], or proposing hybrid cloud models [22] [25] [26] to
augment their local computing resources with external
public clouds. In this paper, we take a different perspec-
tive to focus on public clouds, and intend to answer one
key question: in public cloud, can small-to-medium scale
scientific communities benefit from the economies of scale?
”Economies of scale” refers to reductions in unit cost as
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the size of a facility increases [40]. If the answer is yes,
we can provide an optional cloud solution for scientific
communities, which is complementary to state-of-the-art
and state-of-the-practice private or hybrid cloud solu-
tions, and hence many small-to-medium scale scientific
computing organizations can benefit from public clouds.
According to [36], small-to-medium size dedicated clus-
ters constitute a substantial portion (more than 50%) of
the total number of servers installed in the US.

Answering this question has two major challenges:
first, cloud research communities need to propose inno-
vative cloud usage models, and build enabling systems
that support scientific communities to benefit from the
economies of scale of public clouds; second, we need
to present an innovative evaluation methodology to
guide the experiments design to answer our concerned
question, since the trace data of consolidating several
scientific communities’ workloads are not publicly avail-
able; moreover, large-scale experiments are forbiddingly
costly.

Previous efforts fail to resolve the above issue in
several ways. First, no one answers this question from
the perspective of scientific communities. Armbrust et
al. [2] in theory show Web service workloads can benefit
from the economies of scale on a cloud site. However
scientific workloads are distinguishedly different from
Web services in terms of workload characteristics, re-
source consumption and performance goals. Second, in
scientific communities, most of work proposes private
or hybrid cloud solutions with focuses on managing
virtual infrastructures [28], consolidating heterogeneous
workloads [11], creating and managing runtime environ-
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ments [21], sharing commodity clusters among different
computing frameworks [41], and facilitating building
diverse data-parallel programming models [35], respec-
tively. Wentzlaff et al. propose a single system image op-
erating system across both multicore and Infrastructure
as a IaaS cloud systems [47]. However, these research
efforts can not be directly used to provide platforms
for answering our question, since concerns of private
or hybrid clouds mainly revolve around activities (or
workloads) of a single research institute or group.

Third, state-of-the-art and state-of-the-practice public
cloud solutions [3] [5] provide limited supports for
scientific communities as service providers in terms of
system controls1. For example, Deelman et al. [5] propose
that each staff of an organization (as end users) directly
leases virtual machine resources from a public cloud
provider—-EC2 in a specified period for running appli-
cations. Evangelinos et al. [3] propose that an organiza-
tion as a whole rents resources with the fixed size from
EC2 to create a virtual cluster system that is deployed
with a queuing system, like OpenPBS. In the rest of this
paper, we call these two models Deelman’s model and
Evangelinos’s model, respectively. We also call two systems
incarnating Deelman’s model and Evangelinos’s model
Deelman’s system and Evangelinos’s system, respectively.
In the context of public clouds, if the backbone system
can not provide enhanced supports for service providers
in terms of system controls, the paradigm changes from
dedicated systems to public clouds will not go smoothly,
since a dedicated system is definitely worthwhile [33]
as such a system is under the complete control of the
principal investigators.

On the Dawning 5000 cluster system, ranked as top
10 of Top 500 super computers in November 2008
(http://www.top500.org/lists/2008/11), we design and
implement an innovative system: DawningCloud, which
provides the enabling platform for answering our con-
cerned issue. We take a bottom-up approach to building
DawningCloud, and present a layered architecture: the
lower one is the common management service framework
(in short, CSF) for the resource provider, and the upper
one is a lightweight service management layer that is respon-
sible for managing resources and workloads, which we call
thin runtime environment software (in short, TRE) in this
paper. CSF facilitates building TRE for heterogeneous
workloads, and we have built two TRE for two typical
scientific workloads: high throughput computing (HTC),
and many task computing (MTC) [1]. We are also integrat-
ing other data-parallel programming models built in our
previous work [35], including MapReduce [48], Dryad-
like data flow [49], and All-Pairs [50].

When a resource provider adopts DawningCloud, the
CSF is predeployed and running on a cloud site before

1. We give some examples of system controls. When a university
laboratory in summer vacation stops the computing service in a public
cloud, it does not want to migrate user data and programs; when the
lab resumes work, it hopes clicking a button makes the stopped system
up again.

any service providers’ workloads are consolidated. On the
behalf of each service provider, a high-level management
entity—lightweight service management layer (or TRE)
is created on demand with the support of the CSF. At
the contract period, DawningCloud allows each service
provider to flexibly control its TRE, i.e., create, destroy,
activate, deactivate, suspend, and resume a TRE without
knowing the details of management. For two typical
scientific workloads: HTC and MTC, we propose an
emulation methodology to conduct a comprehensive
evaluation of DawningCloud, and two previous public
cloud solutions: Deelman’s system and Evangelinos’s sys-
tem. Our emulated systems are based on an UltraSim
emulation framework, which we will release as an open
source code. With respect to the CloudSim system [43],
UltraSim has the following differences: (a): most of mod-
ules run real codes, and communicate with each other
through real interconnections; (b): it can simulate the
separation of concerns between the resource provider
and the service providers; (c): it can replay workload
traces. Meanwhile, we deploy real systems to evaluate
the accuracies of the emulated systems.

The contributions of our work are three-fold: First,
we propose an innovative cloud usage model, called an
enhanced scientific public cloud model (ESP), for small-
to-medium scale scientific communities to utilize elastic
resources on a public cloud site while maintaining their
flexible system controls. Second, on a basis of the ESP
model, we design and implement an innovative Dawn-
ingCloud system, at the core of which are lightweight
service management layers running on top of the CSF.
Third, for four traces of HTC and MTC workloads, our
experiments show that: a) in comparison with Deelman’s
system, DawningCloud saves the resource consumption
maximally by 59.5% (HTC) and 72.6% (MTC) for the ser-
vice providers, and saves the total resource consumption
by 54% for the resource provider; b) in comparison with
Evangelinos’s system and the dedicated cluster system,
DawningCloud saves the resource consumption maxi-
mally by 25.6% (HTC) and 67.5% (MTC) for the service
providers, and saves the total resource consumption by
29.5% for the resource provider.

The organization of this paper is as follows: Section
2 presents the proposed ESP model; Section 3 presents
the DawningCloud design and implementation; Section
4 proposes the evaluation methodologies, and answers
our concerned question in experiments; Section 5 sum-
marizes the related work; Section 6 concludes the paper.

2 THE ENHANCED SCIENTIFIC PUBLIC
CLOUD (ESP) MODEL

We propose the ESP model for small-to-medium scien-
tific communities as service providers to utilize elastic
resources on a public cloud site, while maintaining their
flexible system controls.

With respect to our previous work [11] and the Reser-
voir project [13] [18] [28] [39], the distinguished dif-
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ferences of our ESP model are three-fold. First, in our
model, developing a new service management layer
(TRE) for another different workload is lightweight,
since many common functions, e.g., the monitors, which
are responsible for monitoring and reporting resources
status, are required by each service management layer,
have been implemented in the common service manage-
ment framework (CSF). Moreover, we can implement
functions for fault-tolerance and scalability support in
the CSF according to our past experience [30], which
makes developing large-scale service management layers
simpler. Second, the service management tasks become
simpler, e.g., for a TRE, we only need to deploy fewer
modules, since other ones are delegated to the CSF,
which is predeployed on the cloud site; in addition,
creating a TRE on demand is lightweight, since the
CSF is ready and running before any TRE is created.
Third, our model provides flexible system controls, and a
service provider can activate, safe-deactivate, deactivate,
suspend, and resume TRE at its own need. Instead, the
recent work in [39] mainly focuses on how to enable
automatic deployment and scaling for service manage-
ments.

Fig. 1: The lifecycles of a high-level management entity:
TRE.

Fig.1 shows the major control operations and the
state transition diagram of a TRE. As a high-level man-
agement entity, a TRE has five different states: initial,
deployed, running, deactivated, and suspended. The state
changes are triggered by five control operations: creating
and destroying operations are only performed by the
resource provider, while activating, deactivating, sus-
pending, and resuming operations are performed by
each service provider.

The initial state indicates that the service provider and
the resource provider are in the process of planning the
TRE. At the request of a service provider, the resource
provider can create a TRE. The creating operation turns
the state of TRE from initial to deployed. The deployed state
indicates that the TRE is configured and deployed. When
the service provider activates the TRE that is deployed, the
latter turns to the running state. The running state has
two-fold implications: resources have been provisioned
to the TRE, and the TRE is providing services to end
users. When the TRE is providing services, each affiliated
end user uses its accounts to submit and manage jobs.

At the same time, a TRE can automatically negotiate
resources with the proxy of a resource provider to resize
resources by leasing more resources or releasing idle
resources according to current workload status.

After the TRE is created, the service provider can
perform control operations under different conditions.

• When a university laboratory is in the summer
vacation and no one will submit jobs, it can de-
activate the TRE. A deactivation operation has two-
fold effects: the running jobs will be killed; the
user data and programs will be permanently kept
in the home directories unless the service provider
explicitly destroys its TRE, which brings the benefit
of flexible system controls to the service provider.
The deactivated TRE only consumes more storage
resources utilized by user data and programs than
the deployed TRE. When a TRE is deployed, not
running, it has no user data and programs.

• When the university laboratory resumes the work
after the summer vacation, it can activate the TRE
again, and then the TRE is running. With the help
of the checkpointing facility, the killed jobs can be
resumed.

• When many users submit too many jobs, the service
provider can suspend the TRE, which turns the TRE
into a suspended state. The suspended state indicates
that the TRE will reject the submissions of new jobs,
however it will finish the submitted jobs. Of course,
the service provider can resume the suspended TRE
to the running state.

• The model also has a safe-deactivation operation,
which will firstly suspends the TRE and then de-
activates the TRE after confirming that the sub-
mitted jobs have finished up. The safe-deactivation
operation can prevent the system from killing the
unfinished jobs.

When both the service provider and the resource
provider agree to stop the negotiation, the TRE can be
destroyed. Please note that the TRE only can be destroy
on condition that it is either deployed or deactivated. When
a service provider wants to destroy its TRE, it will
inform its affiliated end users to backup data. Each end
user can backup its data to storage servers provided
by a resource provider. And then a service provider
will destroy accounts of each end user in the TRE.
After a service provider confirms that the TRE is ready
for destroying, the resource provider will destroy the
specified TRE, including user programs and data.

The differences of the ESP model from other models
[3] [4] [5] [22] [25] [26] can be found at Appendix A.

3 DAWNINGCLOUD DESIGN AND IMPLEMEN-
TATION

Based on our previous work [11] [30] [31], we design and
implement an enabling system, DawningCloud. In the rest
of this section, we introduce the DawningCloud archi-
tecture, the components of the CSF, TRE for two typical
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scientific workloads, the basic management mechanisms
of TRE, and the resource management and provisioning
policies for MTC or HTC workloads.

3.1 DawningCloud Architecture

We present a layered architecture for DawningCloud:
the lower one is the CSF for the resource provider, and
the upper one is the TRE. Fig.2a and Fig.2b show two
architectural differences between DawningCloud and
the peer of the Reservoir project as follows:

First, with respect to Reservoir, the CSF of Dawn-
ingCloud facilitates building lightweight service man-
agement layers for heterogeneous workloads. We take
a bottom-up approach to building DawningCloud. The
common sets of functions for different runtime envi-
ronment software are delegated to the CSF. CSF facil-
itates building thin service management layers—TRE
for heterogeneous workloads, and a TRE only imple-
ments core functions for a specific workload. Instead,
the Reservoir project integrates software packages from
different partners, including Haizea—a resource lease
manager, OpenNebula—a virtual infrastructure man-
ager, and Claudia—a service management layer.

Second, the CSF is running on the cloud site before any
TRE is created, and the CSF enables a service provider
to flexibly control its TRE, i.e., create, activate, deacti-
vate, suspend, resume, and destroy a TRE. Moreover,
different from Reservoir, the implementation of TRE is
not bound to virtual machines, e.g., XEN or VMware.
Though there are various research efforts to create effi-
cient mechanisms, such as bypass paths, to enhance the
I/O performance in virtualized environments [44] [45],
virtual machine technologies still bring high overheads
to some HPC applications [44] [45]. Taking into account
that case, DawningCloud supports both physical and
virtual resources provisioning.

3.2 The Main Components of CSF

The major functions of the CSF are responsible for
creating, destroying TRE, and provisioning resources to
TRE in terms of nodes or virtual machines. The main
services of the CSF are as follows:

• The resource provision service is responsible for
providing resources to different TRE.

• The lifecycle management service is responsible for
managing lifecycles of TRE.

• The deployment services are a collection of services
for deploying and booting the operating system,
the common service framework and TRE. The ma-
jor deployment services include DHCP, TFTP, FTP,
and SystemImager (http://wiki.systemimager.org).
Integrating state-of-the-practice operating system
deployment tool— SystemImager, the deployment
services can automate operating system updates
or even changes according to users’ personalized
requirements.

• The virtual machine provision service is responsible
for managing lifecycles of virtual machines, i.e.,
XEN.

• The agent is responsible for downloading required
software packages, starting or stopping service dae-
mons.

• The monitor. There are two types of monitors: re-
source monitor and application monitor. The resource
monitor on each node monitors usages of physical
resources, e.g. CPU, memory, swap, disk I/O and
network I/O; The application monitor monitors ap-
plication status.

• The configuration service is responsible for manag-
ing, updating, and storing the cloud-wide configu-
ration information.

3.3 TRE for Two Typical Scientific Workloads: HTC
and MTC
In scientific communities, there are two typical work-
loads: high throughput computing (HTC) delivers large
amounts of processing capacity over long period of time
[1], and many task computing (MTC) delivers much
large numbers of computing resources over a short
period of time to accomplish many computational tasks
[1]. With respect to web service workloads, scientific
workloads have three distinguished differences:

1) Workload characteristics are different. Parallel
batch job workloads are composed of a series of
submitted jobs, and each job is a parallel or serial
application. while Web service workloads are often
composed of a series of requests.

2) Resource consumptions are different. Running a
parallel application needs a group of exclusive
resources. While for Web services, requests will be
serviced simultaneously and interleavedly through
multiplex use of resources.

3) Performance goals are different. From perspectives
of end users, for parallel batch jobs, in general
submitted jobs can be queued when resources are
not available. However, for Web services like Web
servers or search engines, each individual request
needs an immediate response.

In this section, we present two types of TRE for HTC
and MTC, respectively. In the design, we distinguish
three requirement differences between MTC and HTC
TRE as follows:

1) Usage scenes: HTC TRE is designed for running
parallel/sequential batch jobs; MTC TRE is de-
signed for running scientific workflows, like Mon-
tage workflow [1].

2) Application characteristics: MTC applications [1]
can be decomposed to a set of small jobs with
dependencies, whose running time is short; while
batch jobs in HTC are independent and running
times of jobs are varying.

3) Evaluation metrics: A HTC service provider con-
cerns the throughput in terms of the number of
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(a) DawningCloud architecture. (b) Reservoir architecture [28] [39].

Fig. 2: The architectural differences between DawningCloud and Reservoir.

completed jobs over a long period of time; while
a MTC service provider concerns the throughput
over a short period of time.

In DawningCloud, on a basis of the CSF, we imple-
ment two types of TRE: MTC TRE and HTC TRE. In a
HTC TRE, we only need to implement three services:
the HTC scheduler, the HTC server, and the HTC web
portal. The HTC scheduler is responsible for scheduling
users’ jobs through a scheduling policy. The HTC server
is responsible for dealing with users’ requests, managing
resources, loading jobs. The HTC web portal is a GUI,
through which end users submit and monitor HTC
applications.

In MTC TRE, we implement four services: the MTC
scheduler, the MTC server, the trigger monitor, and the
MTC web portal. The function of the MTC scheduler is
similar to that of the HTC scheduler. Different from the
HTC server, the MTC server needs to parse a workflow
description model, which the user inputs on the MTC
web portal, and then submit a set of jobs/tasks with
dependencies to the MTC scheduler for scheduling. Be-
sides, a new service—the trigger monitor, is responsible
for monitoring trigger conditions of a workflow, such as
database’s record or file changes, and notifying changes
to the MTC server to drive running of jobs in different
stages of a workflow. The MTC web portal is also much
more complex than that of HTC, since it needs to provide
a visual editing tool for end users to edit different
workflows. Fig.3 shows a typical DawningCloud system,
of which a MTC TRE and a HTC TRE reuse the CSF.

3.4 Basic Management Mechanisms
Automatic deployment: We take a two-phase solution
to automatic deployment: firstly automatically deploy
the CSF, and then create a TRE on demand on a basis
of the CSF. Based on our previous experience [32], we
propose an agent-based solution to self-configuration,

CSF

HTC 

scheduler

HTC server

HTC TRE

MTC server

MTC 

scheduler

Trigger 

monitor

MTC TRE

Fig. 3: MTC and HTC TRE on the basis of the CSF.

and present a role-based self-deployment mechanism for
the CSF. The basic idea is as follows [32]:

Deployed on each nodes or the Domain0 of a virtual
machine, e.g., XEN, the agent is responsible for detecting
the resources in the local environment, including hard-
ware, host operating system, and network configuration.
Then the agent will report the information to the config-
uration service. After a node joins the cloud site, its cor-
responding agent will accept a role assignment, which
indicates what services should be running in this node,
from the decision-making module. According to its role,
the agent will download a service description file and
corresponding program packages from the deployment
service. Then the agent will install programs according
to the service description file, the detail of which can be
found at our previous work [32].

We also propose a booting protocol that is aware
of the dependencies of each service in the CSF, which
turns the CSF into a self-healing one step by step. Our
self-healing mechanism is based on a scalable group
membership mechanism. The details can be found in
[32] [30] [46]. Please note that services in the CSF binds
well-know access addresses, and we use virtual IP (http:
//en.wikipedia.org/wiki/Virtual IP address) to guar-
antee that the services can be accessed though they may
be migrated to other nodes in case of node failures.



6

Creating TRE: A service provider uses the web portal
of the CSF to specify its requirement for TRE, including
types of workloads: MTC or HTC, the size of resources,
types of operating system, and then requests the resource
provider for creating the customized TRE.

If the lifecycle management service validates the re-
questing information is valid, it marks the state of the
new TRE as initial. To create a TRE, the web portal of
the CSF sends the requesting information to the lifecycle
management service. The lifecycle management service
sends the message of deploying TRE to the agents on
the related nodes, which request the deployment service
to download the required software packages of the TRE.
After the new TRE is deployed, the lifecycle manage-
ment service marks its state as deployed.

Activating TRE: When the service provider activates
its own TRE, the lifecycle management service sends
the configuration information of the new TRE to the
resource provision service. The lifecycle management
service sends the message to the agents to start the
components of the new TRE. When the HTC or MTC
server is started, the command parameters will tell it
what configuration parameters should be read. Then
the lifecycle management service marks the state of the
new TRE as running. The new TRE begins providing the
service to end users. Each end user uses the web portal
to submit its applications. To save space, destroying, de-
activating, suspending, resuming, and safe-deactivating
processes are omitted.

Dynamic resource negotiation mechanism: A service
provider specifies its requirement for resource manage-
ment in a resource management policy. A resource manage-
ment policy defines the behavior specification of the HTC
or MTC server, which is one of the modules of a MTC
TRE or HTC TRE, in that the server resizes resources to
what an extent according to what criterion. According to
a resource management policy, the MTC or HTC server
decides whether and to what an extent resizes resources
according to the current workload status, and then sends
requests of obtaining or releasing resources to the resource
provision service, which is responsible for provisioning
resources to different TRE.

A resource provider specifies its requirement for re-
source provisioning in a resource provision policy, which
determines when the resource provision service provi-
sions how many resources to different TRE in what
priority. According to a resource provision policy, the
resource provision service decides to assign or reclaim
how many resources to or from a TRE.

A setup policy determines when and how to do the
setup work, such as wiping off the operating system
or doing nothing. For each time of node assignment or
reclaiming, a setup policy is triggered, and the lifecycle
management service, which is responsible for managing
lifecycles of TRE, is in charge of performing the setup
work. Fig.4 shows the dynamic resource negotiation
mechanism in DawningCloud.

Because of the page limit, the more detail of Dawning-

Lifecycle

management service

Resource provision

service
Server

Setup policy

Resource

provision

policy

Resource

provision

policy

Common Service

Framework

Thin Runtime

Environment

Fig. 4: The dynamic resource negotiation mechanism.

Cloud can be found in our publicly available technical
report [42].

3.5 Resource Management and Provisioning Poli-
cies

In DawningCloud, we distinguish two types of resources
provisioned to a TRE: initial resources and dynamic re-
sources. Once allocated to a TRE, initial resources will not
be reclaimed by the resource provider until the TRE is
destroyed. On the contrary, dynamic resources assigned
to a TRE may be reclaimed by the resource provider.

In DawningCloud, a service provider and a resource
provider needs to set four parameters: a) the size of initial
resources; b) the time unit of leasing resources. A lease term
of dynamic resources must be the time unit of leasing
resources times an integer. For example, in EC2, the
time unit of leasing resources is one hour; c) the checking
resource cycle. It is a periodical timer that the HTC or
MTC server checks jobs in the queue; d) the threshold
ratio of obtaining dynamic resources.

We propose a resource management policy for a HTC
or MTC service provider as follows:

1) At the startup of a TRE, a service provider will
request initial resources with the specified size.

2) We define the ratio of obtaining dynamic resources as
the ratio of the accumulated resource demands of all jobs in
the queue to the current resources owned by a TRE. The
HTC or MTC server scans jobs in queues per check-
ing resource cycle. If the ratio of obtaining dynamic
resources exceeds the threshold ratio, or the ratio of
the resource demand of the present biggest job in queue to
the current resources owned by a TRE is greater than one
(which indicates that if the server does not request more
resources, the present biggest job may not have enough
resources for running), the server will request dynamic
resources with the size of DR as follows:

DR=the accumulated resources demand of all jobs in the
queue - the current resources owned by the TRE.

3) After obtaining dynamic resources from the re-
source provision service, the server registers a new pe-
riodical timer and checks idle dynamic resources per
time unit of leasing resources. If there are idle dynamic
resources with the size that is less than the value of DR,
the server will release resources with the size of DR=
(DR- idle dynamic resources); else if there are idle dynamic
resources with the size that is equal to or more than the
value of DR, the server will release resources with the
size of DR and deregister the timer.
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There is only one difference in two resource manage-
ment policies proposed for a MTC or a HTC service
provider, respectively: we need to set the checking re-
source cycle of MTC as a smaller value than that of HTC,
this is because MTC tasks often run over in seconds,
while HTC jobs often run over in a longer period.

Since our aim is to consolidate workloads of small-
to-medium scale organizations on a cloud site, we pre-
sume that in public clouds, a resource provider owns
enough resources that can satisfy resource requests of N
HTC and MTC service providers (N>>2). So we pro-
pose a simple resource provisioning policy for a service
provider: the resource provision service provisions the
requested initial resources to a TRE at its startup; when
the server of a TRE requests dynamic resources, the
resource provision service assigns enough resources to
the server. When the server of a TRE releases dynamic
resources, the resource provision service will passively
reclaim resources released by the server.

4 EVALUATION METHODOLOGIES AND EX-
PERIMENTS

In this section, first, we report our chosen workloads;
second, we present the evaluation methodologies; third,
we give out the experiment configurations, and finally
we will compare DawningCloud with the other three
systems.

4.1 Workloads
We choose three typical HTC workload traces from
the Parallel Workloads Archive: http://www.cs.huji.ac.
il/labs/parallel/workload/. We choose one trace with
lower load—NASA iPSC trace (46.6% utilization), two
traces with higher loads—SDSC BLUE trace (76.2% uti-
lization) and LLNL Thunder trace (86.5% utilization).
For MTC, we choose a typical workload—the Montage
workflow (http://montage.ipac.caltech.edu). The details
of the workload traces can be found at Appendix B.1.

4.2 Evaluation Methodologies
In our experiments, we mainly concern the public cloud
solutions, and hence a resource provider chooses Dawn-
ingCloud, Deelman’s system, Evangelinos’s system, and the
dedicated system to provide computing services, respec-
tively. For DawningCloud, Evangelinos’s system and
Deelman’s systems, one resource provider owns a cloud
platform.

In the rest of this section, most of experiments are done
with the emulation methodology. At the same time, we
deploy the real systems on the testbed to validate the accuracies
of the emulated systems. We also obtain the overhead
of adjusting a node on the real system. Choosing the
emulation methodology is based the two observations:
first, to evaluate a system, many key factors have effects
on experiment results, and we need to perform many
times of time-consuming experiments, since durations of

workload traces are from several weeks to even several
months. Through using an emulation method, we can
speedup experiments and complete large amount of
experiments within shorter periods of time; second, with
the real systems, consolidating several scientific com-
munities’ workloads needs hundreds of nodes, which
results in mass resource requirements. While through
using the emulation method, we can eliminate this re-
sources limitation.

In this paper, all of the emulation systems are de-
ployed on a test bed composed of nodes with the con-
figuration of two 1.6GHz AMD Opteron processors, 2G
memories and CentOS 5.0 operating system. For each
emulated system, the job simulator is used to emulate
the process of submitting jobs. For the HTC workloads,
the job simulator generates each job by extracting its
submission time, real run time, and requested number
of nodes from the workload trace file; For the MTC
workload, the job simulator reads the workflow file,
which includes submission time, real run time, requested
number of nodes, and dependencies between each job,
and then submits jobs according to the dependency
constraints. We speed up the submission and completion
of jobs by a factor of 100.

In the rest of this section, we introduce how to emulate
systems for different models.

The emulated dedicated cluster systems: For each
dedicated cluster system, we deploy the simplified Dawn-
ingCloud with two simulation modules: the resource sim-
ulator, and the job simulator on the testbed. The resource
simulator defines the configurations of the dedicated
cluster system. Since the workload files are obtained
from platforms with different configurations. For exam-
ple, the NASA trace is obtained from a cluster system
with each node composed of one CPU; and the SDSC
trace is obtained from a cluster system with each node
composed of eight CPUs. In the rest of this paper, we
presume that each node in our simulated cluster is com-
posed of one CPU. And then, we scale workload traces
with different constant values to the same configuration
of the simulated cluster. Besides, the resource simulator
not only simulates requesting and releasing resources,
but also managing jobs such as loading or killing jobs
and so on. The resource limit is enforced by the resource
simulator. For the HTC TRE, the job simulator reads the
job information from workload trace file and submits
the job to the HTC server; for the MTC TRE, the job
simulator is used to replace the trigger monitor to read
the job information from the workload trace file and
analyze control-flow dependencies among jobs to decide
submitting the right job to the MTC server.

The emulated DawningCloud system: As shown in
Fig.6, we deploy the simplified DawningCloud system,
which keeps the resource provision service, one server,
and one scheduler for each TRE while removing other
services. Resource requesting and releasing are simu-
lated by the interactions between the resource provision
service and the resource simulator.
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Fig. 5: Four emulated dedicated cluster systems for HTC
and MTC.

Fig. 6: The emulated DawningCloud.

The emulated Deelman’s system: Since in Deelman’s
model, end users in scientific communities directly use
EC2 for scientific computing. Based on the framework of
DawningCloud, we implement and deploy an EC2-like
system as shown in Fig.7 on the testbed with two simu-
lation modules: the job simulator and the resource sim-
ulator. With respect to the real DawningCloud system,
we only keep the resource provision service and the VM
provision service. Resource requesting and releasing are
enforced by the interactions between the resource pro-
vision service and the resource simulators. VM creating
and destroying are enforced by the interactions between
the VM provision service and the resource simulators.
The job simulator reads the number of nodes which each
job requests in the trace file, and sends requests to the
resource provision service, which assigns corresponding
resources for each job. When each job runs over, the job
simulator will release resources to the resource provision
service.

The emulated Evangelinos’s system: We implement
Evangelinos’s system based on the framework of Dawn-
ingCloud. Since a service provider in Evangelinos’s sys-
tem leases resources with the fixed size from a resource
provider at a time, so the emulated Evangelinos’s system
is closely similar to that of the dedicated cluster system,
shown in Fig.5.

4.3 Evaluation Metrics
We choose the number of completed jobs [8] and the number
of tasks per second [1] to evaluate the performance metrics
of HTC and MTC service providers, respectively. For a
service provider, we choose the resource consumption in

Job simulator

Resource

provision service

Resource simulator

VM provision

service

Fig. 7: The emulated Deelman’s system.

terms of node*hour to evaluate its cost. That is to say, we
sum the product of the consumed resources in terms of
nodes and their corresponding consumed hours as the
cost of a service provider. In the Deelman’s system, there
is no role of a service provider, so we calculate the ac-
cumulated resource consumption of all end users, which
amounts to the cost of a service provider in other models.
For the dedicated cluster system, since a service provider
owns resources, we calculate the resource consumption
of a service provider as the product of the configuration
size of a dedicated cluster system and the duration of
a certain period. Please note that for different service
provider, the above metrics are obtained in different
durations to preserve the completeness of the workload
trace.

For a resource provider, we choose the total resource
consumption in terms of node*hour to evaluate the cost,
which is the sum of all service providers’ resource
consumptions. Especially, we care about the peak resource
consumption in terms of nodes. For the same workload,
if the peak resource consumption of a system is higher,
the capacity planning of a system is more difficult. In
DawningCloud, Deelman’s and Evangelinos’s systems,
since allocating or reclaiming resources will trigger setup
actions, and we use the accumulated times of adjusting
nodes, which is the sum of all service providers’ times
of adjusting nodes, to evaluate the management overhead
of a resource provider. Since four workload traces have
different durations, we choose the duration of Montage
workload trace (two weeks) as the baseline period, and
hence for NASA, SDSC, and LLNL, we extract their
first two weeks trace to compare the resource provider’s
metrics in different systems.

4.4 Emulation Experiment Configurations
We emulate a public cloud scenario in which there are
only one resource provider, three organizations provid-
ing HTC services and one organization providing MTC
service. Of course, on a basis of the UltraSim emulation
framework, we can easily extend to the case that one
resource provider provisions resources to more service
providers.

Resource configurations: According to the HTC work-
load trace’s information, we set the configuration sizes
of the dedicated cluster systems for the NASA, SDSC
and LLNL traces as 128 nodes, 144 nodes and 1002
nodes in the emulation experiments, respectively. For
the Montage workload, since in most of the running
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time the accumulated resource demand of all jobs in
the queue is 166 nodes, we set the configuration size
of the dedicated cluster system in the experiment as
166 nodes to improve the throughput in terms of tasks
per second. In the emulated Evangelinos’s system, the
fixed lease term of resources is the time duration of the
trace; meanwhile, the sizes of leased resources are 128,
144, 1002 and 166 nodes for NASA, SDSC, LLNL and
Montage, respectively. DawningCloud and Deelman’s
system request elastic resources according to varying
workload traces.

Scheduling policies: A scheduling policy is needed by
the schedulers in DawningCloud, Evangelinos’s system,
and the dedicated cluster system. In this paper, we do not
investigate the effect of different scheduling policies, so we
simply choose the first fit scheduling policy for HTC. The
first-fit scheduling algorithm scans all the queued jobs in
the order of job arrival and chooses the first job whose
resources requirement can be met by the system to
execute. For the MTC workload, firstly we generate the
job flow according to dependency constraints, and then
we choose the FCFS (First Come First Served) schedul-
ing policy in DawningCloud, Evangelinos’s system and
the dedicated cluster system, respectively. According to
[1], we set the scheduling cycle of the HTC and MTC
schedulers as 60 seconds and 1 second, respectively.
Deelman’s system uses no scheduling policy, since all
jobs run immediately without queuing.

Resource management and provisioning policies:
DawningCloud, Deelman’s and Evangelinos’s systems
adopt the same resource provisioning policy stated in
Section 3.5. The dedicated cluster system owns static
resources. DawningCloud adopts the resource manage-
ment policy proposed in Section 3.5, while the dedicated
cluster system and Evangelinos’ system adopt the static
resource management policy. Just like EC2, Deelman’s
system relies on the manual resource management, and
we presume that a user only releases resources at the
end of each time unit of leasing resources if a job runs
over. This is because: first, EC2 charges the resource
usage in terms of a time unit of leasing resources (an
hour); second, it is difficult for end users to predict the
completed time of jobs, and hence releasing resources to
resource provider on time is almost impossible.

4.5 System-level Evaluation

In DawningCloud, we need to set the following param-
eters for the service provider:

a) The time unit of leasing resources, which is repre-
sented as C minutes. The time unit of leasing resources
has effect on both DawningCloud and Deelman’s sys-
tem. When the time unit of leasing resources is shorter,
resources will be adjusted more frequently, which brings
higher management overhead.

b) The size of initial resources, which is represented
as B.

c) The checking resource cycle, which is represented as
S seconds. We set S as the same value of the scheduling
cycle in the scheduling policy.

d) The threshold ratio of obtaining dynamic resources,
which is represented as R.

Before reporting experiment results, we pick the fol-
lowing parameters as the baseline for comparisons, and
detailed parameter analysis can be found at Appendix
B.2.

Through comparisons with large amount of experi-
ments, we set the baseline configurations in Dawning-
Cloud: [60C/40B/1.5R/60S] for the NASA and SDSC
workloads, [60C/300B/1.5R/60S] for the LLNL work-
load and [60C/20B/8R/1S] for the MTC workload,
where [xY] indicates that Y is x.

In the following experiments, each experiment is per-
formed six times. We report the mean values across six
times experiments. Because we obtain data sets with dif-
ferent units instead of a single data, we use the coefficient
of variation instead of the standard deviation to measure
data variation. The coefficient of variation is defined as
the standard deviation to the mean. After calculation, we
find that the coefficient of variations are not more than
0.08%.

TABLE 1: THE METRICS OF THE SERVICE PROVIDER
USING FOUR SYSTEMS FOR THE NASA TRACE.

Configuration number of
completed
jobs

resource
consumption
(node*hour)

saved
resources

dedicated clus-
ter system

18237 282752 /

Evangelinos’s
system

18237 282752 0

Deelman’s sys-
tem

18237 386235 -36.6%

DawningCloud 18237 210507 25.6%

TABLE 2: THE METRICS OF THE SERVICE PROVIDER
RUNNING FOUR SYSTEMS FOR THE SDSC TRACE.

Configuration number of
completed
jobs

resource
consumption
(node*hour)

saved
resources

dedicated clus-
ter system

223389 3383712 /

Evangelinos’s
system

223389 3383712 0

Deelman’s sys-
tem

223391 6849090 -102%

DawningCloud 223391 2911383 14%

For the dedicated cluster system and Evangelinos’s
system, they have the same configurations with the only
one difference in that a service provider in the dedicated
cluster system owns resources while a service provider
in Evangelinos’s system leases resources, so they gain
the same performance.

Table 2-4 summarize the experiment results of two
HTC service providers and one MTC service providers
who run DawningCloud, Evangelinos’s system, the ded-
icated cluster system, and Deelman’s systems, respec-
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TABLE 3: THE METRICS OF THE SERVICE PROVIDER
RUNNING FOUR SYSTEMS FOR THE LLNL TRACE.

Configuration number of
completed
jobs

resource
consumption
(node*hour)

saved
resources

dedicated clus-
ter system

118791 3612210 /

Evangelinos’s
system

118791 3612210 0

Deelman’s sys-
tem

118791 8205050 -127%

DawningCloud 118791 3326085 7.9%

tively. The percents of the saved resources are obtained
against the resource consumption of the dedicated clus-
ter system.

TABLE 4: THE METRICS OF THE SERVICE PROVIDER
RUNNING FOUR SYSTEMS FOR THE MONTAGE
WORKFLOW.

Configuration tasks per sec-
ond

resource
consumption
(node*hour)

saved
resources

dedicated clus-
ter system

2.46 55776 /

Evangelinos’s
system

2.46 55776 0

Deelman’s sys-
tem

2.68 66200 -18.7%

DawningCloud 2.46 18108 67.5%

For the NASA, SDSC, and LLNL traces, in compari-
son with the dedicated cluster system or Evangelinos’s
system, service providers in DawningCloud save the
resource consumption maximally by 25.6% and mini-
mally by 7.9%, and at the same time gain the same or
higher throughputs. This is because service providers in
DawningCloud can resize resources according to varying
workload status, while service providers in the dedicated
cluster system or Evangelinos’s system owns or leases
resources with the fixed size; we also find that the the
saved resource consumption is inversely proportional
to the resource utilization reported in the traces, this is
because that high utilization implies less space for saving
resources.

For the Montage workload, DawningCloud has the
same performance as that of the dedicated cluster system
or Evangelinos’s system for the service provider. This
is because driven by the resource management policy
stated in Section 3.5, the MTC server will adjust dynamic
resources to the size of the accumulated resource demand of
jobs in queue, which is same as the chosen configurations
of the dedicated cluster system or Evangelinos’s system
(166 nodes). In comparison with the dedicated cluster
system or Evangelinos’s system, the service provider
in the DawningCloud saves the resource consumption
by 67.5%, this is because the service provider in the
dedicated cluster system or Evangelinos’s system owns
or leases resources with the fixed size, while the service
provider in DawningCloud owns initial resources with the
smaller size, and resizes dynamic resources driven by the

change of workload status.
For the NASA, SDSC, and LLNL traces, with re-

spect to Deelman’s system, DawningCloud saves the re-
source consumption maximally by 59.5% for the service
providers with the same performance. On one hand, this
is because the dynamic resource negotiation and queuing
based resource sharing mechanisms in DawningCloud
lead to the decrease of resource consumption. On the
other hand, in Deelman’s system, each end user directly
obtains resources from the resource provider, which re-
sults in that Deelman’s system consumes more resources
than that of DawningCloud.

For the Montage workload, DawningCloud saves the
resource consumption by 72.6% with respect to that of
Deelman’s system for the same service provider. This is
because the required resources of end users will be pro-
visioned immediately in Deelman’s system and the peak
resource demand of the MTC workload is high. At the
same time, Deelman’s system gains higher throughput
than that of DawningCloud.

Fig. 8: The total resource consumptions of the resource
provider using four different systems.

Fig.8 and Fig.9 show experiment results for the re-
source provider who uses four different systems: Dawn-
ingCloud, Evangelinos’s system, Deelman’s system, and
the dedicated cluster system, respectively.

Fig. 9: The peak resource consumptions of the resource
provider using four different systems.

Using the dedicated cluster system and Evangelinos’s
system, the resource provider has the same total resource
consumption and the same peak resource consumption,
since they have only one difference in that the former
owns resources while the latter leases resources.

Using DawningCloud, the total resource consumption
of the resource provider is 341175 node*hour, which
saves the total resource consumption by 29.5% with
respect to that of the dedicated cluster system or Evan-
gelinos’s system. In the dedicated cluster system or
Evangelinos’s system, the service providers lease or
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purchase resources with the fixed size that is decided
by the peak resource demand of the largest job. In
contrast, in DawningCloud, a service provider can start
with the small-sized initial resources and resize dynamic
resources according to varying resource demand. Hence,
the total resource consumption of DawningCloud is less
than that of the dedicated cluster system or Evangeli-
nos’s system when workloads of four service providers
are consolidated. At the same time, With DawningCloud,
the peak resource consumption of the resource provider
is 2000 nodes, which is only 1.39 times of that of dedi-
cated cluster system or Evangelinos’s system.

Using DawningCloud, the resource provider saves the
total resource consumption by 54% with respect to that
of the Deelman’s system, and the peak resource con-
sumption of DawningCloud is only 0.22 times of that of
the Deelman’s system. Because the required resources of
each job will be provisioned immediately in Deelman’s
system, its peak resource consumption is larger than that
of DawningCloud.

Fig.10 shows the management overhead of the re-
source provider using Evangelinos’s model, Deelman’s
model and DawningCloud. For the dedicated cluster
system, since the resource provider owns resource, it
has no management overhead in terms of obtaining
dynamic resources. From Fig.10, we can observe that
Evangelinos’s system has the lowest management over-
head, since it leases resources with the fixed duration.
DawningCloud has smaller management overhead than
that of Deelman’s system, since the initial resources will
not be reclaimed until a TRE is destroyed.

Fig. 10: The management overhead of the resource
provider.

In our real test, excluding wiping off the operating
system, the total cost of assigning and reclaiming one
node is 15.743 seconds, which includes the operation
of stopping and uninstalling previous TRE packages,
installing and starting new TRE packages. That is to
say that the resource consumption of adjusting nodes
in DawningCloud is approximately 259 node*hour when
the total resource consumption is 341175 node*hour. This
overhead is acceptable (only 0.076%).

4.6 The Accuracies of Two Emulated Systems

In order to verify the accuracies of our emulated systems,
we deploy two real systems: the dedicated cluster system

and DawningCloud on the testbed. The testbed is com-
posed of 40 X86-64 nodes, of which the configuration
is 2 Quad-Core 2 GHz Intel Xeon processors with 8G
Memories, and the operating system on each node is
CentOS 5.2.

We synthesize a HTC workload, which includes 100
jobs with the size from 8 to 64 cores. 100 jobs are
submitted to the dedicated cluster system and Dawn-
ingCloud for HTC within 10 hours, respectively, and
the average interval of submitting jobs is 300 seconds.
For the synthesized workload trace, the distribution of
resource demands of jobs in terms of processors and
average execution time vs. different resource demands
of jobs in terms of cores are shown in Fig.11.
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Fig. 11: The real workload trace.

In two-step experiments, first, we submit the synthe-
sized workload to the real dedicated cluster system and
the real DawningCloud system for HTC, and then collect
the workload trace, including: job size, job submission
time, job execution time. Second, we submit the work-
load trace to the emulated dedicated cluster system and
DawningCloud for HTC. We compare the metrics of real
systems and emulated systems to evaluate the accuracies
of emulated systems.

In two real systems, the scheduling,resource manage-
ment and resource provision policies are same as those
in the above emulated systems, respectively. we set the
configuration sizes of the dedicated cluster systems as 20
nodes, which is decided by the the utilization rate. When
the size is 20 nodes, the utilization rate is 93.2% for the
above synthesized workload. The baseline setting for the
HTC TRE in DawningCloud is [60C/8B/1.5R/60S].

After we obtain the workload trace through experi-
ments of the real systems, we submit the same workload
trace to two simulated systems again. Each experiment is
performed six times, of which the coefficient of variation
for experiment results are not more than 0.4%. Table 5
shows the mean results of both real and emulated sys-
tems. Please note that in the real and emulated systems,
the duration between the submission time of the first job
and the time when the last job runs over are different.
In Table 5, we adopt the right duration which ensures
the last job has run over in each system, respectively.

In the rest of this section, we report the mean values
of experiments. We find that: first, for both the dedi-
cated cluster system and DawningCloud, the ratio of
the resource consumptions of the real systems to that
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TABLE 5: THE METRICS BETWEEN REAL and EMU-
LATED SYSTEMS.

Configuration number of
completed
jobs

resource
con-
sumption
(node*hour)

Real dedicated cluster sys-
tem

100 280

Emulated dedicated cluster
system

100 240

Real DawningCloud system 100 266
Emulated DawningCloud
system

100 234

of the emulated systems are larger than one, and very
close (1.17 and 1.14). In Table 6, we use this factor to
re-evaluate the results of the emulated systems. Table 6
shows all percentages of the saved resources are larger
than that of the original value after the re-evaluation.
Second, in comparison with the dedicated cluster sys-
tem, it is credible that service providers in Dawning-
Cloud can save the resource consumption while gaining
the same throughput in both the real and emulated
systems.

TABLE 6: THE ORIGINAL AND RE-EVALUATED
RESOURCE CONSUMPTIONS OF EMULATION SYS-
TEMS.

Configuration dedicated
cluster
system

DawningCloud Saved re-
sources

NASA original
value

282752 210507 25.6%

NASA re-evaluated
value

330820 239978 27.5%

SDSC original value 3383712 2911383 14%
SDSC re-evaluated
value

3958943 3318977 16.2%

LLNL original value 3612210 3326085 7.9%
LLNL re-evaluated
value

4226286 3791737 10.3%

From the above analysis, we can make the conclusion
that our two emulated systems are enough accurate with
respect to the real systems.

5 RELATED WORK

We summarize the related work from three perspectives:
evaluation of cloud systems, infrastructure for scientific
communities, and resource management issues.

5.1 Evaluation of Cloud systems:
Armbrust et al. [2] in theory show the workloads of
Web service applications can benefit from the economies
of scale of cloud computing systems, however, no one
answers this question from the perspective of scientific
communities. In the context of hybrid cloud, de As-
suncao et al. [26] investigate whether an organization
operating its local cluster can benefit from using cloud
providers to improve the performance of its users’ re-
quests; Marshall et al.’s evaluation of elastic site [25]

consists primarily of a comparison of the three different
policies (on demand, steady stream, and bursts) in an
attempt to maximize job turnaround time while min-
imizing thrashing and idle VMs. Palankar et al. [29]
evaluates S3 as a black box and reasons whether S3 is
an appropriate service for science grids.

5.2 infrastructure for scientific communities
Public Cloud solutions: Amazon’s EC2 directly pro-
vides resources to end users, and relies upon end
user’s manual management of resources. EC2 extended
services: RightScale (http://www.rightscale.com/) pro-
vides automated Cloud computing management sys-
tems that helps you create and deploy only Web service
applications running on EC2 platform. There are two
proposed usage models for EC2-like public clouds in
scientific communities. Deelman et al. [5] propose each
staff of an organization to directly lease virtual ma-
chine resources from EC2 for running applications in a
specified period. Evangelinos et al. [3] propose that an
organization as a whole rents resources with the fixed
size from EC2 to create a leased cluster system that
is deployed with a queuing system, like OpenPBS, for
HTC workloads. With respect to our previous work [21],
our new contributions are three-fold: first, we propose
an enhanced scientific public cloud model (ESP) that
encourages small or medium scale research organiza-
tions rent elastic resources from a public cloud provider.
Second, we improve the resource management policy for
both HTC and MTC workloads, and investigate effects
of different configuration parameters on the experiment
results. Third, we propose an emulation methodology to
answer our concerned economies of scale issue. More-
over, we selectively perform real experiments to validate
the accuracies of the emulated systems.

Private and hybrid cloud solutions: two open
source projects, OpenNebula (www.opennebula.org/)
and Haizea (http://haizea.cs.uchicago.edu/), are com-
plementary and can be used to manage Virtual infras-
tructures in private/hybrid clouds [28]. In the context
of hybrid cloud, recently, Sun Microsystems has added
support for Amazon EC2 into Sun Grid Engine (SGE);
Moreno-Vozmediano et al. [22] analyze the deployment
of generic clustered services on top of a virtualized
infrastructure layer that combines a VM manager (on
a local cluster) and a cloud resource provider (external
cloud provider: Amazon EC2). Marshall et al. [25] have
implemented a resource manager, built on the Nim-
bus toolkit to dynamically and securely extend existing
physical clusters into the cloud. Rodero-Merino et al.
[39] proposes a new abstraction layer that allows for
their automatic deployment and escalation depending
on the service status. Our previous Transformer [35]
programming framework aims to facilitate the building
of diverse data-parallel programming models: Dryad-
like data flow, MapReduce, and All-Pairs. Hindman et
al. [41] presents Mesos, a platform for sharing commod-
ity clusters between multiple diverse cluster computing
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frameworks, such as Hadoop and MPI. With respect
to Reservoir, DawningCloud has two-fold differences as
follows: first, the CSF of DawningCloud not only facili-
tates building lightweight service management layers for
heterogeneous workloads, but also makes their manage-
ment tasks simpler. Second, the CSF of DawningCloud
allows a service provider to flexibly control its TRE.
Moreover, the implementation of TRE is not bound to
virtual machine technologies. DawningCloud supports
both physical and virtual resources provisioning.

Virtual execution environments: Irwin et al. [7] pro-
pose a prototype of service oriented architecture for
resource providers and consumers to negotiate access
to resources over time. On a basis of virtualization
technologies, previous systems provide virtual execution
environments either for grid computing [16] [18] [23]
[24] or data center [14] [15] [17]. Walker et al. [27]
presents a system for creating personal clusters in user-
space to support the submission and management of
thousands of compute-intensive serial jobs, which allows
the expansion of local resources on-demand during busy
computation periods. Lim et al. [37] addresses elastic
control of the storage tier in multi-tier application ser-
vices.

Cloud operating system: Wentzlaff et al. propose a
single system image operating system, named fos, across
both multicore and Infrastructure as a Service (IaaS)
cloud systems [47]. Though DawingCloud shares the
idea of factoring some functions into management ser-
vices, it sits on top of fos, providing an infrastructure for
typical scientific workloads, i.e., HTC and MTC.

5.3 Resource management issues:
Resource management issues are widely investigated in
the context of cloud computing and grid computing. In
the context of private cloud, Sotomayor et al. [34] present
the design of lease management architecture, Haizea,
which implements leases as virtual machines (VMs) to
provide leased resources with customized application
environments. In the context of hybrid cloud, de Assun-
cao et al. [26] evaluate the cost of six scheduling strategies
used by an organization that operates a cluster managed
by virtual machine technology. Dan et al. [12] propose the
algorithm for scheduling mixed workloads in multi-grid
environments.

6 CONCLUSION

In this paper, we have answered one key question to the
success of cloud computing: In scientific communities,
can small-to-medium scale research organizations benefit
from the economies of scale? Our contributions are three-
fold: first, we proposed the ESP model for small-to-
medium scale scientific communities to utilize elastic
resources on a public cloud site while maintaining their
flexible system controls. Second, on a basis of the ESP
model, we designed and implemented an innovative sys-
tem, DawningCloud, at the core of which are lightweight

service management layers running on top of a common
management service framework. Third, we evaluated the
systems comprehensively using both emulation and real
experiments. For four traces of two typical workloads:
HTC and MTC, we concluded that small-to-medium
scale scientific communities indeed can benefit from the
economies of scale of public clouds with the support of
the enabling system—DawningCloud.
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TABLE 7: THE COMPARISONS OF DIFFERENT USAGE
MODELS

itema DS PC HC DP EP ESP
SP vs. RPb 1:1 1:1 n:1 n:1 n:1 n:1
Separation
of concerns

No No No No Yes Yes

resources local local local +
rented

rented rented rented

resource
provision-
ing

fixed fixed fixed +
elastic

elastic fixed initial
+ dy-
namic

SP’s system
control

No No No limited limited flexible

a. DS: dedicated system; PC: private cloud; HC: hybrid
cloud; DP: Deelman’s public cloud; EP: Evangelinos’s public
cloud; ESP : our model.

b. SP: service provider; RP: resource provider

APPENDIX A
THE DIFFERENCES OF THE ESP MODEL FROM
OTHER ONES

Table 7 compares the ESP model with other ones. There
are three distinguished features of the ESP model.

First, our ESP model allows a resource provider to
provide TRE and provision elastic resources to n (n>>2)
small-to-medium scale scientific communities, and hence
it guides the design and implementation of the enabling
platform helping us to answer the concerned question.
The dedicated systems and private clouds’ limited use
scopes will prevent service providers from benefiting
from the economical of scale. In hybrid clouds, users
own local resources, and request elastic resources from
external public clouds for workload spike. Hybrid clouds
that connect local resources with external public clouds
are difficult for some parallel applications that rely heav-
ily on frequent collective communications, since these
applications are generally sensitive to network delays
[26]. In Deelman’s public cloud model, each end user
manually requests or releases resources from a resource
provider. In Evangelinos’s public cloud model, an orga-
nization as a whole obtains resources with the fixed size
from a resource provider.

Second, the ESP model separates the concerns of
the resource provider and service providers. In private
clouds, service providers are often affiliated with the
resource provider, and the role of service provider is
complexly intertwined with the role of resource provider.
In the hybrid cloud model, users own local resources
as a resource provider, at the same time they also rent
resources from the external public cloud as a service
provider. Deelman’s model does not separate the con-
cern of the service provider.

Third, in the ESP model a service provider does
not own resources, and instead automatically requests
elastic resources from the resource provider. Besides, we
propose a different resource provisioning mode, which
distinguishes two types of provisioned resources to a
TRE: initial resources and dynamic resources. Once allo-

cated to a TRE, initial resources will not be reclaimed by
the resource provider until the TRE is destroyed. On the
contrary, dynamic resources assigned to a TRE may be
reclaimed by the resource provider. In Deelman’s model,
each end user manually requests or releases (dynamic)
resources from a resource provider. In Evangelinos’s
model, an organization as a whole obtains (initial) re-
sources with the fixed size from a resource provider.
In the dedicated system and private cloud models, in
general they own fixed resources, though for the latter,
a specific workload may use elastic resources within the
organization for a specific duration. In hybrid clouds,
users also rent elastic resources from the external public
cloud; however, it is difficult for the others to share idle
local resources when local loads are light.

APPENDIX B
DETAILS OF EVALUATION METHODOLOGIES
AND EXPERIMENTS

B.1 Workload Details
We choose three typical HTC workload traces from
the Parallel Workloads Archive: http://www.cs.huji.ac.
il/labs/parallel/workload/. The utilization rate of all
traces in the Parallel Workloads Archive varies from
24.4% to 86.5%. We choose one trace with lower load-
NASA iPSC trace (46.6% utilization), two traces with
higher load-SDSC BLUE trace (76.2% utilization) and
LLNL Thunder trace (86.5% utilization).

Fig. 12: The NASA workload trace.

Fig. 13: The SDSC workload trace.

For the NASA trace, the time duration is three months,
the average execution time is 764 seconds, and the total
number of jobs is 18239. For the SDSC trace, the time
duration is 32 months, the average execution time is 4381
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Fig. 14: The LLNL workload trace.

seconds, and the total number of jobs is 223407. For the
LLNL trace, the time duration is five months, the average
execution time is 2227 seconds, and the total number of
jobs is 118791.

Fig. 15: The Montage workload trace.

For MTC, we choose a typical workload, the Mon-
tage workflow (http://montage.ipac.caltech.edu). Mon-
tage is an astronomy workflow application, created
by NASA/IPAC Infrared Science Archive for gather-
ing multiple input images to create custom mosaics
of the sky. The workload generator can be found on
the web site http://vtcpc.isi.edu/pegasus/index.php/
WorkflowGenerator, and the workload file includes the
job name, run time, inputs, outputs and the list of
control-flow dependencies of each job. The chosen Mon-
tage workload includes 9 types of task with the total
amount of 1,000 jobs. Each job requests one node for
running, and the average execution time of jobs is 11.38
seconds. The run time of the MTC workload is more
shorter than that of HTC workload traces, so we synthe-
size the MTC workload through repeatedly submitting
Montage workload in two weeks.

B.2 Parameter Analysis in the Emulated Systems
Because of space limitation, we are unable to present
the data for the effect of all parameters; instead, we
constrain most of our discussion to the case that one
or two parameters varies while the other parameters
keep the same as those of the baseline configuration in
Section 4.5, which are representative of the trends that
we observe across all cases. We only report the first two
weeks’ metrics for the NASA, SDSC and Montage traces
with different configurations, since they have different
time durations.

The effect of the size of initial resources and the
threshold ratio of obtaining dynamic resources.

To save space, in DawningCloud we tune the size of
initial resources (B) and the threshold ratio of obtaining
dynamic resources (R) at the same time, while other pa-
rameters are [60C/60S] for HTC workload and [60C/1S]
for MTC workload.

We respectively set B as (0,20,40,60,80,100,144) for
the SDSC workload and (0,20,40,60,80,100,128) for
the NASA workload, and (0,20,40,60,80,100,166) for
the Montage workload; at the same time, we tune
R as (1,1.2,1.5,2,4,100) for the HTC workloads and
(1,2,4,8,16,100) for the MTC workload.

Fig.16 shows the effect of different parameters. In
Fig.16, Bx Ry indicates that B is x and R is y.

For three workload traces, when the size of initial
resources is the same like that of Evangelinos’s system and the
threshold ratio of obtaining dynamic resources is so high as to
no dynamic resource will be obtained, DawningCloud has
the same performance metrics as that of Evangelinos’s
system. For example, for the NASA, SDSC, and Montage
workloads, the configuration is respectively B128 R100,
B144 R100, and B166 R100.

For HTC workloads, we have the following observa-
tions:

1) In DawningCloud, the resource consumption is
proportional to the size of initial resources; this is be-
cause initial resources are statically allocated to a service
provider in DawningCloud. For the same workload, the
size of initial resources increases, idle resources will also
increases. When the size of initial resources is below the
configuration size of Evangelinos’s model, the size of ini-
tial resources has no significant effect on the number of
completed jobs, since dynamic resources can be obtained
in DawningCloud.

2) The resource consumption is inversely proportional
to R when dynamic resources are not zero; this is because
that larger threshold ratio can result in less opportunity
of obtaining dynamic resources. There is no obvious
relationship between R and the number of completed
jobs.

For MTC workloads, we have the following observa-
tions:

1) There are several configurations (such as B20 R4,
B20 R8 and B40 R4 in Fig.16) that make the service
provider consumes less resources. From our observation,
we found those configurations satisfying the empirical
formulas (B*R < RA) and (RA*R > RM), where RA is
the accumulated resource demand of jobs in queue in most
of running time, and RM is the maximal accumulated
resource demand of jobs in queue in running time. For
Mantage workload trace, RM is 662, and RA is 166.

2) There is no obvious relationship between B and the
resource consumption or the number of tasks per second.

3) There is no obvious relationship between R and the
resource consumption or the number of tasks per second.

Fig.17 shows the effects of the size of initial resource (B)
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(a) The resource consumption and the number of com-
pleted jobs V.S. different parameters setting for the
NASA trace.
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(b) The resource consumption and the number of com-
pleted jobs V.S. different parameters setting for the SDSC
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Fig. 16

and the threshold ratio of obtaining dynamic resources (R)
on the management overhead of the resource provider,
which is the sum of all service providers’ times of
adjusting nodes.

For HTC workloads, we have the following observa-
tions:

1) The management overhead of the service provider
is inversely proportional to B; this is because more initial
resource, less times of obtaining dynamic resources.

2) The management overhead is inversely proportional
to R; this is because larger threshold ratio, less times of
obtaining dynamic resource.

For MTC workloads, we have the following observa-
tions:

1) For some configurations satisfying the empirical
formulas (B*R < RA) and (RA*R > RM) or (B*R >
RM), the management overhead is less than that of other
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(c) the service providers’ times of adjusting nodes in two
weeks VS. different parameters setting for the Montage
workload.

Fig. 17

configurations.
2) There is no obvious relationship between the times

of adjusting nodes for the MTC service provider and B/R.
The effect of checking resource cycle.

In DawningCloud, we respectively set the checking
resource cycle S as 10/30/60/100/120/150/180/200 sec-
onds, while other parameters are [60C/40B/1.5R] for
HTC workloads. In the scheduling policy, the scheduling
cycle is the same amount as S.

From Fig.18, we can observe that: S has small impact
on the resource consumption, the number of completed
jobs and the service provider’s times of adjusting nodes.
So we just set S as the same value of the scheduling
cycle. Here is 60 seconds for HTC workloads. Taking it
into account that the average execution time of tasks in
MTC workload is only about 10 seconds, we set S as 1
second in MTC.
The effect of time unit of leasing resources.

In DawningCloud, we respectively set the time unit of
leasing resources C as 10/30/60/90/120 minutes, while
other parameters are [40B/1.5R/60S] for HTC workload
and [20B/8R/1S] for MTC workload. For the resource
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(a) The resource consumption and the number of com-
pleted jobs VS. the checking resource cycle for the SDSC
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Fig. 19: The management overhead VS. the time unit of
leasing resources.

provider, the management overhead in terms of the
accumulated times of adjusting nodes in DawningCloud are
obtained with varying time units of leasing resources in
Fig.19.

From Fig.19, we have the following observation:
1) The management overhead is inversely proportional

to C. This is because when the time unit of leasing re-
sources is less, the service provider requests dynamic re-
sources more frequently, which results in larger manage-
ment overhead that is the sum of all service providers’
times of adjusting nodes.

Taking it into account dynamic resources are charged
at the granularity of time unit of leasing resources, we
make a tradeoff and select C as 60 minutes in Dawn-
ingCloud and Deelman’s system. In fact, in EC2 system,
resources are also charged at the granularity of one hour.
Implications of Analysis:

At the end of this section, we give some suggestions

to the service provider in setting parameters:
1) For HTC workload: the size of initial resources B

can be set as 1/4 to 1/3 of the configuration size of the
dedicated cluster system; the threshold ratio of obtaining
dynamic resources R can be set as 1.5; the checking
resource cycle S can be set as 60 seconds.

2) For MTC workload: B is set as approximate 1/8 of
the configuration size of the dedicated cluster system; R
need to satisfy the condition of (B*R < RA) and ,(RA*R
> RM) where RA is the accumulated resource demand of
jobs in queue in most of the running time and RM is the
maximal accumulated resource demand of jobs in queue in
the running time (RA and RM can be calculated through
experiments); S can be set as 1 second.


