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a b s t r a c t

Understanding the power dissipation behavior of an application/workload is the key to writing
power-efficient software and designing energy-efficient computer systems. Power modeling based on
performance monitoring counters (PMCs) is an effective approach to analyze and quantify power dissi-
pation behaviors on a real computer system. One of the potential benefits is that software developers
are able to optimize the power behavior of an application by adjusting its source code implementations.
However, it is challenging to relate power dissipation to the execution of specific segments of source code
directly. In addition, existing power models need to be further investigated by reconsidering multicore
architecture processors with on-chip shared resources. Therefore, we need to adjust PMC-based power
models from the developers’ perspective, and reevaluate them on multicore computer systems.

In this paper, followed by a detailed classification of previous efforts on power profiling, we propose a
two-level power model that estimates per-core power dissipation on chip multiprocessor (CMP) on-the-
fly by using only one PMC and frequency information from CPUs. The model attempts to satisfy the basic
requirements from developer point of view: simplicity and applicability. Based on this model, we design
and implement SPAN, a software power analyzer, to identify power behavior associated with source code.
Given an application, SPAN is able to determine its power dissipation rate at the function-block level.
We evaluate both the power model and SPAN on two general purpose multicore computer systems. The
experimental results based on SPEC2008Cjvm benchmark suite show the average error rate of 5.40%
across one core to six core validation. We also verify SPAN using the FT benchmark from NAS parallel
benchmark suite and a synthetic workload. The overall estimated error of SPAN is under 3.00%.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many previous efforts have focused on computer system power
measurements and profiling [7,9,14,18,28,33,34]. Actually, power
dissipation of a single computer system can be broken down into
several pieces with each piece representing a component, such as
CPU or memory. Furthermore, power dissipation of each compo-
nent consists of two parts: static power and dynamic power. The
former could be described as the basic power supplied to maintain
this component in its operational state. The latter is the additional
power dissipation for running a specific task. For years, it has been
well-acknowledged that dynamic power is roughly determined by
utilization rates, especially for CPUs. However, the experimental
results show that, for the CPU dynamic power, the estimation error
rate of using this method can be as high as 33.33% [12]. On the other
hand, understanding the power dissipation behavior of a specific
software/application is the key to writing power-efficient software
and design energy-efficient computer systems. Therefore, we need
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a more accurate model to capture the power dissipation of com-
puter systems.

Usually, there are four ways to estimate power dissipa-
tion: cycle-level system simulators, instruction-level modeling,
software-function-level macro-modeling, and PMCs-based modeling.
Cycle-level system simulators are time costly while providing
more detailed information [10,56]. Instruction level modeling
achieves simplicity and accuracy on embedded systems, but it is
not realistic if we apply it to superscalar processors with a large
number of instructions. For example, IA-32 ISA contains 331 dif-
ferent instructions, with 109,561 (3312) instruction combinations
if we consider the inter-instruction effects. Software-function-
level macro-modeling techniques associate power dissipation with
application function sub-routines and establish power models on
top of application characteristics, such as algorithm complexity
[49]. However, such information sometimes is inherently unavail-
able for end users. Moreover, the static feature of this method
prevents its utility when we consider advanced run-time power
management. Analytical power modeling based on performance
monitoring counters (PMCs) enables run-time software power
estimation [14,28,33,43]. Nevertheless, for a given processor, the
power model based on PMCs is limited by the types of available
event counters and the maximum number of counters that can
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be read simultaneously. For instance, most Intel processors only
support sampling two counters per core concurrently. Regarding
the power estimation utilizing PMCs, however, we also need to
notice that accuracy highly depends on two sets of PMCs: those
PMCs appearing in power models and those PMCs available on tar-
geting platforms. Insufficient information representing the power
characteristics of the microarchitecture will yield low accuracy.

Software contributes considerably to the total power of a com-
puter system [6,12,45]. Hence, it is very important to find out
how much power has been dissipated by a specific software com-
ponent in order to design sustainable computer systems. Power
dissipation, arguably speaking, is a fundamental aspect of soft-
ware nowadays. On one hand, the total energy consumption of
completing a task is power accumulation over time. Thus, power
dissipation is a direct contributor to producing an energy profile.
On the other hand, in some particular circumstances, controlling
power dissipation provides more flexibility for systems. For exam-
ple, temperature can be altered by restricting power dissipation.
Besides, some infrastructures add “power envelop” as one of the
constraints. For instance, it is crucial for data centers serving mil-
lions of people to maintain the whole power budget under a certain
limit for power supply protection (huge current draw may damage
transistors). As a result, it is worth to investigating the run time
power dissipation of an application and the associated source code
for sustainable computing point of view.

In this paper, we focus our discussion on identifying run-time
factors that determine the power dissipation of processors for com-
putation intensive workloads on power-aware multicore computer
systems. Concretely, we model power dissipation in a two-level
manner to reserve simplicity and accuracy. More importantly, we
map power dissipation to software blocks at runtime by building
SPAN libraries and interfaces. Specifically, the work presented in
this paper includes the following contributions.

• First, we examine previous power measurement and profiling
techniques and survey possible solutions for power estimation on
modern multicore systems in a comprehensive way by classifying
them into three main categories: hardware-based, software-based,
and hybrid method.

• Second, we propose a two-level power model for power-aware
multicore computer systems. The novelty of the proposed model
is two-fold. First, we minimize the number of performance coun-
ters and training benchmarks utilized in the model to achieve
simplicity and applicability. Second, we incorporate frequency
in the power model to meet the requirements of modern DVFS
techniques.

• Third, we design and implement SPAN to relate power dissipa-
tion to the different portions of an application source code using
the proposed power model. By using SPAN, developers can easily
identify the sections of code consuming the most power in the
program.

• Finally, we perform comprehensive experiments on two recent
multicore platforms, Asus Essentio CM5570 and HP Pavilion Elite
HPE-000, under various DVFS configurations to evaluate and
validate both the power model and SPAN via real hardware mea-
surements.

The rest of the paper is organized as follows. We start the paper
by presenting a detailed survey of the previous efforts on power
measurement and profiling in Section 2. In Section 3, the details
of the proposed model are described, followed by the SPAN design
and implementation in Section 4. We illustrate the results of the
proposed power model and SPAN on two recent multicore com-
puter systems in Section 5. Moreover, to distinguish our work from
the previous research, we discuss the most relevant techniques in
Section 6. At last, we summarize our work and reach the conclusion
in Section 7.

Table 1
Classification of power measurements and profiling.

Hardware-based Software-based Hybrid

Itsy00 [52] Wattch [10] PowerScope [17]
Jpseph01 [29] SimplePower [56] Isci03 [25]
Kamil08 [31] SoftWatt [21] PowerPack [18]
PowerExecutive [1] Orion [53] Chang03 [11]
IMPI [24] SimWattch [13] Lorch97 [36]

Dempsey [57]
Bellosa00 [7]
vEC [30]
Powell:2009 [42]
Bertran10 [8]

2. Background: power measurements and profiling

As energy consumption becomes one of the foremost consider-
ations in designing new computer systems, power-aware system
design raises a key issue in the community of computer sys-
tems. Power measurement and profiling, which are the basis of
power-aware systems, not only can be used to evaluate power
optimization techniques and to make power-performance trade-
off, but also can be used to generate critical power information for
operating systems and power-aware software. Based on hardware
and software techniques used, power measurement and profiling
could be classified into three categories: hardware-based method,
software-based method, and hybrid method. Table 1 summarizes the
classification of these previous efforts.

2.1. Hardware-based method

The hardware-based methods mainly use two strategies: using
meters to build a power measurement and profiling platform or
integrating power sensors into hardware architectures.

2.1.1. Direct power measurement and profiling
The first strategy uses meters to measure the currents or volt-

ages of wires that supply power for hardware; then compute power
dissipation with these results. This strategy is usually used to eval-
uate the accuracy of software methods. In this paper, we also use
this classic power measurement method to evaluate the accuracy of
our models. One of the earliest studies of power measurement and
profiling is done by Viredaz et al. on handheld computing devices
[52]. Joseph et al. use a similar method to measure the power
dissipation on a high performance processor [28,29]. They use a
group of microbenchmarks with particular cache, bit activity, and
branch prediction behaviors to evaluate performance and power
trade-off. In [31], the authors adopt the direct power measurement
method; then, they measure the power on a Cray XT4 super-
computer under several HPC workloads. Their results show that
computation-intensive benchmarks generate the highest power
dissipation. Nevertheless, memory-intensive benchmarks yield the
lowest power usage. Physical measurement is fast and objective,
but this method lacks a semantic connection between measure-
ment results and evaluated programs [23].

2.1.2. Integrate power sensors into the system
The second strategy is usually used by high-performance servers

[1,19]. For example, Intel uses service processor-based power-
monitoring sensors to provide power information for systems
through the API called Intelligent Platform Management Interface
(IPMI) [19,24]. IBM BladeCenter and System xTM servers supply
PowerExecutive solutions that enable customers to monitor actual
power draw and temperature loading information [1]. Though on-
line power-aware applications can use this method, it is difficult to
yield low-level power information because hardware circuits are
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too complicated to distinguish the originality of power dissipation.
In addition, power monitoring circuits also dissipate a large amount
of power as well.

2.2. Software-based method

Even though hardware-based methods are more accurate than
software-based methods, hardware cost and scalability require-
ments restrict their application range. In addition, during an
architecture design cycle we cannot use hardware-based methods
to balance power and performance. Software-based methods use
power models to estimate power dissipation. Power models are
created at different levels: circuits level, instruction level, com-
ponent level, node level, and so forth. Based on different usage
stages, we summarize software-based methods into two types:
architecture-level power models, which are used to estimate power
dissipation during the architecture design stage, and system-level
power models, which supply live power information to operating
systems and power-aware applications.

2.2.1. Architecture-level power model
Software-based methods spring up in the area of architecture-

level power estimation. Most of the earliest work [10,35,39,41,56]
in this category are based on the classic energy equation [27]. Liu
and Svensson estimate the power on VLSI CMOS chips [35]. Regis-
ter transfer level power model is analyzed by Marculescu et al. in
[39]. Brooks et al. proposed Wattch, a framework for analyzing and
optimizing microprocessor power dissipation at the architecture-
level [10]. The power model of Wattch relies on per-cycle resource
usage counts. In [56], Ye et al. present a comprehensive frame-
work called SimplePower, which is based on the transition sensitive
energy models. It not only can be used to evaluate the effect of
high-level algorithmic, architectural, and compilation trade-off on
energy, but also provides the energy consumption in the memory
system and the on-chip buses using the analytical energy mod-
els. SoftWatt, which models the CPU, memory hierarchy, and the
low-power disk subsystem, is described in [21]. This tool is able to
identify the power hot-spots in system components as well as the
power-hungry operating system services.

The power constraints in interconnection network design were
noticed by [41]. Also, the authors propose the power model of
routers and links and analyzes the performance of direct intercon-
nection network topologies under a fixed power constraint. Wang
et al. present a power-performance interconnection network simu-
lator called Orion, which is capable of providing detailed power and
performance characteristics to enable rapid power-performance
trade-off at the architecture-level [53]. Eisley et al. estimate and
analyze the power of CMPs by synergistically considering both the
processor cores and the communication fabric in a multi-core chip
[16]. Chen et al. propose SimWattch to integrate the system-level
and the user-level simulators [13].

Besides those efforts that model the power dissipation of pro-
cessors, several publications [10,22,40,55,57] propose methods to
estimate the power of other devices, such as hard disks, memories,
and network devices. Zedlewski et al. present Dempsy, a disk simu-
lation environment that includes the accurate modeling of the disk
power dissipation [57]. Dempsey attempts to estimate the power
of a specific disk stage, which includes seeking, rotation, reading,
writing, and idle-periods, with a fine-grained model. Molaro et al.
also analyze the possibility to create a disk driver power model
based on disk status stages [40]. In [22], the authors build the power
model for hard disk based on the observation that a slight change
on the rotation speed of a disk has a quadratic effect on its power
dissipation. In [55], Ye et al. introduce a framework to estimate the
power dissipation on the switch fabrics on network routers and
propose different modeling methodologies for the node switches,

internal buffers, and interconnect wires inside switch fabric
architectures.

2.2.2. System-level power model
Specialized circuit techniques are important strategies for low-

power designs, but these techniques alone are not sufficient.
Higher-level strategies for reducing power dissipation and improv-
ing energy efficiency are increasingly crucial [10]. The live power
information of systems is highly needed for designing high-level
energy efficiency strategies. For example, Ecosystem [58] and [38],
which propose the concept managing system energy as a type
of resource, require the support from real-time power informa-
tion on different levels. Furthermore, in [51], the authors argue
that the traditional operating system design should be revisited
for energy efficient usage. As part of the energy-centric operat-
ing system, energy profiles are also needed by new power-aware
scheduling algorithms [5,32]. Ahmad et al. propose a new power-
aware scheduling algorithm based on game theory [5]. In [32], Khan
and Ahmad present a method, which is also based on game the-
ory, to minimize the energy consumption on computational grids.
System-level power models are built on the statistics of systems,
which reflects activities of the hardware devices.

One of the earliest research in this category is [50]. Tiwari et al.
propose an instruction-level power model for embedded proces-
sors and memories. Russell et al. present an energy model using
a constant parameter for power dissipation of a 32-bit embedded
processor [44]. Li and John [34] exploit a high correlation between
the instruction per cycle (IPC) and the power dissipation, and they
predict the run-time power dissipation on the OS routines based on
regression model between power and IPC. Contreras and Martonosi
[14] also discover the power-IPC correlation and use five PMCs to
estimate the power of workloads running on different CPU fre-
quencies. Their model exhibits low percentage of error, but they
do not verify the model on multicore architectures. Bircher et al.
[9] explore the run-time events that most likely represent power
dissipation. In their experiments, IPC-related metrics are shown
to be the most power-informative. Among those metrics, the upos
fetched per cycle yields the most accurate results. Other candidates
are upos completed per cycle and upos retried per cycle. Wu et al.
[54] also use a number of PMCs to deploy a power model on the
Pentium 4 functional units. They measure the CPU power via a
clamp-on ammeter. However, their model is not validated under
different frequencies and multicore architecture.

Dhiman et al. [15] propose an on-line power prediction sys-
tem on virtualized environments. Instead of using linear regression
models on PMCs, they utilize a Gaussian Mixture vector quantiza-
tion based training and classifying. The estimation error is within
10% in most cases. Bertran et al. [8] demonstrate an alternative
approach using PMCs on the CPU power estimation. Rather than
directly deriving power models using PMCs, they propose a method
to treat each component of the CPU separately, such as FE, INT,
and FP. Combining all the training parameters, they develop a
fine-grained power model. However, the training process is time-
consuming in practical situation. In addition, the power model
highly depends on the microarchitecture of the CPU. Bellosa [7]
demonstrates the correlation between the recorded performance
events and the power dissipation from the synthetic workloads. He
shows the most effective factors of system power dissipation are:
fuops/s, uops/s, L2 accesses/s, and memory accesses/s. Because he
only considers the synthetic workloads, the results could not be
sufficiently applied to real applications.

In [42], Powell et al. propose a methodology to reduce the num-
ber of performance counters while maintaining certain accuracy
of the model. They estimate the hardware activity events of sev-
eral microarchitectural structures; then, the authors associate the
activity events to the power dissipation of such structures. Singh
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and Bhadauria [47] describe an approach based on a number of
microbenchmarks which stress the particular components of a
given processor architecture. Our work differs from all these works
in the way that we combine CPU frequency scaling and multicore
features in the power model, which fits the trend of recent micro-
processor design.

2.3. Hybrid method

Hybrid methods are also globally researched [17,18,25] because
both hardware-based and software-based methods have their own
limitations. Flinn et al. develop a platform that samples both
the power dissipation and the system activities on a profiling
computer; then, they generate an energy profile from the data
through an off-line analysis [17]. Isci and Martonosi build a platform
using sampled multimeter data for overall power measurements
and produce per-unit power breakdowns based on the hardware
performance counter readings [25]. Their power model uses 22
performance monitoring counters and reaches as low as 5% error
rate on the SPEC 2000 benchmarks. However, the large number
of performance counters may not be available for sampling simul-
taneously on some processors. For example, most Intel platforms
only support concurrent sampling of two counters. In this case,
to retrieve the information from 22 counters, the program has to
be run at least 11 times. Ge et al. develop a power measurement
and profiling platform to retrieve the power information from the
main components, such as the CPU, disk, memory, motherboard,
and so forth [18]. Also, they propose a method to map the mea-
sured power into the application code and analyze the energy
efficiency in a multi-core system. Isci and Martonosi develop an
experimental framework to compare the control-flow based with
the performance-monitoring-based power-phase detection tech-
niques [26]. Their results show that both the control-flow and the
performance statistics provide useful hints of the power phase
behaviors.

Chang et al. rely on statistical sampling to help programmers
evaluate the energy impact of their design decisions [11]. In [23],
they describe an evaluation infrastructure, which combines the
advantages of simulations and physical measurements for the
OS/compiler power and energy optimizations. In addition, this
infrastructure can provide the objective evaluation and semantic
connection between the measured power/energy and the source
code. Lorch et al. design two programs: PowerMeasure, which is
used to measure how much power each component consumes in
the predefined state, and StateProfiler, which is used to profile how
often each component stays in a specific power state [36,37].

3. Two-level power modeling

The power dissipation of a given platform can be divided into
two parts:

• Baseline power: the static power dissipation to maintain a sys-
tem running. To be specific, static power of a motherboard, CPU,
memory, CPU fans, and other components contributes to this part
of the power dissipation.

• Dynamic power: the power dissipation due to a task execution.
By executing workloads on different platforms and different fre-
quencies, dynamic power varies considerably. Other contributing
factors could be temperatures, characteristics of workloads, and
component utilizations.

The first primary goal of this paper is to find a practical power
estimation model describing dynamic power on multicore power-
aware processors by using as few PMCs as possible. The essence

of utilizing PMCs to estimate power dissipation is about informa-
tion trade-off. The more PMCs information is retrieved, the more
detailed and accurate the power model could be. However, collect-
ing PMCs sometimes can be troublesome. First, commonly used
processors cannot support retrieving more than a certain num-
ber of counters simultaneously. Previous models proposed [14,28]
necessitate multiplexing the counters so that several of them can
be accessed for one benchmark. Besides, the types and names of the
monitored events vary from platforms to platforms [20]. Usually,
the power model established on one platform is not necessar-
ily extensible. For example, Goel et al. differentiate PMCs in their
power model for four platforms. Additionally, sampling PMCs usu-
ally means system overhead, which can be overwhelmed when the
number of PMCs becomes large.

On the other hand, in order to describe the power characteristics
of a given platform throughout, a fine-grained power model usually
is trained by a large set of benchmarks. For example, Bertran et
al. [8] develop approximate 97 benchmarks to exercise the power
components on a single CPU. As a result, the training process could
be unexpected long.

The production of this section is a set of power models with
three basic features. First, the models have to provide acceptable
high accuracy. Second, the parameters of the power models can
be retrieved through a simple training procedure, which can be
applied practically. In addition, the model input, the total number of
PMCs, has to be maximally reduced to avoid multiplexing counters.

3.1. Observations

Leveraging PMCs, the most obvious method is to discover the
possible correlation between a specific PMC and the power dissi-
pation. The training benchmarks fulfill the task of PMCs selecting
according to correlation coefficients. After obtaining training data,
usually, researchers develop a linear regression model to derive a
power model. Previous approaches concentrate on the mathemat-
ical methods to eliminate outliers, and to achieve high accuracy.
However, few of them focus on direct factors influencing power
dissipation, such as frequency.

One example is the argument on IPC. Indeed, an IPC value does
reflect the power dissipation with high correlation coefficients for
various workloads. However, the relationship between them can be
weak under certain circumstances. We generate IPC ranging from
1 to 0.01 by continuously executing a single X86 instruction as
Fig. 1(a). The results of the corresponding CPU power dissipation
are shown in Fig. 1(b). The overall correlation coefficient is 0.41 in
this case. Nevertheless, the standard deviation of power dissipation
is only about 0.067 W for the given range of IPC between 1 and 0.01.
Rarely could IPC make a representative factor of power dissipation
in the similar scenarios.

However, other than those extreme benchmarks, regarding real
applications, values of some PMCs reflect the power dissipation
well. As Fig. 2 illustrates, the IPC and the power dissipation present
the correlation coefficient as high as 0.98 for the NAS parallel bench-
mark suite.

Given the above results, we observe that the same PMC possi-
bly has changeable effects on the power dissipation prediction. One
possible solution could be to profile different PMCs for each task and
then select the most related ones, which is probably impractical. In
order to minimize the uncertain effects from PMCs on power esti-
mation, we attempt to find an overall frame restricting the power
estimation range. Inspired by [48] and based on our observation, the
operating frequency fits the position well. Fig. 3 shows the power
behavior of four NAS parallel benchmarks executing under the fre-
quency of 2.34 GHz and 2.00 GHz. Clearly, we are able to find the
boundaries separating power dissipation, regardless of the types
of the benchmarks, according to its operating frequency; thus, we
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establish a power model using frequency as the first level intu-
itively.

Generally speaking, we expect the power model to fully explore
the possible relations between PMCs and power dissipation.
Besides, if PMCs fail to provide positive information, the model will
be able to minimize the disturbance introduced by it.

3.2. Methodology

In this section, we describe the methodology that produces the
power models. In short, our approach follows the common model-
ing steps: defining the model input, generating microbenchmarks,
training the power model, and applying the power model.

Considering inputs, the essential strategy is trade-off. On one
hand, high accuracy necessitates more information from PMCs col-
lected as inputs. On the other hand, the less PMCs we use, the
more flexible and applicable the power model could be. We adopt
only one PMCs to preserve the simplicity and to demonstrate the
effectiveness of our two-level modeling. The PMC utilized in our
study is IPC, as aforementioned. We design microbenchmarks care-
fully after selecting the model inputs. Totally, we test over 30
microbenchmarks stressing the CPU. By carefully reviewing, adjust-
ing, and filtering them, we decide to choose 12 benchmarks for the
training purpose because sufficient information can be provided
from executing them. The training process is highly related to fre-
quencies and IPC; however, we do not use linear directly, which
most of the others do.

It should be noted that the main differences of our methodol-
ogy from previous work are three-fold: we incorporate frequency
information in the power model, we use minimum size of PMCs,
and the methodology can be applied to other platforms easily.

Basically, we deploy IPC along with frequency as the model
inputs. Actually, a strong relationship between Instruction Per
Cycle (IPC) and power dissipation is established in previous work
[14,34]. Although, in most cases, an IPC value is able to reflect the
overall power dissipation, there are two issues by using IPC solely.
First, different micro-operations might have various IPC values but
similar power dissipation. For example, usually Floating Point Unit
executes instructions much slower than Integer Arithmetic Unit
nevertheless the power behaviors of them are similar. This prob-
lem can be easily solved if we consider each CPU component, such
as FP, INT, and BPU (Brunch Prediction Unit) separately. In our case,
it is not an option because we target on minimizing the PMCs in the
model. Second, as aforementioned, because power behaviors of a
CPU are mainly limited by its operating frequencies, by using IPC,
there is some marginal effect. As the IPC becomes large or small
enough, the effects of IPC on power dissipation drop noticeably.

Our solution for the first issue is using IPC as a second level
power indicator that tunes the estimation results obtained accord-
ing to operating frequencies. In order to eliminate the marginal
effect, we divide benchmarks into different categories based on the
IPC values; then, we collect data and derive the model separately for
each category. We demonstrate our approach as follows in detail.

3.2.1. Power modeling
We denote the CPU frequency as F. Assuming that a CPU sup-

ports various frequencies, fi, i = 1, 2, 3, . . ., n, we attempt to obtain
the power dissipation information, P(fi), for each frequency fi.
Given a set of training benchmarks T with its sub benchmarks
tj, j = 1, 2, 3, . . ., m, executing under frequency fi, we denote the
power dissipation as P(tj, fi) respectively. We calculate P(fi) as
the median of {P(t1, fi), P(t2, fi), . . ., P(tm, fi)}; thus P(fi) is resis-
tant to outliers statistically. Besides, we represent IPC of each
benchmark as IPC(tj, fi). Similarly, the median IPC value of all the
training benchmarks is defined as IPC(fi). In most cases, the bench-
marks with the median value of P(tj, fi) also contribute the median
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value of IPC(tj, fi). We describe P(fi) and IPC(fi) as power pilot for
frequency fi.

Second step, based on the power pilot, we compute �P(tj, fi) as
the difference between P(fi) and P(tj, fi) for each training bench-
mark. Similarly, we calculate �IPC(tj, fi) as the IPC difference of
training benchmark ti to the median value.

�P(tj, fi) = P(tj, fi) − P(fi) (1)

�IPC(tj, fi) = IPC(tj, fi) − IPC(fi) (2)

Targeting on predicting �P(tj, fi), we use �IPC(tj, fi) as model
input to derive linear regression parameters, Pinct(fi) and P�(fi) as
Eq. (3) shows. The final predicted power dissipation is shown in Eq.
(4). We simply need to change �IPC(ti, fi) to be the actual �IPC(ai,
fi) before applying the model to the i th benchmark from task set
a1, a2, a3, . . ., an.

�P(tj, fi)pret
= Pinct(fi) + P�(fi) × �IPC(tj, fi) (3)

P(tj, fi)pret
= �P(tj, fi)pret

+ P(fi) (4)

It is easy to notice that the most majority of power dissipation
is determined by P(fi), which stems from frequency characteristics
forced on each training set although the regression model is applied
to �P(tj, fi)pret

. Because Pinct(fi) and P�(fi) usually are small enough,
we limit the inaccuracy from those power-irrelevant IPC values
while reserving the positive relation between most IPC values and
power dissipation.

As aforementioned, one shortcoming of using IPC solely is the
low accuracy produced when the values of IPC are either too high or
too low. In order to constrict this marginal effect, we have to manip-
ulate the given training benchmark set accordingly. First, we order
the training set T with descending IPC, which yields Tordered. Sec-
ond, we divide Tordered into three categories with respect of their IPC
values. Heuristic results, based on the average accuracy provided,
show that the separating points locate approximately at 0.87 and
1.86. As a result, there are three groups of benchmarks: the one
with relative low IPC, Tlow , with average normal IPC, Tnormal, and
with relative high IPC, Thigh. For each group, we apply the same
method to obtain P(tIPC level, fi), IPC(tIPC level, fi), Pinct(tIPC level, fi),
and P�(tIPC level, fi), where IPC level represents low, high, and nor-
mal.

We use an accumulative approach for modeling multiple cores
based on the assumption that each core has similar power behavior.
Therefore, we apply the single core model to each core in the sys-
tem. Specifically, we express the total power dissipation estimation
as follows:

P(aj, fi)pret total
=

k=cores∑
k=1

(�P(aj, fi, k)
pret

+ P(fi)) (5)

where aj is the target benchmark. �P(aj, fi, k)
pret

is generated at per
core level because different cores might have different �IPC(ti, fi, k).
Fortunately, the modern multiple processor supports per core level
PMCs. According to the modern processor architecture, however,
the formula needs to be modified because P(fi) accounts for the
power consumed by shared resources that should not be replicated.
One example of the shared resources is L2 cache. To recalculate
it, we introduce another parameter that should be determined at
the training stage, Pshared(k). In order to retrieve information on
Pshared(k), we re-execute training benchmarks on k cores, and select
median value as Pshared(k) for each k. The values of Pshared(k) are
different, which is determined by the total number of cores utilized
by a task simultaneously. The bigger k is, the larger Pshared(k) could
be. The final formula to estimate the power dissipation of aj of a

multicore processor is the following:

P(aj, fi)pret total
=

k=cores∑
k=1

(�P(aj, fi, k)
pret

+ P(fi))

=
k=cores∑

k=1

(Pinct(fi) + P�(fi) × �IPC(aj, fi, k))

+
k=cores∑

k=1

P(fi) − Pshared(k) (6)

3.2.2. Design microbenchmarks
The power model we proposed decides which benchmarks we

need. This is an important step because inappropriate choices will
lead to inaccuracy. First, a wide range of IPC value needs to be
covered by training benchmarks. It is extremely important to test
two margins of benchmarks with smaller or larger IPC values since
we observe different power behaviors affected by IPC at those
ranges. Second, an even distribution of benchmarks according to
their IPC values is preferred. In the power model, we divide training
benchmarks into three groups based on IPC values. It is more infor-
mative if the number of training benchmarks resides in each group
equally.

However, it is unrealistic to consider all cases especially we
only use one PMCs. Even worse, there is no information about
which subunit is exercising by only profiling IPC. For example,
two workloads stressing integer and cache respectively probably
have the same IPC values, yet the integer benchmark might con-
sume less power than the cache operation does. Besides, the power
dissipation is also affected by the inputs. The same FFT algorithm
might produce more power dissipation for a larger input size. In
conclusion, it is critical to generate proper training workloads cov-
ering a sufficient variety CPU activities for a linear regression based
approach.

In our study, we implement totally 36 benchmarks exercising
various CPU components, such as INT, FP, and BPU. In order to
emphasize the simplicity and applicability of the power model,
we select 12 workloads covering maximum subunits, occupying
a wide range of IPC values, and fairly even distributed. We list the
benchmarks utilized in our study as Table 2. In general, the work-
loads exercise most of the processor subunits separately. The last
three benchmarks utilize several components together to form mix
benchmarks.

In the next section, we will discuss the method of relating the
power behavior to the source code level profiling. Basically, based
on the power model proposed, we design APIs locating source code
function blocks according to the estimated power dissipation.

Table 2
Training benchmarks suite.

Microbenchmark Description Approx. IPC

INT(1) Arithmetic integer operation 0.50
INT(2) Arithmetic integer operation 1.62
INT(3) Arithmetic integer operation 2.65
FP(1) Arithmetic floating point operation 0.48
FP(2) Arithmetic floating point operation 1.12
FP(3) Arithmetic floating point 1.43
Cache(1) Cache line reading 0.12
Cache(2) Cache line reading 2.15
BP Brunch prediction 1.00
IS Insertion sort integers 1.77
ISF Insertion sort floating point 2.26
QUICK Quick sort integer 1.01
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4. SPAN design and implementation

We are now in a position to automate the process of power pro-
filing and correlate power dissipation to source code functions. We
argue that it is crucial to design a PMC-based power estimator to
association with source code based on two reasons. On one hand, it
is convenient for software developers to identify their source code
with actual power dissipation phases before any power/energy
optimization. This will give developers more detail information of
where their power/energy optimization should target on. On the
other hand, PMC-based approach is relatively easy to apply in real-
ity. On the contrary, hardware instrumentation definitely offers
high accuracy; however, in practical, this method is limited due
to hardware requirements.

We design a tool, SPAN, to provide live, real time power phases
information of running applications. Generally, given a power
model, there are two methods to enable synchronization between
power dissipation and source code. The first approach is run-
time instrumentation at binary-level. This method usually has a
high granularity control over the execution. Because our approach
mainly assists developers, we adopt the second option that speci-
fies a suite of external API calls to correlate power estimation with
application source codes. We refer to it as source code level instru-
mentation. The advantages of this method include the following
items: lower overhead, applicability, and independence against
instrumentation tools, such as PIN [4]. However, our approach
requires developers to add some code manually to call the SPAN
APIs.

The basic flow of the SPAN tool is illustrated in Fig. 4(a). The
two inputs of SPAN are the application information and the PMC
values. At the application level, the app information and the esti-
mation control APIs are passed to the control thread through the
designed SPAN APIs. Utilizing the run-time PMC values by calling
the system call, the analyzer thread applies the power model pro-
posed in Section 3.2 to estimate the power dissipation. Finally, the

Application

SPAN
API

SPAN Control Thread

Perf System Call to Control
PMC Montoring

SPAN Analyzer Thread
Output

Example Code:

SPAN_create();

SPAN_open();

...

SPAN_start (foo1,foo1_log);

foo1();

SPAN_stop (foo1,foo1_log);

SPAN_output (foo1_log,power)

.

Time

Example Output:

(a)

(b)

)(2oof)(1oof

Fig. 4. Design of SPAN. (a) The flow chart of SPAN. (b) An example output of SPAN.

Table 3
SPAN APIs.

APIs Description

span create() Prepare a power model profile which
records basic parameters

span open() Initialize a SPAN control thread and
targeting PMCs

span start(char*

func,

char* log)

Record the targeting application function
and specify the log file name

span stop(char*

func,

char* log)

Stop the power estimation for a specified
app function

span pause() Temporally stop reading PMCs
span continue() Resume reading PMCs
span change rate(int

freq)

Shift the estimation rate, basically this
methods control the PMC sampling rate

span change model(float*

model,

File*

model)

Modify the model parameters in the model
file according to the platform

span close() Close the opened PMCs and SPAN control
thread

span output(char*

log, FILE*

power)

Invoke SPAN analyzer thread and produce
the detailed power estimation information
with respect to the profiled functions to
the destination file

SPAN outputs a figure of estimated power dissipation represented
by different colors, such as Fig. 4(b) shows.

In order to support the proposed mechanism, it is critical to
provide a set of flexible APIs to applications. We show some of
the designed SPAN APIs in Table 3. Currently, we implemented a
preliminary C library of these APIs.

Given these APIs, the SPAN works as follows. First, we prepare
a default file describing a set of power model parameters and an
estimation frequency by calling span c-reate(). Once the target-
ing application runs, PMCs are opened for each core respectively
by calling span open(); then, a SPAN control thread, which stores
the row PMC information and the application function information
(e.g., function name and start time), is invoked before each profil-
ing function. The recording continues until we call the span stop or
span pause(). The output is generated and stored into another file
finally.

5. Validation and evaluation

We mainly evaluate our approach in two categories. First we
need to discuss the accuracy of the power model. The second part
covers the evaluation of SPAN on the source code level power esti-
mation.

5.1. Environments

Specifically, we evaluate the power model on two different plat-
forms, Asus intel 4 and HP amd 6, where 4 and 6 represent the
number of cores on each CPU respectively. The hardware config-
uration of each platform can be found in Table 4. We estimate the
power generated by the SPEC2008Cjvm[3] benchmarks to validate
the power model. We use Java version 1.6.0 18 on both platforms to
launch each benchmark. The warm time is set to 5 min, and the iter-
ation time is 10 min. We change −bt option to change the number
of threads. We plan to restrict the CPU affinity to one core during
the training process originally, which will minimize CPU migra-
tions and provide a set of more optimized model parameters, but
the assumption of no CPU migration conflict with the reality. There-
fore, the system does not restrict CPU affinity in all of our training
and evaluation process. The PMCs values are collected using the
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Table 4
System configurations.

Platform

Asus intel 4 HP amd 6

Model Asus Essentio CM5570 HP Pavilion Elite HPE-000
CPU Intel Q8200 AMD Phenom
Core frequencies 2.34 GHz, 2.00 GHz 2.6 GHz, 2.0 GHz, 1.4 GHz
# of cores 4 6
Memory DDR3 6GB DDR3 8GB
OS Linux 2.6.31 Linux 2.6.31

kernel system call [2], NR perf event open(), which starts to be
available in Linux kernel version 2.6.31.

Leakage power becomes a non-trivial portion of the power bud-
get on modern superscalar processors. Experimental results show
that leakage current increases exponentially with the supply volt-
age [48]; however, given a specific CPU frequency and supply
voltage, as the input of our model, the leakage power is fixed.
Besides, our power model mainly focuses on the dynamic power
dissipation generated by a given workload. Therefore, we do not
incorporate the leakage power in our power model.

In order to minimize the temperature effect on power, after each
valid run, we set 10 min as cooling time. The static power is mea-
sured before each execution, and we guarantee the variation of the
static power is less than 5% so that the results are comparable. It
is worth noticing that there only exists neglectable static power
variation for different operating frequencies [12]. Meanwhile, we
use hardware measurement to collect power dissipation informa-
tion on the processor as well. The results are compared with the
estimated power dissipation in the next section.

5.2. Power model evaluation

The first step of using our power model is to generate a set of
parameters from the training benchmarks. Some of the detailed
parameters we derived from the training process are listed in
Table 5. We can easily observe that the effects of IPC on power
drop considerably at both margins: the IPC below 1.0 and beyond
2.0.

We evaluate our model in terms of accuracy. More and more
research on power estimation techniques argues that accuracy is
not the only aspect we should focus on [8,20]. However, other
characteristics, such as responsiveness, depends on acceptable
accuracy. In addition, the power model usually provides reason-
able responsiveness if it has high accuracy. We run SPEC2008Cjvm
benchmarks with multi-threads on possible frequencies to collect
data. The errors are reported for the whole processor.

Through Fig. 5(a)–(d) shows the percentage error from a single
core to the maximum four cores running 10 different benchmarks

on Asus intel 4. As the figures illustrate, generally, there is an incre-
mental relationship between error rate and the number of cores.
The possible reason is that we do not consider the shared resource
in a fine granularity in the power model due to the PMCs limit. In
addition, the inter-core communications, which are another major
source of power dissipation, cannot be captured by the power
model simply deploying one PMC. Given such limited informa-
tion, our model achieves 5.17% absolute error rate on average, with
standard deviation of 5.40%.

Fig. 5(e) summarizes the estimated error under frequency
2.00 GHz on Asus intel 4. Our model is able to achieve smaller error
rate since the power dissipation for each benchmark decreases and
falls into a narrow range, which is less unpredictable than the sce-
nario of high frequency. The power dissipation of some particular
benchmarks, such as crypto.aes, presents a low correlation coeffi-
cient to the IPC and extensive usage of other processor components,
such as brunch prediction units.

Similarly, from Fig. 6(a)–(d), we report experimental results of
our power model on HP amd 6. We control the maximum and aver-
age absolute error rate to 11.26% and 4.46% respectively for up to
the six-core scenario, with a vast majority of estimates exhibiting
very small errors. Besides, it is worth mentioning that our model
does not consistently under- or over-estimate the power across the
benchmark suite. We summarize the experiment results on fre-
quencies of 2.00 GHz and 1.40 GHz in Fig. 6(e) and (f) respectively,
with average error rate of 3.14%.

5.3. SPAN evaluation

After illustrating the error rate of our model, in this subsection,
we discuss the effectiveness of SPAN in detail. As it was noted in
Section 4, the SPAN is a source code instrumentation technique that
keeps tracking power dissipation of each function block. We mainly
evaluate two aspects of the SPAN, the overhead and the responsive-
ness. We focus on two benchmarks for the testing purpose. One is
the FT benchmark from NAS parallel benchmark suite. Another is
a synthetic benchmark that we designed with the combination of
integer operation, PI calculation, prime calculation, and bubble sort.

The overhead of instrumentation on both testing benchmarks
is negligible. First, we measured the execution with and without
the SPAN instrumentation for ten times each. The differences of
execution time are within 1% on average. The reasons of low over-
head are as follows: the instrumentation is at the source code
function-level, which barely adds interruptions during executions;
the PMCs used in the model are limited to the minimum values,
which further reduce the computation and communication cost of
SPAN. Second, we measured the power dissipation of the bench-
marks with and without underneath SPAN threads that record
counter values. The overall variance across the whole execution lies
within 2% in ten valid runs. Considering other factors, such as tem-

Table 5
Derived power model parameters.

System settings P(fi) IPC(fi) Pinct(fi) P�(fi) Pshared(k) IPC range

Asus Essentio CM5570, single-core, 2.36 GHz 15.74 0.49 −1.28E−15 1.79 0 0–1.0
19.47 1.28 −0.60 4.41 0 1.0–2.0
21.52 2.21 1.50E−15 1.49 0 Beyond 2.0

Asus Essentio CM5570, two-core, 2.36 GHz 15.74 0.49 −1.28E−15 1.79 10.44 0–1.0
19.47 1.28 −0.60 4.41 10.44 0–2.0
21.52 2.21 1.50E−15 1.49 10.44 Beyond 2.0

HP Pavilion Elite HPE-000, single-core, 2.6 GHz 25.55 0.45 0.18 0.87 0 0–1.0
27.26 1.35 −0.10 1.58 0 0–2.0
27.50 1.99 0.06 −0.18 0 Beyond 2.0

HP Pavilion Elite HPE-000, two-core, 2.6 GHz 25.55 0.45 0.18 0.87 18.84 0–1.0
27.26 1.35 −0.10 1.58 18.84 0–2.0
27.50 1.99 0.06 −0.18 18.84 Beyond 2.0
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Fig. 5. Estimation error of SPEC 2008Cjvm on Asus intel 4. (a) 2.34 GHz, one-core;
(b) 2.34 GHz, two-core; (c) 2.34 GHz, three-core; (d) 2.34 GHz, four-core; (e) sum-
marized, 2.00 GHz.

perature and power supply variation, 2% is a reasonable range in
reality.

Though there is no standard method to evaluate the responsive-
ness of a power model, one of the simple and effective approaches
are comparing the continuous measured and estimated power val-
ues. We utilize two multimeters storing the power dissipation
of the target computer consistently into an assistant computer
with the interval of one second. The benchmarks are executed on
the Asus intel 4 platform with the SPAN source code instrumen-
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Fig. 7. Results of the SPAN evaluation on two benchmarks: (a) the FT and (b) syn-
thetic benchmark with SPAN instrumentation.

tation to estimate the power. We plot the results in Fig. 7. It is
easy to observe that the estimated power is closely related to the
measured power dissipation at the overall shape. We also mark
the corresponding benchmark functions in each figure. The first
iteration of benchmark FT mainly consists of two functions, com-
pute initial conditions() and fft(); then, the rest iterations follow the
same procedure, which can be clearly observed from Fig. 7(a). But
the estimations present a certain level of delay due to the rapid
function changes in the source code. Moreover, in Fig. 7(b), we
deliberately insert sleep() function between each sub benchmark
in the synthetic workload in order to distinguish each one of them
easily. We achieve the error rate as low as 2.34% for the two bench-
marks on average.

6. Related work

Since we have already summarized a significant amount of work
on power profiling, in this section we describe several previous
efforts that are most related to SPAN from two aspects: PMC-based
power models and program power behavior analysis.

6.1. PMC-based power models

Hardware performance counters are a set of special-purpose
registers built into modern microprocessors to store the counts of
hardware-related activities within computer systems. Researchers
often rely on those counters to conduct low-level performance
analysis or tuning.

Frank Bellosa is one of the first proponents of applying PMCs
to investigate the energy usage patterns and finding the correla-
tion of hardware events and system power [7]. He uses information
about active hardware units to establish a thread-specific energy
accounting, and then he uses the power information for energy-
aware scheduling policies. Kadayif et al. design a tool called Virtual
Energy Counters (vEC), which is built on top of the Perfmon user
library. Their power model mainly considers cache related perfor-

mance counters. In [25], Isci and Martonosi divide the processor
into 22 function units and finds the relationship between the coun-
ters and those units. Although their results are very accurate, it is
hard to be used on new platforms. Contreras and Martonosi [14]
discover the power-IPC correlation and use five PMCs to estimate
the power of workloads running on different CPU frequencies.

In [42], Powell et al. proposes a methodology to reduce the
number of performance counters. They estimate the hardware
activity events of several microarchitectural structures. Then, they
associate the activity events with the power dissipation of such
structures. Bertran et al. [8] demonstrate an alternative approach of
using PMCs on CPU power estimation. Rather than directly deriv-
ing a power model using PMCs, they propose a method to treat
each component of CPU separately, such as FE, INT and FP. Com-
bining all the training parameters, they develop a fine-granularity
power model. However, the training process is time-consuming
to be extensively used in practical. In addition, the power model
highly depends on the microarchitecture of the CPU.

Our main difference from all these works is that we combine the
CPU frequency scaling and multicore features in the power model,
which fits the trend of microprocessor design recently. Besides, our
power model only employs one IPC. Other models [8] can achieve
better accuracy and less variance compared with ours by collecting
a number of counter values and training with more microbench-
marks, but barely can their models be applied to reality because of
the model complexity.

6.2. Program power behavior analysis

Understanding program behavior is at the foundation of com-
puter architecture and program optimization [46]. As energy
consumption becomes one of the most important design consid-
erations, researchers also evaluate the power and performance
during the software development period. Program power behav-
ior analysis cannot only help us optimize the energy efficiency of
the applications, but also help the systems intelligently schedule
the tasks by using new power-aware scheduling algorithms [5,32].

PowerScope [17] is one of the first work that map energy con-
sumption to program structure. They develop a user-level daemon
process and modify several system calls of the NetBSD kernel to
sample process activity. Furthermore, they monitor energy con-
sumption with collected data via a group of multimeters that is
connected to the power source. Finally, synchronization with the
System Monitor is provided by connecting the multimeter’s exter-
nal trigger input and output to pins on the parallel port of the
profiling computer.

Similar with PowerScope, Ge et al. use their platform called
PowerPack, a hardware-based power measurement and profiling
platform, to analyze the application power behavior [18]. They
insert a set of user-level APIs, such as pmeter start session and
pmeter end session, before and after the code region of interest
to map the power profile to the source code. Further more they
analyze the power efficiency on multi-core platforms. The method
they use to map power profile into program code is similar to our
work; whereas, our approach is a pure software-based approach,
and do not employ any hardware.

Isci et al. use the similarity matrix approach of [46] to deduce
power phase behavior over the program runtime. Then they use
component-based power breakdowns, computed by their power
models, to identify power phases of programs. Their power model,
however, is difficult to obtain because of PMCs limits.

7. Conclusion and future directions

In this paper, we first survey the related techniques in the field of
power measurements and profiling comprehensively by classifying
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the previous work into three main categories, totally five sub-
groups. We then present a novel practical power modeling method
based on performance monitoring counters (PMCs) by employing
one PMC and 12 training benchmarks on two recent multicore pro-
cessors. Based on the model, we design and implement SPAN to
map the run-time power dissipation to application functions. We
evaluate both the power model and SPAN on two modern multi-
core systems. Despite the limited information provided by only one
PMC, we achieve an absolute error rate of 5.17% and 4.46% on the
two platforms by using benchmarks from SPEC2008Cjvm suite. In
addition, it shows fairly stable accuracy under different frequencies.
We also collect empirical data to validate the SPAN tool. Using the
FT benchmark from NAS Parallel benchmark suite and the synthetic
workload, we reach accuracy as high as 97% on average.

Power measurements and profiling have already been studied
extensively at different levels; however, more investigations are
needed in the following two areas: improving power profiling tech-
niques and using these strategies in power-aware software design.

Accuracy is not the only important requirement for power
measurements and profiling. We envision that simplicity and
adaptability are also very interesting aspects. Simple power models
are needed to supply live power information for systems, other-
wise the overhead will be too high to be used. In addition, as the
number of cores on a single chip keeps increasing, on-chip net-
work fabrics become one of the main power dissipation resources.
Thus, future research needs to consider this unit and reevaluate
the power indicators that are currently used. Furthermore, we still
need to break down the power dissipated on shared resources such
as caches, and find suitable indicators to break down higher level
power information into lower levels.

Currently, power measurements and profiling has been used
for making power and performance trade-offs during hardware
designs. Exploiting how to use power profiling approaches to
design energy efficient software is also an interesting direction,
which is highly related to the research activities in operating sys-
tems and software engineering fields.
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