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Abstract—Resolving the excessive energy consumption of mod-
ern computer systems has become a substantial challenge. There-
fore, various techniques have been proposed to reduce power
dissipation and improve energy efficiency of computer systems.
These techniques affect the energy efficiency across different
layers in a system. In order to better understand and analyze
those techniques, it is necessary to obtain a general metric that
represents the energy efficiency of a computer system, for a
specific configuration, given a certain amount of workload.

In this paper, we take the initial step and define a general
energy-efficiency model, the CPT model, for multi-core computer
systems. CPT is a unified model that helps to decide the best
configuration of a system in terms of energy efficiency to execute
a given workload. In addition, we expect the model can be
utilized to analyze possible knobs that are used to improve energy
efficiency. Three case studies are employed to illustrate the usage
of the proposed CPT model.

I. INTRODUCTION

The conventional computing area is dominated by the
pursuit of performance. The community has not realized the
importance of energy efficiency until recently [1]. As a result,
energy-efficient techniques have been used across different
layers in almost every single system, ranging from a single
chip to a large data center. These techniques include low-
power circuit designs, tunable device states (Dynamic Voltage
and Frequency Scaling), dynamic power management from
operating systems, and energy-efficient software. Although
current computer systems already achieve much higher effi-
ciency ratings compared to that of previous generations, there
is still potential headroom for improvement.

With the development in energy-efficient computing, one of
the fundamental questions is how to define a model to quantify
energy efficiency. An appropriate energy-efficiency metric not
only can be used to evaluate and analyze existing techniques,
but also helps to explore new techniques in this field. However,
defining a energy-efficiency model is challenging. For one
thing, the model should be sufficiently general in describing
various techniques. Commonly used knobs such as multi-
threading and DVFS have to be meaningful according to
the model. Optimizations from different layers have to be
expressed at some level from the model as well. For instance,
the model is better to convey the idea of both clocking
gating [2] and workload consolidation [3].
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Moreover, energy efficiency has to be associated with
workload characteristics. For example, requests per second or
transactions per day is the metric that typically is used to
measure the throughput of web service applications, while mil-
lion instructions per second (MIPS) is of the most interested
performance indicators in scientific computing field.

In this paper, we propose a general energy-efficiency model,
CPT, which enables efficiency analysis of a system, given
a running workload. The rest of the paper is organized as
follows: we start the paper by presenting the CPT model and
analyze each component in the model in Section II, followed
by case studies in Section III. Related work is discussed in
Section IV. Finally, we summarize the paper in Section V.

II. THE CPT MODEL

In the CPT model, given a fixed amount of workload, we
ask the question how much energy is consumed in order to
complete the task. Specifically, the model is represented as
follows

E =Workload/Energy =
W

(PAI +C×Pt)T

=
W

PAI ×T +C×Pt ×T

(1)

where E stands for energy efficiency. W represents the total
workload size that is assigned to a system. PAI and Pt denote
active idle power of the system and average power dissipation
of each thread, respectively. Specifically, PAI is the power
dissipation while a system is idle in C0 state specified in ACPI
standard [4]. C indicates the concurrency level of the workload.
Intuitively, the more concurrency threads that are used, the
quicker a job can be completed. System power dissipation,
however, rises with more system resources being used. The last
factor, T , is the total time taken to complete the workload. The
name of CPT was conceived using the three most important
parameters, concurrency, power and executive Time.

In order to improve the overall E , each part in Equation 1
should be considered. In reality, changing each item usually
subsequently alters other factors in Equation 1. For exam-
ple, improving performance reduces T ; however, in order to
improve performance, usually, active power increases. To be
clear, we argue that it is more important to compare the energy
efficiency of the same workload using different designs and/or
implementations.



A. Workload (W)

Given the other factors fixed, in order to improve E ,
intuitively, we can assign more workload to a system as much
as possible. These scenarios can be found in data centers,
where facility power dissipation is limited. At this level, the
concurrency can be roughly estimated as how many nodes have
been deployed in a data center. Hence, it is better to operate
a facility to its upper capacity limit so that energy efficiency
can be maximally guaranteed.

Fan et al. propose several ideas to improve E in [5].
Through in-depth analysis, the authors discuss possible capac-
ity that can be safely incorporated into different layers, which
include racks, PDUs, and clusters. Although in this process,
there are more nodes added into the system, Pt can be reduced
via DVFS and idle state so that the denominator in Equation 1
remains within the total power limit of the facility. The basic
idea of techniques in this category is to accomplish more jobs
while keeping the product of C and Pt unchanged.

B. Concurrency (C)

As multi-core platforms become common on servers and
even smart phones, implementing concurrency applications
generally will help to improve system performance. By assign-
ing each piece of a job to different cores or processors, system
resources can be efficiently utilized. Most likely, if a job can
be finished earlier, its E can be improved as well because T is
reduced. However, it is not always the case. The well-known
concurrency hazards are a collection of problems that could
possibly occur if concurrency is not implemented properly.
The hazards include false sharing, memory contention, incor-
rect granularity, and so on. One the one hand, the execution
time, T , could be increasing. On the other hand, the total Pt
might rise which in turn sabotages E . False sharing is a typical
problem that can be found in multi-threading applications with
shared memory. In the case of false sharing, a certain amount
of cache lines are being swapped in and out from a cache
frequently, which invokes additional power dissipation and
extends the execution time. In this case, Pt and T are both
affected.

Speedup models are supposed to estimate the benefits in
terms of execution time by using more threads to work on
a job [6]. Normally, allocating more cores to a job has
dramatic benefit on execution time if it is used properly. For
example, embarrassingly parallel applications benefit the most
from multi-core architecture theoretically because there is no
dependency between paralleled tasks. A typical example is
that a GPU has a much larger number of cores (from 500 -
900) compared to that of a general purpose CPU. However,
most other parallel applications do not hold the assumption
that there is no dependency between tasks. Communication
between tasks becomes the primary concern when the number
of cores increases. Consequently, the bottleneck of finishing a
job shifts from computation needs to communication demands.
The speedup effect diminishes while the concurrency level still
ascends, eventually decreasing E [6].

The concurrency level, C, influences the overall E in various
ways. Its effect is a complex combination of system architec-
ture and workload characteristics. Optimal concurrency level
from a performance perspective does not necessarily indicate
the maximum E . Selecting an appropriate C becomes a
more complicated problem in power-aware computing setting
(DVFS-enabled).

C. Active idle power (PAI)

The active idle state is the normal operating state of a system
when it is idle, or according to ACPI standard, the C0 idle
state. No wake up is required before a system executes jobs.
In active idle state, power has been utilized to maintain the
operation state of a system.

Most techniques that used to improve E by reducing PAI are
at circuit level. The idea is to reduce leakage power. Usually
low power design devices can be used to achieve this goal.
As the density of transistors on a die increases tremendously,
the static power dissipation of a processor occupies a large
portion of the total power. The reason is because leakage
power rises as more transistors are put on a chip. Low power
devices usually sacrifice some performance to achieve less
power dissipation.

One well-known strategy,“race to idle” [7], states that a
system should finish its job as quickly as possible and rush to
an idle state. This is partially because E can be improved by
reducing T . In addition, a system could enter deeper C states.

One of the most beneficial result that comes from reducing
active idle power is that it almost has no effects to other com-
ponents in Equation 1. Therefore, it can be safely used together
with other proposed techniques targeting other components.
Moreover, PAI does not depend on a particular architecture or
workload type.

D. Power dissipation per thread (Pt)

Power dissipation per thread represents the dynamic power
dissipation in some sense. Decided by how efficiently system
resources are being used, dynamic power dissipation associates
with run-time system management, system architecture, work-
load characteristics, and so on. Consequently, various factors
affect power dissipation per thread. For instance, database
applications exhibiting high memory and I/O utilization have
distinct features from computation intensive applications in
terms of dynamic power. Another example is low-power elec-
tronic devices execute specific types of tasks more efficiently
compared to their counterparts. Measuring per thread power
on a multi-core processor is challenging; therefore, power
models are used instead of hardware measuring. We developed
SPAN [8] to model power dissipation at per function per thread
level.

Clock gating is one of the most widely used techniques [2].
By disabling part of the circuits so that they do not have
to switch states, clock gating saves dynamic power. Work-
load characteristics mainly determine the effects of clock-
gating. General purpose processors, although having more
computation power, usually cannot satisfy low power features.



Application-specific integrated circuit (ASIC) is much more
energy efficient, for certain types of tasks [9]. For example,
most of the latest smart phone platforms have GPU units,
which perform graphic jobs more efficiently. In this sense,
it reduces Pt required to finish certain tasks.

Another principle to reduce dynamic power is to put devices
or components into lower power modes if they are not in
use. DVFS allows run-time adjustment of power dissipation
of a CPU. According to the equation P = CV 2F , reducing
voltage and frequency has a cubic effect on power dissipation.
However, one of the disadvantages of using DVFS is that
it will extend execution time T . In this sense, the overall
effects of DVFS on E is unclear. Normally, because of the
existence of static power, extending workload execution time
reduces E even though the average power decreases. The
key point is to apply DVFS on applications properly. Isci et
al. propose a run-time prediction model to identify program
phases that are less CPU-bounded [10]. Afterwards, DVFS
can be applied to these phases with limited performance loss.
Hence, the extended T value can be controlled during this
process. The same idea can be applied to similar scenarios.
For example, as far as I/O bounded applications are concerned,
DVFS effectively improves E . If CPU-bounded applications
are the major targets, I/O devices can be safely put into deeper
D states.

Other than frequency, workload characteristics also con-
tribute to the per thread power to a certain extend. Activities on
different components of a system determines the total amount
of power dissipation at that moment. For example, IPC values
are highly related to CPU power [8]. Some applications suffers
from high last level cache (LLC) misses, which leads to high
memory power dissipation and low E . Either by altering the
implementation or algorithms, Pt can be controlled. However,
optimization techniques used at this level sometimes fall into
the same category of performance optimization.

III. CASE STUDY

In this section, we use three case studies to illustrate
the usefulness and effectiveness of CPT: 1) the effect of
concurrency (C); 2) the impact of thread mapping; and 3) the
influence of DVFS.

Experiment setup We conduct the experiments on a Intel
Xeon E5620 server. The specifications are listed in Table I.
There is a total of eight frequencies available, with a maximum
of 2400MHz and minimum of 1600MHz. We use the NPB
benchmark suite with OMP implementation to demonstrate the
idea of CPT. In order to measure the energy consumption of
the workload on the system, we connect a power measurement
device, Watt’s Up Pro [11], between the power outlet and
the server. Watt’s Up Pro is able to record power dissipation
of the entire system at a frequency of 1Hz. It is connected
to the system with a serial port. Watt’s Up averages power
measurement inside one second intervals, so that it is safe
to use power readings and execution time to calculate total
energy consumption.

System component Configuration
CPU Intel Xeon E5620

Microarchitecture Nehalem
Processor core Westmere-EP

L1 cache 4 × 32KB I cache
4 × 32KB D cache

L2 cache 4 × 256KB
L3 cache 12MB
Frequency 2400MHz

Number of sockets 2
Num of cores per chip 4

Num of threads per chip 8
Total num of threads 16

Kernel version Linux 2.6.31

TABLE I
SYSTEM SPECIFICATION.

Case Study 1: Concurrency: We show the effects of
concurrency on other factors and E . Firgure 1 demonstrates
the effects of concurrency on the average power dissipation,
workload execution time, and total energy consumption. As
discussed, increasing concurrency level properly can reduce
execution time. The specific speedup factor varies among
different workloads. EP, IS, LU, and UA benchmarks are
shown to be most affected by the concurrency level. However,
most of them suffer from the diminishing of speedup. Most
benchmarks in this category show less speedup if the number
of threads utilized is equal or greater than four. Although FT,
VIPS, and SP benchmarks benefit from concurrency, execution
time is no longer monotonically related to the number of
threads. The execution time increases if all 16 logical cores
are employed. For the Raytrace from Parsec benchmark, it
reaches optimal energy efficiency when only four cores are
used. This is a typical case to consider because using more
threads does not improve energy efficiency for Raytrace. It is
because resource contention and serial portion of the workload
become dominant factors rather than computation needs.

Average power dissipation per thread, Pt , decreases gen-
erally if more cores are involved in the computation. The
exceptions are EP, FT, and IS benchmarks when two cores
are deployed. The reason is probably because more function
unit on the chip are operational if two cores are used that
techniques such as clock gating is no longer in use. It is worth
noticing that the total average power dissipation, which is the
sum of PAI and C×Pt , increases monotonically as more cores
are used even though the value of Pt drops in most cases.
The extra energy consumption due the difference in power
dissipation does not sabotage the overall energy efficiency
because of the speedup. However, as speedup diminishes,
this part of energy consumption affects the overall energy
efficiency.

In this set of experiment, the optimal configuration that
minimizes execution time matches the configuration generates
most energy efficiency. The reason is because PAI occupies a
great portion in the total power dissipation even if all 16 logical
cores are deployed; as a result, PAI ×T contributes a large por-
tion to the total energy consumption. Because of the existence
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Fig. 1. Execution time, average power dissipation per thread, and total energy consumption of NPB and PARSEC benchmark; The X-axis represents total
number of threads (C); (from bottom up)The first Y-axis depicts energy consumption in Joules; The second Y-axis is for average total power dissipation per
thread (Pt ); The third Y-axis shows total execution time (T ); PAI stays around 137W. CPU frequency is set to 2.4GHz.
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Fig. 2. Execution time, average power dissipation per thread, and total energy consumption of 8 thread version of NPB-OMP benchmark; The X-axis
represents different thread mapping strategy; (from bottom up)The first Y-axis depicts energy consumption in Joules; The second Y-axis is for average total
power dissipation per thread (Pt ); The third Y-axis shows total execution time (T ); PAI is relative stable.

of a large amount of static power due to the smaller transistor
size ,“race to idle” plays a vital role to achieve most efficiency
configuration. In addition, it is worth noting that increasing
concurrency level always generates positive speedup results
in the tested benchmarks if no simultaneous multi-threading
(SMT) is considered, which indicates the improved balance
between multic-ore CPU and memory subsystem in terms
of speed. The improved memory performance mainly can be
attributed to the NUMA architecture. Moreover, although SMT
can be effective in most of cases, its usage depend on data
demands of the workload.

Case Study 2: Thread Mapping: Maintaining a constant
CPU frequency and workload concurrency level, the organiza-
tion of threads on a system also affects total energy efficiency.
This technique is known as thread mapping. Compact thread
mapping means that the threads are allocated to one processor
as much as possible. This approach reduces data access latency
since sibling threads are sharing the same cache at some level.
Scatter scheme assigns thread evenly to each processor, which
reduces off-chip resource contention, such as LLC. Figure 2

shows the effects of thread mapping on energy consumption
when eight threads are used. All benchmarks exhibit the same
behavior. A system consumes less power by using only one
processor. However, execution time is reduced considerably
if two processors are deployed together. On average, there is
33% execution time reduction. The combined result is that a
total of 22% energy saving can be achieved if scatter thread
mapping is used. Speedup probably comes from fully utilize
front bus with two sockets. The results do not necessarily show
that scatter mapping scheme outperforms a compact mapping
scheme in terms of energy efficiency in all cases. The major
advantage of using scatter policy is that an additional LLC
can be involved in the computing. In other words, compact
policy can be efficient if the working set size is small enough.,
in which case, the compact policy will consume less power
(small Pt ) with a limited amount of performance loss (larger
T ). Because of this characteristics, compact policy can be used
for power capping as well. We discuss it in more details in
the next case study.

Case Study 3: DVFS As we discussed in Section II-B,
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Fig. 3. Execution time, average power dissipation per thread, and total energy consumption of 8 thread version of NPB-OMP benchmark; The X-axis
represents different CPU frequencies; (from bottom up)The first Y-axis depicts energy consumption in Joules; The second Y-axis is for average total power
dissipation per thread (Pt ); The third Y-axis shows total execution time (T ); PAI is relative stable and stays around 137W for all the cases. Scatter is used as
the thread mapping scheme.

DVFS is an effective way of reducing Pt . However, execu-
tion time increases because of the compromised computation
capability. Figure 3 shows the effects of tuning the CPU
frequencies for different benchmarks. It is obvious that the
most energy efficient frequency is depend on the particular
workload. For example, at 2.00 GHz, BT, LU, and UA bench-
mark achieve most energy efficiency among all the different
among all the different frequencies. While, for SP and CG,
it is 1.73GHz. In addition, a finer tuning can be made for
each benchmark to achieve better energy efficiency. We pick
IS benchmark as an example to show the effects. We use
Intel Core 2 Quad 8200 as a experiment platform in this
study to measurement CPU power dissipation directly from the
power supply. We use SPAN [8] to record different functions
activities in IS benchmark. There are three major steps in IS.A:
create_seq(), rank(), and full_verify(). In this
example, the rank() function, which produces approximate
0.15 Instructions Per Cycle (IPC), is less CPU-bound during
its execution (IPC values are used broadly as CPU power
model input [8]). For example, we are able to use DVFS
to scale down CPU frequency from 2.34GHz to 2.00GHz
during the execution of rank(). As Figure 4 shows, we
achieved 24% energy saving with 3% performance loss. On
the contrary, 10% energy saving is achieved with 10% per-
formance loss if we scale down CPU frequency during the
execution of create_seq(), which has higher IPC value
during its execution (around 0.6). In addition, we observe that
multiplication operations are intensively used in the source
code of create_seq(), while rank() function mainly
contains branch-prediction and data movement operations.
Hence, tuning Pt using DVFS will effect both execution time
and power dissipation. In order to improve E , such a technique
needs to be carefully applied.

Given a cap power dissipation [12], using thread mapping
and/or DVFS can control the power dissipation of a system.
The CPT model also can be used to demonstrate this situation.
Since PAI +C×Pt is fixed (due to the cap), the system con-
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Fig. 4. Power dissipation of IS on a Intel Core2 Quad 8200 processor with
different DVFS setting.

figuration that generates highest performance provides maxi-
mum energy efficiency. The specific configuration, however,
depends on the workload and the system. Figure 5 illustrates
this scenario. Although either applying compact mapping or
slower CPU speed reduces power dissipation, the performance
loss introduced by DVFS is less for SP benchmark; while it
is the opposite situation for EP benchmark. The advantage
of using compact threading mapping includes allocating the
data to a relative closer cache, other than the remote cache.
A recent study [13] shows that memory performance can be
affected by DVFS, which should be analyzed based on various
computer systems. In other words, either using a different
thread mapping strategy or DVFS, the off-chip data access
can be affected. However, compact thread mapping produces
a more energy efficient result if the workload phases tend to be
computation intensive. EP benchmark can be considered as an
extreme case. Although the DVFS strategy reduces off-chip
data access bandwidth as well, it utilizes all the LLC from
both processors, which results in a higher performance gain
for a certain set of benchmarks.

IV. RELATED WORK

In the data centers, regarding the effectiveness of the power
usage, Green Grid first officially introduces the equation:
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PUE = Total Facility Power/IT Equipment Power [14]. The
formula is widely used to evaluate the efficiency of a whole
data center design. The proposed CPT model is complemen-
tary with PUE in the sense that CPT emphasizes useful work
produced by a system.

In-depth understanding of software power dissipation be-
comes one of the major considerations when designing power-
aware systems. Ge et al., propose PowerPack [6] to generate
component level power profiles. This approach targets on
cluster level. PowerPack provides APIs to synchronize external
power measurement and function execution of the target
application. However, manual instrumentation is inconvenient
for large scale applications. Hänig et. al, propose SEEP [15],
which uses symbolic execution to explore possible code paths
and entities in a program and to generate energy profiles for
specific target platforms. Instruction level energy profiles are
needed for each platform in advance in order to generate
energy profiles for a program.

V. SUMMARY

In this paper, we propose a general CPT model to analyze
the system energy efficiency for a given workload. Most
techniques on the market can be categorized as altering one
or two parameters in the proposed model. We show three case
studies to illustrate how to use CPT model to analyze different
techniques. In practice, each technique proposed has to be
examined from aspects mentioned in Section II. Energy effi-
ciency is closely related to the system architecture, workload
characteristics, and system configurations. We expect the CPT

model helps to identify the bottleneck of existing systems and
serves as guidance for future energy-efficient system designs.
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[13] R. Schöne, D. Hackenberg, and D. Molka, “Memory performance
at reduced cpu clock speeds: An analysis of current x86 64
processors,” in Proceedings of the 2012 USENIX Conference on
Power-Aware Computing and Systems, ser. HotPower’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387869.2387878

[14] A. Rawson, J. Pflueger, and T. Cader, “The green grid data center power
efficiency metrics: Pue and dcie,” The Green Grid, Tech. Rep., October
2007.

[15] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat, “Seep:
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