
HydraOne: An Indoor Experimental Research and Education Platform for CAVs

Yifan Wang∗†‡, Liangkai Liu∗, Xingzhou Zhang∗†‡, Weisong Shi∗
∗Wayne State University

†SKL of Computer Architecture, Institute of Computing Technology, CAS
‡University of Chinese Academy of Sciences

{wangyifan2014, zhangxingzhou}@ict.ac.cn, {liangkai, weisong}@wayne.edu

Abstract
Connected and autonomous vehicles (CAVs) is currently a
hot topic and a major focus in the field of edge computing,
and it has created numerous pivotal and challenging research
problems. In this paper, we present HydraOne, an indoor ex-
perimental research and education platform for edge comput-
ing in the CAVs scenario. HydraOne is a hardware-software
co-design platform built from scratch based on our experience
with the requirements of edge computing research problems.
We present the design and implementation details and discuss
three key characteristics of HydraOne: design modulariza-
tion, resource extensibility and openness, as well as function
isolation. These will help researchers and students fully un-
derstand the platform and take advantage of it to conduct
research experiments. We also provide three case studies de-
ployed on HydraOne to demonstrate the capabilities of our
research platform.

1 Introduction

There are numerous academic studies and industrial works
of edge computing that have emerged in the past few years,
crossing various domains [21, 23]. Many researchers and
developers have focused more attention on critical edge ap-
plications [11, 27], framework and middleware for edge com-
puting [32], security and consistency on edge [15], and IoT-
edge-cloud interactions [24] etc.. However, few studies have
discussed how to develop a research platform for edge comput-
ing in a specific application scenario, which is more important
for sharing and spreading research achievements in the edge
computing field.

In the cloud computing domain, the main function of the
research platform is data processing. Researchers focus more
on computing performance when building the research plat-
form for cloud computing. The development of virtualization
technology [16] and distributed computing [4] allowed re-
searchers to build their private cloud computing platform via
some open-source framework [22]. In the Internet of things

3D LiDAR

HD Cameras

Computing Platform

Batteries

DC Motors w/Encoder Mecanum Wheels

!
" #

Figure 1: Overview of HydraOne Platform.

(IoT) domain, the research platform is used to collect and
transmit sensor data, so researchers are more concerned about
the peripheral interface resources and wireless communica-
tion capability of the research platform. Many classic IoT
platforms for research and education have been released, such
as, Arduino [2] and Telos [18]. The edge computing domain
has the characteristics of both cloud computing and the IoT
domain. The research platform for edge computing should
have enough computational capabilities, and it could collect
the data from the data producers in specific computing sce-
narios and communicate with other entities in the network.

Connected and autonomous vehicles (CAVs) are already
changing our vision about future vehicles and transportation.
A recent report shows that each connected and autonomous
vehicle will generate about 4,000GB of data per day [9]. The
majority of vehicular data would be processed in the vehicle
due to network bandwidth restrictions under which CAVs be-
come a typical edge computing system. A large number of
research opportunities still remain in the field of edge com-
puting in CAVs. However, it is challenging for researchers to
deploy applications and systems designed for CAVs in real-
world environments due to the lack of a research platform for
CAVs. To address this challenge, we propose HydraOne, an

indoor experimental research and education platform for edge
computing in the CAVs scenario. As shown in Figure 1, Hy-
draOne is a full-stack research and education platform from
hardware to software, including mechanical components and
vision sensors, as well as a computing and communication
system. All the resources on HydraOne are managed by the
Robot Operating System (ROS) [19]. HydraOne has three key
characteristics: design modularization, resource extensibil-
ity and openness, as well as function isolation, which allows
users to conduct various research and education experiments
on CAVs with HydraOne.

While HydraOne is an indoor robot-based platform, it has
sufficient resources and components to conduct CAVs exper-
iments. The computing platform on HydraOne collects and
processes the sensor data in real-time; then it outputs the con-
trol message to the chassis to control the moving speed and
direction of the platform, which enables the autonomous driv-
ing capability of HydraOne. Users can develop the algorithms
of sensor fusion, perception, and decision-making on the plat-
form. HydraOne is equipped with a Wi-Fi module to commu-
nicate with the cloud and the edge server, which allows users
to conduct the experiments of Vehicle-to-everything (V2X)
on HydraOne. In addition to autonomous driving and com-
munication, the research problems supported by HydraOne
include but are not limited to the operating system designed
for CAVs, safe and trusted execution environments on CAVs,
and privacy preservation model and tools for vehicular data.

2 Related Work

In this section, we summarize the related work from the per-
spective of two research platforms: for autonomous devices
and edge computing.

Research Platform for Autonomous Devices. Wei et al.
presented the CMU autonomous driving research platform,
which is based on a Cadillac SRX [29]. This work focuses on
vehicle engineering problems, including the actuation, power,
and sensor systems on the vehicle. Tomic et al. presented
an autonomous UAV research platform for urban search and
rescue [26]. They introduced the hardware infrastructure of
their platform and provided a set of algorithm libraries to help
developers complete the urban search and rescue task. Pheeno
[30] and r-one [14] both are research and education platform
for multi-robot manipulation. These studies designed a low-
cost robot platform with a small number of sensors and a low-
power communication module, which can help researchers to
deploy the experiment of versatile swarm robotic.

Research Platform for Edge Computing. ParaDrop [12]
is an edge computing platform designed for multi-tenant on
wireless gateways. It uses Linux Container (LXC) to man-
age the resource on the wireless gateway, which allows re-
searchers to implement their edge computing applications on
the gateway. Φ-stack [31] is a full-stack research platform for
the smart web of things. Φ-stack contains a novel smart IoT

Edge Server

Computing Platform
NVIDIA Jetson TX2

LiDAR
Velodyne VLP16

Camera ×"
Leopard Imaging

AR023Z
Control Board

Arduino Mega 2560

Encoder Motor ×#

Motion

Vision

Remote

USB 3.0

Ethernet

I2C

UART

Motor Driver ×"

12V
12V

12V

Power

3S LiPo Battery ×" Mecanum Wheel ×#

5V

5V

12V

5V

Figure 2: HydraOne Hardware Design

processor(ΦPU) and a RESTful-based software framework
(ΦOS and ΦDK), which natively supports the web and intelli-
gence. Researchers can use Φ-stack to deploy the intelligence
workloads via RESTful API on low-power smart IoT devices.

It should be noted that there some similar platform al-
ready exist in the community, such as MIT RACECAR [8],
DJI RoboMaster Robots [5], and Audi Autonomous Model
Cars [1], but they only can be acquired by participating in spe-
cific competitions. HydraOne provides an open platform for
researchers and students to be able to build their own CAVs
experimental platform according to this paper.

3 Design and Implementation

In this section, we introduce the design and implementation
details of HydraOne and present three key characteristics of
the platform.

3.1 Hardware Design
Design Overview. As shown in Figure 2, HydraOne is
equipped with a NVIDIA R© JetsonTMTX2 embedded mod-
ule [17] as the core computing platform. Jetson TX2 collects
the data from multiple sensors and feeds the data to several
computing tasks in real-time. An Arduino board receives
the control message output from the computing tasks via se-
rial port (UART) then sends the control signals to the motor
drivers to control the movement of HydraOne. Jetson TX2
is equipped with a Wi-Fi module which allows HydraOne
to communicate with an edge server or other entities in the
network. The whole HydraOne platform is powered by two
3S LiPo Batteries.

Sensors. HydraOne is equipped with two HD cameras and
one 3D LiDAR which form the basic vision system of Hy-
draOne. The sensors’ models are listed as below:

• 2×Leopard Imaging AR023Z 1080p HD color camera,
1920×1080@30, rolling shutter;
• 1×Velodyne VLP-16 rotating 3D laser scanner, 16 chan-

nels, collecting ∼ 3 million points/second, field of view:
360◦ horizontal, 30◦ vertical, range: 100m.

/camera1/imagecamera_node1

camera_node2

LiDAR_node

sensor_node !

…

object_detection_node

SLAM_node

processing_node !

/camera2/image

/lidar/point_cloud

/lidar/laser_scan

path_planning_node /chassis/control

remote_control_node

/slam/map

actuator_node !

/chassis/control

…

…
…

camera 1

LiDAR

camera2

Edge Server

HydraOne

chassis_node

ROS Framework on HydraOne

Chassis

Figure 3: HydraOne Software Framework

Computing Platform. The computing platform on Hy-
draOne processes complicated computing tasks, such as
computer vision and machine learning algorithms, to sup-
port the various applications of CAVs. The traditional mi-
croprocessor cannot meet the computing power require-
ment of the CAVs scenario, so we should deploy a sin-
gle board computer on the HydraOne platform. NVIDIA R©

JetsonTMTX2 is a power-efficient embedded AI computing
platform which has dual-core Denver and quad-core ARM R©

Cortex-A57 CPU equipped with 8GB DDR4 memory and
32GB eMMC. The GPU on Jetson TX2 is powered by
NVIDIA PascalTMarchitecture with 256 CUDA cores. The
CPU-GPU architecture on Jetson TX2 can accelerate the deep
learning workloads which have become an integral part of the
CAVs scenario [10, 28]. Several studies have deployed the
Jetson TX2 on autonomous devices [8, 25]. Therefore, Jetson
TX2 is currently the most suitable choice for a computing
platform on HydraOne.

Chassis. The HydraOne platform has a four-wheel drive
chassis which is equipped with four DC motors with encoders
and two encoder motor drivers. The Proportional-Integral-
Derivative (PID) control algorithm is integrated into the motor
drivers to achieve precision control for each motor speed. The
chassis has four Mecanum wheels (a kind of Omni-wheel) so
that the HydraOne can achieve omnidirectional movement.
The control message format output from computing platform
is geometry_msgs/Twist (this will be introduced in the next
subsection); the Arduino board is in charge of converting the

15.7

40.7 41.7 41.2

0
10
20
30
40
50

Idle Remote Control Map Generation

R
un

ni
ng

Po
w

er
(W

)

Chassis Computing Platform Sensors

End-to-End AD

Figure 4: Running Power Breakdown on HydraOne.

message to motor speed value and sending the speed value to
the motor drivers via I2C bus.

Power System. The electronic components and chassis
have an independent power supply. Each is powered by one
3S LiPo Battery. We present the running power breakdown
of HydraOne in Figure 4. The three applications will be in-
troduced in Section 4. The results show that the whole plat-
form consumes 41.2w on average when running workloads,
and sensors, computing platform, and chassis consume 11.2w
(27.2%), 8.1w (19.7%), 21.9w (52.2%), respectively.

3.2 Software Framework
Framework Overview. The operating system on Jetson Tx2
is Ubuntu 16.04, so users can easily install the open-source vi-
sion and machine learning libraries, like OpenCV, TensorFlow,
and PCL etc.. To manage the hardware and software resources
on HydraOne and provide a clear and easy-to-use develop-
ment model to researchers, we deploy the Robot Operating
System (ROS) [19] on HydraOne. We choose ROS Kinetic
Kame distribution, which is the most compatible version to
Ubuntu 16.04 to date. The ROS framework on HydraOne
is illustrated in Figure 3. All resources and computing tasks
on HydraOne can be abstracted as ROS nodes, and they use
the publisher-subscriber pattern to share data and results to
implement one or several CAVs applications collectively. The
communication between HydraOne and the edge server is
also implemented by ROS. HydraOne runs the ROS master
node, and the edge server should configure the IP address and
port of the master node in its environments.

Node Management. The ROS nodes on HydraOne are di-
vided into three categories according to their function: sensor
node, processing node, and actuator node. The sensor nodes
are data producers that collect the data from hardware sensors
and publish them in real-time. It must be noted that one sensor
node could publish multiple types of data, and all data pro-
ducers can be considered as sensor nodes, such as the motor
speed monitor node and the battery status monitor node etc..
The processing nodes are the instantiation of edge comput-

ing on HydraOne, so all CAVs computing workloads should
be implemented in the processing nodes. Some processing
nodes will publish the middle results to other nodes, and some
will publish the control message to actuator nodes. The actua-
tor nodes are in charge of controlling the hardware actuator
(e.g., chassis motors) to make correct and prompt responses
according to the control message. The actuator can receive
the message from multiple processing nodes, so users should
manage the control priority when more than one processing
node is publishing the control message to the same actuator
node.

Message Flow. An ROS message is essentially an imple-
mentation of inter-process communication (IPC). ROS nodes
can pass the sensor data, processing results, and control mes-
sage via the ROS message to others. The execution process of
the CAVs application can be regarded as message passing and
processing among the ROS nodes, which can be abstracted
as message flow. Some properties of message flow in our
framework are summarized as follows:

• An application of CAVs deployed on HydraOne can be
abstracted as one or several message flows

• Message flow consists of messages and nodes, messages
connect nodes, and nodes pass or transform messages;

• Ordinarily, the message flow starts from sensor messages
and end with control messages to actuator nodes.

Development Model. The development model of Hy-
draOne is based on the node management method and mes-
sage flow abstraction we mentioned above. We provide sensor
nodes of the vision sensors on HydraOne and the actuator
node of the HydraOne chassis. The sensor data ROS format
is sensor_msgs/Image (cameras), sensor_msgs/PointCloud2
(LiDAR-3D), and sensor_msgs/LaserScan (LiDAR-2D). The
format of the control message to the chassis node is geome-
try_msgs/Twist, which contains two 3-tuple vectors indicating
the linear and angular speed in x,y,z axes, respectively. The
users can focus on developing the CAVs applications and
algorithms on processing nodes, just subscribe the data from
the sensor nodes to feed into their CAVs tasks and output
the control message to control the movement of HydraOne.
The development model is clear and concise, which allows
researchers to test and evaluate their CAVs applications and
algorithms in real-world environments easily and quickly.

3.3 Experimental Enablers
The HydraOne platform has three key characteristics: de-
sign modularization, resource extensibility and openness, and
function isolation. Understanding the three key characteris-
tics of HydraOne will help users take full advantage of the
platform to conduct research and education experiments of
edge computing on CAVs.

Design Modularization. The idea of modular design is
inspired by LEGO R© robot [6]; all the hardware modules

/camera1/image

camera_node1
camera 1

remote_control_node

Edge Server

/chassis/control

chassis_node
Chassis

HydraOne

Figure 5: Message Flow of Remote Control.

are connected via standard interfaces, so users can easily
test, replace, and upgrade each module. The ROS node and
message is the implementation of the modular design of the
software framework on HydraOne. Every node has a limited
function and is connected via standard interfaces (messages).
The design modularization will help users learn every module
on HydraOne on both the hardware and software level and
fully understand the development model of the platform.

Resource Extensibility and Openness. Based on the mod-
ular design, the HydraOne platform is resource extensible.
The structural components of HydraOne allow users to easily
mount new hardware resources on the platform, and users
need to provide the driver node of each resource to publish
or subscribe to data resources. All the platform resources
are open. In addition to the development model we provide,
users can access, analyze, and customize any resources on
HydraOne, even replace the whole software framework. The
resource openness allows users to explore some system and
architecture research problems on HydraOne, such as, design-
ing an operating system for CAVs.

Function Isolation. Function isolation is reflected in two
aspects: within the framework and as the framework is shared
with other libraries. The sensor nodes and actuator nodes are
responsible for managing hardware resources, and each node
only manages one hardware module. The processing nodes do
not access the hardware directly to prevent exclusive access to
hardware resources. The processing nodes will call other func-
tion libraries to complete the computing tasks. Some libraries
provide their own process manage function, like session.run()
in TensorFlow. We recommend that users use ROS to manage
each node (process) to isolate the ROS function with other
libraries, and only use the standard interface to call them. The
function isolation will make it easier for users to program and
debug on the HydraOne Platform.

4 Case Studies

In this section, we use three case studies deployed on Hy-
draOne to show the capabilities of our research platform.

4.1 Remote Control
Currently, autonomous driving systems are based on com-
puter vision and machine learning algorithms, which cause
failure in some unrecognized situations [7]. However, as it is
extremely hard for training datasets to cover all circumstances

/camera1/image

camera_node1
camera 1

chassis_node
Chassis

DNN_node

512

200

/chassis/control

150

3 24 36 48 64 64

5

3

5

5

5

5

5
3

3

3

75

100 50 25 25 25

191919

38

100
50

10
dense

Conv. Layer
!×!×#$-%-#

Conv. Layer
!×!×&'-%-#

Conv. Layer
!×!×&'-%-#

Conv. Layer
3×&×&'

Conv. Layer
3×&×&'

Conn. Layer

linear.x

angular.z
images

()#*×(*+*

resize

HydraOne

Figure 6: Message Flow of End-to-end Autonomous Driving.

of the real environment, autonomous driving system failure
is unavoidable. Therefore, the remote control is an essential
application to guarantee the safety of autonomous driving
vehicles.

The message flow of remote control is shown in Figure 5.
The remote control node is a processing node launched on the
edge server. It subscribes the sensor_msgs/Image message,
which is published by camera node, and displays the images
to let the operator know the HydraOne status. The operator
sends the geometry_msgs/Twist message via keyboard or other
controllers according to the HydraOne status. The chassis
node subscribes the control message to adjust the running
speed and direction of HydraOne.

4.2 Autonomous Driving
As a CAVs research platform, supporting autonomous driving
is one of the core functions. Inspired by some end-to-end
deep neural network (DNN) algorithms (e.g., SSD [13] and
YOLO [20]) and DAVE-2 [3], an end-to-end system for self-
driving cars, we deploy a DNN-based end-to-end autonomous
driving application on HydraOne.

The message flow of end-to-end autonomous driving is
shown in Figure 6. The DNN node is a processing node
launched on HydraOne. It subscribes the sensor_msgs/Image
message and takes the resized images as the input of the
DNN model. The output of the model is the linear speed
on x axis and angular speed on z axis, which are fed into
geometry_msgs/Twist message to control the chassis. The
DNN model consists of five convolutional layers and four
fully connected layers, and we chose ReLU as the activation
function for all layers. Other details of the model, like the
convolution kernel and stride size, are illustrated in Figure 6.

We use a joystick to control HydraOne when collecting the
training data. The message data is recorded by rosbag file.
The geometry_msgs/Twist message is the label of images, and
we use the time-stamp to match them. We train the model on a
GPU server and download the model to the edge (HydraOne)
to process the data. The training and inference process is
implemented on the TensorFlow framework.

/lidar/point_cloud

/lidar/laser_scan
LiDAR

LiDAR_node
3D_mapping_node /3d_slam/map

2D_mapping_node /2d_slam/map

HydraOne

(a) Message Flow of Map Generation

(b) 2D Map (c) 3D Map

Figure 7: Map Generation

4.3 Map Generation
The indoor map will help HydraOne have a better understand-
ing of the surrounding environment. Furthermore, a complete
indoor map is the base data of some upper-level CAVs ap-
plications, such as path planning. We use the LiDAR data to
implement an indoor mapping case study on HydraOne.

The message flow of indoor mapping is shown in Fig-
ure 7(a). The LiDAR node published 2D laser scan data
sensor_msgs/LaserScan and 3D point cloud data textitsen-
sor_msgs/PointCloud2. The mapping nodes subscribe to the
LiDAR data and publish 2D and 3D map messages, respec-
tively. The demo of the map data is presented in Figure 7(b)
and Figure 7(c). The indoor mapping function usually runs in
conjunction with the remote control or free space detection
nodes to generate the map in new environments.

5 Conclusion

In this paper, we present the design, implementation, charac-
teristics and case studies of HydraOne, the indoor experimen-
tal research and education platform for edge computing in
the CAVs scenario. HydraOne is modularly designed; the re-
sources (hardware and software) on HydraOne are extensible
and all open to users. In addition, all the function modules
on HydraOne are isolated. These three characteristics will
allow users to take full advantage of the HydraOne to conduct
research and education experiments of edge computing on
CAVs. The research problems for CAVs supported by Hy-
draOne are not only limited to algorithms and applications
for autonomous driving and V2X, but also include full-stack
system-related problems, such as hardware platform and archi-
tecture, operating system and software middleware, security
and privacy etc.. We hope this platform will be valuable to
researchers and students who are working on edge computing
in connected and autonomous vehicles.

References

[1] AUDI AG. Audi Autonomous Driving Cup, 2019.
https://www.audi-autonomous-driving-cup.
com.

[2] Massimo Banzi and Michael Shiloh. Getting started
with Arduino: the open source electronics prototyping
platform. Maker Media, Inc., 2014.

[3] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[5] DJI. RoboMaster Robotics Competition, 2019.
https://www.robomaster.com.

[6] LEGO Group. LEGO Mindstorms Robot, 2019.
https://www.lego.com/en-us/mindstorms/
build-a-robot.

[7] Lei Kang, Wei Zhao, Bozhao Qi, and Suman Baner-
jee. Augmenting self-driving with remote control: Chal-
lenges and directions. In Proceedings of the 19th In-
ternational Workshop on Mobile Computing Systems &
Applications, pages 19–24. ACM, 2018.

[8] Sertac Karaman, Ariel Anders, Michael Boulet, Jane
Connor, Kenneth Gregson, Winter Guerra, Owen Guld-
ner, Mubarik Mohamoud, Brian Plancher, Robert Shin,
et al. Project-based, collaborative, algorithmic robotics
for high school students: Programming self-driving race
cars at MIT. In 2017 IEEE Integrated STEM Education
Conference (ISEC), pages 195–203. IEEE, 2017.

[9] Brian Krzanich. Data is the new oil in the future of
automated driving, 2016.
https://newsroom.intel.com/editorials/
krzanich-the-future-of-automated-driving/.

[10] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt
Skach, Md E Haque, Lingjia Tang, and Jason Mars. The
architectural implications of autonomous driving: Con-
straints and acceleration. In Proceedings of the Twenty-
Third International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 751–766. ACM, 2018.

[11] Liangkai Liu, Xingzhou Zhang, Mu Qiao, and Weisong
Shi. Safeshareride: Edge-based attack detection in
ridesharing services. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC), pages 17–29. IEEE, 2018.

[12] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop:
Enabling lightweight multi-tenancy at the network’s ex-
treme edge. In 2016 IEEE/ACM Symposium on Edge
Computing (SEC), pages 1–13. IEEE, 2016.

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer,
2016.

[14] James McLurkin, Adam McMullen, Nick Robbins, Gol-
naz Habibi, Aaron Becker, Alvin Chou, Hao Li, Meagan
John, Nnena Okeke, Joshua Rykowski, et al. A robot
system design for low-cost multi-robot manipulation. In
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 912–918. IEEE, 2014.

[15] Seyed Hossein Mortazavi, Bharath Balasubramanian,
Eyal de Lara, and Shankaranarayanan Puzhavakath
Narayanan. Toward session consistency for the edge. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18), 2018.

[16] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov. The eucalyptus open-source
cloud-computing system. In Cluster Computing and the
Grid, 2009. CCGRID’09. 9th IEEE/ACM International
Symposium on, pages 124–131. IEEE, 2009.

[17] NVIDIA Corporation. NVIDIA Jetson Platform, 2019.
https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems.

[18] Joseph Polastre, Robert Szewczyk, and David Culler.
Telos: enabling ultra-low power wireless research. In
Proceedings of the 4th international symposium on In-
formation processing in sensor networks, page 48. IEEE
Press, 2005.

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. ROS: An open-source robot operating system. In
ICRA workshop on open source software, page 5. Kobe,
Japan, 2009.

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–
788, 2016.

[21] Mahadev Satyanarayanan. The emergence of edge com-
puting. Computer, 50(1):30–39, 2017.

https://www.audi-autonomous-driving-cup.com
https://www.audi-autonomous-driving-cup.com
https://www.robomaster.com
https://www.lego.com/en-us/mindstorms/build-a-robot
https://www.lego.com/en-us/mindstorms/build-a-robot
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems

[22] Omar Sefraoui, Mohammed Aissaoui, and Mohsine
Eleuldj. Openstack: toward an open-source solution for
cloud computing. International Journal of Computer
Applications, 55(3):38–42, 2012.

[23] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[24] Nisha Talagala, Swaminathan Sundararaman, Vinay
Sridhar, Dulcardo Arteaga, Qianmei Luo, Sriram Sub-
ramanian, Sindhu Ghanta, Lior Khermosh, and Drew
Roselli. ECO: Harmonizing edge and cloud with
ML/DL orchestration. In USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 18), 2018.

[25] Nils Tijtgat, Wiebe Van Ranst, Toon Goedeme, Bruno
Volckaert, and Filip De Turck. Embedded real-time
object detection for a UAV warning system. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pages 2110–2118, 2017.

[26] Teodor Tomic, Korbinian Schmid, Philipp Lutz,
Andreas Domel, Michael Kassecker, Elmar Mair,
Iris Lynne Grixa, Felix Ruess, Michael Suppa, and
Darius Burschka. Toward a fully autonomous UAV:
Research platform for indoor and outdoor urban search
and rescue. IEEE robotics & automation magazine,
19(3):46–56, 2012.

[27] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George,
Mihir Bala, Padmanabhan Pillai, Shao-Wen Yang, and
Mahadev Satyanarayanan. Bandwidth-efficient live

video analytics for drones via edge computing. In
2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 159–173. IEEE, 2018.

[28] Yifan Wang, Shaoshan Liu, Xiaopei Wu, and Weisong
Shi. CAVBench: A benchmark suite for connected and
autonomous vehicles. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC), pages 30–42. IEEE, 2018.

[29] Junqing Wei, Jarrod M Snider, Junsung Kim, John M
Dolan, Raj Rajkumar, and Bakhtiar Litkouhi. Towards
a viable autonomous driving research platform. In 2013
IEEE Intelligent Vehicles Symposium (IV), pages 763–
770. IEEE, 2013.

[30] Sean Wilson, Ruben Gameros, Michael Sheely, Matthew
Lin, Kathryn Dover, Robert Gevorkyan, Matt Haberland,
Andrea Bertozzi, and Spring Berman. Pheeno, a ver-
satile swarm robotic research and education platform.
IEEE Robotics and Automation Letters, 1(2):884–891,
2016.

[31] Zhiwei Xu, Xiaohui Peng, Lei Zhang, Dong Li, and
Ninghui Sun. The φ-stack for smart web of things.
In Proceedings of the Workshop on Smart Internet of
Things, page 10. ACM, 2017.

[32] Daniel Zhang, Yue Ma, Chao Zheng, Yang Zhang,
X Sharon Hu, and Dong Wang. Cooperative-competitive
task allocation in edge computing for delay-sensitive
social sensing. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 243–259. IEEE, 2018.

	Introduction
	Related Work
	Design and Implementation
	Hardware Design
	Software Framework
	Experimental Enablers

	Case Studies
	Remote Control
	Autonomous Driving
	Map Generation

	Conclusion

