
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021 1

Oops! It’s Too Late.
Your Autonomous Driving System Needs a Faster

Middleware
Tianze Wu1, Baofu Wu2, Sa Wang3,Liangkai Liu4, Shaoshan Liu5, Yungang Bao6, Weisong Shi4

Abstract—Autonomous Driving (AD) has entered a period of
rapid development in recent years. With the amount of sensors
and control logics installed increasing tremendously to guarantee
robustness, a big challenge is posed for AD middleware. Both
the academia and the industry are eager for an investigation
of the performance of middlewares in Autonomous Driving
Vehicles (AVs). To fill this gap, we summarize typical communi-
cation scenarios of AVs and evaluate different communication
mechanisms of three popular open-source middlewares com-
prehensively. Besides, we construct a benchmark pack named
ComP which consists of a perception communication scenario
and a group of real AD applications for researchers to assess
middleware performance. Our findings provide useful guidelines
for researchers and insightful optimization advice for designing
middlewares.

Index Terms—Embedded Systems for Robotic and Automation,
Software Architecture for Robotic and Automation, Distributed
Robot Systems

I. INTRODUCTION

OVER the past decades, the autonomous driving (AD)
technique has made rapid and tremendous progress [1]–

[4]. However, some people still are profoundly concerned and
stay negative towards AD, especially full AD1, becoming a
reality. One of the main reasons behind this is the robustness

Manuscript received: March, 4, 2021; Revised April, 24, 2021; Accepted
July, 4, 2021.

This paper was recommended for publication by Editor Tamim Asfour
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported in part by Key-Area Research and Development Program of
Guangdong Province (NO.2020B010164003), the National Natural Science
Foundation of China (Grant No. 62090020), Youth Innovation Promotion
Association of Chinese Academy of Sciences (2013073, 2020105), and the
Strategic Priority Research Program of Chinese Academy of Sciences (Grant
No. XDC05030200).

1Tianze Wu is with State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Acedemy of Sciences, and
University of Chinese Academy of Sciences wutianze@ict.ac.cn

2Baofu Wu is with School of Computer Science and Technology, Hangzhou
Dianzi University, Hangzhou 310018, China, and Wayne State University,
Detroit, MI 48202, United States baofu.wu@hdu.edu.cn

3Sa Wang is with State Key Laboratory of Computer Architecture, Institute
of Computing Technology, University of Chinese Academy of Sciences, and
Institute of Computing Technology(Nanjing), Chinese Academy of Sciences
wangsa@ict.ac.cn

4Liangkai Liu and Weisong Shi are with Wayne State University
liangkai@wayne.edu weisong@wayne.edu

5Shaoshan Liu is with PerceptIn shaoshan.liu@perceptin.io
6Yungang Bao is with State Key Laboratory of Computer Architecture,

Institute of Computing Technology, University of Chinese Academy of
Sciences, and Peng Cheng Laboratory baoyg@ict.ac.cn

Digital Object Identifier (DOI): see top of this page.
1The automated system takes full control of all driving tasks under all

driving conditions that a human driver can manage.

of AVs. It is a big challenge for AVs to transmit and process a
large amount of data within stringent deadlines in all the com-
plicated situations. The state-of-the-art devotes much effort to
accelerate the data processing part in recent years, including
algorithms optimization [5] and specific hardware acceleration
[6]. However, there still remains a missing part. How about the
communication latency? Since the data processing latency has
been dramatically reduced, many researchers and companies
speculate that the communication latency may become a new
performance bottleneck [7]–[11] in AVs.

Therefore, in this paper, we raise the question: how about
the communication latency of today’s open-source middle-
wares used in AVs? Can they meet the need of transmission
requirement of AVs? As far as we know, many existing works
[12]–[14] have explored the performance of middlewares, but
none of them could answer the above questions comprehen-
sively.

To answer these questions, we carefully choose three influ-
ential and widely used open-source middlewares (ROS1 [15],
ROS2 [16], and Cyber [9]) and conduct a bunch of experiments
to evaluate their communication performance with different
sensors under various scenarios. Meanwhile, we break down
the communication process with perf [17] to analyze the root
cause of the communication delay. We further provide several
guidelines to improve communication performance. Besides,
we construct a benchmark pack named ComP [18], which
consists of a perception communication scenario and a group
of real AD applications. We use it to evaluate the middleware’s
performance in different platforms. Based on the experimental
results, we analyze the communication latency in real AD
systems. Our main findings are summarized as follows:

Key findings: (1) At present, communication through
shared memory is the optimal choice considering both
performance and reliability. (2) Data copy and serializa-
tion/deserialization operations are the major sources of com-
munication overhead, the performance penalty from task
scheduling is small. (3) Optimization based on the communica-
tion characteristics of different scenarios can bring significant
benefits. (4) The higher the performance of the platform is,
the more likely communication becomes the bottleneck.

In a nutshell, this work makes the following contributions:
• We summarize the typical communication features in AVs

and evaluate different communication mechanisms of
three popular open-source middlewares comprehensively.

• We construct and opensource a benchmark pack named
ComP which consists of a perception communication sce-



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021

nario and a group of real AD applications for researchers
to evaluate middlewares.

• Our findings can provide useful guidelines for AD re-
searchers and insightful optimization advice for designing
middlewares.

II. BACKGROUND

A. Real-time requirement for communication in AVs

End-to-end latency is one of the most crucial metrics for
building real-time systems, especially for AVs [6]. It dominates
the speed of the vehicle’s response to the emergency. In AVs,
end-to-end latency is the time from when a new event is sensed
until the control commands take action. Since the time2 from
the control commands are generated until they actually take
action are relatively short compared to the time spent on the
AD on-board computer [19], in this paper, we mainly focus
on the first half time which consists of data transmission time
and data processing time.

In recent years, data processing latency has been gradually
reduced with the development of hardware accelerators and
algorithms [6], [20], [21]. In our experiment, we found that
with the help of GPU RTX 2080Ti, the time consumption of
common algorithms used in AVs, such as Yolo [22], could
be reduced to 10ms. So, to avoid becoming a performance
bottleneck, we believe that the communication latency should
be at least one order of magnitude less than the computation
latency, which is around 1ms. It should be noted that it is
not very reasonable to directly use absolute values, because
different scenarios have different end-to-end latency require-
ments. However, 1ms is one order of magnitude lower than
the running time of commonly used AD algorithms, and two
orders of magnitude lower than the fastest human driver’s re-
action time (100ms end-to-end latency) [23], which is a good
reflection of real-time requirements of communication latency
in AVs. In this paper, we directly compare the communication
latency with the corresponding computing latency.

B. Middleware in AVs

1) Middleware Architectures: As shown in Fig.1, mid-
dleware is a management layer between OS and the upper
applications [24]. The basic function of middleware is to
bind different services together [24]–[26]. The communi-
cation model of mainstream middlewares is many-to-many
unidirectional data exchange. Applications that produce data
become publishers, and applications that consume data be-
come subscribers [27]. Each time a publisher posts new data,
the middleware propagates the information to all interested
subscribers. The information flow is regulated by Quality of
Service (QoS) policies established between the data exchange
entities.

Besides the communication function, most middlewares
also provide common services and capabilities such as task
scheduling, data management outside of what is offered by
OS [28]. The usability and programmability provided by

2This time includes Control Area Network (CAN) bus transmits control
commands to the vehicle’s actuator and the actuators to start reacting.

middleware have attracted many developers to build their
projects based on it. It should be noted that not only in
distributed systems, middleware has also been widely used in
some complex single-machine systems such as AD systems.
Because the modules in single-machine system also need
to be managed and communicate with each other, and the
middleware just provides these basic functions, which greatly
reduces the development cost.

2) Widely used middlewares in AVs: In this paper, we
carefully select three well-known middlewares for evaluation.

Robot Operating System (ROS1) has been widely used in
AD development. The world’s first ”all-in-one” open-source
AD software, Autoware.AI [20], is based on ROS1. The
socket-based Inter-Process Communication (IPC) mechanism
of ROS1 brings high compatibility and extensibility [7].

ROS2 is an evolved version of ROS1. ROS2 uses Data Dis-
tribution Service (DDS) [29] as its communication foundation,
which claims to work well in real-time distributed systems.
Apex.AI [30] and Autoware.AI’s successor Autoware.Auto
both build their own system based on ROS2.

Cyber from Apollo [31] is another influential open-source
AD middleware. It is designed specifically for AVs. ROS1 was
the underlying middleware of Apollo at first and was replaced
by Cyber since Apollo version 3.5. Compared to ROS1 and
ROS2, the management and scheduling capabilities of Cyber
are enhanced, and we will discuss the effectiveness of these
capabilities in the following sections.

3) Underlying communication technologies: As shown in
Fig.1, there are three main communication technologies used
by middlewares. Socket-based methods are widely used in
robots. ROS1 utilizes TCP and UDP, while ROS2 and Cyber
choose DDS [29] which aims to enable dependable, high-
performance, real-time data exchanges. During our experi-
ments, we find that DDS in ROS2 and Cyber uses UDP
to do the communication. The biggest advantage of socket-
based methods is high reliability due to its loosely coupled
mechanism [7], as the crash of a single module does not cause
the entire system to crash. However, socket-based methods
often have large overhead.

Then, IntrA-Process (IAP) and SHared Memory (SHM)
are presented. Communication between different threads
(inter-thread) in the same process (intra-process) is efficient
because it realizes zero-copy data transport. ROS1 nodelet and
ROS2 Intra-Process communication are two representatives
of IAP methods. SHM is the most efficient way of IPC [7]
methods since it also avoids data copy operations. However,
SHM still requires serialization and deserialization operations.
Cyber provides an SHM method based on a shared buffer with
ring structure association with its publishers and subscribers
[9]. We can see that these methods are different tradeoffs
between performance and reliability [32].

TABLE I
TYPICAL SENSORS IN AVS.

Sensor IMU CV LidarL LidarH Radar
Frequency/Hz 200 50 20 20 20
Message Size/Byte 1k 4M 4M 8M 10k



WU et al.: OOPS! IT’S TOO LATE. YOUR AUTONOMOUS DRIVING SYSTEM NEEDS A FASTER MIDDLEWARE 3

Applications

Middleware

Operating System

Socket
Communication

Intra Process
Shared Memory

Coroutine
Task Scheduling

Priority

Raw Data

Processing Results

Fusion Info

Lane Yolo MOSSE FusionCamera

Lidar

IMU

Radar

Sensors Data Processing

KCF

SSD

...

...

...

...

ComP

RCNN

VGG

SLAM

VFH

Fig. 1. In a broad sense, middleware is a management layer between OS and
the upper applications.

C. Characteristics of Sensors in AVs

Different sensors in AVs have different posting frequencies
and message sizes. We summarize the parameters of some
typical AD sensors in Tab.I according to products commonly
used in AVs [31], [33]–[35]. Inertial Measurement Unit
(IMU) consists of gyroscopes and accelerometers. It has an
updated value every 5ms and is used as a complementary
sensor to GPS. Computer Vision (CV) ability is obtained by
cameras, the size of one high-resolution picture can be 4MB,
and cameras usually work at 30-50FPS. Lidar has a more
extensive sensing range and is less affected by a lousy envi-
ronment than cameras. Lidar with different scanning densities
produces data in different sizes, Lidar Light (LidarL) and
Lidar Heavy (LidarH) in Tab.I approximately represent two
possible data frame sizes of 32 and 64 line Lidar. Radar uses
electromagnetic waves for scanning. It typically operates at
10-20FPS and generates around 100KB of data per second.

D. Two Typical Communication scenarios in AVs

When the messages generated by a component are trans-
mitted to more than one processing component, we refer to
this scenario as the 1-N scenario. 1-N scenario is common in
AVs. For example, the Lidar data could be used for avoiding
obstacles, building HD map and localization [35] respectively.

Another scenario we talk about is data fusion, and we call
it the N-1 scenario. Take the high-level sensor fusion [36]
in AVs as an example. When data processing is over, sensor
fusion techniques are used for the multi-sensor collaboration
to correct errors and aggregate results [21].

III. METHODOLOGY

A. Measurement metric

Latency is our primary measurement metric. In local cases,
we record the elapsed time from when the data is released
from one node to another node. And in distributed cases, we
record the round-trip time between the time the node sends
a message and the time it receives a return message. The
release time is recorded right before the publish function is
called, and the receive time is recorded right as the callback
function is called. The time counter function we used in ROS1

and ROS2 is clock gettime, while the function in Cyber is
high resolution clock. They both provide nanosecond accu-
racy and their overhead could be ignored (getting current time
accounts for 4.23% or less of the communication latency).
Each experiment runs for 200 seconds, and we discard the
first 200 samples to mitigate initialization effects.

B. Experiment design

1) Micro experiments: We first test the basic characteristics
of these communication methods through micro experiments.
The experimental parameters are set according to typical sen-
sors’ characteristics to show whether these methods could han-
dle common communication tasks in AVs. And by allocating
different resources and giving different QoS settings, we depict
the contributory factors to the communication performance.
In addition to simple point-to-point scenario, we analyze the
performance and fairness of different methods in complex
scenarios (1-N, N-1). Further, we explore two interesting ways
that could improve the performance. By breaking down the
communication process with perf and reading the source code,
we analyze the reasons for these experimental results and try
to find the bottlenecks.

2) With ComP in different platforms: Besides micro evalua-
tions, we test the performance of Cyber on different platforms
with our benchmark pack ComP. Based on experimental results
running on different platforms and using different methods, we
reveal the current relationship between transmission latency
and processing latency and further discuss some problems
encountered in real systems.

C. Design of ComP

1) Application selection: To highlight the interdependence
of components in AD systems, we choose the perception
scenario which is responsible for detecting the surrounding
environment and tracking obstacles. Inspired by [6], we select
one typical algorithm for each component to ensure that ComP
can be easily deployed. For object detection, we use YOLOv4
[22] which is one of the state-of-the-art object detectors based
on deep learning and achieves a balance between performance
and speed. For object tracking, we use Minimum Output
Sum of Squared Error (MOSSE) Filter [37] which runs fast
and has acceptable accuracy. For lane detection, our OpenCV
[38] based approach first conducts the contour and geometric
analysis to extract the relevant lane line information, then
performs the pixel scan. Finally, the result is generated by
line fitting.

2) How ComP works: The processing pipeline of ComP is
shown in Fig.1. First, raw data (image) from Ford Multi-AV
Seasonal Dataset [39] is published by a Camera component.
Then images are transmitted to three processing components.
Component Lane is for detecting lane lines, and its results
are sent to Fusion directly; Component Yolo is for identifying
objects, and two components utilize its results; Component
MOSSE is for vehicle tracking, and it needs object coordinate
info to initialize the objects to be tracked once it loses the
target. Results of these components are finally fused in Fusion.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021

TABLE II
DEFAULT QOS CONFIGURATION OF DDS.

History Policy Depth Reliability Policy Durability Policy
KEEP LAST 1 RELIABLE VOLATILE

D. Experimental Setup

The experiments are conducted on two different hardware
settings, namely a server PC, with two Intel Xeon E5-2630 v4
CPUs, 32 GB RAM, and one 2080Ti Nvidia GPU. In addition,
we use a Jetson AGX Xavier with 32 GB RAM as the em-
bedded platform. Docker container virtualization technology
[40] is used to adjust resources, and the performance loss
caused by Docker is acceptable [41]. The operating system is
Ubuntu 18.04, and the kernel version is 4.15.0. ROS1 version
is Melodic, ROS2 version is Foxy, and Cyber version is 5.5.0.
FastDDS is the DDS implementation in ROS2 and Cyber;
the ROS2 FastDDS version is rmw fastrtps, while the Cyber
FastDDS version is 1.5.0. The default DDS QoS policy used
in our experiments is shown in Tab.II, and the default queue
length of publisher and subscriber is 1.

IV. RESULTS OF MICRO EXPERIMENTS

0.00
0.05
0.10
0.15

(a) IMU

0
5

10
15
20

(b) CV

0
5

10
15

La
te

nc
y 

[m
s] (c) LidarL

CI CSCD2I 2D 1I 1T1U0102030405060
(d) LidarH

CI CSCD 2I 2D 1I 1T 1U0.00
0.05
0.10
0.15
0.20

(e) Radar

50th
95th
99th

Fig. 2. Abbreviation: Cyber IAP(CI); Cyber SHM(CS); Cyber DDS(CD);
ROS2 IAP(2I); ROS2 DDS(2D); ROS1 IAP(1I); ROS1 TCP(1T); ROS1
UDP(1U). 50th-, 95th-, 99th- percentile latency of different methods when
transferring different kind of sensor data. Evaluation was performed on the
server PC. In figures b, c, d, we indicate the positions of 1ms latency with
black dotted lines.

A. Basic characteristics

Fig.2 shows the respective latency characteristics of differ-
ent communication methods when transferring different kinds
of sensor data. We observe a gap between the median latency
and the long-tail (95th-, 99th- percentile) latency of each
method. Therefore, long-tail latency should be used to evaluate
the performance if stringent predictability is needed.

By comparing scenarios (Fig.2 (b) and (c)) with different
frequencies and the same message size, we can see that the
publishing frequency is not an essential factor in transmission
latency. [13] even found that latency decreases with increasing

frequency, which might be due to energy-saving features or
scheduling scheme.

However, by comparing scenarios (Fig.2 (c), (d), and (e))
with the same frequency and different message sizes, it is clear
that message size is an essential determinant of transmission
latency especially in socket-based methods. By breaking down
the communication process, we find that the reason is because
the data copy and serialization/deserialization operations are
the major sources of communication overhead. As a result,
when the message size is small ((a), (e) in Fig.2), all methods
can satisfy the latency requirement. Besides, we can see
from Fig.2 that only IAP-type methods are hardly affected
by the message size since they avoid all data copy and
serialization/deserialization operations. It should be noted that
the performance of ROS2 IAP has exceeded ROS1 IAP. This
discovery updates the observation in [12], which says that
the performance of ROS1 IAP is better than ROS2 IAP
at that time. SHM avoids copying data but still requires
serialization/deserialization, so its performance is not as good
as IAP, but is much better than socket-based methods.

For socket-based methods, we could see that Cyber DDS
is not as good as ROS2 DDS. That’s because the overhead
of serialization/deserialization operations of Cyber are much
bigger than ROS2. We believe that FastDDS [27] is optimized
specifically for ROS2, which greatly reduces the overhead of
serialization/deserialization. Another interesting finding is that
although ROS2 DDS and ROS1 UDP both invoke UDP to
communicate, there is a wide performance gap between them.
By analyzing their call stacks, we find that there are two main
reasons for this gap: 1. The overhead of ROS1 UDP’s call
stack to UDP (sys writev) is much larger than that of ROS2
DDS (sys send msg). 2. The maximum UDP datagram size
supported by ROS1 is 1500bytes, while ROS2 DDS can use
64KB, so ROS1 UDP has large message splitting and merging
overhead when transmitting big message.

Finding 1: Data copy and serialization/deserialization
operations are the major sources of communication over-
head.

As shown in Fig.3 (a), since the experiments were carried
out locally, communication delay was positively correlated
with CPU utilization under same frequency. However, provid-
ing more CPU resources does not necessarily reduce latency.
We evaluate the latency of these methods with different
CPU resource constraints. Take Cyber DDS in Fig.3 (b) as
an example, latency decreases as CPU resource goes from
insufficient to sufficient and does not change much once the
CPU resource is enough. So in the other experiments in this
article, we make sure that CPU resources are sufficient and
that latency is not affected.

To summarize, communication through shared memory is
the optimal choice for both performance (latency is close to
1ms) and reliability (do not need to be in the same process) at
present. In the one-to-one scenario, we rank the performance
of all these methods in this order: ROS2 IAP >ROS1 IAP
>Cyber IAP >Cyber SHM >ROS1 TCP >ROS2 DDS
>ROS1 UDP >Cyber DDS.



WU et al.: OOPS! IT’S TOO LATE. YOUR AUTONOMOUS DRIVING SYSTEM NEEDS A FASTER MIDDLEWARE 5

CI CSCD 2I 2D 1I 1T1U0

50

100

CP
U 

Us
ag

e 
[%

]

4.9 12.2

114.5

1.3

23.9

1.9
12.5

102.5
(a) CV

0 100 200
CPU Resource [%]

0

200

400

La
te

nc
y 

[m
s]

(b) CPU Constraint
50th
95th
99th

Fig. 3. (a) shows the CPU usages of different methods when transferring CV
data in server PC. (b) shows the latency of Cyber DDS with different CPU
resource allocations when transferring CV data.

1 2 3 4
Depth

0.0150

0.0155

La
te

nc
y 

[m
s]

(a) Different depth

50th
95th

RELIABLE BEST_EFFORT
Reliability Setting

3.24

3.26

3.28
(b) Different reliability setting

Fig. 4. (a) is an example of ROS2 IAP transferring IMU data with different
publisher and subscriber depths. (b) is an example of ROS2 DDS transferring
CV data with different reliability settings.

B. QoS settings

The three middlewares provide many configurable options
or QoS settings. We tried different settings, and here are our
findings.

Queue length (depth) could be increased to help mitigate
extra overhead caused by the frequent replacement of old mes-
sages in the queue. However, handling out-of-date messages
could make AVs less safe. Fig.4 (a) illustrates that the latency
would increase as the depth. Therefore, the optimal length
needs to be selected according to actual requirements. At
present, there is no adaptive solution to find the most suitable
depth, and the depth is usually 1 in real-time systems.

Reliability setting of socket-based methods usually has
two options: RELIABLE and BEST EFFORT; TCP and UDP
can also be seen as two mechanisms with different reliability
guarantees. For DDS methods, as can be seen in Fig.4 (b), the
latency of BEST EFFORT is slightly less than RELIABLE.
The main reason for this gap is that there is an additional
confirmation process using RELIABLE, and UDP is called to
send and receive messages in both of them. For ROS1 TCP
and UDP, as shown in Fig.2 and Fig.3, ROS1 TCP has lower
latency and CPU usage than ROS1 UDP. The root cause is the
overhead of dividing the message into several datagrams and
merging datagrams into original message. We find that increas-
ing the datagram size from 500 to 1500bytes could reduce the
medium latency by 64% on average when transferring message
sized 4MB. And for ROS1 TCP, enabling TCP NODELAY
could disable the use of the Nagle algorithm, which claims
to bring lower publishing latency at the cost of efficiency, but
the effect is not obvious in our experiments.

Finding 2: Some QoS settings may incur additional
overhead, but they usually have little effect on latency in
local communication environment.

0.05

0.10

(a) Cyber IAP

1.9

2.0

2.1

(b) Cyber SHM

15

20

(c) Cyber DDS

2.5

5.0

7.5
(d) ROS2 IAP

10

20

La
te

nc
y 

[m
s]

(e) ROS2 DDS

2

4

(f) ROS1 IAP

1-4 1-8

5

10

(g) ROS1 TCP

1-4 1-8

100
200
300

(h) ROS1 UDP

Fig. 5. 4/8 subscribers subscribe to a single topic. Each box in the figure
represents one subscriber.

C. Complex communication scenarios

1) Multiple destinations publisher (1-N): This section pre-
pares multiple subscribers subscribing to the same topic and
measures the latencies of each linkage.

As shown in Fig.5, we are surprised that in 1-N scenario,
the communication performances of ROS1 IAP and ROS2
IAP have a great decline. We use perf to check the details of
their running processes in 1-N scenario and find the reason.
Because ROS1 IAP and ROS2 IAP use the smart pointer
provided by Boost or C++ when publishing, if there is only
one subscriber, ownership can be transferred directly. Once the
number of subscribers is greater than 1, a copy of the data is
needed for each additional subscriber, resulting in an increase
in latency as the number of subscribers increases. The sub-
scribers in Cyber IAP and Cyber SHM share messages, so the
copy step is completely eliminated. Besides, for socket-based
methods, their high resource consumption when transferring
large messages makes them difficult to support more linkages.
Among these socket-based methods, ROS1 TCP consumes the
least amount of resources and performs best. We built multiple
1-1 linkages transferring CV data using different methods.
Results show that with 4 CPU cores allocated, ROS1 TCP
could support more than eight linkages without encountering
much packet loss. At the same time, other UDP-based methods
could only support four or at most six linkages. The main
reason, as discussed earlier, is that the unpacking and merging
operations of UDP consume too much CPU cycles.

Fairness is also crucial for a real-time system, the time
different nodes receive the same message should be close. As
demonstrated in Fig.5, the latency gap between different sub-
scribers of ROS1 is the largest because it schedules message
publication in order [12]. When it comes to Cyber and ROS2,
the situation is much better. Moreover, although the latency of
nodes receiving messages has a clear sequence using Cyber,
the absolute gap is small (much less than 1ms).



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021

Finding 3: Optimization based on the communication
characteristics of different scenarios can bring significant
benefits. In this regard, Cyber does better than the other
two middlewares.

0

100
(a) Cyber SHM

10
20
30

La
te

nc
y 

[m
s]

(b) ROS2 IAP

10 10 10 10 10 20 50 100 100 50 20 10
Publish Frequency [Hz]

50

100
(c) ROS1 TCP

Fig. 6. One subscriber receives data from four publishers with different
publish frequencies. Each box in the figure represents one channel associated
with one publisher. The message size is 4MB.

2) Data fusion (N-1): This section uses Cyber SHM, ROS2
IAP, and ROS1 TCP as representative methods to conduct our
experiments. The message size is 4MB. It should be noted that
the message size has an influence on the absolute latency but
does not affect our results.

Cyber synchronizes data according to the first channel’s
frequency, which means that the synchronization is performed
whenever the subscriber 0 receives a message. Hence, we
could see from Fig.6 (a) that the performance of subscriber 0
does not lose much, while the latencies of other subscribers are
much higher than usual and are inversely proportional to the
frequency. This strategy’s advantage is that it is deterministic,
while the disadvantage is that the latency difference between
different subscribers is big. When assigning subscriber 0, we
should choose the one with the highest frequency to minimize
the replacement of other channels’ data, and developers can
make full use of this mechanism to achieve some deterministic
requirements. Both ROS1 and ROS2 use adaptive algorithms
to synchronize data. As shown in Fig.6 (b) and (c), we observe
that the advantage of this strategy is good fairness among
subscribers, and the disadvantage is that the behavior and
performance are strongly related to the adaptive algorithm.
Moreover, ROS1 and ROS2 can achieve the best overall
performance when synchronization happens in data frequency
from low to high.

Finding 4: Fusion strategies, the frequency and order of
channels to be fused would affect the latency pattern of
data fusion.

D. Other ways to improve performance

1) Scheduler policy: Before exploring scheduling policies,
we test the effects of multi-threading and different CPU usages
on communication latency by running one or more CPU-
consuming processes besides communication processes on a

0 500 1000

10

15

20

La
te

nc
y 

[m
s]

(a) ROS2 DDS
Generic
Real-Time

0 500 1000

0.2

0.4

0.6

(b) ROS1 IAP
Generic
Real-Time

Fig. 7. Latencies of two different kernels, the x-axis represents timeline. The
real-time kernel is built by patching the generic Linux kernel PREEMPT RT
[42]. Two methods is shown in this figure and the results of other methods
are similar.

single core. The experimental results show that increasing
the number of threads without changing CPU usage has no
significant impact. Only an increase in the CPU usage of the
system will result in an increase in communication latency.
There are two types of methods that are most affected by
CPU usage: IAP-type methods (up to 67% increase in latency)
and UDP-based methods (packet loss rate can be 100%). By
breaking down the communication process, we find possi-
ble reasons. For IAP-type methods, the elimination of data
copying and serialization/deserialization makes the scheduling
overhead account for a much larger proportion of the total
communication overhead (around 35%) than other methods
(less than 5%). So an increase in the system’s scheduling
time has the greatest impact on the IAP method. However,
since the communication latency of IAP-type methods is so
small, the increase in latency is imperceptible. For UDP-based
methods, their packet loss rate is higher because UDP itself is
very vulnerable to interference especially when message size
is large. For other methods, in addition to the low proportion of
scheduling overhead, another reason that their latencies do not
increase much is that they consume little CPU time. Then the
task completion time will not be affected much under Linux’s
time slice scheduling mechanism.

Finding 5: The overhead associated with task scheduling
does not have a significant impact on the communication
latency.

The scheduler policy of Cyber provides two ways to ensure
the quality of critical links. One is to give them a higher
priority so that they could be scheduled first; the other is to
allocate exclusive CPU cores to them to avoid interference.
Take the Cyber SHM experiment in Fig.5 (b) as an example.
The subscriber with the biggest latency is chosen to be
protected (the eighth subscriber). Giving it a higher priority
moves its latency ranging from eighth to third; assigning it
a separate CPU core moves its ranking to second. However,
the actual performance gains are little because the scheduling
overhead itself is negligible.

2) Real-Time (RT) kernel: Fig.7 shows the results of two
methods running in different kernels, and we could see that
RT kernel reduces overall communication latency and perfor-
mance jitter. So it is recommended to use RT kernel even
the upper-level applications are not changed for real-time
kernel. This improvement is achieved through a series of
optimizations made by the RT kernel, the details will not be
explored in this article.



WU et al.: OOPS! IT’S TOO LATE. YOUR AUTONOMOUS DRIVING SYSTEM NEEDS A FASTER MIDDLEWARE 7

V. RESULTS OF COMP EXPERIMENTS

In this section we use ComP to evaluate Cyber in different
hardware platforms. Data in Tab.III is collected running the
group of real AD applications of ComP all together. We
make sure that computing resource is sufficient during the
experiments.

1) Comparison between different platforms: It can be seen
from Tab.III that the ratio between transmission latency and
processing latency is larger in server PC than in AGX.
Although data processing and transmission cost less time in
server PC, the difference of data transmission latency between
the two platforms is much smaller than that of data processing
latency. Therefore, reducing transmission latency can lead to
more performance gains on more powerful platforms. For
example, replacing Cyber SHM with Cyber IAP on server PC
gives MOSSE a 27% performance boost. However, the same
action brings only 4% improvement on AGX. It should be
noted that the reduction of communication overhead in a less
powerful platform is also meaningful since it can save much
CPU resource and then improve the overall performance of
the system.

Finding 6: The higher platform’s performance, the more
likely communication is to become a bottleneck.

TABLE III
THE RATIO OF TRANSMISSION LATENCY TO PROCESSING LATENCY.

Method and Platform Lane Yolo MOSSE
IAP-PC/AGX 1 / 1 % 4.2 / 3.1 % 3.1 / 8.7 %
SHM-PC/AGX 7.5 / 4.2 % 37.0 / 9.9 % 42.9 / 31.6 %
DDS-PC/AGX 117.4 / 51.5 % 566.7 / 132.6 % 733.3 / 478.9 %

2) Data fusion: Since the fusion action of Cyber is trig-
gered once the first channel receives a message, we could
make use of this strategy in some cases. For example, MOSSE
receives data from Camera and Yolo, but the detection results
from Yolo are only used to re-initialize the tracker when it
loses targets. Therefore, we only need to ensure that the data
from Camera could be processed as soon as possible. So we
can set Camera as the first channel to minimize its latency.
Compared with the fusion strategy of ROS1 and ROS2, the
strategy of Cyber is more controllable.

The latency gap of receiving data from different channels
in Fusion could reach 100ms in our experiments. The main
reason for such a large gap is the low data generation fre-
quency due to the long processing time. Unlike MOSSE we
talk about before, the best thing for a component such as
Fusion to reduce the latency is to increase data generation
frequency (increase the Camera’s data generation frequency
or speed up data processing). For ROS1 and ROS2, merely
increasing the frequency cannot solve the problem, and it
is necessary to choose the appropriate fusion strategy and
order according to the frequency of different channels. Of
course, many AD solutions now implement their own fusion
mechanism. We have learned that many of them separate the
message update and data processing. Message reception of
each channel takes place independently. When data processing
is triggered, message queue of each channel is locked and the
up-to-date message is fetched from queues. This is actually
similar to Cyber’s fusion strategy.

3) Publishing frequency and processing time: We observe
that the communication latency is high during the experiments
if the message is published faster than it can be processed. One
reason is that the arrived messages may need to wait for the
previous data processing operation to complete. Moreover, if
the length of the subscriber’s waiting queue is not long enough,
newly arrived messages will frequently replace older messages
waiting in the queue. They both introduce additional latency
and waste CPU cycles. It should be noted that reducing the
publishing frequency may introduce new problems. Publishing
messages too slowly would cause the algorithm process to fall
into sleep frequently, resulting in large notifying and waking
up latency.

Finding 7: Additional overhead can be introduced if the
publishing frequency and corresponding processing time
are not well matched.

VI. VEHICLE-TO-EVERYTHING (V2X)

1KB 1MB 4MB
Message Size

0

10

20
La

te
nc

y 
[m

s]

0.7
3.1

8.4

0.5

7.5

24.1

0.3
2.7

11.3

0.1
1.5

4.6

0.1
2.6

7.3

(a) Local
ROS1 TCP
ROS1 UDP
ROS2 DDS
raw TCP
raw UDP

1KB 1MB 4MB
Message Size

0
250
500

4

106

529

2

120

607

2

139

709

3
65

467

2
74

253

(b) Distributed
ROS1 TCP
ROS1 UDP
ROS2 DDS
raw TCP
raw UDP

Fig. 8. Communication performance of socket-based methods in local and
distributed environments. The latency in the image is half the round-trip
latency.

V2X is communication between a vehicle and any entity
that may affect, or may be affected by, the vehicle. In this
section we show the performances of different communication
methods in a V2X scenario to see whether it is possible to
conduct complex distributed data processing in a V2X scenario
nowadays. We use AGX as the vehicle and server PC as a
computing node. They are connected to a wireless network
under a same router. We test the round-trip time between
AGX and server PC, as a comparison we also conducted the
experiments on AGX locally.

As shown in Fig.8, the communication performance in
the distributed environment has a great loss compared to
the local environment especially when message size is large.
In addition, UDP based methods have serious packet loss
problems when transmitting large messages. Obviously, most
of the computing load still needs to be carried out locally
today.

We also measured the performance of original TCP and
UDP, and we can see from Fig.8 that the performance loss
brought by the middleware (within 50%) is acceptable. Con-
sidering that middleware can provide more reliable and easy
to use communication functions, we suggest that users directly
choose mature middleware solutions to realize communication
functions. It should be noted that the reason why ROS1 UDP
latency is so high in the local environment is mainly because
ROS1 UDP only supports datagram size of up to 1500bytes
which we mentioned in Section.IV-B.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021

VII. RELATED WORK

[12] showed us the difference between ROS1 and ROS2,
and it tested different DDS implementations. [13] not only
evaluated the performances of different DDS implementations,
but also profiled the stack of ROS2 and pointed out latency
bottlenecks. [14] evaluated ROS2 for AVs, it focused on real-
time capability and found that the jitter of time difference
could be reduced by using a real-time kernel. Also from a
real-time perspective, [43] proposes a scheduling model and
a response-time analysis for ROS2, it enables ROS users to
determine temporal safety and latency properties of their appli-
cations. Besides these works, several studies in robotic systems
tried to use new methods in communication middlewares. For
example, [9], [44] used SHM methods to minimise memory
copy operations, [7] designed a combined data transmission
mechanism to provide both high performance and high relia-
bility.

VIII. CONCLUSION AND FUTURE OUTLOOK

We perform an in-depth study on three open-source middle-
wares and presents ComP for evaluating middleware’s com-
munication performance. Our study reveals many interesting
findings and provides useful guidelines for AD researchers and
insightful optimization advice for designing middlewares.

IX. ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for their
valuable feedbacks and suggestions. We thank our group
members for their help on this work.

REFERENCES

[1] T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous land vehicle
project at CMU,” in Proceedings of the 1986 ACM fourteenth annual
conference on Computer science, 1986, pp. 71–80.

[2] J. Schmidhuber, “Robot car history,” [Online], http://people.idsia.ch/
juergen/robotcars.html.

[3] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” CARNEGIE-MELLON UNIV PITTSBURGH PA ARTIFICIAL
INTELLIGENCE AND PSYCHOLOGY . . . , Tech. Rep., 1989.

[4] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The Stanford entry in the urban challenge,” Journal of field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[5] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V.
Hernandez, L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning vs.
traditional computer vision,” in Science and Information Conference.
Springer, 2019, pp. 128–144.

[6] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2018, pp. 751–766.

[7] W. Liu, H. Wu, Z. Jiang, Y. Gong, and J. Jin, “A robotic communication
middleware combining high performance and high reliability,” in 2020
IEEE 32nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). IEEE, 2020, pp. 217–224.

[8] J. Tang, S. Liu, B. Yu, and W. Shi, “Pi-edge: A low-power edge
computing system for real-time autonomous driving services,” arXiv
preprint arXiv:1901.04978, 2018.

[9] Baidu, “Apollo Cyber,” [Online], https://github.com/ApolloAuto/apollo/
tree/master/cyber.

[10] NVIDIA, “DRIVE OS,” [Online], https://docs.nvidia.com/drive/index.
html.

[11] “AUTOSAR,” [Online], https://www.autosar.org/.

[12] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance
of ROS2,” in Proceedings of the 13th International Conference on
Embedded Software, 2016, pp. 1–10.

[13] T. Kronauer, J. Pohlmann, M. Matthe, T. Smejkal, and G. Fettweis,
“Latency overhead of ros2 for modular time-critical systems,” arXiv
preprint arXiv:2101.02074, 2021.

[14] M. Reke, D. Peter, J. Schulte-Tigges, S. Schiffer, A. Ferrein, T. Walter,
and D. Matheis, “A self-driving car architecture in ros2,” in 2020
International SAUPEC/RobMech/PRASA Conference. IEEE, 2020, pp.
1–6.

[15] Open Robotics, “ROS,” [Online], https://www.ros.org/.
[16] ——, “ROS2,” [Online], https://index.ros.org/doc/ros2/.
[17] B. Gregg, “Perf,” [Online], 2029, http://www.brendangregg.com/perf.

html.
[18] Tianze Wu, Baofu Wu, “Comp,” [Online], https://github.com/wutianze/

AD Middle Test.
[19] B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building the comput-

ing system for autonomous micromobility vehicles: Design constraints
and architectural optimizations,” in 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE, 2020, pp.
1067–1081.

[20] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[21] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues,
and future challenges,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1275–1313, 2018.

[22] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[23] A. Newell and S. K. Card, “The prospects for psychological science
in human-computer interaction,” Human-computer interaction, vol. 1,
no. 3, pp. 209–242, 1985.

[24] R. E. Schantz and D. C. Schmidt, “Middleware,” Encyclopedia of
Software Engineering, 2002.

[25] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[26] D. Bakken, “Middleware,” Encyclopedia of Distributed Computing,
vol. 11, 2001.

[27] ePROSIMA, “eProsima Fast RTPS,” [Online], https://www.eprosima.
com/index.php/products-all/eprosima-fast-rtps.

[28] Red Hat, “What is middleware?” [Online], https://www.redhat.com/en/
topics/middleware/what-is-middleware.

[29] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, pp. 200–206.

[30] “Apex.AI,” [Online], https://www.apex.ai/.
[31] Baidu, “Apollo,” [Online], http://apollo.auto/.
[32] Y.-P. Wang, W. Tan, X.-Q. Hu, D. Manocha, and S.-M. Hu, “TZC:

Efficient inter-process communication for robotics middleware with
partial serialization,” arXiv preprint arXiv:1810.00556, 2018.

[33] “Velodyne lidar products,” [Online], 2019, https:velodynelidar.com/
products.html.

[34] “Continental ars4-a 77ghz radar,” [Online], 2017, https:www.systemplus.
fr/reverse-costing-reports/continental-ars4-a-77ghz.radar/.

[35] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi, “Com-
puting systems for autonomous driving: State-of-the-art and challenges,”
IEEE Internet of Things Journal, 2020.

[36] D. J. Yeong, J. Barry, and J. Walsh, “A review of multi-sensor fusion
system for large heavy vehicles off road in industrial environments,” in
2020 31st Irish Signals and Systems Conference (ISSC), 2020, pp. 1–6.

[37] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object
tracking using adaptive correlation filters,” in 2010 IEEE computer
society conference on computer vision and pattern recognition. IEEE,
2010, pp. 2544–2550.

[38] “OpenCV,” [Online], https://opencv.org/.
[39] S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous, and

J. McBride, “Ford multi-av seasonal dataset,” The International Journal
of Robotics Research, vol. 39, no. 12, pp. 1367–1376, 2020.

[40] S. Hykes et al., “What is Docker?” [Online], https://www.docker.com/
whatisdocker/.

[41] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in 2015
IEEE international symposium on performance analysis of systems and
software (ISPASS). IEEE, 2015, pp. 171–172.

http://people.idsia.ch/juergen/robotcars.html
http://people.idsia.ch/juergen/robotcars.html
https://github.com/ApolloAuto/apollo/tree/master/cyber
https://github.com/ApolloAuto/apollo/tree/master/cyber
https://docs.nvidia.com/drive/index.html
https://docs.nvidia.com/drive/index.html
https://www.autosar.org/
https://www.ros.org/
https://index.ros.org/doc/ros2/
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
https://github.com/wutianze/AD_Middle_Test
https://github.com/wutianze/AD_Middle_Test
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.redhat.com/en/topics/middleware/what-is-middleware
https://www.redhat.com/en/topics/middleware/what-is-middleware
https://www.apex.ai/
http://apollo.auto/
 https:velodynelidar.com/products.html
 https:velodynelidar.com/products.html
https:www.systemplus.fr/reverse-costing-reports/continental-ars4-a-77ghz.radar/
https:www.systemplus.fr/reverse-costing-reports/continental-ars4-a-77ghz.radar/
https://opencv.org/
 https://www.docker.com/whatisdocker/.
 https://www.docker.com/whatisdocker/.


WU et al.: OOPS! IT’S TOO LATE. YOUR AUTONOMOUS DRIVING SYSTEM NEEDS A FASTER MIDDLEWARE 9

[42] Real-Time Linux, “Preempt rt,” [Online], https://rt.wiki.kernel.org/index.
php/Main Page.

[43] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ros 2 processing chains under reservation-based schedul-
ing,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[44] D. Otstott, L. Ionkov, M. Lang, and M. Zhao, “Tcasm: An asynchronous
shared memory interface for high-performance application composition,”
Parallel Computing, vol. 63, pp. 61–78, 2017.

https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page

	Introduction
	BACKGROUND
	Real-time requirement for communication in AVs
	Middleware in AVs
	Middleware Architectures
	Widely used middlewares in AVs
	Underlying communication technologies

	Characteristics of Sensors in AVs
	Two Typical Communication scenarios in AVs

	Methodology
	Measurement metric
	Experiment design
	Micro experiments
	With ComP in different platforms

	Design of ComP
	Application selection
	How ComP works

	Experimental Setup

	Results of micro experiments
	Basic characteristics
	QoS settings
	Complex communication scenarios
	Multiple destinations publisher (1-N)
	Data fusion (N-1)

	Other ways to improve performance
	Scheduler policy
	Real-Time (RT) kernel


	Results of ComP experiments
	Comparison between different platforms
	Data fusion
	Publishing frequency and processing time


	Vehicle-to-everything (V2X)
	Related Work
	Conclusion and future outlook
	Acknowledgement
	References

