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Abstract—As a distributed deep learning paradigm, federated
learning (FL) provides a powerful tool for the accurate and
efficient processing of on-board data in vehicular edge computing
(VEC). However, FL involves the training and transmission of
model parameters, which consumes the vehicles’ precious energy
resources and takes up much time. It is a departure from many
applications with severe real-time requirements in VEC. And
the capabilities and data quality of each vehicle are distinct that
will affect the performance of training the model. Therefore,
it is crucial to select the appropriate vehicles to participate in
learning tasks and optimize resource allocation under learning
time and energy consumption constraints. In this paper, taking
the vehicle position and velocity into consideration, we formulate
a min-max optimization problem to jointly optimize the on-board
computation capability, transmission power, and local model
accuracy to achieve the minimum cost in the worst case of FL.
Specifically, we propose a greedy algorithm to select vehicles
with higher image quality dynamically, and it keeps the system’s
overall cost to a minimum in FL. The formulated optimization
problem is a nonlinear programming problem, so we decompose
it into two subproblems. For the resource allocation problem, we
use the Lagrangian dual problem and the subgradient projection
method to approximate the optimal value iteratively. For the
local model accuracy problem, we develop an adaptive harmony
algorithm for heuristic search. The simulation results show that
our proposed algorithms have well convergence and effectiveness
and achieve a tradeoff between cost and fairness.

Index Terms—Vehicular edge computing, federated learning,
vehicle selection, resource optimization, local model accuracy.

I. INTRODUCTION

To meet the requirements of the rapid development of
autonomous driving technology, sensors, computing units,
algorithms, and communication mechanisms have been widely
deployed to vehicles. Sensors enable the vehicle to perceive
the surrounding environment correctly, which is the basis for
autonomous driving [1]. Furthermore, sensors commonly used
in vehicles include the camera, radar, inertial measurement
unit (IMU), global position system (GPS), and sonar [2]. The
global autonomous driving market may grow up to $172.15B
by 2030 in [3], which means vehicles will generate massive
amounts of sensor data. How to process, utilize, and mine these
on-board data effectively is a tricky problem. It is necessary to
obtain stable, low-latency, and high-reliability service nearby
in applications with strictly real-time requirements such as
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simultaneous localization and mapping (SLAM), augmented
reality (AR) navigation, object tracking, and high-definition
(HD) map generation. These applications involve using many
deep learning networks to extract accurate decisions from raw
data automatically.

Deep learning network provides a robust method for ap-
proximating objective functions of various types of values.
This technology has become an indispensable part of today’s
autonomous vehicle system [4]. It provides a powerful tool
for the accurate and efficient processing of vehicular data.
Nevertheless, these processes require a tremendous amount of
computing power, time, and energy. Using a battery-powered
vehicle with limited computing resources and strict energy
consumption constraints alone is infeasible [5–7]. Moreover,
the data in a vehicle is limited, so the obtained model only
has local characteristics. These have led to the emergence
of a fast growing area called Federated Learning (FL), a
distributed deep learning paradigm [8]. It allows vehicles
to use local data to train their local deep learning models
individually and aggregate them into a global model. Instead
of sending their local data directly, vehicles only share their
local models while protecting the vehicles’ privacy to some
extent [9]. Furthermore, this process can integrate a network
of global characteristics to realize the sharing of information
between vehicles. So this flexible learning method is suitable
for autonomous driving.

Vehicular edge computing (VEC) aims to exploit the com-
putation, storage, and communication resources at the edge
of vehicular networks [10]. The edge servers such as road-
side units and base stations can assist autonomous driving
for enabling on-board tasks to meet real-time and reliability
requirements [11]. They can connect to the Internet via the
backhaul link to utilize cloud computing capabilities to support
more complex and comprehensive calculations or coordination
for autonomous driving, but this will cause relatively higher
delays. By aggregating the local model of various vehicles in
the edge server, the new coming vehicle can quickly download
the edge network model of the area to monitor the actual
road conditions, and then realize real-time localization, lane
change, collision warning, traffic light reminding, and a series
of safety assisted driving functions. A global deep learning
network model can be generated in the cloud by gathering the
models of edge servers to provide comprehensive services in
a large region, such as lane flow estimation, trajectory route
planning, and so on.

FL requires vehicles to download, train, and update the
models, which need many computation and communication
resources. High-consumption driving not only wastes the pre-
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cious energy of the vehicle, limits the durability of batter-
ies, but also causes heat dissipation problems and increases
hardware failures [12]. There are also real-time issues in
autonomous driving scenarios. Therefore, resource and delay
optimization is necessary and challenging in FL [13]. Although
some works have focused on the optimization of resources and
time delay for FL, few of them consider VEC scenarios. Due
to the many characteristics of autonomous driving, there are
still numerous challenges to be solved. Firstly, the continuous
movement of vehicles on the road causes service switching
between edge servers. How to optimize resources and learning
time when the vehicles are still resident in the current server’s
coverage needs to be solved. In this way, the vehicle will
complete the local model training of the current round of FL
and update it to the current edge server at least. Secondly,
the data obtained by the sensors may suffer from distortion,
noise, and inflection in the process of driving the vehicles
[14]. Especially for images from on-board cameras, slight jitter
will cause severe distortion. These data potentially affect the
accuracy and validity of the FL model. How to select vehicles
with high image quality to join the training is a problem. Then,
each vehicle has a different position and velocity. How to con-
sider them when choosing the vehicles, optimizing resource
allocation, and reducing learning time and energy consumption
is also a problem. Finally, the model learning time and energy
consumption of FL are strongly associated with the model
accuracy. The higher the local model’s accuracy, the longer the
local iteration time and the greater the computational energy
consumption, but the number of updates to the edge server
will decrease so that the transmission energy consumption
be reduced. Whether the model accuracy variables can be
optimized to save time and energy.

To provide a solution to the problems mentioned above, we
jointly optimize the on-board computation capability, the trans-
mission power of updating the local model, and the model’s
accuracy for formulating a min-max cost problem. The cost
consists of two parts: learning time and energy consumption.
We achieve equilibrium optimization by minimizing the worst-
case cost in the vehicle set in FL. The contributions of this
paper are summarized as follows.

• We formulate a min-max optimization problem to jointly
optimize the on-board computation capability, transmis-
sion power, and local model accuracy to achieve the
minimum cost in the worst case of FL in VEC. Specif-
ically, we take the vehicle position and velocity into
consideration so that the vehicles can complete at least
one round of FL and update it within the current edge
server’s coverage area.

• We propose a greedy algorithm for dynamically selecting
vehicles so that the vehicles selected for the FL tasks have
higher image quality data. And the vehicle with min-max
cost of the selected vehicle set is added each time. The
cost consists of training time and energy consumption to
maintain the optimal overall system performance.

• The formulated optimization problem is a nonlinear pro-
gramming problem. To solve this problem, we decompose
it into two subproblems. For the resource allocation prob-

lem, we use the Lagrangian dual problem and the sub-
gradient projection method to approximate the optimal
value iteratively. For the local model accuracy problem,
we develop an adaptive harmony algorithm for heuristic
search.

• The simulation results show that our proposed algorithms
have well convergence and effectiveness and achieve
fairness to the cost and resource optimization among
vehicles. At the same time, the proposed algorithms have
a significant performance advantage compared with other
algorithms and provide a tradeoff between learning time
and energy consumption.

The rest of this paper is organized as follows. Section II
survey the related works. In Section III, we introduce the
system model and formalize the optimization problem. The
resource allocation algorithm is presented in Section IV. We
develop an adaptive harmony heuristic search algorithm to
obtain local model accuracy and design a greedy vehicles
selection algorithm in Section V. The proposed algorithms’
convergence and performance are shown in Section VI. We
conclude the paper in Section VII.

II. RELATED WORKS

There are many works on offloading and allocation of
different tasks and resource optimization in VEC. The authors
[15] discussed the feasibility of edge computing architectures
in different offloading strategies for emerging vehicular com-
puting applications. In [16], the authors formulated the joint
optimization problem containing communication, cashing, and
computational capacities to minimize the infotainment content
retrieval delay for smart cars. A novel solution based on
the alternative direction method of multipliers technology can
operate in a distributed fashion to solve the relaxed problem.
Considering the constraints on quality loss, service latency,
and fog capability, Folo [17] is an event-triggered dynam-
ic task allocation framework based on linear programming
and binary particle swarm optimization. Chimera [18] is a
novel hybrid edge computing architecture for future large-
scale vehicular crowdsensing applications to enhance network-
wide vehicle resources. In the co-operative automated driving
scenario, [19] introduced an edge cloud-enabled and end-to-
end vehicle-to-everything framework to support sidelink radio
resource management. In [20], M. Shojafar et al. proposed
and tested an energy-efficient adaptive resource scheduler for
networked fog centers at the edge of links. The paper [21]
proposes a multiuser noncooperative computation offloading
game to adjust the offloading probability of each vehicle in
vehicular multiaccess edge computing networks. It constructed
a distributed best response algorithm based on the computation
offloading game model to maximize the utility of each vehicle.

A detailed summary of recent FL applications in vehicular
networks and current research challenges are provided in [22].
The included research topics are resource management, perfor-
mance optimization, and applications based on vehicular net-
works. Considering the communication delays incurred by FL
over wireless links, Lyapunov optimization is used to generate
the joint power and resource allocation policies enabling ultra-
reliable low-latency communication for each vehicular user in
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[23]. M. Chen et al. [24] formulated an optimization problem
containing user selection, wireless resource allocation, and
joint learning to minimize the FL convergence time while
optimizing the FL performance. In their other works [25, 26],
the above three factors are formulated an optimization problem
whose goal is to minimize the loss function that captures the
performance of the FL algorithm. They solved it by deriving a
closed-form expression of the expected convergence rate of FL
loss function to quantify the impact of wireless elements on
FL. Under long-term energy constraints, bandwidth allocation
and client selection are jointly formulated to a stochastic
optimization problem by J. Xu et al. [27], and it can achieve
a long-term performance guarantee of FL. With a given total
training time in latency constrained wireless FL, W. Shi et
al. [28] maximized the model accuracy by jointing resource
allocation policy and device scheduling. HFEL[29] is a novel
framework in which model aggregation is partially migrated
to edge servers from the cloud. Furthermore, the authors
formulated a joint computation and communication resource
allocation and edge association problem for device users under
the hierarchical federated edge learning framework.

All of the above-proposed papers are only the optimization
of VEC tasks or the resource allocation of FL. They did
not consider the problem of FL in VEC and its resource
management. We take the mobility and capabilities of the
vehicles, the quality of the on-board data, and the accuracy
of the FL model into account for FL training tasks offloading
and resource optimization in VEC.

III. SYSTEM MODEL

This section elaborated on our system model. First of all,
we describe the usage scenario of autonomous driving, speed
modeling, and data quality modeling of the vehicles. Then, the
process of FL and its particularity used in VEC are discussed,
and the FL is divided into the local computing phase and
the transmission phase. Finally, we formalize an optimization
problem to minimize the vehicle’s maximum energy consump-
tion and delay costs. The key notation definitions in system
model are summarized in Table I.

A. Connected and Autonomous Vehicles Modeling

We consider autonomous driving in the urban scenario,
and there are many edge servers distributed on the roadside,
such as roadside units and cellular base stations. As shown
in Fig. 1, assuming a set of vehicles on the road covered
by an edge server, there are N vehicles, indexed by the set
N = {1, 2, 3, · · · , N}. Each vehicle n ∈ N be represented
Vn ∈ V = {V1, V2, V3, · · · , VN}, and they realize the com-
munication with the wireless connected edge server through
the rapidly developing C-V2X technology. The number of
vehicles passing the edge server per unit of time follows a
Poisson process [30]. As shown in the figure, some vehicles
are selected to participate in model training. They can train
and upload their local models to update the edge model in
real-time while using the model. The remaining vehicles only
need to download the edge model for neural network inference
applications.

1) Speed modeling and residence time: The paper [31]
use real traffic data to confirm that vehicle velocities fol-
low Gaussian distribution in steady-state traffic regime (wide
moving jam, and free-flow). We assume that the speeds of
vehicles to be independent and identically distributed because
the driver can choose an appropriate speed by themselves.
Also, we assume that the speed changes on a relatively short
distance road covered by an edge server are tiny, that is, remain
smooth and steady. In order to limit the vehicles’ speed to a
certain reasonable range, each vehicle generates its velocity vn
randomly from a truncated Gaussian distribution [30, 32, 33],
and keeps its assigned speed invariable when it passes an edge
server. Therefore, we avoid dealing with negative speeds.

The vn denotes the constant velocity of vehicle Vn, which is
taken between the lower and upper speeds, i.e. vmin ≤ vn ≤
vmax . The vmin and vmax represent the minimum and max-
imum speeds on the road, respectively. Thus, the distribution
of vn according to the following probability density function:

f(vn) =
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where µ is the mean speed, σ is the standard deviation of the
vehicles’ speeds and erf(x) = 2√

π

∫ x
0
e−η
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dη is the Gauss
error function. Let the coverage diameter of the edge server on
the road is L, and the distance from the vehicle Vn position to
the entrance of the coverage area is ln. Therefore, the residence
time of each vehicle within the coverage of the current edge
server can be obtained:

τn =
L − ln
vn

. (2)

If the service requested by the vehicle Vn is an inseparable
task, we need to ensure that it can be completed with the
assistance of the current edge server, that is to say, the
residence time τn of Vn is the upper time for the completion of
the task. Otherwise, continuous edge servers will successively
provide seamless services, but it is still necessary to ensure
that an atomic subtask is completed within τn at least.

2) Image quality: The on-board cameras are the critical
hardware for vehicles to obtain perception data, so the images
are one of the most basic data types used in many vehicle
intelligent applications. Due to vehicles’ mobility, the images
acquired by the vehicle will generally show noise, motion blur,
and distortion [34]. The level of motion blur Ln is related to
the instantaneous relative speed v

′

n between the vehicle Vn
and observation object [35, 36], and have

Ln =
v
′

nT [f cos(δ)−QG sin(δ)]

v′nTQ sin (δ) + dQ
. (3)

where T is the exposure time interval, f is the camera focal
length, Q is the charge-coupled device (CCD) pixel size in the
horizontal direction, G is the starting position of the object
in the image (in pixels), δ is the angle between the motion
direction and the image plane, d is the perpendicular distance
from the starting point of the moving object to the pinhole
[35]. We consider the case where the image plane is parallel
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Fig. 1: The system architecture

to the moving direction and then substitute δ = 0 into the
equation (3) to get

Ln =
Tf

dQ
v
′

n. (4)

where Tf
dQ is the parameter of the camera. The equation (4)

intuitively shows that the level of motion blur of the image
is proportional to the relative speed of the vehicle with the
observation object. To conduct the intelligent task accurately,
we need higher quality image sampling data to ensure the
image motion blur is less than a certain degree.

B. Federated Learning in Vehicular Edge Computing

Each vehicle Vn collects Dn training data samples such
as HD images, LiDAR data, and IMU data in our model.
And each training data sample consists of an input xi and
its corresponding output yi, which can be represented Dn =

{(xi,yi)}|Dn|i=1 . According to these data, each vehicle will be
able to derive a local deep learning model. Nevertheless, the
training data samples are too few, and the type is single, so
the generalization ability of the local model is relatively weak.
FL can take full advantage of such abundant multi-perspective
sensor data of these distributed vehicles to derive an edge
model in the edge server. Thus, the total size of data can be
utilized in the road section is denoted D =

∑N
n=1Dn.

Before an iteration of the edge model training begins, the
vehicles selected to participate in the training download the
area’s current edge model from the edge. Set an ∈ {0, 1}
indicate whether the vehicle is selected for model training,
if an = 1, it means Vn is chosen and an = 0 otherwise.

Let M ⊆ V be the selected set of vehicles. Since vehicles
are frequently moving in the road, the selection of vehicles
participating in the training task needs to consider many
factors, such as the residence time τn in the current edge
server coverage, the quality of vehicle collected data L and
the vehicle’s energy consumption restriction. This allows the
selected vehicle Vn ∈ M to complete the training of the
high-precision model in the road section with lower power
consumption.

The whole training process is divided into two sections,
local model training and edge aggregation, as shown in Fig.
1. We are taking the kth iteration of the edge server as an
example.

1) Local model training: Each vehicle inM which an = 1
uses local data set Dn to conduct deep learning training. The
goal of Vn is to obtain model parameters ŵk

n that can fit the
local data set very well in the kth edge iteration. This purpose
is achieved by minimizing the loss function:

ŵk
n = arg min

w
Ln(wk

n,xi,yi)

= arg min
w

1

|Dn|

|Dn|∑
i=1

ln(wk
n,xi,yi).

(5)

where ln(·) is the each vehicle’s loss function that evalu-
ates how different the predicted value ỹi = f(w,xi) of
the model is from the true one yi. Different deep learning
algorithms can use different loss function. For example, the
square loss is l(ỹi,yi) = (yi − ỹi)2, the exponential loss
is l(ỹi,yi) = exp(−ỹiyi), the Hinge loss is l(ỹi,yi) =
max(0, 1 − ỹiyi), yi ∈ {−1, 1}. Each vehicle performs the
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TABLE I: Key Notation Definitions in System Model

Symbol Definitions Symbol Definitions
N the number of vehicles covered by an edge server V a set of vehicles covered by an edge server
vn the speed of the vehicle Vn vmin / vmax the minimum / maximum speed on the road
µ / σ the mean / standard deviation speed of vehicles L the coverage diameter of the edge server on the road

ln
the distance from the vehicle Vn position to the

entrance of the coverage area τn
the residence time of the vehicle Vn within the

coverage of the edge server

Ln the motion blur level of the vehicle Vn v
′
n

the instantaneous relative speed between the vehicle
Vn and observation object

T the exposure time interval of the on-board cameras f the camera focal length

Q
the charge-coupled device pixel size in the

horizontal direction G the starting pixel position of the object in the image

δ
the angle between the motion direction and the

image plane d
the perpendicular distance from the starting point

of the moving object to the pinhole
Dn training data samples of the vehicle Vn xi / yi the input / output of the training data sample i

an ∈ {0, 1}
whether the vehicle Vn is selected for model

training M the selected vehicles set for training task

wk
n

local model weight parameters of the vehicle Vn
for the kth edge iteration

Ln(wk
n,xi,yi) the model loss function of the vehicle Vn

λk the learning rate of the kth edge iteration θ / ε the accuracy of the local / edge model

wk edge model weight parameters for the kth edge
iteration

I(θ) the number of edge model iterations

qn
the average CPU cycles to process a data sample

of the vehicle Vn
fn on-board CPU calculated frequency of the vehicle Vn

T com
n / Ecom

n

local computing time / energy consumption of the
vehicle Vn

T tran
n / Etran

n

the time / energy consumption to transmit model
parameters of the vehicle Vn

kn effective switched capacitance of the vehicle Vn pn the transmit power of the vehicle Vn
rn transmitting rate of the vehicle Vn αn the state of the Vn vehicular connection

K0
the performance of the error-recovery system using

Forward Error Correction technology Zn
the mobility function of Vn in the TCP/IP mobile

connection protocol service
Cn the data size of the local model parameters in Vn Sn the total cost of the vehicle Vn

λt, λe ∈ [0, 1]
the importance weighting indicators of the delay

/ energy consumption Tn / En
the whole time / energy consumption of the vehicle

Vn for one edge iteration

local parameter update in the kth edge iteration according to
the following algorithm to approximate ŵk

n:

wk
n ← wk

n − λk∇Ln(wk
n,xi,yi). (6)

where λk is the learning rate of the kth edge iteration.
When the inequality ||∇Ln(wk

n,xi,yi)|| ≤
θ||∇Ln(wk−1

n ,xi,yi)|| is met during the iteration process,
the iteration stops and the vehicle local model coverage to
a local accuracy θ (0 ≤ θ ≤ 1) . When θ = 0, the model
will get a exact solution of the local problem, and θ = 1
means that the local problem has no progress at all. For
strongly convex objective Ln(wk

n,xi,yi), the number of
local iterations of a wide range of iterative algorithms to
solve (5) is upper-bounded by O(log(1/θ)) [37], and we
can normalize O(log(1/θ)) to log(1/θ) as the upper bound
of local computation iterations [38]. After the vehicle local
model converges to the specified accuracy θ, the model
parameters wk

n and ∇Ln(wk
n,xi,yi) are transmitted to the

current edge server through the wireless channel.
2) Edge aggregation: The edge server to generate the new

edge model wk+1 by computing the weighted average of
received local models wk

n from all connected vehicles set
M, so that an edge model can be derived according to the
following formula:

wk+1 ← 1

|M|

|M|∑
n=1

wk
n. (7)

The gradient is aggregated as

∇L(wk+1,xi,yi)←
1

|M|

|M|∑
n=1

∇Ln(wk
n,xi,yi). (8)

There are many other update strategies, such as Fed-
erated Averaging (FedAVG) and Alternating Direction
of Multipliers Method (ADMM). When the inequality
||∇L(wk+1,xi,yi)|| ≤ ε||∇L(wk,xi,yi)|| is met during the
edge iteration process, the iteration stops and the edge model
coverage to an accuracy ε (0 ≤ ε ≤ 1). Otherwise, these
two parameters are fed back to the newly selected vehicles,
the (k + 1)th edge iteration starts. Due to strongly convex
problems, the number of edge iterations is upper-bounded by
I(ε, θ) = O(log(1/ε))/(1 − θ) [39]. For a fixed edge model
accuracy ε, we can normalize O(log(1/ε)) to 1, so the upper
bound of the number of edge iterations I(θ) = 1/(1− θ) can
be obtained [38].

C. Local Computation Phase

Let qn be the average CPU cycles required to process a data
sample when the vehicle Vn trains the local model. A total of
|Dn|qn CPU cycles are required to process the training data
samples Dn in one local iteration showed in (6). We denote
fn be the local computation capability, which is cycles per
second of on-board CPU. Thus, we can derive the time taken
for one local iteration is |Dn|qnfn

. Based on the analysis about
the number of iterations in local convergence to ensure the
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specified accuracy θ in Section III-B1, the whole time of local
computation can be obtained:

T comn = log(
1

θ
)
|Dn|qn
fn

. (9)

According to [40–42], we model the computation power of
on-board CPU as pcomn = knf

3
n, where kn represents effective

switched capacitance depending on the chip architecture [43].
The energy consumption of Vn for local computation is

Ecomn = pcomn T comn = log(
1

θ
)kn|Dn|qnf2

n. (10)

We can optimally schedule the supply voltage and clock
frequency fn based on Dynamic Voltage and Frequency S-
caling (DVFS) technology to minimize computation energy
consumption.

D. Transmission Phase

The communication cost of downloading the model from
the edge server in the downlink can be neglected compared
to the uplink transmission for vehicle clients. Let pn be the
transmit power of Vn, so the transmitting rate rn that the
wireless TCP/IP can provide in the steady-state [20] is:

rn = αn
√
pn. (11)

αn as the state of the vehicular connection can be defined:

αn ,
K0

√
Zn

RRT
. (12)

where the positive constant K0 describe the performance of the
error-recovery system using Forward Error Correction (FEC)
technology, Zn is the mobility function of Vn in the TCP/IP
mobile connection protocol service, which can be modeled by
a time-correlated log-distributed sequence [44]. RRT is the
average round-trip-time of the wireless connection, which can
be calculated iteratively using Jacobson’s formula [45].

We denote the data size of the local model parameters in
Vn to be updated as Cn, so the time to transmit them to the
current edge server can be derived:

T trann =
Cn
rn

=
Cn

αn
√
pn
. (13)

pn = ( rnαn )2 can be obtained by equation (11), so the energy
consumption for Vn to transmit local model parameters is:

Etrann = pnT
tran
n =

Cn
√
pn

αn
. (14)

Hereto, we conclude that the whole time and the energy
consumption for the vehicle Vn to execute one edge iteration
are represented by respectively:

Tn = T comn + T trann . (15)

En = Ecomn + Etrann . (16)

E. Problem Formulation

We now formulate an optimization problem to minimize
the vehicle’s maximum energy consumption and delay costs
in FL. Specifically, we consider the time delay, transmission
energy consumption, vehicle mobility, and the acquisition
image quality as constraints. And jointly optimize the vehicle
selected setM, local training accuracy θ, on-board CPU calcu-
lated frequency f = (f1, f2, · · · , fN ) and transmission power
p = (p1, p2, · · · , pN ) to minimize the energy consumption
and learning time of the vehicle Vn in the FL. According
to the analysis about the number of iterations in edge model
convergence to ensure the specified accuracy in Section III-B2,
the total cost of Vn can be modeled as the weighted sum of
time and energy consumption to converge the edge model, i.e.,
Sn = I(θ)(λtTn + λeEn), where λt, λe ∈ [0, 1] represent the
importance weighting indicators of the delay and energy con-
sumption, respectively. Our optimization problem is organized
as follows:

min
an,θ,f ,p

max
n
Sn

s.t. (C1) : an ∈ {0, 1}, ∀n ∈ N ,
(C2) : an

(
T comn + T trann

)
≤ τn, ∀n ∈ N ,

(C3) : Etrann ≤ Etranmax , ∀n ∈ N ,
(C4) : anLn ≤ Lmax, ∀n ∈ N ,
(C5) : 0 ≤ fn ≤ fmaxn , ∀n ∈ N ,
(C6) : 0 ≤ θ ≤ 1.

(17)

where Etranmax , Lmax and fmaxn are the maximum transmission
energy consumption, the level of maximum acceptable image
blur for federated learning tasks, and the maximum on-
board CPU frequency of the vehicle Vn, respectively. (C1)
indicates whether the vehicle Vn is selected to participate in
the federated learning model’s training and become an element
of the set M. (C2) restricts the residence time of the selected
vehicle within the edge server’s coverage area to ensure that
at least one local training is completed and the parameters
are updated. (C3), (C4) and (C5) confine the transmission
energy consumption, the level of image blur and on-board
CPU frequency of Vn, respectively. (C6) is the value range
of the local model accuracy.

IV. DESIGN OF RESOURCE ALLOCATION ALGORITHM

In this section, under given the set M of the selected
vehicles Vn with an = 1 and the local model accuracy θ, we
design an algorithm for solving min-max problems to obtain
the optimal resource allocation. Thus, we can get on-board
CPU frequency f and transmission power p by solving the
following problem converted from (17):

min
f ,p

max
n
I(θ)(λtTn + λeEn)

s.t. (C
′

2) : log(
1

θ
)
|Dn|qn
fn

+
Cn

αn
√
pn
≤ τn, ∀Vn ∈M,

(C
′

3) : pn ≤
(
Etranmaxαn
Cn

)2

, ∀Vn ∈M,

(C5) : 0 ≤ fn ≤ fmaxn , ∀Vn ∈M.
(18)
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To solve the problem effectively, we first convert it into
the epigraph form [46]. A new variable ζ is introduced to
transform problem (18) to:

min
ζ,f ,p

ζ

s.t. (C
′

2), (C
′

3), (C5),

(C7) : I(θ)

[
λt
(

log(
1

θ
)
|Dn|qn
fn

+
Cn

αn
√
pn

)
+λe

(
log(

1

θ
)kn|Dn|qnf2

n +
Cn
√
pn

αn

)]
≤ ζ,∀Vn ∈M.

(19)
The problem is the minimum linear objective function with the
convex constraints, which satisfies Slater’s condition and the
strong duality. The optimal solution of the original problem
can be obtained by solving the Lagrangian dual problem with
zero dual gap.

A. Resource Allocation Solution

Let λ = {λ1, λ2, · · · , λN} � 0, β = {β1, β2, · · · , βN} �
0, µ = {µ1, µ2, · · · , µN} � 0, and ϕ = {ϕ1, ϕ2, · · · , ϕN} �
0 be dual variables corresponding to the constraints (C

′

2), (C
′

3),
(C5) and (C7) in (19), respectively, so the Lagrangian dual
function of problem (19) can be expressed as

G(λ,β,µ,ϕ) = min
ζ,0�f ,p

L (ζ,f ,p,λ,β,µ,ϕ). (20)

where L (ζ,f ,p,λ,β,µ,ϕ) is the Lagrangian function rep-
resented in (21).

Due to the convexity of the problem, we can acquire
the optimal solution structures directly by using the Karush-
Kuhn-Tucker (KKT) conditions. Regarding other variables
as the fixed values, we take the partial derivatives of
L (ζ,f ,p,λ,β,µ,ϕ) in (21) with respect to variables fn and
pn and make them equal to 0. Then the following equations
can be obtained respectively:

∂L

∂fn
= µn + 2ϕnI(θ)λe log(

1

θ
)kn|Dn|qnfn

− log(
1

θ
)
|Dn|qn
f2
n

(
λn + λtϕnI(θ)

)
= 0.

(22)

∂L

∂pn
=βn +

1

2
ϕnI(θ)λe

Cn
αn
√
pn

− 1

2

Cn

αn
√
p3
n

(
λn + λtϕnI(θ)

)
= 0.

(23)

1) The optimal solution structure of on-board CPU frequency
Let A = µ2

n, B = 18I(θ)λeϕnkn log2( 1
θ )|Dn|2q2

n(λn +
λtI(θ)ϕn) and C = 3µn log( 1

θ )|Dn|qn(λn + λtI(θ)ϕn).
Solving the equation (22), we can get:

f∗n =



−µn−( 3
√
Y1+ 3
√
Y2)

6I(θ)λeϕnkn log( 1
θ )|Dn|qn

, µn ∈ (0,−( 3
√
Y1 + 3

√
Y2)]

∩(0,∆),
B
4A , µn = ∆,
µn(cos arccosG

3 +
√

3 sin arccosG
3 −1)

6I(θ)λeϕnkn log( 1
θ )|Dn|qn

, µn > ∆,

no solution, otherwise.
(24)

where Y1 = µ3
n + 6I(θ)λeϕnkn log( 1

θ )|Dn|qn−B+
√
B2−4AC
2 ,

Y2 = µ3
n + 6I(θ)λeϕnkn log( 1

θ )|Dn|qn−B−
√
B2−4AC
2 , ∆ =

3 log( 1
θ )|Dn|qn 3

√
I2(θ)(λe)2ϕ2

nk
2
n(λn + λtI(θ)ϕn) and G =

µnA−3I(θ)λeϕnkn log( 1
θ )|Dn|qnB

µ3
n

.
2) The optimal solution structure of transmission power

Let xn =
√
pn, Ā = 1

4I
2(θ)(λe)2ϕ2

n
C2
n

α2
n

, B̄ = 9
2βn

Cn
αn

(λn+

λtI(θ)ϕn) and C̄ = 3
4I(θ)λeϕn

C2
n

α2
n

(λn+λtI(θ)ϕn). Solving
the equation (23), we can get:

x∗n =



−
√
Ā−(

3
√
Ȳ1+

3
√
Ȳ2)

3βn
, ∆1 ∈ (0,− 2αn

Cn
( 3
√
Ȳ1 + 3

√
Ȳ2)]

∩(0,∆2),
∆1( 4

3α
4
n−C

4
n)

2βnC3
nαn

, ∆1 = ∆2,√
Ā(cos arccos Ḡ

3 +
√

3 sin arccos Ḡ
3 −1)

3βn
, ∆1 > ∆2,

no solution, otherwise.
(25)

where Ȳ1 =
√
Ā3 + 3βn

−B̄+
√
B̄2−4ĀC̄
2 , Ȳ2 =

√
Ā3 + 3βn

−B̄−
√
B̄2−4ĀC̄
2 , ∆1 = I(θ)λeϕn,

∆2 = 3 3

√
β2
n
α2
n

c2n
(λn + λtI(θ)ϕn) and Ḡ = 2

√
Ā3−3βnB̄

2
√
Ā3

.
Then, we will get the optimal solution of transmission power
p∗n = (x∗n)2.
3) The optimal solution structure of ζ

The optimal solution structure of f∗n and p∗n have been
obtained under given the set M of the selected vehicles and
the local model accuracy θ. According to the objective formula
and constriction formula (C7) in (19), the optimal solution of
ζ can be given by:

ζ∗ = max
n
I(θ)

[
λt
(

log(
1

θ
)
|Dn|qn
f∗n

+
Cn

αn
√
p∗n

)
+λe

(
log(

1

θ
)kn|Dn|qn(f∗n)2 +

Cn
√
p∗n

αn

)]
.

(26)

B. Lagrange Multipliers Update

If the Lagrange dual variables λ, β, µ and ϕ are known
in advance, we can obtain the optimal solutions of f∗n and
p∗n from (24) and (25). The problem in (27) is the Lagrangian
dual problem of original problem, the Lagrange dual variables
can be obtained by solving it.

max
λ,β,µ,ϕ

G(λ,β,µ,ϕ)

s.t. λ � 0,β � 0,µ � 0,ϕ � 0.
(27)

G(λ,β,µ,ϕ) is the linear relationship with respect to λ, β, µ
and ϕ by observing (21). Due to the convexity of the problem,
the subgradient projection method can be applied to update the
values to approximate the optimal one. The subgradient of (27)
can be calculated by the following theorem.

Theorem 1 : The problem in (27) is the Lagrangian dual
problem of original problem (19). A set of subgradients of
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L (ζ,f ,p,λ,β,µ,ϕ) = ζ +
∑
Vn∈M

λn

[
log(

1

θ
)
|Dn|qn
fn

+
Cn

αn
√
pn
− τn

]
+
∑
Vn∈M

βn

[
pn −

(
Etranmaxαn
Cn

)2
]

+
∑
Vn∈M

µn(fn − fmaxn ) +
∑
Vn∈M

ϕn

[
I(θ)

(
λt log(

1

θ
)
|Dn|qn
fn

+ λt
Cn

αn
√
pn

+ λe log(
1

θ
)kn|Dn|qnf2

n + λe
Cn
√
pn

αn

)
− ζ
]

(21)

G(λ,β,µ,ϕ) are given by the following equation:

5λn = log(
1

θ
)
|Dn|qn
f∗n

+
Cn

αn
√
p∗n
− τn, ∀Vn ∈M

5βn = p∗n −
(
Etranmaxαn
Cn

)2

, ∀Vn ∈M

5µn = f∗n − fmaxn , ∀Vn ∈M

5ϕn = I(θ)

(
λt log(

1

θ
)
|Dn|qn
f∗n

+ λt
Cn

αn
√
p∗n

+λe log(
1

θ
)kn|Dn|qn(f∗n)2 + λe

Cn
√
p∗n

αn

)
− ζ,∀Vn ∈M

(28)
where f∗n and p∗n are the optimal solutions from (24) and (25)
under given Lagrange multipliers λn, βn, µn and ϕn.

proof : See Appendix A.
From (28), the subgradients of G(λ,β,µ,ϕ) can be ob-

tained. The subgradient projection method for acquiring La-
grange multipliers to solve (27) is iterated in the following
way:

λn(t+ 1) = [λn(t)− i(t)5 λn(t)]+,

βn(t+ 1) = [βn(t)− j(t)5 βn(t)]+,

µn(t+ 1) = [µn(t)− k(t)5 µn(t)]+,

ϕn(t+ 1) = [ϕn(t)− o(t)5 ϕn(t)]+.

(29)

where [y]+
4
= max{0, y}, t is the subscript of the number

of iterations, i(t), j(t), k(t) and o(t) are small positive
step size. The step size setting method is the mean square
summation bounded, but the direct summation is unbounded
[47]. Specifically, we set i(t) = j(t) = k(t) = o(t) = 0.1

t [48].
We update the Lagrangian dual variables λn, βn, µn and ϕn
according to the iterative method in (29), and then substitute
the known dual variables into (24) and (25) to obtain the
optimal solutions of fn and pn. The optimal solutions can be
brought to (28) and (29) to obtain the new dual variables. This
is a cyclic iterative approximation process, which is explained
in Algorithm 1.

V. LOCAL MODEL ACCURACY AND SELECTION OF
VEHICLES

In this section, the on-board CPU frequency f∗ and trans-
mission power p∗ obtained from the above section are re-
garded as fixed values, and we design the heuristic search
algorithms to solve the min-max problem. Thus, we can get
the set M of the selected vehicles Vn with an = 1 and the
local model accuracy θ.

Algorithm 1 On-Board CPU Frequency and Transmission
Power Optimization Algorithm

Initialization:
• Set the initial value of dual variables to λ(0), β(0),
µ(0), ϕ(0), maximum number of iterations tmax and
the specified precision ε.

• Let t = 0.
Iteration:

1: while t ≤ tmax do
2: Substitute the dual variables λ(t), β(t), µ(t) and ϕ(t)

into (24) and (25) to obtain fn(t) and pn(t) respectively.
3: Update new dual variables λ(t+ 1), β(t+ 1), µ(t+ 1)

and ϕ(t + 1) using (29), according to the new fn(t)
and pn(t).

4: if ||λ(t+1)−λ(t)|| < ε, ||β(t+1)−β(t)|| < ε,||µ(t+
1)− µ(t)|| < ε and ||ϕ(t+ 1)−ϕ(t)|| < ε
then

5: f∗n = fn(t) and p∗n = pn(t).
6: break.
7: else
8: t = t+ 1.
9: end if

10: end while
Output: f∗ = (f∗1 , f

∗
2 , · · · , f∗N ) and p∗ = (p∗1, p

∗
2, · · · , p∗N ).

A. Local Model Accuracy Optimization Algorithm

Under given the set M of the selected vehicles and having
f and p, we transform problem (17) into the following form:

min
θ

max
n

log( 1
θ )Hn +Gn

1− θ

s.t. (C̄2) : log(
1

θ
)
|Dn|qn
fn

≤ τθn, ∀Vn ∈M,

(C6) : 0 ≤ θ ≤ 1.

(30)

where Hn = λt |Dn|qnfn
+ λekn|Dn|qnf2

n, Gn = λt Cn
αn
√
pn

+

λe
Cn
√
pn

αn
and τθn = τn − Cn

αn
√
pn

are calculated from known
values, which can be regarded as constants.

Constructing penalty function from constraint (C̄2) which
can be transformed into unconstrained, and the following
problem can be obtained by rearranging:

min
θ

F (θ)

s.t. (C6) : 0 ≤ θ ≤ 1.
(31)

when penalty factor γ → 0, we set the function F (θ) =

max
n

log( 1
θ )Hn+Gn
1−θ + 1

γ

∑
Vn∈M

max{0, log( 1
θ ) |Dn|qnfn

−τθn} [49].
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Algorithm 2 The Computational Procedure of the Self-
adaptive Global Best Harmony Search (SGHS) algorithm

Initialization:
• Set the parameters HMS, NI , UP .
• Initialize the update parameters of the main parame-

ters BWmin, BWmax, µHMCR, σ2
HMCR, µPAR and

σ2
PAR.

• Initialize the HM and evaluate it using F (θ).
• Set tNI = 1, tUP = 1, and r1, r2, r3 ∈ (0, 1).

Iteration:
1: while tNI ≤ NI do
2: Generate HMCR ← N (µHMCR, σ

2
HMCR), PAR ←

N (µPAR, σ
2
PAR) and compute BW (tNI) according to

(32).
3: if r1 < HMCR then
4: θnew = θi±r3×BW , where i ∈ {1, 2, · · · , HMS}.
5: if r2 < PAR then
6: θnew = θbest, where θbest is the best harmony in

the HM as evaluated by F (θ).
7: end if
8: else
9: θnew = θmin + r3 × (θmax − θmin).

10: end if
11: if F (θnew) < F (θbad) then
12: Substitute θbad in HM to θnew and preserve the

values of HMCR and PAR, where θbad is the worst
harmony in the HM as evaluated by F (θ).

13: end if
14: if tUP = UP then
15: Update the µHMCR and µPAR by averaging the

recorded values HMCR and PAR.
16: Reset tUP = 1.
17: else
18: tUP = tUP + 1.
19: end if
20: tNI = tNI + 1.
21: end while
Output: the optimal local model accuracy θ∗ in the HM as

evaluated by F (θ).

By solving (31), we can get the optimal solution of problem
(30). We develop a self-adaptive global best harmony search
(SGHS) algorithm [50] to solve this continuous optimization
problem. Then, we elaborate on the logic of the SGHS
algorithm and determine its parameters.

We regard the unknown variable θ as a harmony played, and
the optimized function F (θ) is the evaluation of this harmony.
Based on the evaluation F (θ), the harmony θ be continuously
adjusted, i.e., the search process, until the evaluation meets
the requirements. The main parameters of the algorithm are
shown below:

• Harmony Memory Size (HMS): It is a set of harmony,
there are a total of HMS rows, and each row is a harmony
which is a solution to the problem (31);

• Harmony Memory Consideration Rate (HMCR): It is
the probability of choosing a harmony from the historic

values stored in the HM;
• Pitch Adjustment Rate (PAR): It is the probability of fine-

tuning the harmony chosen;
• distance BandWidth (BW): It is the amplitude of fine-

tuning the harmony chosen;
• the Number of Improvisations (NI): It is the number of

times that the harmony is played, and it is the same as
the total number of function evaluations.

The control parameters mentioned above are closely related
to the problem being solved and the exploration phase in the
search process. The larger HMCR, the greater the probability
that the newly played harmony be selected from HM, which
increases the local search capability and convergence speed
of the algorithm but reduces the diversity of the HM. A
large BW value means that the algorithm performs a larger
search scope. Therefore, as the number of iterations tNI
increases, the value of BW should become smaller. These
selection of parameters is highly empirical, we set HMCR
and PAR to obey normal distribution, N (µHMCR, σ

2
HMCR)

and N (µPAR, σ
2
PAR) respectively, and dynamically update on

the basis of historic values. Let BW be updated with the
following formula [50]:

BW (tNI) =


BWmax − BWmax−BWmin

NI × 2tNI ,
tNI <

NI
2 ,

BWmin, tNI ≥ NI
2 .

(32)

where BWmin and BWmax are the minimum and maximum
distance bandwidths, respectively, which are the parameters
we set in advance. In this way, the parameters do not need to
be accurately set in advance, and the algorithm can automat-
ically learn and dynamically iterate adaptively. Therefore, the
SGHS algorithm has better performance on the problems with
different characteristics and complexity.

The θ is a one-dimensional variable. From (C6) in (31), we
set θmin = 0 and θmax = 1. Let UP be the update period of
HMCR and PAR according to the recording parameters. The
implementation of the algorithm details have been presented
in Algorithm 2.

Combining the on-board CPU frequency f , the transmission
power p and the local model accuracy θ that have been
obtained in Algorithm 1 and Algorithm 2, we designed Al-
gorithm 3 to solve (17) under given M with an = 1. This
applies the idea of block coordinate descent algorithm.

B. Vehicle Selection Algorithm

We then consider how to solve the problem of selecting
vehicles participating in the FL workload on the road segment
covered by an edge server. Under given M, we can obtain
f , p and θ. It is hoped that selecting a group of vehicles
can ensure that training task is carried out accurately and
efficiently with minimum energy consumption and time delay.
From the perspective of minimizing the objective function,
not selecting vehicles to participate in the task is the most
time-saving and energy-saving for each vehicle. Therefore,M
cannot be obtained directly. We design a greedy algorithm
shown in Algorithm 4 to iteratively add vehicles toM so that
it maintains the overall performance.
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Algorithm 3 A Joint Algorithm for Resource Allocation and
Local Model Accuracy

Initialization:
• Initialize local model accuracy θ(0)← [0, 1].
• Set the maximum number of iterations lmax and the

specified precision ε.
• Let l = 1.

1: Allocate on-board CPU frequency f(0) and the transmis-
sion power p(0) by calling Algorithm 1 based on θ(0).

2: Substitute θ(0), f(0) and p(0) into (26) to obtain ζ(0)
among |M| vehicles.

Iteration:
3: while l ≤ lmax do
4: Search θ(l) by calling Algorithm 2 based on f(l − 1)

and p(l − 1).
5: Compute f(l) and p(l) by calling Algorithm 1 based

on θ(l).
6: Substitute θ(l), f(l) and p(l) into (26) to obtain ζ(l).
7: if |ζ(l)− ζ(l − 1)| ≤ ε then
8: break.
9: end if

10: l = l + 1.
11: end while
Output: the optimal resource allocation f̂∗, p̂∗ and local

model accuracy θ̂∗ in vehicle set M.

Algorithm 4 Greedy vehicles selection algorithm

Initialization:
• Initialize M← ∅.

Iteration:
1: while V 6= ∅ do
2: Solve Ψn = min

θ,f ,p
max
m
Sm with Vm ∈ {M ∪ Vn} by

calling Algorithm 3 for each vehicle Vn which meet the
condition Ln ≤ Lmax in the vehicle set V .

3: Set Ψmin
n̂ = min{Ψn}.

4: Update M←M∪ Vn̂ and V ← V \Vn̂.
5: end while
Output: the set M∗ of the selected vehicles.

Algorithm 4 is a dynamic addition process. When a new
vehicle enters the current edge server’s coverage area, it will
turn to the vehicle set V automatically that can be selected.
Combining with the vehicle set M currently participating in
the training, the vehicle that minimizes the energy and delay
cost of the overall task is added among the available vehicles
each time.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, we present the convergence and performance
of the proposed algorithms. First of all, we introduce the
parameter settings of the simulation. Then, the simulation
results be used to verify the convergence of Algorithm 1,
Algorithm 2 and Algorithm 3, and we confirm the effectiveness
of Algorithm 4. Finally, a series of comparative experiments

Fig. 2: Convergence of Algorithm 1.

are done to demonstrate the performance of the proposed
scheme.

TABLE II: Parameter Settings in the Simulation

Parameter Meaning Value
vmin/vmax Minimum / Maximum Speed [2, 24] m/s

µ Mean Speed 13 m/s
σ Standard Deviation of Speed 5
L Coverage Diameter of Edge Server 10 m
ln The Position of Vehicle Vn [1, 10] m
T Exposure Time Interval 1

200
s

f Camera Focal Length 10 mm
d Perpendicular Distance 5 m
Q CCD Pixel Size 0.011 mm
Dn Training Data Samples [60, 150] KB
qn Processing Density [900,1600] cycles/bit
kn Capacitance Coefficient 10−27

αn State of Vehicular connection [3, 5]×106
HMS Harmony Memory Size 5
NI Number of Improvisations 6000
UP The Period of Parameter Update 100

BWmin Minimum Distance Bandwidth 0.0005
BWmax Maximum Distance Bandwidth 0.05

µHMCR/µPAR Mean HMCR/PAR 0.95 / 0.3
σHMCR/σPAR Standard Deviation of HMCR/PAR 0.01 / 0.05

Lmax Maximum Acceptable Image Blur 16

A. Simulation Settings

We simulated the experiments based on the Monte Carlo
simulation in a Matlab-based laptop with 16GB memory. The
CPU is Intel Core i7-10510U with 4 cores. We assumed that
there are N = 10 vehicles traveling on a road segment covered
by an edge server in the simulation. The lower and upper-speed
constraints of the vehicles on different traffic lanes are distinct
in urban streets, suburban roads, and highways [51]. In order
to be suitable for a more comprehensive scene application, we
set the vehicle speed range to be larger so that it can get the
general speed of the ordinary road. The parameters used in
the simulation are listed in Table II.

In the case of optimizing resource allocation and local
model accuracy, the experiments are conducted to verify the
effectiveness of Algorithm 4 to select vehicle setM. We set up
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Fig. 3: Convergence of Algorithm 2. Fig. 4: Convergence of Algorithm 3.

Fig. 5: Choose a vehicle V7 in Algorithm 4. Fig. 6: The effectiveness of Algorithm 4.

the velocity-based selection scheme (VBS) to add the vehicles
with the smallest driving velocity, the position-based selection
scheme (PBS) to add the vehicles with the least distance
from the coverage area’s entrance of the edge server, and
the random selection scheme for comparison. We optimized
some variables separately and randomly selected the remaining
variables to highlight the proposed scheme’s advantages. The
experiments set the following schemes:

• the accuracy-optimized scheme (AOS) to optimize the
local model accuracy and randomly select the on-board
CPU frequency and transmission power.

• the resource-optimized scheme (ROS) to optimize the on-
board CPU frequency, transmission power and randomly
select the local model accuracy.

• the non-optimized scheme (NOS) to randomly select the

local model accuracy, the on-board CPU frequency, and
transmission power.

B. Convergence of the Proposed Algorithm

Fig. 2 plots the Lagrange multiplier β versus the number
of iterations to show the convergence of the Algorithm 1.
We output the iterative curve of all N vehicles, which shows
the effectiveness of the Algorithm 1. It can be observed that
the subgradient projection method of Lagrange multipliers is
gradually approaching the optimal values, and a convergent
solution is obtained. Fig. 3 shows the value range and conver-
gence of the harmony memory with the iterative process of
NI = 6000. We used two green lines to draw the maximum
and minimum values of the five θ, and filled the middle gap
with red to indicate the value area of θ in HM. We randomly
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Fig. 7: Comparisons of the average cost, the worst cost, and the best
cost.

Fig. 8: Energy consumption / training time under different training
data size Dn.

Fig. 9: Training time / energy consumption under different maximum
on-board CPU frequency fmax

n .
Fig. 10: Cost / learning time under different position ln.

initialized θ in [0,1] and enlarged the position 1©. At the
beginning of the iterations, it can be seen that there are long-
span values in HM, and it converge quickly after about 20
iterations. As the iteration progressing, inflection points and
gaps between two lines like the position 2© appears, which
means that HM is updating and adding the new θ in search. We
enlarged the position 3© at the end of the iterations, showing
that the five θ in the HM converge to θ∗ = 0.0146. Fig. 4
plots the cost versus the number of iterations to show the
convergence of the Algorithm 3. And it represents that the
mutual iterations between Algorithm 1 and Algorithm 2. It
can quickly achieve good convergence results, which is based
on the benign convergence of the inner loop shown in Fig. 2

and Fig. 3 certainly.

In a greedy search, adding the vehicle Vn̂ that makes the
min-max cost in set M is minimum. Moreover, the vehicle
meets the requirements of the FL tasks for image quality. Fig.
5 verifies the effectiveness of this process in Algorithm 4.
The blur degree of images in V4 and V10 exceed the threshold
Lmax, so they are not involved in the resource scheduling
optimization of training tasks. The degree of blur is marked
in the box next to each point in Fig. 5. According to each
vehicle’s cost shown in the figure, the algorithm selects the
least min-max cost V7 into the set M.
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C. Performance of the Proposed Algorithm

In Fig. 6, 1 to 8 vehicles are chosen from the N vehicles
according to the proposed scheme, the VBS, the PBS, and the
random scheme, respectively, and they are added to the vehicle
setM one by one. We compared the cost of the four schemes.
The proposed scheme added the vehicle that keeps the overall
cost ofM to a minimum each time. As the number of vehicles
in M increases, the overall system cost rises gradually. The
VBS and the PBS are better than the random selection scheme
slightly. Since each scheme optimizes resources and local
model accuracy, the more vehicles added, the smaller the
cost difference. However, Algorithm 4 is a dynamic process.
After a new vehicle enters the edge server’s coverage area,
the vehicle that minimizes the overall cost is always added at
first. This experiment shows the superiority of the proposed
vehicle selection algorithm compared with other alternatives
under optimizing resource allocation and local model accuracy.

In Fig. 7, we compare the average cost, the worst cost,
and the best cost among the proposed scheme, the AOS, the
ROS, and the NOS. The cost of the AOS exceeds the ROS, so
the optimization of the resource allocation is more helpful in
reducing system cost than local model accuracy. The NOS will
cause colossal energy waste and time delay and make a vast
difference in the cost of vehicles participating in training tasks,
causing unfairness among them. We found that the proposed
optimization scheme not only minimizes the cost but also has
a small cost difference between each vehicle, which is well-
balanced and fair.

Fig. 8 shows the energy consumption and training time
under different training data size Dn. For a given αn, the
larger the training data size, the longer the learning time
and the higher the energy consumption. For a given Dn, the
better the state of the vehicular connection αn, the shorter
the learning time and the lower the energy consumption.
Due to the proposed scheme can achieve a tradeoff between
energy consumption and time delay, the growth of energy
consumption and learning time become slow gradually as Dn

increases. The αn can also affect the iterative process by
influencing the maximum transmission power indirectly.

In Fig. 9, we investigate the training time and energy
consumption under different maximum on-board CPU fre-
quency fmaxn , and we can observe that the learning time is
decreasing and energy consumption increasing as the fmaxn

of vehicles increase. For a given fmaxn , the larger the λe,
the longer the learning time and the lower the consumption.
This is because when the weight of the energy consumption
in the Sn = I(θ)(λtTn + λeEn) becomes larger, the learning
time will become longer, and the energy consumption will be
reduced to balance the value of the total cost.

In Fig. 10, we present the cost and learning time under
the different positions of vehicles. The farther the vehicle is
from the edge server coverage area entrance, it means that
the vehicle is about to leave this communication area. This
causes the residence time τn to be small. So the learning time
must be sharply reduced to complete the learning task within
the requirement, and the cost will increase accordingly. For a
given position ln, if the faster the velocity vn of vehicles, it

means that the shorter the residence time, the learning time
will be reduced, and the cost will also increase.

Fig. 8, Fig. 9 and Fig. 10 show the impact of vehicles
with different training data sizes Dn, connection status αn,
maximum on-board CPU frequency fmaxn , optimized param-
eters λe, speed vn and position ln on FL training time and
energy consumption. These experiments further highlight the
performance optimization of the proposed scheme among
various vehicle states and achieve the preset goals.

VII. CONCLUSIONS

In this paper, we have considered the problems and char-
acteristics of FL deployed in VEC. Mainly include image
quality, velocity and position of the vehicles, learning time,
energy consumption, and vehicle selection. We formulated
a joint optimization with on-board computation capability,
transmission power, and local model accuracy to achieve the
minimum cost in the worst case of FL. Due to the min-
max optimization problem formed as a nonlinear programming
problem, we decomposed it into two subproblems. For the re-
source allocation problem, we used the Lagrangian dual prob-
lem and the sub-gradient projection method to approximate
the optimal value iteratively. For the local model accuracy
problem, we developed an adaptive harmony algorithm for
heuristic search. Based on the on-board image quality and joint
optimization process, we developed a greedy vehicle selection
algorithm to minimize the overall system cost. Finally, the
simulation results have shown that our proposed algorithms
have well convergence and effectiveness. It is utility to achieve
fairness to the cost and resource optimization among vehicles,
and it provides a tradeoff between learning time and energy
consumption.

APPENDIX A
PROOF OF THE THEOREM 1

From the definition of G(λ,β,µ,ϕ) in (20), we can obtain
the optimal solution of on-board CPU frequency f∗n and
transmission power p∗n under given Lagrange multipliers λn,
βn, µn and ϕn. So the following inequality can be established:

G(λ
′
,β
′
,µ
′
,ϕ
′
)

≤ ζ +
∑
Vn∈M

λ
′

n

[
log(

1

θ
)
|Dn|qn
f∗n

+
Cn

αn
√
p∗n
− τn

]

+
∑
Vn∈M

β
′

n

[
p∗n −

(
Etranmaxαn
Cn

)2
]

+
∑
Vn∈M

µ
′

n(f∗n − fmaxn )

+
∑
Vn∈M

ϕ
′

n

[
I(θ)

(
λt log(

1

θ
)
|Dn|qn
f∗n

+ λt
Cn

αn
√
p∗n

+λe log(
1

θ
)kn|Dn|qn(f∗n)2 + λe

Cn
√
p∗n

αn

)
− ζ
]

Adding G(λ,β,µ,ϕ) to the right of the inequality and
transpose the remainder to the left side. Then, we can get
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following inequality after rearranging them:

G(λ
′
,β
′
,µ
′
,ϕ
′
)

+
∑
Vn∈M

(λn − λ
′

n)

[
log(

1

θ
)
|Dn|qn
f∗n

+
Cn

αn
√
p∗n
− τn

]

+
∑
Vn∈M

(βn − β
′

n)

[
p∗n −

(
Etranmaxαn
Cn

)2
]

+
∑
Vn∈M

(µn − µ
′

n)(f∗n − fmaxn )

+
∑
Vn∈M

(ϕn − ϕ
′

n)

[
I(θ)

(
λt log(

1

θ
)
|Dn|qn
f∗n

+ λt
Cn

αn
√
p∗n

+λe log(
1

θ
)kn|Dn|qn(f∗n)2 + λe

Cn
√
p∗n

αn

)
− ζ
]

≤ G(λ,β,µ,ϕ)

The subgradient z of a convex function g(·) at the point x0 is
defined as: g(x0) + zT (x − x0) ≤ g(x), it holds for all x in
the domain. Thus, the Theorem 1 holds.
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