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Abstract—Voice assistant systems are becoming immersive
in our daily lives nowadays. However, current voice assistant
systems rely on the cloud for command understanding and
fulfillment, resulting in unstable performance and unnecessary
frequent network transmission. In this paper, we introduce CHA,
an edge-based caching framework for voice assistant systems,
and especially for smart homes where resource-restricted edge
devices can be deployed. Located between the voice assistant
device and the cloud, CHA introduces a layered architecture with
modular design in each layer. By introducing an understanding
module and adaptive learning, CHA understands the user’s
intent with high accuracy. By maintaining a cache, CHA reduces
the interaction with the cloud and provides fast and stable
responses in a smart home. Targeting on resource-constrained
edge devices, CHA uses joint classification and model pruning
on a pre-trained language model to achieve performance and
system efficiency. We compare CHA to the status quo solution
of voice assistant systems and show that CHA benefits voice
assistant systems. We evaluate CHA on three edge devices that
differ in hardware configuration and demonstrate its ability to
meet the latency and accuracy demands with efficient resource
utilization. Our evaluation shows that compared to the current
solution for voice assistant systems, CHA can provide at least
70% speedup in responses for frequently asked voice commands
with less than 13% CPU consumption, and less than 9% memory
consumption when running on a Raspberry Pi.

Index Terms—Edge Computing; Voice Assistant Systems;
Caching

I. INTRODUCTION

The widespread development of computerized natural lan-
guage understanding (NLU) has greatly affected how people
interact with machines. Smart Speakers, such as the Amazon
Echo, Google Home have been benefited from NLU technol-
ogy and are entering millions of families across the world. In
2019, nearly 150 million smart speakers were sold across the
world, which is 70% higher than 2018 [1]. A survey from
Voicebot reported that nearly 90 million U.S. adults have
smart speakers in January 2020, which increased by 85%
in two years [2]. Not only the smart speaker, but there are
also more and more open-sourced smart home systems that
are taking voice control into the development. For example,
HomeAssistant [3] introduced Ada [4] as its voice assistant
several months ago, and openHAB [5] integrated Google
Assistant to provide voice control function. The burgeoning
voice assistant market encourages a variety of smart devices
to integrate with voice interaction.
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As a unique member in a smart home, the voice assistant
plays a dual role: on one side, it takes the speech command to
the system as a controller for the user to control home devices
without a touch; on the other, it reacts to the command as a
controlled device.

The smart speaker’s pervasive existence has brought intel-
ligence to the home environment and broadened home life.
However, it is noticeable that currently, the smart speakers
and other voice assistants rely on the cloud for command un-
derstanding and fulfillment [6]-[10]. That means if a network
outage happens, there is no way for a householder to use the
voice assistant. Moreover, even when the network is available,
users usually suffer from variations in response latency due
to the unpredictable situation during data transmission on the
Internet. However, it is not necessary to rely on the cloud
to process all the commands. For example, home automation
commands can benefit from history fulfillments; task man-
agement commands do not have rely on cloud resources. In
this paper, we propose an edge-based caching framework that
provides support to accelerate the voice assistant system’s
performance, and the goal is to provide instant-response and
high-accuracy service.

In addition, introducing edge-based processing to the current
workflow also offers higher reliability, especially when the
network is unstable or cloud servers are not responsive. The
local home network can process the command to manipulate
automation devices in the home environment. User privacy and
security also benefit from this computing paradigm, with less
data is exposed to the external network.

The voice assistant system relies on intelligent technology
to understand voice commands. Cloud-based processing can
provide computation and storage resources to handle services,
with a trade-off between response latency and performance.
In recent years, hardware has been rapidly improving in
performance [11], making it possible to realize intelligence at
the edge. Compared to the cloud, the computation resources
are relatively restricted at the edge. Many efforts have been
devoted to enabling edge intelligence [12], [13], in both hard-
ware (e.g., Intel neural compute stick, Nvidia Jetson series,
Google edge TPU) and software (e.g., ROS, TensorFlow Lite).

We are inspired by the promotion of edge intelligence
to explore edge-supported voice assistant systems. There are
several open challenges brought from migrating the command



understanding from the cloud to the edge. The first is how
to ensure low response latency since the intelligent model is
introduced to the edge processing. By offloading the command
understanding to the edge, the latency caused by the unstable
network can be alleviated, while the computation limited edge
resources may take a longer time to process intelligent tasks.

A second point is whether the performance will degrade
from cloud to edge. The cloud-based solution is a trade-off
between latency and accuracy. When introducing the under-
standing function to edge servers with limited computational
resources, the understanding performance may be affected
because the original large model needs to be compressed to
accommodate the edge resources.

A third point is the generality of the edge-supported solu-
tion. With the popularity of voice assistant systems and differ-
ent available open-source smart home systems, the platforms
that piggyback voice assistants have a variety of differences
in terms of architecture, memory, GPU, efc.. It is worth
exploring the generality or restrictions of the edge-supported
voice command processing in these systems.

In order to explore and address the above-described chal-
lenges, we propose CHA, an edge-supported caching frame-
work for home-based voice assistant systems. CHA is com-
posed by four layers: command interface layer, command
parser layer, command caching layer, and management layer.
CHA implements several optimizations to improve system per-
formance. To reduce latency, CHA combines two classifica-
tion tasks and jointly parses them. To increase accuracy, CHA
takes feedback from the user to continuously fine-tune the
understanding model. To improve the system efficiency, CHA
provides a lightweight understanding module which performs
model compression without hurting the accuracy.

We implement CHA in Python and integrate it with
speech command understanding models. While the command
parser layer parses the assigned command, we also trained
a cloud-based command understanding model on Google Di-
alogflow [6] as the cloud support to the system. It receives
commands rerouted to the cloud by the rerouting module and
responsible for the integration fulfillment.

We evaluate CHA using a spoken language understanding
(SLU) dataset across three different hardware platforms and
demonstrate that CHA can provide general edge-support for
voice assistant systems with low latency, high accuracy, and
acceptable system efficiency. We compare CHA with a pure
cloud-based solution and show that CHA is a promising
solution for the voice assistant systems.

We summarize the contribution of this paper as follows:

o We analyze the cloud-based voice assistant system and
find two drawbacks affecting user experience: long la-
tency and unstable response.

« We propose and implement CHA, an edge-based caching
framework for voice assistant systems to address the two
drawbacks. CHA integrates command understanding and
caching to enable home-based command processing.

o We take a set of techniques, including joint classification
and model pruning on a pre-trained understanding model
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Fig. 1: Status quo: cloud-only processing.

to achieve efficiency performance for CHA running on
resource-constraint edge devices, and validate its perfor-
mance and system efficiency on Raspberry Pi.

The rest of the paper is organized as follows. We introduce
the problem statement and challenges in Section II. Section III
describes the design of CHA. Its implementation and eval-
uation are presented in Section IV and V respectively. We
discuss the observations about the edge-based efficient voice
processing in Section VI. Section VII studies the related work,
and Section VIII concludes the paper.

II. PROBLEM STATEMENT AND CHALLENGES

Voice assistant systems are widely used. Currently, the
command understanding and fulfillment are entirely based on
the cloud. In this section, we first analyze the cloud-based
voice assistant system in terms of its latency and availability.
We then propose the edge-supported processing as a promising
solution to address the drawbacks underlying cloud-based
solutions. Finally, we discuss the key challenges in edge-
supported voice command processing and CHA’s solution.

A. The Status Quo: Cloud-Only Processing

First, we explain voice assistant workflow and describe how
a voice command is parsed and fulfilled.

As shown in Figure 1, in a smart home environment where
the voice assistant has been set up with access to other
smart devices, a user asks the voice assistant to turn on the
kitchen light by saying “Turn on the light in the kitchen”
after awaking the voice assistant with a specified hotword. The
voice assistant then sends the audio command to the cloud for
processing. The goal for the command understanding module
is to understand the command by detecting the intent and
filling the slots. To this end, a pre-trained natural language
understanding (NLU) model is stored in the cloud for parsing
natural language. Thus, a voice command needs to go through
an automatic speech recognition (ASR) model to generate
corresponding text from the audio wave before feeding into
the NLU model. After that, the intent (kitchen light on)
is detected, and three slots {action: activate, object: light,
location: kitchen} are filled. To clarify, in the rest of the paper,
we name this two-step parsing model as ASR-NLU model.

The detected intent and slot will then be sent to the
fulfillment step. As a smart device control command, the home
gateway takes the response back and interacts with the light
management module to trigger the light in the kitchen. For
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Fig. 2: Voice processing latency comparison.

other types of commands, for example, the “get weather”
command, the gateway or the cloud will interact with third-
party APIs or the cloud for information, depending on the
integration configuration.

Observed from our usage of voice assistants, as well as the
complaint from the community [14], [15], the slow response of
voice assistants happens from time to time. When processing
common commands such as open the light in certain areas,
sometimes it takes considerably more time than usual time to
respond, even in a stable network connection.

To quantitatively describe the user experience, we analyze
the performance of cloud-based voice assistant systems on
the voice command recognition and voice command under-
standing parts, respectively. The voice command recognition
is provided by Google Speech-To-Text API [16]. The voice
command understanding is provided by Google Dialogflow.
These two cloud services provide backend support for products
integrating conversational user interface, and represent the
state-of-the-art performance. In addition, we deploy an edge-
based ASR model on a Raspberry Pi as a comparison. The
cloud response time is measured in the round trip time.

Figure 2 demonstrates the response time consumed when
processing different sizes of audio data on the edge and the
cloud. The audio data contains the different lengths of spoken
words from 1 to 9, and the audio size ranges from 20 KB
to 133 KB. With audio size increases, the response time for
ASR processing increases accordingly, while the cloud-based
ASR shows more fluctuation comparing to the edge-based
processing. Compared to ASR processing, the cloud-based
ASR-NLU exhibits more unstable response latency.

On average, edge-based ASR processing takes 36.9 mil-
liseconds, 53.2% faster than the cloud-based ASR. Table I
lists the performance of ASR on cloud and edge in terms of
average word error rate (WER) and sentence accuracy. WER is
the ratio that word is mistakenly recognized, and lower WER
means better performance of the ASR model. The cloud model
is a general solution that provides state-of-the-art accuracy,
and it achieves 83.2% in sentence accuracy, with 10.42%
WER. The edge ASR model is trained with a small while
dedicated language vocabulary dictionary, and outperforms the
general model with 96.1% accuracy, 2.5% WER. The resource-
limited edge shows the capability to perform intelligence
with low latency and high accuracy with a dedicated trained

Word error rate (WER)
10.42%
2.52%

Sentence accuracy
83.19%
96.12%

Cloud-based ASR
Edge-based ASR

TABLE I: Voice recognition performance comparison.

model. Moreover, it brings a more stable experience with less
interaction with the external network.

[Motivation 1] The cloud-based voice assistant system
experiences long latency, unstable performance in response,
while an edge-based device can eliminate these drawbacks.
Thus the current cloud-based solution can involve the edge to
support the voice command fulfillment.

B. The Usage Pattern of Voice Assistant

Next, we review the usage pattern of the home-based voice
assistant systems.

Home automation has been developed for several years as
one practical implementation of the smart home. Different
commercialized or open-sourced products are available in
this community. Correspondingly, home devices, including
illumination systems, entertainment systems, surveillance sys-
tems, and more, are touchless controllable through a voice
assistant. The smart home system provides a user interface
for the user to send voice commands and fulfill the command
accordingly to realize automation. Smart home systems have a
dedicated configuration of each device to identify and define
the fulfillment actions. A device need to be registered with
{trigger, action} in the configuration file for the system to
recognize and fulfill. To a home-based voice assistant, it
understands the audio command by detecting the underlying
intent and slots, i.e., the defined trigger. Then the parsed trigger
allows the system to find the corresponding action.

Bentley et al. [17] conducted detailed research on 65 thou-
sand utterances collected from 88 households through their
long term usage of Google Home, and here we summarize
two insights.

1) The length of the voice command is limited. The maxi-
mum length of the collected utterances is less than ten
words, and the median is four words.

2) The usage of the voice assistant is highly spatial-
temporality related. Spatially, the voice command is cov-
ered by approximately three domains, although different
householders have different domains of interest. Further-
more, a typical power-law distribution is observed on
command domains (Figure 3). Temporally, the active
usage of the voice assistant is 7 AM to 11 PM, and
peaks around 5-6 PM, following the human circadian
rhythm.

[Motivation 2] The voice commands are driven by the
intent, short in the length, and limited in the topic. Thus a
caching system at the edge can benefit the current workflow
by caching the frequently requested {trigger, action} pairs.

C. Challenges

The above mentioned two motivations inspire us to pro-
pose CHA, a caching framework at the edge to support the
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current cloud-based voice assistant systems, and accelerate
the response for frequently used intent without intervening
with the cloud processing. CHA’s workflow is described in
Figure 4. It is aimed at offloading cloud processing, reducing
the network dependency, and providing fast and stable user
experience. We present the key challenges of edge-based voice
command processing and describe CHA’s solution.

1) Response latency: Compared to web caching systems,
extra processing time is introduced to CHA because of the
understanding part. To diminish its impact on cache miss
items, CHA needs to parse the voice command quickly. Effi-
cient deep learning methods and models have been proposed to
reduce the inference time and squeeze model size for original
large models. They have shown acceptable performance on
GPU-equipped and powerful CPU-equipped devices [18]-[20].
However, their feasibility on resource-constrained devices
needs further discussion.

2) Understanding accuracy: The efficiency of caching de-
pends on the accuracy of voice command understanding. Mis-
takenly missing a cached item prolongs the response time, and
wrongly return a cached item will affect the user experience.
An efficient understanding model with high accuracy is the
key to support the whole home-based voice assistant system.

3) System efficiency: As a time-sensitive service, CHA is
expected on the critical path, and the performance must be
fast and accurate. Besides, for a smart home environment, the
restriction on computation resources is another concern since
GPUs or powerful CPUs may not apply in this scenario. Thus
the design of CHA is supposed to be system efficient and will
not bring too much pressure on resource-constrained devices.

To address these challenges, CHA leverages a pre-trained
language model to achieve state-of-the-art understanding per-
formance. It combines the intent detection and slot filling to-
gether in the understanding model to reduce the computational
overhead. CHA prunes a model to reduce inference processing
time and compresses the model and adaptively learns from the
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Fig. 5: The CHA architecture.

feedback and history data to improve the model performance.

III. SYSTEM ARCHITECTURE

CHA is designed as a layered architecture with com-
mand interface, command parser, command caching, and
management layers (Figure 5). The command interface layer
maintains a message queue to manage the input command in
sequence. The command parser layer takes the responsibility to
understand commands and improve the prediction performance
by learning adaptively. The command caching layer decides
the proper routing for the fulfillment of the parsed command,
and updates caching accordingly for the up-to-date response.
The management layer supports the interaction with connected
devices or services according to the user’s configuration file.

CHA encapsulates each component as a module. Each
module is initialized with the system, and can easily be
accessed across the system. The modular design also simplifies
the model deployment and replacement in the command parser
layer. As the understanding model takes audio as input and
output detected action, either the two-step ASR-NLU model
or the end-to-end SLU model is applicable.

We first describe the path of voice commands CHA before
presenting the system design in detail. When the user issues
voice commands to the voice assistant, the commands are
transmitted through RESTful API to CHA and first stored
in a message queue in sequence. Then the command parser
layer takes the waiting commands from the message queue and
parses its meaning. A comprehensible command will be looked
at in the caching for valid matching action. In contrast, a
command that is incomprehensible or finds no matching action
in the caching will be rerouted to the connected cloud service
for fulfillment. The corresponding action then goes to control
destination devices or services through the management layer
for command fulfillment.

In principle, CHA is not responsible for generating the
fulfillment of itself. It stores executable response from history
requests in the caching, which will be queried for each com-
prehensible command. CHA takes two strategies to improve
the cache hit rate. One is positive rectification by synthetic



candidate commands; one is passive correction by feedback
received from users and the cloud. Both strategies are aimed
at improving the understanding model performance.

A. Command Interface Layer

CHA provides an interface to accept the voice commands
from the voice assistant. In the implementation of CHA,
RESTful API is used for audio data and response transmission
between the framework and the voice assistant. The voice as-
sistant posts an audio command to CHA in the local network,
and wait until getting the processing response. When CHA
receives a command, it first pushes it to the message queue,
and evoke the parser layer to process in sequence.

B. Command Parser Layer

The command parser layer is the intelligent part in CHA. It
integrates an understanding module and an adaptive learning
module to provide the understanding capability for voice
commands. The understanding module is integrated with
lightweight models to target on resource-constraint edge de-
vices. The learning module leverages feedback, and cached
history queries to improve the understanding performance.

1) Understanding Model:

Inspired by the mainstream cloud-based voice assistant solu-
tion, we design CHA with the two-step understanding model,
i.e., the ASR-NLU model.

The ASR technology has been well studied in decades, and
there are some out-of-shelf solutions available, both online
and offline. CHA adopts PocketSphinx [21] as the ASR
model. Targeting on the deployment on the embedded devices,
PocketSphinx is designed with lightweight computation and
storage cost. To integrate PocketSphinx in CHA with stable
and accurate performance, we generate a knowledge-based
lexical and language model containing normal vocabularies
used in a smart home environment.

The natural language recognized by the ASR model is
sent to the NLU model for understanding. As introduced
in Section II, the goal of command understanding is to
detect the intent as well as fill the slots correctly. They both
are considered as classification tasks. Intent detection is the
classification on the sentence level, and slot filling is on the
word level.

CHA combines the two classification tasks in one model
to efficiently use the computation and storage resource at
the edge device. This idea has been proved can achieve
state-of-the-art performance recently [22], [23]. Besides, to
achieve a good understanding performance with limited train-
ing data, CHA leverages the pre-trained language model
BERT [24], as BERT and its variants have shown outstand-
ing performance across different natural language processing
(NLP) tasks [25].

Based on the Transformers [26], BERT is constructed
by four components: input embedding, multi-head attention-
mechanism, feed-forward layers, and output embedding. Using

ICLS and SEP are two inherent tokens in BERT. CLS means classification,
SEP means separate preserving for next sentence prediction task.
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its pre-trained model, and connect the last layer to the classi-
fication layer, we can easily fine-tune it to get an NLU model
(Figure 6). Leveraging BERT’s nature, while filling slots on
the word level, the first special token CLS can be used to detect
the intent of the whole utterance.

Directly deploy BERT, however, is too costly for an edge
device. Given there have been some studies on the compres-
sion on BERT [27], [28], we build the NLU model in CHA
based on a pre-trained DistilBERT [29]. DistilBERT takes
knowledge distillation [30] to compress the BERT model by
40% with subtle performance degradation, for a light and fast
performance.

Targeting on the lightweight understanding model for edge
device, we test the response time of the ASR and NLU models
mentioned above on a Raspberry Pi. The reason we choose
Raspberry Pi is, compared to other costly hardware, Raspberry
Pi is affordable and suitable to be considered as the gateway
solution for a home environment. Figure 7 compares the
latency of processing voice commands on Raspberry Pi and the
cloud. The cloud processing time is measured as the round trip
latency. The performance on Raspberry pi is severely lagged,
and the DistilBERT-based NLU model consumes more than
70% processing time.

As a caching system, the understanding module needs
to be efficient enough to keep the processing time low, to
diminish the effect on the cache missed item. To achieve
acceptable performance when deploying CHA on Raspberry
Pi and similar resource-constrained devices, here we discuss
the model compression strategies considered in CHA to build a
lightweight understanding module with short processing time.

a) Model Compression:
The DistilIBERT-based NLU model has 66 million parameters
with 265 MB in model size, making it costly to store and
run on a Raspberry Pi. Thus, the model compression in



CHA focuses on reducing the model size and accelerating
the inference time.

A series of compression methods have been proposed to
facilitate the deployment of deep learning models on edge
devices with faster inference speed without the loss of ac-
curacy [31]. Motivated by the design choice that achieving
better performance with less required labor, we adopt model
pruning to optimize the NLU model on CHA.

Pruning reduces the model dimension while keeping the
model structure. Jawahar et al. [32] found that BERT’s lower
layers learn basic features, and higher layers learn downstream
task-related features. Besides, while the multi-head is proposed
to parallel attention mechanism and accelerate the training,
Michel et al. [33] shows in their work that, during the
inference phase keeping one attention head in one layer still
preserves the BERT’s performance. Given the DistilBERT has
12 attention heads, with 64 dimensions in one head, in total
has 768 dimensions.

Inspired by these studies, we prune the DistilBERT by
cutting on the number of layers and attention heads, then
directly connecting the lower layer to our classification layer
before fine-tuning the model, aiming to an efficient while
accurate smaller NLU model.

We will further discuss the efficiency of CHA’s model
compression strategy in Section V.

2) Adaptive Learning:

In addition to the inference time, accuracy is also the critical
factor in the design of CHA as it can affect the user experience
and the caching efficiency. The adaptive learning helps CHA
to adapt to the change in a smart home by learning from the
configuration file and feedback.

The adaptive learning module can be invoked in two ways.
One is active learning, which gets learning knowledge from
the system. Another is passive learning that getting feedback
from the user and the cloud. The training data are generated
jointly from these two ways and fed into the adaptive learning
module for improvement.

a) Active Learning: Active learning positively generates
training data from the system. This function is reserved for
smart home autonomous control. When a new {zrigger, action}
pair is registered to the configuration file, CHA searches in
the system for registered devices with the same attribute to
synthesize command based on the cached history of these
devices. For example, when a smart light is installed in the
washroom, it’s corresponding {rigger, action} is registered to
the configuration file. The synthetic user commands can be
generated based on history commands that used to control
the light in the kitchen by replacing the location-related
information and labeling with registered configuration.

b) Passive Learning: In CHA, low false positive (FP)
and low false negative (FN) are required to ensure the user
experience. FP comes from user feedback. It happens when a
hit item labeled incorrectly by the user. FN comes from cloud
feedback. It happens when the system receives the response
of a missed item and trying to write it to the cache while
identifying the item has already been cached. CHA counts the

FP and FN to calculate a tolerance score, and trigger passive
learning when the score is lower than a threshold. Passive
learning collects feedback from the cloud and user to generate
training data and new labels.

c) Batch Process: Comparing to the inference process,
training a model takes considerable resources. To utilize the
resource at the edge, CHA adopts batch adaptive learning
when the system is in idle state. An idle state of the system
can be derived from long term tracking of the usage pattern.
By logging the number of commands per hour, CHA can
construct the distribution of the user commands with Markov
Chain Monte Carlo method [34], and choose the predicted
idle time to schedule adaptive learning. CHA first collects
the feedback and configuration data to generate the training
data, and save them in the filesystem. The adaptive learning
module then works as scheduled to fine-tune the model with
the stored aggregated data. Consider that the daily usage is in
a limited amount; it is acceptable for the system to do a daily
or even weekly update.

C. Command Caching Layer

The command caching layer uses a caching module to
provide responses to fulfill cached locally controllable com-
mands and provide a routing module to determine whether the
response goes directly to the management layer to control the
device or go to the cloud to get the updated response.

1) Caching:

Caching module in CHA is designed with the following
two purposes. Firstly, as observed in Figure 3 that the real
world voice assistant usage follows the power-law distribution,
caching at the edge benefits these frequently requested com-
mands. By maintaining the command cache, CHA serves these
commands without interacting with the cloud. It substantially
reduces the service latency and variability by eliminating the
additional cost of network transmission. Secondly, command
caching serves an essential role in adaptive learning (Sec-
tion I1I-B). To correctly understand commands, adaptive learn-
ing in CHA jointly consider feedback and history commands.
Feedback from the cloud is reported by locating a cached item
that mistakenly conceived missed. Synthetized data also come
from the cached history commands. CHA caches {rrigger,
action} of the history command sent from the cloud in one
hash table with (key: trigger, value: action) format. A parsed
command will lookup this hash table for valid action. To make
history command available for the learning purpose, the path
to recorded audio files is also cached.

When a trigger is modified or removed from the config-
uration file, CHA retrieves its associated values and delete
them from the caching. CHA employs LRU eviction policy.
With an adequately sized cache, CHA can utilize the hardware
resource efficiently, and avoid the eviction of hot commands.

2) Rerouting:

As an edge-supported caching framework, CHA does not
provide an entirely offline process. The routing module decides
the route of the parsed commands when the corresponding
response it not locally available.



trigger: “active kitchen light”
entity: light.kitchen

status: (state == off)

action: state.on

TABLE II: An example in configuration file.

Based on this design, when CHA is deployed in the
first time, commands in the message queue are sent to the
routing part for cloud processing directly. CHA caches the
parsed result {trigger, action} from cloud response for each
transaction. After several interactions between the system and
the user, CHA invokes the understanding module to work.

The policy taken in the routing module is intuitive. A valid
cache hit command will be sent to the management layer to
control the destination device. The command that missed or
expired in cache, or failed to be parsed in the understanding
module, will invoke the cloud service from the provided client
API. The rerouting part also monitors the response sent back
from the cloud, and written it back to the caching to update,
and to the management layer for fulfillment.

D. Management Layer

The management layer provides the system configuration
file and stores history audio commands in the file system.

The configuration file allows CHA to run properly by
defining the registered cloud service and local controllable
devices. Table II is an example showing a registered {trigger;
action} pair for kitchen light in the configuration file. The
execution of the trigger also checks the current status.

The storage part records history command in audio files, and
write the audio path to the cache. Based on the corresponding
trigger value, the audio paths are recorded in different hash
tables. To avoid the accumulation of audio files wastes the
storage space on the edge device, each audio file has an
expiration key when writing to the cache. When the key
expired, the file will be removed from the system.

IV. IMPLEMENTATION

In this section, we introduce the experiment setup of CHA,
including the hardware, software, dataset, and the workload.

A. Experimental Setup

The whole system is composed of the device (voice assis-
tant), the edge (where CHA deployed on), and cloud (backend
support for the voice assistant), as shown in Figure 8. In
the experiment implementation, we connect a mic array to
a Raspberry Pi as the voice assistant taking audio input.
Since resource configurations are different among available
edge devices, we choose edge devices that differ on the CPU,
CUDA, and memory. Raspberry Pi is an ARM CPU-based,
affordable computation resource. Intel Fog Reference Design
(FRD) provides powerful CPU configuration, and Jetson AGX
Xavier is a GPU-based hardware platform. The detailed pa-
rameters are listed in Table III. The cloud-based understanding
service for the system is maintained in Google Dialogflow.
Google Dialogflow is a cloud-based NLU service created by

Fig. 8: CHA system implementation.

Google to accompany their Speech-to-Text service and provide
intelligence to voice assistant systems. It can be queried with
either audio or text requests. For the sake of consistency, we
train the NLU model in the Dialogflow with the same dataset
as CHA’s NLU model.

We implement CHA in Python 3. We use PyTorch 1.4.0 as
the deep learning library to support the understanding module.
We use Flask [35] to build RESTful API enabling the data
transmission between voice assistant device and CHA. We
use Redis [36] as the message queue and the cache. The
message queue is maintained by a Redis list, and the cache is
maintained by several Redis hash tables. As a memory cache,
Redis provides low read and write latency for the system. The
caching size is set as 2 MB.

B. Dataset

In the experiment, we use Fluent Speech Commands [37],
which contains spoken English commands that people interact
with a smart home or voice assistant. It covers typical smart
home commands, including home automation on various de-
vices at multiple locations, and task management. The data
are labeled on intent and slots. Each spoken command is
composed of 1 to 9 words, which is consistent with the
usage pattern discussed in Section II. There are three slots
labeled in each utterance: action, object, and location. The
slot types’ design follows the same pattern as the trigger
configuration we observed in some open-source smart home
systems [3]. There are 31 unique intents across the dataset,
denoting the specified action expected to be taken by the
system. Each intent is expressed in different ways based on
human knowledge, ranging from 4 to 24 types of expressions
(Table IV). The total number of unique utterances in total is
248. This design is consistent with the observation from [17]
that even for a single user, the voice commands are changed
from time to time when asking for the same intent. We then
train our model based on this dataset and build the workload
for cache evaluation from it.

C. Workload Generation

As the voice assistant usage follows the power-law dis-
tribution (Figure 3), we simulate the user query in Pareto



Hardware CPU GPU CPU Frequency | Cores | Memory 0S Cost (USD)
Raspberry Pi mode 4B ARMV7 N/A 1.5GHz 4 4GB Linux 4.19.118-v71+ 55.0
Intel Fog Reference Design | Intel Xeon E3-1275 N/A 3.6GHz 4 32GB Linux 4.15.0-34-generic N/A
Jetson AGX Xavier ARMVv8 512-core Volta 2.3GHz 8 32GB Linux 4.9.140-tegra 699.0
TABLE III: Hardware configuration.
Intent (trigger) Commands DistiBERT DistilBERT_2L6H DistiBERT_1L6H
Louder please. 743.7
o Turn sound up. 257.0
Increase volume T can’t hear that. . 127.15
I need to hear this, increase the volume. 3;5: 100 35.34
Turn on the kitchen light. 2 23.84 22.25 4708
Active kitchen light Switch on the Kitchen light. 5 10 85 Leq
Kitchen light on.
TABLE IV: Same intent expressed differently. ! RPI Intel Fog Xavier (CUDA)

Fig. 9: Pruning benefits inference time.
d1.str11.)ut10n, which belongs to the powe.r-law probability dis- . Aftention Viodel Parameter
tribution, and has been widely observed in natural phenomena ayers Heads size (MB) | size (million)
and human activities [38]. The probability distribution formula DistilBERT 6 12 265.60 066
for Pareto is f(z,a) = —%+, where = tepresents the intent | DiSUIBERT 2L6H 2 6 152.20 38

flz,a) gt P DistilBERT_1LGH 1 6 123.83 30

(trigger) of the command, and « is a shape parameter. A
higher « leads to a more skewed distribution, where data
presents a higher locality. As the real-world usage is close to
the Pareto distribution when « is 0.5, we generate the workload
to simulate the required intent when « is 0.25, 0.5, and 1.0. In
these three cases, the probability of the most frequently used
intent in the workload is 62%, 44%, and 34%, respectively.
Besides, a uniformly distributed workload is generated and
evaluated as well. Each workload has 100 commands, and send
the audio request to CHA in a random time interval. Given
that each intent contains commands expressed in different
ways (Table IV), the workload randomly selects one command
when an intent is required. At the same time, we take different
numbers of transactions to preload as the warm-start to observe
its effect on CHA.

Besides, we do not restrict the network traffic in the
evaluation given the small audio command size (less than 200
KB). The experiment is conducted in a stable network with
10 Mbps download speed and 2 Mbps upload speed, which is
a typical Internet speed for at home [39].

V. SYSTEM EVALUATION

In this section, we begin with an analysis of the benefit of
the model pruning strategy. Based on the pruned model, we
evaluate the performance of CHA. First, we compare a home-
based voice assistant system with and without CHA. Second,
we evaluate the resource consumption of CHA. Finally, we
describe the performance of CHA on three edge devices with
different hardware configurations. Unless otherwise noted, all
the evaluations are conducted on the Raspberry Pi.

A. Model Pruning Strategy

In Section III-B, we propose to compress the NLU model
by pruning the number of layers and attention heads to bene-
fit CHA’s deployment on resource-restricted edge devices.We
find the model and parameter size are linearly related to
the number of layers. The same relationship exits between

TABLE V: Pruning benefits model size.

the inference time and the number of layers. Figure 9 and
Table V present a few pruned models for demonstration
purposes. DistilBERT_2L6H model is cut from 6 to 2 layers
(L), DistilBERT_1L6H model is cut from 6 to 1 layer. They
both keep half the number of the original attention heads (H).
DistilBERT_1L6H reduces the model size by 53%, with 5.8X
acceleration in inference.

The improvement in model size and inference time comes
with the preservation of performance accuracy. On the Fluent
Speech Command dataset, the model shows no performance
degradation after pruning. Since the size of our dataset is
small, we further evaluate the pruning methods on two widely
used NLU datasets that containing much larger utterances
for the generality purpose. The same pre-trained model and
pruning strategy are used on all three datasets. The details
about the evaluated datasets and the inference accuracy are
listed in Table VI lists the inference accuracy on three datasets.

The listed performance is evaluated on DistilBERT_1L6H
model, and the data marked in red shows the performance
degradation, i.e., the maximum degradation from pruning. In
general, the DistilBERT_1L6H preserves over 98% in intent
detection accuracy, and 94% in slot filling comparing to the
original model.

Beyond inference, CHA runs adaptive learning to com-

Fluent Speech

Command ATIS [40] SNIPS [41]
Utterances 248 5871 14484
Intent labels 31 21 7
Slot labels 3 120 72

Intent accuracy

92.0% (0.0%)

96.42% (0.9%)

97.86% (1.4%)

Slot F1 score

96.3% (0.0%)

93.58% (2.0%)

90.04% (5.8%)

TABLE VI: Pruning maintains most of the performance.
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Fig. 10: Adaptive learning: adding new device.

pensate for accuracy. Thus we evaluate the pruned model’s
performance on adaptive learning. When lights in different
locations are added to the system (Figure 10), it takes two only
epochs for DistilBERT_1L6H to understand the command by
training with synthesized data correctly. Beyond that, because
synthetic command enriches the diversity of command intents,
the performance of sentence accuracy prediction increases.

These experiments show that, with proper model compres-
sion such as pruning, a powerful deep learning model can
be deployed on resource constraint edge devices and achieve
similar high performance with short inference time and small
storage size. In addition, the adaptive learning benefits the hit
ratio as the model can recognize more commands.

B. System Efficiency

By pruning the BERT-like NLU model in the number of
layers, and attention heads, we have proved that the com-
pressed model achieves at least 94% performance as the
original model, with the processing time accelerated by almost
six times than the original one. The NLU model in CHA’s
understanding module is based on DistilBERT_1L6H, since
it brings most inference acceleration with no degradation on
performance in our dataset.

As a caching framework, we first evaluate the caching
efficiency of CHA from the system latency, cache hit ratio,
recall, and precision. Recall and precision are related to the
accuracy of the understanding model, higher recall ratio means
less FN, higher precision means less FP.

We compare the latency of the home-based voice assistant
system working with and without CHA in Figure 11(a) when
« of the workload is 0.5. Without CHA, the voice command
is sent directly to the cloud for processing. The cloud response
time varies. For demonstration purposes, commands with
response time less than 3 seconds are presented.

CHA provides faster and stable experience for users than
the cloud. 80% commands are finished by CHA in less than
0.8 seconds. In the 80th-percentile finished command, the
latency is reduced by 52% to 73%.

The effect of different distributions in user intent and num-
ber of preload transactions is shown in Figure 11(b) to 11(d).
With more preloaded transactions, the influence of usage intent
distribution to the system is getting smaller. The usage pattern

Uniform | =025 | a=05 | a=1.0
Preload = 5 74% 82% 84% 88%
Preload = 10 77% 86% 88% 88%
Preload = 20 85% 85% 87% 91%

TABLE VII: Hit ratio of CHA.

Uniform | =025 | a=05 | a=1.0
Preload = 5 93% 96% 99% 100%
Preload = 10 93% 100% 95% 100%
Preload = 20 95% 93% 99% 99%

TABLE VIII: Precision of CHA.

that has a higher diversity in intents benefits more from a small
number of preloaded transactions. For the high locality usage
pattern, CHA can start the understanding module after a few
transactions have been completed in the cloud.

Table VII lists the hit ratio and precision in different cases.
Higher locality intent distribution has a higher hit ratio of voice
commands. Preloading also helps the system to have a higher
hit ratio. Recall and precision are related to the accuracy of
the understanding model, higher recall ratio means less FN,
higher precision means less FP. Here, we assume the response
from the cloud is the ground truth to calculate precision and
recall value. Across our evaluation, the recall is 1.0 since no
FN happens. The precision is higher than 92% (Table VIII).
For the FP item, CHA rectifies them by the feedback from
the user.

These experiments show that the deployment of CHA on
Raspberry Pi can provide a fast and stable response for
the home-based voice assistant systems by the lightweight
understanding module and a caching system.

C. Resource Consumption

Beyond the response time and understand accuracy, the
resource consumption consumed on the resource constraint
edge device is one important factor in evaluating CHA’s avail-
ability. We consider the resource consumption by analyzing
the memory, CPU usage. We use top to get the percentage of
memory and CPU utilization, memory-profile to get memory
size used in a finer time granularity. We compare the resource
consumption of CHA on Raspberry Pi with a baseline system
that using unpruned DistilBERT as the NLU model. The
resource consumption of a Flask implemented gateway is also
measured as a comparison.

The lightweight understanding module considerably lowers
the memory and CPU usage comparing to the baseline. It
consumes three times more memory and CPU than a Gate-
way APIL As an intelligent system, its resource consumption
is acceptable for the edge device. In the system loading
phase, CHA can load each module and be ready to re-
ceive commands 2X faster than the baseline. The maximum
memory CHA consumes is lower than the baseline’s system
running period.

These experiments show that the execution of CHA does not
cause new bottlenecks in the resource utilization on resource-
constraint edge devices.
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Fig. 11: Latency with different workload and preload strategies.

Memory utilization (%) | CPU utilization (%)
Baseline 11.88 23.41
Gateway 2.74 3.80
CHA 8.03 11.78

TABLE IX: The resource consumption on Raspberry Pi.
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Fig. 12: Memory footprint in CHA’s loading phase.

D. CHA on Different Edge Devices

Finally, we deploy CHA on three edge devices configured
differently in hardware (Table III), to explore the generality
of CHA. We evaluate the responsiveness of CHA on each
device, and resource consumption CHA required to provide
stable performance. For the Jetson Xavier where CUDA is
equipped, we analyze its GPU usage as well, and use fegrastats
to get GPU usage on it.

CHA'’s performance on different platforms is evaluated
from both command processing and adaptive learning parts.
The command processing is the model inference phase, during
which the system receives an audio command from voice
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Fig. 13: Responsiveness on three edge devices.
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Fig. 14: Resource utilization on three edge devices.

assistant to parse. The adaptive learning is the model training
phase, during which the system fine-tunes the understanding
model with newly generated data.

Figure 13 compares the responsiveness in two phases.
Raspberry Pi takes a longer time to process in training and
inference due to the computation resource it equipped is less
powerful than the other two. It takes around 1.5 minutes to
train one epoch in adaptive learning, while Intel FRD takes 6
seconds and Jetson Xavier takes 4 seconds. In Figure 10, we
presented the number of epochs required in adaptive learning
is quite small; thus, it is acceptable for a resource-limited
device to execute the adaptive learning module. Depending
on aggregated utterances that need to be rectified, CHA can
schedule the adaptive learning in a daily or weekly manner.
Figure 13(b) demonstrates the end-to-end processing time
on edge devices. For cached commands, CHA reduces the
processing time by 70%, 94%, and 77% than the cloud-
based system on Raspberry Pi, Intel FRD, and Jetson Xavier
respectively. Thus, for a cache missed item, CHA keeps the
low response overhead.

In terms of resource utilization (Figure 14), adaptive learn-
ing takes a considerable proportion of CPU usage across three
devices. Jetson Xavier takes 50% less usage on CPU because
the model is moved to CUDA for training. The average
resource utilization in command processing is less than 13%,
2%, and 9% on Raspberry Pi, Intel FRD, and Jetson Xavier
for both CPU and memory. Since the inference workload is
low, GPU utilization on Jetson Xavier is nearly zero after
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. Parameter size
Layers | Model size (MB) (million)
BERT 12 438.10 110
BERT_1L 1 126.19 30
ALBERT 1 46.87 12

TABLE X: Model size of BERT-like models.

averaging, Figure 14(b) only shows CPU and memory usage.

The memory footprint on three devices since CHA starts to
load is shown in Figure 15. The system loading phase takes
13 seconds, 2 seconds, and 24 seconds on Raspberry Pi, Intel
FRD, and Jetson Xavier. The high memory usage and longer
loading time observed in Jetson Xavier results from a fixed
overhead to the CUDA runtime, as the NLU model running
on CUDA for inference.

In summary, the design of CHA makes it applicable to be
deployed on edge devices with different hardware configura-
tions. Intel FRD shows outperforming capability in both model
training and inference phase, with the shortest processing
time and lowest resource utilization. Raspberry Pi, although
limited in CPU and memory resource, is also capable of
deploying CHA and provide stable and fast performance for
home-based voice assistant systems.

VI. DISCUSSION

In this section, we discuss the challenge of edge-based voice
command processing based on our observations during the
deployment and evaluation of CHA.

Observation 1: For BERT and its variants, layer pruning
is a simple and effective compression solution that making it
possible to deploy on edge devices with subtle performance
degradation.

In Section V, we evaluate the benefits of model pruning
on the pre-trained DistilBERT. To explore the generality of
the layer pruning on the BERT-like structure, we adopt the
same pruning strategy on pre-trained BERT and ALBERT [42]
as well. Table X is the model size before and after layer
pruning. ALBERT has small model size because it only has
one layer, and iterates this layer 12 times in execution. So
our layer pruning on ALBERT is reducing the iteration times.
The performance of layer-pruned BERT and ALBERT models
running on our tested dataset maintained 96% of the original
model’s performance (Table XI).

Observation 2: To deploy an efficient deep learning model
on devices configured differently in hardware, quantization is
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BERT_1L
92.0% (4.0%)
96.3% (0.0%)

TABLE XI: Performance of layer-pruned BERT-like models.

ALBERT_1L
96.0% (0%)
96.3% (0.0%)

Intent accuracy
Slot F1 score

Raspberry Pi Intel FRD | Jetson Xavier

Inference time | 737.0 ms (127.2 ms) 41.4 ms 83.0 ms

Model size 15.9 MB (123.8 MB)

Parameter size

3 million (30 million)

TABLE XII: SLU model (red: DistilBERT_1L6H).

not a one-for-all solution. It is affected by available deep
learning framework, hardware, quantization engine.

Given that in BERT’s structure, the feed-forward layer takes
a considerable proportion. We attempted post-training integer
quantization on linear layers of the fine-tuned DistilBERT
to compress the model. With the built-in quantization tool
provided by PyTorch 1.4.0, the model size is reduced by
48%, and the inference time reduced by 48.5% on Intel
FRD. A similar improvement is observed on other X86-
based machines. On a Macbook Pro (2.8 GHz Quad-Core
Intel Core i7), quantization reduces the inference time by
89%. However, similar performance was not shown on two
ARM-based devices which using QNNPACK [43] as the
backend quantization engine. Meanwhile, since the CUDA-
based quantization in PyTorch has not been supported, for a
CUDA-based device, models need to switch from PyTorch to
TensorRT for quantization, making steep learning curve for
efficient model deploying at the edge.

Observation 3: For end-to-end SLU models, efficient voice
processing at the edge is challenging due to the dense and
informative model structure.

From Figure 7 and 13(b), we find that after compression,
the ASR engine becomes the most significant time-consuming
part on different platforms and needs to be optimized. It brings
double labors to model compression since ASR and NLU are
back-ended with different techniques. One alternative way is
adopting the end-to-end SLU model and make optimization on
it. The end-to-end SLU model has been proposed recently [37],
[44], where the model takes the voice command and directly
output the detected slot and intent text. Convenient by CHA’s
modular design, we effortlessly replace the ASR-NLU model
with one SLU model [37] and get its processing performance
as shown in Table XII. Unlike DistilBERT, where the model is
large in terms of model size and parameter number, the SLU
model is quite small and dense. It is significantly smaller than
the NLU model (87% smaller in model size, 90% smaller in
parameters), while it takes more than seven times to process
than the latter on Raspberry pi. We found that CHA’s model
compression does not apply to the SLU model. Due to the
difference in model structure and components. The SLU model
processes phoneme and word feature in sequence, and merely
pruning part of the weights will either show no effects on the
model size or significantly hurts the accuracy. We save it for
future work to explore the optimization of SLU models on
edge devices.



VII. RELATED WORK
A. Caching System

As computation-intensive and latency-sensitive applications,
intelligent services leverages cache to accelerate processing
time. Cachier [45], [46] is proposed to minimize latency
for image recognition services by inserting a specified cache
between the user and the cloud. MUVR [47] is a framework
designed to serve multiple virtual reality users at the same
point of interest by maximizing the efficiency of utilizing
the edge cloud’s computation and communication resources.
Potluck caches duplicated processing results for vision work-
loads across applications [48]. Zhang et al. [49] leverages
a deep reinforcement learning algorithm to find the proac-
tive caching policy for multi-view 3D videos. Besides these
caching services designed for computer vision tasks, some
work focuses on caching the reusable processing results for
cognitive services. Elbamby et al. [50] proposes to minimize
the latency by proactively caching popular computing results.
As a prediction services system, Clipper leverages function
cache to store the intermediate results to reduce the prediction
latency and improve the throughput [51]. FoggyCache caches
computation processing for similar contextual data across
devices and shows promising results on powerful GPU-based
machines [52].

B. Spoken Language Understanding

SLU is the technology that supports voice assistant systems.
The conventional solution is composed of ASR and NLU
modules [41], [53]. DeepSpeech [54] and Kaldi [55] are two
well known ASR models. PocketSphinx [21] is a lightweight
ASR model designed for embedded devices. The performance
of ASR models rely on language package, consider the storage
and deployment cost, current voice recognition systems mainly
rely on the cloud resource. The studies in NLP get significant
development after BERT [24] has been proposed. BERT
provides a pre-trained model that can be used for different
downstream tasks and show promising performance on many
of its variants [25]. To predict the intent and slots at the
same time, Chen et al. [23] proposed jointBERT. An alter-
native solution burgeoning recently is end-to-end SLU [37],
[56]-[58]. In this type of model, the speech is represented
from phonemes to words to meanings. Because of the high
dimensional and high variable character of speech signals,
the SLU model’s development is challenging. For current
voice assistant systems, the two-step ASR-NLU model is the
mainstream solution.

C. Edge Intelligence

Bringing intelligence to edge needs efficiency deep learning
to improve hardware efficiency on resource constraint devices.
Large pre-trained models, such as BERT, are usually huge
in model size and expensive in deploy cost [59], different
model compression strategies are proposed. Model pruning
is one typical solution that pruning the BERT model dur-
ing pre-trained phase [28], cutting on number of attention
heads [33], reducing the layer dimensions [60], extracting
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sub-network from the complete model [61], etc. Knowledge
distillation [27], [29], [62] compresses the model according to
the principle that, a well-performed large model contains rich
generalization knowledge in softmax output. Thus distillation
transfers the generalization knowledge from a well-performed
large model to a small model by training the latter with a loss
over the output from the large model. Quantization provides a
smaller model size by reducing the precision of the model
parameters. Quantization methods vary on different model
structures [63], [64]. The optimization on CHA is motivated
by these studies. Besides, the efficient neural network archi-
tecture is also a solution for edge intelligence, HAT [65] is
a hardware-aware Transformers network for NLP tasks that
can generate specialized sub-model to deploy on different
hardware based on the constraint analysis. Although efficient
deep learning has been well studied in NLP and computer
vision field [18]-[20], [66], compression on ASR and SLU
models is still a big challenge [67].

VIII. CONCLUSION

Voice assistant systems are becoming immersive nowadays
as a new way for people to interact with the machine. However,
current voice assistant systems are purely based on the cloud to
process audio commands and fulfillment. This workflow can
prevent users from having a stable and fast user experience
due to the unpredictable situation in the cloud server and the
network. It also brings unnecessary data transmission through
the internet when the voice commands are locally controllable.

In this paper, we first analyze cloud-based voice assistant
systems and find two drawbacks: long latency and unstable
response. To address the two drawbacks, we propose CHA,
a caching framework to provide fast and stable performance
for home-based voice assistant systems. CHA is constructed
with a layered architecture with a modular design. It pro-
vides an understanding module to parse voice commands,
a caching module to cache history commands with corre-
sponding fulfillment from the cloud, a routing module to
dispatch voice commands and a configuration file to provide
locally controllable information. It maintains a message queue
to manage received voice commands. It also integrates an
adaptive learning module and history storage unit to rectify
the parsing accuracy. In order to make CHA applicable
on low-cost, resource-restricted edge device, we use joint
classification and model pruning on a pre-trained language
model for CHA to accelerate the inference and reduce the
resource consumption while maintaining high accuracy. The
evaluation of CHA on three edge devices that differ in
hardware configuration shows that as the support framework
deployed at the edge, CHA is capable of providing fast, stable,
and accurate responses for home-based voice assistant systems
with efficient system resource utilization. Moreover, resource-
constrained edge devices can process voice commands for
voice assistant systems. On Raspberry Pi, CHA provides a
70% acceleration in response compared to cloud processing,
with resource consumption less than 13% in CPU and 9% in
memory on average.
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