
HydraView: A Synchronized 360◦-View of Multiple
Sensors for Autonomous Vehicles

Luodai Yang
College of Engineering and Technology

Eastern Michigan University
lyang15@emich.edu

Qian Jia
College of Arts and Science
Eastern Michigan University

qjia@emich.edu

Ruijun Wang
Dept.of Computer Science

Wayne State University
ruijun@wayne.edu

Jie Cao
School of Information Security and Applied Computing

Eastern Michigan University
jcao3@emich.edu

Weisong Shi
Dept.of Computer Science

Wayne State University
weisong@wayne.edu

Abstract—Today’s autonomous vehicles will deploy multiple
sensors to achieve safe and reliable navigation and precise
perception of the environment. Although multiple sensors can
be advantageous in terms of providing a robust and complete
description of the surrounding area, the synchronization of
multi-sensors in real-time processing is extremely important.
When data is synchronized, primary functional systems such as
localization, perception, planning, and control, will all benefit.
In this paper, we proposed a synchronized data illustration and
collection method to assist the data processing applications for
autonomous driving. Our proposed solution among different
sensors can be directly deployed on autonomous vehicles for
data integration and environment analysis to support the driving
model construction. The experimental results validate that our
proposed method can present a 360◦ synchronized view while
providing the capability of real-time scanning with up to 80%
reduced latency.

Index Terms—autonomous vehicles, multiple sensor, synchro-
nization, camera, LiDAR, transformation matrix

I. INTRODUCTION

Autonomous driving is a complex task that relies on precise
localization, navigation, planning, and system control. In order
to maximize the safety and reliability of the vehicle, multiple
sensors have been installed for collecting data and performing
computing tasks accordingly. This process requires the uti-
lization of several types of sensors for different computing
purposes. Since many sensors are applied for data acquisition,
data synchronization, and data fusion are extremely important.
In fact, cameras and 3D LiDARs are widely used sensors for
supporting autonomous driving [1], [2], [3]. When incorpo-
rating data of various sensors into a single description: the
field of view is enlarged, the precision of the estimation is
increased, and consequently, the system is economically effi-
cient as different applications share a set of sensors. The most
challenging part of such a system is data association, which
requires a synchronization of the sensor data and the actual
corresponding object state. The main advantage of synchro-
nization is that it provides a completed view for the incoming
sources to support the ADAS (Advanced Driver Assistance
Systems), In-vehicle infotainment, real-time diagnostics, as

well as some third-party applications. The synchronized data
will improves the performance and accuracy for all the above
applications because there is no gap or overlap for the different
data sources to create a reliable and consistent middle-ware
for the top-level applications. Some researchers conducted
an investigation into exploring hardware-triggering synchro-
nization, network synchronization, clock synchronization, and
software synchronization among different type of sensors [4]–
[6]. For hardware synchronization, camera supported-hardware
synchronization is rarely deployed in applications due to their
high cost and high data transfer requirement among multi-
cameras. In addition, Network synchronization strictly relies
on network reliability and the design of algorithms. In the
event of network failure happens, the catastrophe caused by
network delay is tremendously dangerous for time-critical au-
tonomous driving applications. Moreover, the current solution
for software synchronization using the time stamp method can
solve the asynchronous problem. However the processing time
overhead makes the solution unsatisfiable for the real-time
performance requirement. Thus, there is a need to generate
an effective synchronization method for multiple sensors on
autonomous vehicles with extremely low latency. In this paper,
we proposed a synchronized data illustration and collection
method of multiple sensors for autonomous vehicles in real-
time environment. This solution can provide an efficient and
accurate platform for applications running on top of these data.
Our significant contributions of this work can be summarized
as follows:

• Propose an effective algorithm to reduce computing time
for multiple sensors data fusion in real-time environment.

• Propose a robust synchronization algorithm to locate the
corresponding image data of each camera and LiDAR.

• Implement the proposed method on a real mobile plat-
form with six web cameras and one Velodyne 3D LiDAR
to collect data and test the real-time performances.

• Verify our design using two different sensors and then
collect a set of data on our test-bed to prove the synchro-
nization result.

• Conduct intensive experiments on a HydraOne [7] plat-
form to test the efficiency and effectiveness of our pro-
posed solution.

The rest of the paper is organized in the following structure.
In Section II, we analyze the previous research works regard-
ing multi-sensors synchronization and calibration methods.
Section III focuses on the system design and implementation
of our proposed methods. We present the experimental setup
and evaluation results with a presentation of the future works
in Section V and conclude our work in Section VI.

II. RELATED WORKS

To precisely perceive surrounding environments, multi-
sensors are needed to support autonomous driving. Sensors
frequently used in autonomous driving include LiDAR, cam-
eras, Radar, GPS, and inertial measurement unit (IMU). Many
datasets for autonomous driving have been released on dif-
ferent mobile platforms with various combinations of these
sensors [6], [8]–[12]. As we can see from these datasets, 3D
LiDAR and cameras are commonly adopted for perceiving
surrounding environment in autonomous driving. LiDAR can
provides higher accuracy and reduce the computation cost
in comparison to cameras. [13]. Therefore, sensor fusion
has been applied in many aspects regarding autonomous
driving [4], [5], [14]–[18]. To ensure high accuracy of the
estimation of sensor fusion, Kaempchen et al. pointed out that
the critical part of sensor fusion is synchronization among
multiple sensors [5]. Since different sensors have different
work frequency aligning multiple data in corresponding order
becomes a very critical task. Most approaches found for
synchronization among sensors are hardware-triggering syn-
chronization, network synchronization, clock synchronization,
software synchronization. For hardware synchronization, the
approaches to implementation are vary. External synchroniza-
tion control unit or internal camera synchronization has been
adopted for synchronization [8], [19]. And another way is to
use reed contact to trigger cameras capturing pictures [6].
However, cameras supporting hardware synchronization are
rarely employed in applications due to their high cost and
camera connection buses can not satisfy the requirement of
high data transfer among multi-cameras. For network synchro-
nization, Precision Time Protocol (PTP) and Network Time
Protocol(NTP) are proposed to perform synchronization in
distributed systems [20], [21]. Network synchronization highly
depends on reliable network and design of the algorithm.
In the event of network failure, the catastrophe caused by
network delay is tremendously dangerous for time-critical
autonomous driving. For clock synchronization, proposed al-
gorithms for synchronization among clocks enable that one
clock can correct it’s time to match with another clock [22],
[23]. However, these algorithms are not applicable to sensors
utilized in autonomous driving. For software synchronization,
Wu et al. proposed a soft time synchronization framework
for synchronizing multi-sensors which was implemented under
ROS [24]. Shin et al. also used the seemingly same method
for synchronization between LiDAR and camera [25].

III. DESIGN AND IMPLEMENTATION

In this section, we will present the overall design of our
HydraView system and its implementation, limitation, and
challenges.

Fig. 1: Overview of HydraView with HydraOne Mobile plat-
form.

A. HydraView System Design

In this paper, we propose HydraView, a Synchronized 360◦-
View of Multiple Sensors for Autonomous Vehicles. As shown
in Figure 1, HydraView includes one VLP-16 LiDAR and
six USB cameras. The mobile platform and process running
environment are based on HydraOne [26].

HydraView includes five main processing parts as shown in
Figure 2. In the processing of HydraView, the first part is ROI
(region of interest), which is used to find the corresponding
relationship between spatial-point cloud data and the different
views that are taken from each camera. Additionally, to address
the part of data synchronization, HydraView uses LiDAR data
as the main thread. Once HydraView gets one frame of LiDAR
data and the timestamp of finishing one cycle of scanning, TOI
(time of interest) that converts from ROI will be utilized to find
the period of time that can represent the moment of scanning
spatial area that correspond to the view of each camera. Then,
HydraView can determines which image that have been saved
can represents the moment based on its timestamp. After that,
ROI is used to re-project 2D pixel view into 3D space as a
filter to extract the point data that can represent the view that
each camera can see. Following distortion corrections in image
data, the transformation matrix received from the calibration
between LiDAR and cameras are used to project 3D point
cloud into 2D pixel space. Lastly, the fusion-processing part
will create an N-layer matrix as a container to store integrated
data. The first 3 layers store traditional RGB image data while
the rest of the layers store distance, reflect intensity, etc.

B. ROI and TOI

In this paper, we propose a location layout between LiDAR
and six cameras, as shown in Figure 1. The LiDAR has a 360◦

view of the surrounding environment, but one camera only can
see a part of it , as represented by the black sector. In this
location layout, the location relationship between LiDAR and
each camera is fixed. The corresponding point data represents

Fig. 2: FlowChart of the data syncrhinzation in HydraView.

different camera views in time space and spatial space is also
fixed.

Fig. 3: Pinhole camera model.

1) ROI: When it comes to addressing ROI, the goal is to
determine the fixed scanning range to represent the image
view for each camera. It can be used as a filter to find the
corresponding point cloud data for one camera view. Figure 3
illustrates the basic pinhole camera model. Here, P(XL, YL,
ZL) represent object points in the LiDAR coordination system
and [XC YC ZC] represent the camera coordination system.
Plane [x y] is a camera image coordination system and (u, v)
is the corresponding location in pixel space. Based on this
model, the corresponding relationship between LiDAR and
camera coordination systems can be described using the basic
transformation matrix, defined by Formula 1:

[Xc Yc Zc] = [R | T][XL YL ZL 1]T (1)

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2)

T = [tx ty tz]
T (3)

In Formula 1, (XC , YC , ZC) denote the location of the point
in the camera coordination system. Moreover, [R | T] is the
extrinsic matrix that includes rotation and translation matrix.
rij are nine rotation parameters. tx, ty , and tz indicate the

translation in a different direction along x, y, and z axis.
(XL, YL, ZL, 1) is the homogeneous coordinate in LiDAR
coordination system. Then, Formula 4 can be used to convert
camera coordinates into pixel space: Where K denotes the
intrinsic matrix of the camera.

ZC [u v 1]T = K[XC YC ZC] (4)

K =

fx 0 cx
0 fy cy
0 0 1

 (5)

fx and fy represent the focal lengths while cx and cy are
the principal points that are usually located at the center of
an image. ZC shows the distance from the center of camera
coordination to object point, and in this paper, ZC has been
assumed as 10 meters. In this case, Formula 6 can be used to
find the corresponding range from the 2D pixel space to a 3D
LiDAR coordination system, and Formula 7 can be utilized
to determine whether one 3D point belongs to this 2D pixel
space based on its angle in the LiDAR coordination system.

[XL YL ZL 1] = ZC ∗K−1[R | T]−1[u v 1] (6){
Anglemax = max(arctan2(YL, XL))

Anglemin = min(arctan2(YL, XL))
(7)

Fig. 4: Corresponding time period for each camera in one
scanning cycle.

2) TOI: TOI is aimed at finding the time in one scanning
cycle that can represents the image view for each camera. The
rotation speed for LiDAR is 600RPM, and it needs 55.296s
for each 0.2◦ view, which means the LiDAR needs 100ms to
scan one 360◦ view frame. As seen in Figure 4, A represents
the moment when the camera takes the image, B represents
the time that LiDAR takes to scan the corresponding area for
the view of the camera, and C represents the time that LiDAR
needs to scan one frame of the 360◦ view. Therefore, TOI can
be calculated by (one cycle time * ROI / 360◦ view) for each
camera.

C. Synchronization

In this paper, we propose a synchronization algorithm to
find the corresponding image data of each camera that is
synchronized with LiDAR. LiDAR data has been defined as
the main thread, and Algorithm1 has been applied to each
camera:

Algorithm 1 Synchronization between LiDAR and one cam-
era.
Require: LiDAR message; Image message; Scanning time

Ts; TOI; Threshold;
Ensure: Synchronized LiDAR and image data;

1: for each Timestamp ∈ LiDARmessage do
2: Time period of scanning the area camera can see =

Timestamp of LiDAR message – Scanning time + TOI;
3: while |Timestampofimage–Timestampperiod| >

Threshold do
Update image message;

4: end while
5: return image message
6: end for=0

Once the HydraView receives one LiDAR message, it will
extract the timestamp from the ROS PointCloud2 message
that represents the completion time of one scanning cycle.
Then, TOI will be initiated for a different camera to find the
period of time that can represent the image view. This period
of time can be compared with the image timestamp from the
last image stored in the message queue. If the threshold is less
than the pre-set time gap, then the stored image will be taken
as the corresponding image. Otherwise, the next image that
will be taken after a period of time that is less than the pre-
set threshold will be used as the corresponding image. Here,
the time gap is used as the threshold, which is determined
by the working frequency of the camera. In this paper, all six
cameras have a similar work frequency around 30Hz. Figure 5
shows statistic results and confidence levels of response time
for cameras based on the distribution of the sample. To achieve
99.99% confidence level, we decided to use µ+ 3.891 ∗ σ to
represent the upper limit for responding time. In the case of
this study, µ represents mean value and σ represents SEM
(standard error of the mean). Half of the upper limit was used
as the threshold. Therefore, either the image that is already
stored in the message queue or the next image that the camera

will take is the closest image that can represent the period of
time in scanning.

(a)

(b)

Fig. 5: (a) Distribution of responding time of camera; (b)
Confidence intervals of responding time of camera

D. Transformation Matrix

1) Point filter: In this section, HydraView uses a trans-
formation matrix to project the pixel plane into the LiDAR
coordination system in order to find ROI for each camera.
Then, for each point data, x and y coordinate in the LiDAR
coordination system are used to calculate the angle in LiDAR
space, as Formula 8 described.

D = arctan2(y, x) (8)

Based on the ROI of each camera, D is used as the limitation
to determine which camera can see this point.

2) Project 3D spatial point into 2D pixel space: In this part,
HydraView uses a transformation matrix, including rotation
and translation matrix, to project 3D points cloud in the
LiDAR coordination system into 2D pixel space by Formula 9.

ZC [u v 1]T = K[R | T][XL YL ZL 1]T (9)

Ankit [27] proposed a way to calculate the rotation and
translation parameters, R and T, for a single camera. In
Figure 6 (a), the blue points that extracted from points cloud
data indicates the edges of this rectangle object while the
red points represents one edge after manually draw a green
circle to chose them. Once four edges of the marker from
LiDAR data are captured, calculations can be performed to
determine the coordinates of four corner points in the LiDAR

coordination system. In camera view (b), ArUco marker [28]
[29] can offer the position transformation between marker and
camera. After manually measuring the actual dimension of the
marker, the result can be used to calculate the 3D coordinates
of four corners in the camera coordination system. [R | T]
between two set 3D corresponding points can be estimated by
the Iterative Closest Point (ICP) algorithm [30]. Formula 10
describes the way ICP is used to minimize the error in 3D
space.

(a) (b)

Fig. 6: (a) 3D points represent the edge of marker captured by
LiDAR; (b) The position of ArUco marker captured by camera

arg min

R ∈ SO(3), t ∈ R3
||(RP + t)−Q||2 (10)

P represents the points captured by the LiDAR and Q
represents the points captured by the camera. This method
needs an initial translation matrix, which is determined by
manually-measured spatial rotation and translation. Spatial
rotation can be divided into three different parts: rotation
around x, y, and z axis, represented by the roll, pitch, and
yaw. The following formula converts these three angles into a
single rotation matrix:

RX(γ) =

1 0 0
0 cosβ −sinβ
0 sinβ cosβ

 (11)

Ry(α) =

 cosα 0 sinα
0 1 0

−sinα 0 cosα

 (12)

Rz(γ) =

cosγ −sinγ 0
sinγ conγ 0
0 0 1

 (13)

R = RZ(α)RY (β)RX(γ) (14)

3) Un-distortion: The image data captured by camera have
distortion caused by camera lens. There are two types of
distortion, radial distortion and tangential distortion. Radial
distortion is called the barrel effect or fish eye view, caused
by the physic shape of the lens. There are two types of
radial distortion: barrel distortion and pincushion distortion.
Tangential distortion is caused by the image view plane which
is not parallel to the camera lens. The distortion effect can be

represented by Formula [31]:

Dradial = (1 + k1r
2 + k2r

4 + k3r
6)

[
xp
yp

]
(15)

Dtangential =

[
2p1xpyp + p2(r

2 + 2x2p)
p1(r

2 + 2y2p) + 2p2xpyp

]
(16)[

xc
yc

]
= Dradial +Dtangential (17)

(a) (b)

(c) (d)

Fig. 7: Checkerboard on camera view in different orientation.

For a point (xp, yp) in the distorted image, the corre-
sponding point in an undistorted image is (xc, yc). Use [k1

k2 p1 p2 k3] to describe this distortion model, while r can
represent the distance from a point to the center of radial
distortion. Thus this distortion model can be represented by
five distortion coefficients [k1 k2 p1 p2 k3]. Tsai [32] and
Zhang [33] proposed the most common resolution for this
problem. Here, an 8x6 white and black checkerboard has been
used to generate multiple sets of coordinate data, as Figure 7
shows. For each image, the relationship between 8x6 corner
points in pixels space and camera coordination system can
be detected after manually measuring the dimension of the
physical checkerboard. Then, the following formula is used to
calculate the focus of lens f and the center (u0, v0) of image.
Here, (u, v) represent pixel coordinates and (xm, ym, zm)
represent the coordinates in camera space.uv

1

 =

 1
dx

0 uo
0 1

dy
vo

0 0 1

f 0 0 0
0 f 0 0
0 0 1 0

xm
ym
zm
1

 (18)

Proceedinly, we can use Formula[6] to build the relationship
between (xm, ym, zm) and (u, v). Thus, distortion coefficients
can be calculated.

E. Fusion

In this paper, the target of data fusion is to integrate two
different sets of sensor data. This integrated data can offer
information including color, shape and spatial location at the
same time for analysis. Such data can be used to build a

single object or a model which includes different features
from different sensors. To achieve this target, the LiDAR data,
3D point clouds, and RGB images received from the camera
should be synchronized in both time order and spatial location.
Here, HydraView uses LiDAR data as the main thread and
separately implements project and un-distortion to each image
capture from different cameras. After that, the integrated data
format for each frame is stored in an N-layer matrix, which is
used as a container to store each fusion image. In this paper,
HydraView uses the first three layers to store RGB image data,
and the rest of the layers store distance reflects intensity, etc.
Moreover, for visible results, it is capable of drawing projected
cloud points on RGB image for each camera. For 360◦ view,
HydraView simply extends the matrix and stores six different
views by clockwise order.

F. Results

(a) (b)

(c) (d)

(e) (f)

Fig. 8: Fusion image in six different views.

Figure 8 shows the images of six camera views in different
directions with LiDAR scanning lines. Green lines mean that
the object is far from LiDAR and red lines mean that the object
is close to LiDAR.

IV. EXPERIMENT AND EVALUATION

In this section, we present the test environment for Hy-
draView and parameters for multiple sensors. The test envi-
ronment setting is a clear space without dynamic moving or
any other noise. All devices are assumed to work properly.
Since all six cameras are same model, they are assumed to

display similar performance under the same parameters. For
the evaluation part, this paper focus on the improvement in
both computing and synchronizing to demonstrate the ability
to achieve real-time processing.

(a) (b)

Fig. 9: (a) Front View; (b) Top View

A. Experiment Setup
The layout for HydraView includes six USB cameras and

one VLP-16 LiDAR. The working frequency of each camera is
30fps, which means that the camera is capable of getting a new
frame of the image around every 33ms. Moreover, since the
work frequency for LiDAR is 10Hz, it can get a new scanning
frame around every 100ms. All programs are running in the
Ubuntu operation system, and the driver for LiDAR and the
camera are from the ROS package. The union time stamp and
raw data also take from the ROS service. Achievement for
synchronization, ROI, TOI, and project are programmed in
Python.

1) System Layout: As Figure 9 (a) shows, the LiDAR is
mounted on the front-top of the mobile platform, and one
camera is mounted under the LiDAR for the front view.
Figure 9 (b) shows the location relationship between six
cameras. Each camera can cover around a 60◦ field of view.

(a) (b)

Fig. 10: (a) Back View; (b) Test Environment
2) Environment Setup: The test field location is in the ele-

vator hall, as Figure 10 shows. In here, multiple static objects
have been placed in front of HydraView to test visible distance
information and the performance of calibration results.

B. Performance Evaluation
Performance evaluation mainly focused on the improvement

in computing time reduction in synchronization and projection
to achieve real-time scanning. Concerning synchronization,
this paper shows the comparison results in processing time and
point number of synchronization by taking the time gap be-
tween image and corresponding point cloud as a synchronized
result. For processing time of projection, this paper shows
the result of processing time along with the increased point
number for the projected 3D point cloud into 2D pixel space.
The last part shows the ability in real-time processing.

1) Performance of Synchronization: In this part, the ROI
was implemented with TOI, meaning that the data has been
synchronized both in time and spatial location. This synchro-
nization can filter out the point cloud that can not be seen by
the camera, which includes the side view that is out of view
range and back view. Figure 11 shows the comparison result
for synchronization. Here, the blue bar and curve represent
performance before applying ROI, which processes all point
cloud data without any filter. Furthermore, the red bar and
curve represent the performance of the algorithm, which only
processes the region of interest point cloud data. The number
of point cloud needs to be processed were reduced around
80.8%, and the time for synchronization, which is mainly
caused by data reading, was reduced around 53.3%. Figure 12

(a)

(b)

Fig. 11: Synchronization of six cameras and one LiDAR: (a)
Point number reduce; (b) Process time reduce

Fig. 12: Synchronization for one camera.

shows a comparison between synchronized image data and raw
image data. Point set A represents the time when the camera
takes one image and work frequency for one camera. Point
sets B represent the post-synchronizing image data. Here, the
vertically dashed lines represent the scanning moment for the
corresponding image.

There is little time shift for both LiDAR and the camera
data in union time order, which is caused by the reason that

the working frequency of LiDAR and camera is not precisely
100ms and 33ms. Moreover, there also exists a time shift
between LiDAR data and the camera data caused by the same
reason. Figure 13 shows the 100 sets time gap data between
the image and the corresponding LiDAR data. The maximum

Fig. 13: Time gap between synchronized image and corre-
sponding LiDAR data.

time gap, in other words, the waiting time in each camera for
corresponding point data is around 16ms based on the work
frequency of cameras. The maximum time gap is determined
by the working frequency of the camera, which is shown in
Figure 5. Figure 14 shows the synchronized results between six
cameras and LiDAR. Each colored circle represents the image
moment, which is determined by HydraView from storage,
the blue star represents the moment of finishing one cycle of
LiDAR scanning, and the straight dashed line represents the
ideal synchronized result. The time shift between ideal results
and HydraView results is mainly caused by different starting
time of each camera and the unstable work frequency.

Fig. 14: Synchronized six cameras data and LiDAR data.

2) Performance of Projection: In this paper, the target of
projection is to integrate two different data, image and points
cloud, as fusion data. HydraView has six cameras and one Li-
DAR, therefore, the project part needs to process the projection
task six times for one scanning cycle. Right now, HydraView
only uses one single thread to process six projection task one
by one. However, multiple threads should be a better option in
future work. Figure 16 shows the processing time for different
point numbers. The black dashed line represents the mean
value of processing time for project 3D points cloud into
2D pixel space, the red line represents the maximum value,
and the blue line represents the minimum value in collected
sample. The vertical bar A represents the distribution of point
number and processing time for synchronized data, and B

Fig. 15: 180◦ fusion view.

represents the data that without the synchronization algorithm
as a comparison result.

Fig. 16: Processing time for different point number.

3) Performance of Real-time Processing: To implement
HydraView in autonomous vehicles, the real-time processing
needs to be achieved. In this paper, the maximum waiting time
is determined by the work frequency of LiDAR. Therefore,
the two tasks, synchronization and projection, need to be
finished in one cycle scanning time for real-time processing.
According to the statistics results from our sample in Figure 11
and Figure 16 shown, the maximum time of synchronization
and projection for raw data are around 28ms and 25 * 6ms.
For HydraView, the maximum time of synchronization and
projection for raw data are around 16ms and 4 * 6ms. Pro-
cessing time has been reduced by around 77.53%. Figure 17
shows the comparison results for the ability to achieve real-
time processing in autonomous vehicles. Here, A represents
data processing tasks of a and b, which is projection and
synchronization, without any filter. And B represents the result
from HydraView. 100ms is determined by one scanning cycle
time of LiDAR.

V. LIMITATION AND FUTURE WORK

As Figure 15 shows, HydraView simply combined different
views by clockwise order for wider view purpose. Based on
the current results, two problems should be considered in
future works. First, we identify that the black oil paint has
massive affection for LiDAR scanning results, which shown

in Figure 15. Secondly, we should eliminate the distortion
and color change on the junctions between two images. We

Fig. 17: Comparison results for real-time processing ability.

will also focus on more evaluation in different platforms to
compare computing performances. From our experiments, the
dynamic test environment with moving objects and motion
in mobile platform have affected performance, and distance
must also need to be considered as another factor. Moreover,
motion compensation should be considered to reduce point
location shifts caused by motion in a dynamic environment.
Furthermore, the results show that there is plenty of rest time
in one cycle processing time. Therefore, more tasks like object
detection could also be considered in future work. Also, the
additional images which are not used in fusion, that also had
been stored during the LiDAR scanning period, can be used
to form compensate information.

VI. CONCLUSION

In this paper, we propose a 360◦-view synchronization and
fusion platform for multiple sensors that can be deployed in
the autonomous vehicles for real-time processing. It offers
integrated and synchronized data of the surrounding environ-
ment that can be extremely helpful to build a driving model
for further analysis. The results show that HydraView has an
excellent ability for multiple sensor fusion and synchronization
in the 360◦ field of view with significantly reduced processing
times. The successful implementation of ROI and TOI largely
reduced the computing time, which is capable to achieve real-
time processing that is comparable to state of art approaches.
Also, the results show that HydraView has a good robustness in
synchronization for time shift caused by sensors. Additionally,
since the synchronization task can be finished earlier than
one scanning cycle of the LiDAR, We consider to make

full usage of this period by introducing other tasks such as
object detection and more related works to improve the system
performance in the future.

REFERENCES

[1] S. Liu, J. Tang, Z. Zhang, and J. Gaudiot, “Computer architectures for
autonomous driving,” Computer, vol. 50, no. 8, pp. 18–25, 2017.

[2] C. Ilas, “Electronic sensing technologies for autonomous ground ve-
hicles: A review,” in 2013 8TH INTERNATIONAL SYMPOSIUM ON
ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), May
2013, pp. 1–6.

[3] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, vol. 59, pp. 148 – 156, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926017303218

[4] A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, and U. J. Nunes,
“Multimodal vehicle detection: fusing 3d-lidar and color camera data,”
Pattern Recognition Letters, vol. 115, pp. 20–29, 2018.

[5] N. Kaempchen and K. Dietmayer, “Data synchronization strategies
for multi-sensor fusion,” in Proceedings of the IEEE Conference on
Intelligent Transportation Systems, vol. 85, no. 1, 2003, pp. 1–9.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[7] Y. Wang, L. Liu, X. Zhang, and W. Shi, “Hy-
draone: An indoor experimental research and educa-
tion platform for cavs,” Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotedge19/presentation/wang

[8] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
km: The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[9] J.-L. Blanco-Claraco, F.-Á. Moreno-Dueñas, and J. González-Jiménez,
“The málaga urban dataset: High-rate stereo and lidar in a realistic urban
scenario,” The International Journal of Robotics Research, vol. 33, no. 2,
pp. 207–214, 2014.

[10] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin,
and R. Yang, “The apolloscape dataset for autonomous driving,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 954–960.

[11] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[13] Autopilot Review, “Lidar vs. cameras for self driving cars –
what’s best?” https://www.autopilotreview.com/lidar-vs-cameras-self-
driving-cars/,.

[14] X. Gu, A. Zang, X. Huang, A. Tokuta, and X. Chen, “Fusion of color
images and lidar data for lane classification,” in Proceedings of the
23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2015, p. 69.

[15] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nüchter, “A sensor-fusion
drivable-region and lane-detection system for autonomous vehicle nav-
igation in challenging road scenarios,” IEEE Transactions on Vehicular
Technology, vol. 63, no. 2, pp. 540–555, 2013.

[16] H. Cho, Y.-W. Seo, B. V. Kumar, and R. R. Rajkumar, “A multi-sensor
fusion system for moving object detection and tracking in urban driving
environments,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2014, pp. 1836–1843.

[17] V. Subramanian, T. Burks, and W. Dixon, “Sensor fusion using fuzzy
logic enhanced kalman filter for autonomous vehicle guidance in citrus
groves,” Transactions of the ASABE, vol. 52, no. 5, pp. 1411–1422,
2009.

[18] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1907–1915.

[19] K. Cai, R. Yang, H. Chen, Y. Huang, X. Wen, W. Huang, and S. Ou,
“Synchronization design and error analysis of near-infrared cameras in
surgical navigation,” Journal of medical systems, vol. 40, no. 1, p. 7,
2016.

[20] A. Noda, Y. Yamakawa, and M. Ishikawa, “Frame synchronization for
networked high-speed vision systems,” in SENSORS, 2014 IEEE. IEEE,
2014, pp. 269–272.

[21] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[22] M. D. Lemmon, J. Ganguly, and L. Xia, “Model-based clock synchro-
nization in networks with drifting clocks,” in Proceedings. 2000 Pacific
Rim International Symposium on Dependable Computing. IEEE, 2000,
pp. 177–184.

[23] M. L. Sichitiu and C. Veerarittiphan, “Simple, accurate time syn-
chronization for wireless sensor networks,” in 2003 IEEE Wireless
Communications and Networking, 2003. WCNC 2003., vol. 2. IEEE,
2003, pp. 1266–1273.

[24] J. Wu, Z. Xiong et al., “A soft time synchronization framework for multi-
sensors in autonomous localization and navigation,” in 2018 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM).
IEEE, 2018, pp. 694–699.

[25] Y.-S. Shin, Y. S. Park, and A. Kim, “Direct visual slam using sparse
depth for camera-lidar system,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–8.

[26] Y. Wang, L. Liu, X. Zhang, and W. Shi, “Hydraone: An indoor exper-
imental research and education platform for cavs,” in 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[27] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna, “Lidar-
camera calibration using 3d-3d point correspondences,” arXiv preprint
arXiv:1705.09785, 2017.

[28] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and vision
Computing, vol. 76, pp. 38–47, 2018.

[29] S. Garrido-Jurado, R. Munoz-Salinas, F. J. Madrid-Cuevas, and
R. Medina-Carnicer, “Generation of fiducial marker dictionaries using
mixed integer linear programming,” Pattern Recognition, vol. 51, pp.
481–491, 2016.

[30] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” International journal of computer vision, vol. 13, no. 2,
pp. 119–152, 1994.

[31] J. Heikkila, O. Silven et al., “A four-step camera calibration procedure
with implicit image correction,” in cvpr, vol. 97. Citeseer, 1997, p.
1106.

[32] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE Journal on Robotics and Automation, vol. 3, no. 4, pp. 323–344,
1987.

[33] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, 2000.

