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Abstract— The goal of workflow application scheduling is to
achieve minimal makespan for each workflow. Scheduling work-
flow applications in high performance computing environments,
e.g., clusters, is an NP-Complete problem, and becomes more
complicated when potential resource failures are considered.
While more research on failure prediction has been witnessed
in recent years to improve system availability and reliability,
very few of them attack the problem in the context of workflow
application scheduling. In this paper, we study how a workflow
scheduler benefits from failure prediction and propose FLAW,
a failure-aware workflow scheduling algorithm. Furthermore,
we propose two important definitions on accuracy, Application
Oblivious Accuracy (AOA) and Application Aware Accuracy (AAA),
from the perspectives of system and scheduling respectively, as we
observe that the prediction accuracy defined conventionally im-
poses different performance implications on different applications
and fails to measure how that improves scheduling effectiveness.
The comprehensive evaluation results using real failure traces
show that FLAW performs well with practically achievable
prediction accuracy by reducing the average makespan, the loss
time and the number of job rescheduling.

I. INTRODUCTION

Workflow applications become to prevail in recent years,
resulting from stronger demands from scientific computation
and more provision of high performance computing systems.
Typically, a workflow application is represented as a Directed
Acyclic Graph (DAG), where nodes represent individual jobs
and edges represent the inter-job dependence. In a DAG, nodes
and edges are weighed for computation cost and communica-
tion cost respectively. Makespan, the time difference between
the start and completion of a workflow application, is used to
measure the application performance and scheduler efficiency.
In the rest of the paper, we use DAG and workflow application
interchangeably in this paper.

The goal of scheduling a workflow application is to achieve
minimal makespan. It was recognized as an NP-Complete
one [1]. With the resource failure considered, scheduling a
workflow application in a high performance computing system
is significantly more difficult and unfortunately few existing
algorithms attempt to tackle this. On the other side, the failure
tolerance policies applicable to ordinary job scheduling is
a reactive approach and deserves another look as job inter-
dependencies in workflows complicates the failure handling.

Recent years have seen many analysis on published failure
traces of large scale cluster systems [2], [3], [4], [5], [6]. These
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research efforts contribute to better understanding of the failure
characteristics and result in more advanced failure prediction
models, and help improve the system reliability and availabil-
ity. However, not sufficient attention has been paid on how
workflow scheduling can benefit from these accomplishments
to reduce the impact of failures ion application performance.
In particular, we want to answer the following two related
questions: One is what is the right and practical objective
of failure prediction in the context of workflow scheduling?
The other is how does the failure predication accuracy affects
workflow scheduling?

Failures can have a significant impact on job execution
under existing scheduling policies that ignore failures [5]. In
an error prone computing environment, failure prediction will
improve the scheduling efficiency if it can answer queries with
a great success rate such as: “Will a node fail in next 10
hours if the job requires 10 hours to finish on this node?”
The job will be assigned to this node only when the answer is
“Yes” with high confidence. The unexpected failure not only
causes rescheduling of the failed job and resource waste on
the uncompleted job execution, but also affects the subsequent
job assignment which is the key for workflow performance.
We propose a FaiLure Aware Workflow scheduling algorithm
(FLAW) in this paper to schedule workflow applications with
resource failure presence.

On the other side, we argue that the conventional def-
inition of failure prediction accuracy does not well reflect
how accuracy impacts on scheduling effectiveness. When
scheduling a workflow application, the predictor is queried
whether a node would fail in a given time window, i.e. the
job execution duration. It depends on the capability of the
node being assigned to. Typically each individual job has
varied computing and communication demands. Moreover,
assigned to different nodes the same job may have different
execution time decided by node computing capability and
data placement. Therefore, a scheduler has to predict poten-
tial failure for various nodes for accordingly different time
windows. However, the conventional failure prediction result
is a set of time periods within which a failure is predicted
to happen, different than a scheduler requires. We argue that
the conventional approach is not intended for failure aware
workflow scheduling and propose two new definitions of
failure prediction accuracy: Application Oblivious Accuracy
(AOA) from a system’s perspective and Application Aware
Accuracy (AAA) from a scheduler’s perspective, which we



believe better reflect how failure prediction accuracy impacts
on scheduling effectiveness.

The contributions of this paper are three-fold: (1) design
FLAW that takes potential resource failures into consideration
when scheduling workflow applications and defines the failure
prediction requirement in a practical way; (2) propose two new
definitions of failure prediction accuracy, which reflects its
effect on workflow application scheduling more precisely, in
the context of job scheduling in high performance computing
environments; and (3) perform comprehensive simulations
using real failure traces and find that our proposed FLAW algo-
rithm performs well even with moderate prediction accuracy,
which is much easier to achieve using existing algorithms. The
number of job resubmission (rescheduling) due to resource
failure decreased significantly with trivial AOA level with
presence of intensive workload.

The rest of the paper is organized as follows. A brief review
of related work is given in Section II to motivate our work.
The new definitions of failure prediction accuracy are proposed
in Section IIl. Then we describe the FLAW algorithm design
in Section IV. Section V elaborates the simulation design and
analyzes simulation results. Finally, we summarize and lay out
our future work in Section VI.

II. RELATED WORK

Noticeable progress has been made on failure prediction
research and practice, following that more failure traces are
made public available since 2006 and the failure analysis [2],
[3]1, [4], [5], [6], [7] reveals more failure characteristics in
high performance computing systems. Zhang et al. evaluate the
performance implications of failures in large scale cluster [5].
Fu et al. propose both online and offline failure prediction
models in coalitions of clusters. Another failure prediction
model is proposed by Liang et al. [2] based on failure analysis
of BlueGene/L system. Recently, Ren et al. [8] develop a
resource failure prediction model for fine-grained cycle sharing
systems. However, most of them focus on improving the
predication accuracy, and few of them provide how to leverage
their predication results in practice.

Salfner et al. [9] suggest that proactive failure handling
provides the potential to improve system availability up to
an order of magnitude, and the FI-Pro project [10] and the
FARS project [11] demonstrate a significant performance im-
provement for long-running applications provided by proactive
fault tolerance policies. Fault aware job scheduling algorithms
are developed for BlueGene/L system and simulation studies
show that the use of these new algorithms with even trivial
fault prediction confidence or accuracy levels (as low as 10%)
can significantly improve the system performance [12].

Failure handling is considered in some workflow manage-
ment systems but only limited in failure recovery. Grid Work-
flow [13] presents a failure tolerance framework to address the
Grid-unique failure recovery, which allows users to specify the
failure recovery policy in the workflow structure definition.
Abawajy [14] proposes a fault-tolerant scheduling policy that
loosely couples job scheduling with job replication scheme

such that applications are reliably executed but with cost
of resource efficiency. Other systems such as DAGMan[15]
simply ignore the failed jobs and the job will be rescheduled
later when it is required for dependant jobs. Dogan et al. [16]
develop Reliable Dynamic Level Scheduling (RDLS) algo-
rithm to factor resource availability into conventional static
scheduling algorithms.

We argue that, however, failure handling can not be prac-
tically integrated into existing static scheduling schemes as it
is not possible to predict all failures accurately in advance
for a long running workflow application. Even for other non-
workflow applications, the analysis [4] finds that node place-
ment decision can become ill-suited after about 30 minutes
in a shared federated environment such as PlanetLab [17].
Furthermore, another analysis [7] concludes that Time-To-
Fail (TTF) and Time-To-Repair (TTR) can not be predicted
with reasonable accuracy based on current uptime, down-
time, Mean-Time-To-Fail (MMTF) or Mean-Time-To-Repair
(MMTR) and a system should not rely on such predictions.

Inspired by these observations, we design the FLAW al-
gorithm based on the dynamic scheduling scheme proposed
in our previous work [18], redefine the failure prediction
requirement and accuracy definition in the context of work-
flow scheduling. The new failure prediction requirements are
better measurable and achievable practically. The extensive
simulations using real failure trace from Los Alamos National
Laboratory [19] demonstrate that FLAW reduces the failure
impact on performance significantly with moderate prediction
accuracy.

III. FAILURE PREDICTION ACCURACY

Reliability based failure prediction techniques use various
metrics to measure prediction quality, where precision and
recall are popular ones adopted in the literature [9], [10],
[11], [20], where precision is the ratio of the number of
correctly identified failures to the number of all positive
predictions and the recall is the ratio of the number of correctly
predicted failures to the total number of failures that actually
occurred [9]. In other research efforts the accuracy is defined
in a statistics context, by measuring how the predicted time
between failures is close to actual one [3]. However none of
them is intended to be used in job scheduling.

In an error prone high performance computing system,
failure prediction is required by scheduler to answer the query
before a job is scheduled to the chosen node: Will this node
fail during the job execution? Intuitively, the quality of failure
prediction should be measured how well those queries can
be answered. The scheduler’s effectiveness will be adversely
impacted if either a failure is not predicted, i.e., the job has to
be resubmitted later, or the predicted failure does not actually
happen, i.e., a preferred resource may be wasted.

The conventional approach defines a failure prediction is
a true positive if a true failure occurs within the prediction
period At, of the failure prediction [9]. As the conventional
definitions originally come from information retrieval the-
ory [9], they depend on the size of At, and do not consider



the length of failure down time. Even with the same failure
prediction results. the prediction accuracy can vary with the
size of prediction period At,,.

As illustrated in Fig. 1, the failure prediction is rated 100%
for both precision and recall given the prediction period At,,.
But with a smaller predication period At;,, both precision and
recall change to 50% for the identical prediction.

Node down time AFailure prediction é Actual failure

Atpé*/? A

Failure 1 ailure 2 -
P1 P2 time
Atp At

Fig. 1. An example of actual failure trace and associated failure prediction.

We want to know if such definition can be used to measure
how much failure prediction can impact job scheduling ef-
fectiveness and justify what level of accuracy is good enough.
With this in mind, we introduce failure prediction requirements
in the context of job scheduling. A failure predictor should be
able to predict if a node will fail in the next given time window.
The prediction is correct if the node actually goes down in that
time window. Before introducing the prediction accuracy, we
define three prediction cases as following:

o True Positive (Hit): A failure is predicted and it occurs

within the down time of a true failure.

o False Negative (Fn): An actual failure event is not pre-

dicted at all.

o False Positive (Fp): A predicted failure does not match

any true failure event.

Each failure prediction includes both time and location
of predicted failure. By using the same example in Fig. 1,
prediction P1 is a false positive as node is actually alive at the
time of P1 predicts. P2 is a hit as it predicts the down time.
Failure 1 counts as a false negative as it is not predicted.

Hit
Accuracysoa = Tt Fn s Fp (1)

Finally, we define a so called Application Oblivious Accu-
racy (AOA) in Equation 1. The failure prediction accuracy in
above example is rated as 33.3% accordingly. The definition
considers failure downtime, penalizes both false negatives and
false positives, and it is measured by failure prediction and
actual failures only and therefore more objective. Furthermore,
we observe that the failure prediction with same level of AOA
has different impact on job scheduling and the prediction
efficiency is application specific, which leads us to define an
Application Aware Accuracy (AAA) in Section IV-C later.

IV. FAILURE AWARE WORKFLOW SCHEDULING

Inspired by the recent progresses in failure prediction re-
search and increasing popularity of workflow applications,
we explore the practical solutions for scheduling a workflow
application in an error prone high performance computing

environment. In this section, we first discuss the motivation
of our research, then describe the solution design and finally
illustrate the design by examples.

A. Motivation

There have been extensive research efforts on workflow
scheduling and numerous heuristics are proposed as a result.
However, they are yet to address the challenges of scheduling
workflow applications in a cluster and grid environment:
dynamic work load and dynamic resource availability.

Following our previous work [21] which tackles
the resources dynamics, a DAG scheduling algorithm
RANK_HYBD [18] is developed to handle dynamic workload
in clusters and Grid environments. RANK_HYBD is a dynamic
scheduling approach which schedules the job in the order of
predefined priority so that the job with higher priority will
get preferred resources. Without considering the potential
resource failures, RANK_HYBD outperforms the widely used
(FIFO) algorithm significantly in the case of dynamic work
load [18].

Furthermore, the design rationale of RANK_HYBD provides
it an intrinsic capability to handle resource failures in a
proactive way by seamlessly integrating with an online failure
predictor. In RANK_HYBD, individual jobs are prioritized first
to reflect the significance of their respective impact on overall
makespan, and scheduling decision is made only when a job is
ready to execute and resource is available during job execution
as predicted. Therefore, failures can be easily handled during
scheduling. A workflow typically takes long time to finish,
it is very difficult, if not impossible, for a static scheduling
approach to plan for all potential failures in advance. However,
resource failures can be much better handled at job level as
the job execution time is significantly shorter compared with
entire workflow and it is practically easier to predict a failure
in shorter period. This assumption is well supported by recent
research results [10], [11], [12] which propose failure tolerant
scheduling schemes for non-workflow jobs.

On the other hand, the advancement in failure prediction
techniques based on analysis of real traces of large scale
clusters, is not yet to be leveraged by workflow application
schedulers. The profound comprehension of failure patterns
and characteristics makes a reasonable accurate failure pre-
dictor a practically achievable goal, so for the failure aware
workflow scheduler.

B. Design

FLAW factors in failure handling by adding an online failure
predictor component into the original RANK_HYBD design,
as Fig. 2 shows. The proposed system consists of four core
components: DAG Planners, a Job Pool, an Executor and
an online failure predictor. The DAG Planner assigns each
individual job a local priority as defined in [18], manages the
job interdependence and job submission to the Job Pool, which
is an unsorted collection containing all ready to execute jobs
from different users. The Executor re-prioritizes the jobs in
the Job Pool and schedules jobs to the available resources in



the order of job priority. When making a scheduling decision,
the Executor will consult the Failure Predictor about whether
a resource will keep alive for the entire job execution period if
the job is assigned to this resource. If a job is terminated due
to unpredicted resource failure, the Executor will place the job
back into Job Pool and the job will be rescheduled. When a job
finishes successfully, the Executor notifies the DAG Planner
which the job belongs to of the completion status.

DAG
Planner

I Failure
- [

Ready Job Pool
1

DAG
Planner

T

Fig. 2. An overview of FLAW design.

The above collaboration among these core components is
achieved by the dynamic event driven design illustrated in
Fig. 2 and explained as follows:

1y

2)

Job submission. When a new DAG arrives, it is associ-
ated with an instance of DAG Planner by the system.
After ranking all individual jobs within the DAG locally,
the Planner submits whichever job is ready to the Job
Pool. At the beginning, only entry job(s) will be submit-
ted. Afterwards, upon notification by the Executor of the
completion of a job, the Planner will determine if any
dependant job(s) become ready and submit them. During
the course of workflow execution, the job terminated due
to resource failure is put back to the Job Pool by the
Executor to be rescheduled later.

Job scheduling. Whenever there are resources available
and a job is waiting in the Job Pool, the Executor will
repeatedly do:

a) Re-prioritize all jobs residing in the Job Pool based
on individual job ranks in a real time fashion.

b) Remove the job with the highest global priority
from Job Pool to schedule;

¢) Schedule the job to the resource which allows
the earliest finish time and will not fail during
job execution. For the chosen job, the available
resources are ordered by the estimated finish time
starting from the earliest one. If the resource with
higher preference, in terms of estimated finish time,
is predicted to fail during the job execution, the
next resource will be attempted. One may notice
that the job execution time varies with resource and
so does the failure prediction time window. If none
of the resources can keep alive during the period
of the chosen job execution, this job will remain
in the Job Pool and next job will be picked out
for scheduling. Otherwise, the job is scheduled and

3)

4)

will run on the assigned resource. Fig. 3 describes
this scheduling algorithm in more details.

Job completion notification. When a job finishes suc-
cessfully, the Executor will notify the corresponding
DAG Planner of job completion status.

Failure Prediction. The Failure Predictor will answer
queries coming from the Executor: Will the resource
X fail in next Y time units? Y is the estimated job
execution time if the job is scheduled on resource X.
The answer “YES” or “NQO” drives the Executor make
completely different scheduling decisions and therefore
impose potentially great impact on the effectiveness of
scheduler and overall application performance as well.

As each design comes with predefined objectives, the design

of FLAW is to:

Reduce the loss time. Accurate failure prediction will help
the scheduler avoid placing jobs on a resource to fail in
the middle of job execution. The abnormally terminated
execution contributes to system resource waste, i.e., loss
time caused by failures, including time spending on both
unfinished data transmission and computation.

Reduce the number of job rescheduling. Our system
design does not utilize checkpoint and job migration
techniques, as these two are arguably costly in practice.
A failed job will be rescheduled later and start over.
We envision that this metric will be of great interest to
domain experts who are using HPC.

Reduce the makespan. The makespan is the overall per-
formance indicator for workflow applications and the
effectiveness measure of a workflow scheduler.

T: a set of jobs in ready job pool
R: a set of free resources
rank: ranking values for all jobs

procedure schedule (T, R) {
sort T as an array L so that:
for any i<j, L[i]e T and L[j]e T, rank(L[i])> rank(L[j])
FOR i=1 TO size of L
calculate the earliest finish time of L[i] on each resource re T
if L[i] is assigned to r, and sort R as an array of N in increasing
order of the estimate earliest finish time
FORj=1TO size of N
predict if the N[j] will fail when job L[i] runs on N[j]
IF YES
INCREMENT j
ELSE
schedule job L[i] on resource N[j]
T=T-{L[]}
R=R-{N[j}}
END IF
INCREMENT i
END FOR

}

Fig. 3. The scheduling algorithm in FLAW.

C. Application Aware Accuracy (AAA)

The key success factor to the FLAW design is the accuracy
of failure prediction, which is measured by how effectively the



Failure Predictor can answer the query: “Will the resource
X fail in next Y time units?” The effectiveness of failure
prediction can be quantified by the ratio of correct answers
to total queries in context of job scheduling.

Different than the AOA defined earlier, the above ratio
is application and prediction timing specific. For example,
assuming that the present time is at time unit 0 , a node will
go down between 100 and 120 time units and a job can be
completed on this node by 140 time units if starting from
now. It is further assumed that the Failure Predictor forecasts
a failure will occur at time unit of 130, which is actually a
false positive. In this case, the Failure Predictor can still give
a correct answer to the query “if the node will be down in
next 140 time units?” by telling “Yes”.

We referred to this ratio as Application Aware Accuracy
(AAA) and use it to measure the failure prediction effective-
ness. Even though a higher AOA helps improve AAA, however,
the AAA highly depends on the application behaviors and how
and when the query is made. In an extreme example, if a
resource is highly error prone and none of the failures on
this resource is predicted, the AAA can still be very high if
this resource is never a preferred one and no query is made
about it. This sounds strange but can be very true in workflow
scheduling. For instance, in a resource rich environment a node
with very low capability can not produce completive earliest
finish time for any job and is hardly considered in scheduling.
And for a data intensive workflow application, in order to
reduce cost on data movement the scheduler may narrow the
resource choices to certain nodes which have executed many
jobs and retain the data for next dependant jobs.

D. An Example

In this section, we illustrate the FLAW design by using
examples of a workflow application and a failure trace, as
shown in Fig.4. It is assumed that the sample DAG will run in
a environment consisted of three nodes. The nodes encounter
some failures as defined in the box of the figure.

Resource down time

Node Py: 15-20
Node P;: 60-65
Node P,: 5-10

Fig. 4. Example of a DAG and failure trace.

We further assume that a Failure Predictor makes the
following failure prediction: node F fails at 18, node P fails
at 8 and 90 respectively, as shown by Fig. 5. This prediction
achieves AOA accuracy of 50%, which includes 2 hits, 1 false
positive and 1 false negative.

Actual down time A Failure prediction

0 10 20 30 40 50 60 70 80 90

Po A >
Lo
Py & >
Fig. 5. Failure prediction with 50% of AOA.
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Fig. 6. Scheduling results: (a) RANK_HYBD without failure prediction; (b)
FLAW with failure prediction of 50% of AOA.

Fig. 6 gives the scheduling result by the RANK_HYBD algo-
rithm without failure prediction and the FLAW algorithm with
presence of failures defined. It shows that the FLAW finishes
the sample application with 150 time units makespan, 20 time
units loss time and 1 job rescheduling. FLAW outperforms
RANK_HYBD in all areas which completes with makespan of
155, loss time of 30 and 4 job rescheduling.

A detailed trace which records how each scheduling deci-
sion is made is illustrated in Fig. 7 and Fig. 8 for RANK_HYBD
and FLAW respectively. FLAW finishes with 90% of AAA
accuracy, as there are totally 10 queries and only one false
negative prediction is made.

V. PERFORMANCE EVALUATION AND ANALYSIS

To verify the design of FLAW and study how failure predic-
tion accuracy affects the scheduling effectiveness, we present
the simulation design and result analysis in this section.



Time/Event Job Pool Prioritized  Resource Failure Scheduling
queue Pool Prediction Decision
0 . {To} {To} {Po, P1, P2} N/A (To, Po)
DAG A arrive
15 {To} {To} {Py, P} N/A (To, P)
Py fails (TO is
terminated)
20 {3 it {Po, P2} N/A
Py recovers
55 {Tu T, T} {Ts Ty T} {Po, Py P} N/A (Ts, Py)
T, done (T4, Po)
(T2, Pa)
60 {1y, T, T3} {Ts To, T2} {P} N/A NA (The data
P; fails (Data required by
transfer for T, and Ty, T,and T3
T, are terminated) resides on P;)
65 {TuT2Ta} {TaTu T} {Po Py P2} N/A (Ts, Py)
P, recovers (T, Po)
(T2.Py)
105 {7} {T} {Po, P, Poo} (T4, Po)
T, done
155 O O {Po, Py, P2} NA
T, done
Fig. 7. RANK_HYBD scheduling trace.
Time/Event Job Pool Prioritized  Resource Failure Scheduling
queue Pool Prediction Decision
0 {To {To {Po, P1, P2} Po will fail at25 (T, Ps)
DAG A arrive
15 O O {P} N/A NA
Py fails (To is
terminated)
A {3 o {Po, P2} N/A NA
Py recovers
{Tu T, T3} {Ts Ty, T2} { Po, P1, P2} None of node (T3, P)
T, done will fail (T4, Po)
(T2, Py)
60 {Ts} {T:} {} N/A NA
P, fails (T is
terminated)
65 {Ts} {Ts} {P} N/A (T3, P1)
P, recovers
100 {7} {T} {Po., P, Poo} (Ta, Po)
T3 done
150 { O {Po, Py, P2} NA
T, done
Fig. 8. FLAW scheduling trace.

A. Workload simulation

The published test bench [22] for workflow applications is
used in the simulation. The test bench consists of randomly
generated DAGs and is structured according to the following
DAG graph properties:

o DAG Size: the total number of jobs in a DAG. As our goal
is to evaluate the algorithm performance with intensive
workloads, we only use the DAG group with the most
jobs, i.e. the DAG consists of 175 to 249 jobs.

e Meshing degree: the extent to which the nodes are con-
nected with each other.

o FEdge-length: the distance between the connected nodes.

o Node- and Edge-weight. These two parameters describe
the time required for a jobs computation and communi-
cation cost and are related to CCR, the communication
to computation ratio.

As our simulation focuses on how to handle failures in
scheduling, the DAGs we choose for this simulation are those
being random on all properties of meshing degree, edge-length
and node-weigh and edge-weigh. In order to utilize the real
failure trace with granularity of minutes, we treat one time
unit in DAG as 5 minutes.

The test bench [22] provides DAGs for test targeting en-
vironment of different scale measured by the total number of
Target Processing Elements (TPE). A TPE can safely represent

a node in a cluster system. We choose the DAGs designed for
32 TPEs in this simulation as this is a popular cluster scale in
practice.

B. Failure traces and prediction accuracy

Studies in [2], [3], [4], [5], [6] recognize the temporal and
spatial correlation of failures in large scale cluster systems. In
order to mimic these failure characteristics in the simulations,
we choose to use the failure traces published by Los Alamos
National Laboratory [19].

In the simulation we extract 10 two-month failure traces
from the real failure trace [19] by randomly picking up 32
nodes out of 49 nodes in the Cluster 2 and randomly choose
two-month period for these 32 nodes between calendar year
2001 and 2002.

For each real failure trace, we randomly generate an asso-
ciated prediction trace which is planed with random mixture
of hits, false-positives and false-negatives to simulate different
levels of AOA, i.e., 50%, 60%, 70%, 80% and 90% of AOA
respectively. Five prediction traces are generated for each real
failure trace at a defined AOA level. The simulation uses
10 actual failure traces and 250 generated failure prediction
traces. Finally, the level of AOA is simulated by that the
Predictor looks up prediction traces to answer the query.

C. Performance metrics

The evaluation is designed to study what is the right objec-
tive of failure prediction and how failure prediction affects
the scheduling effectiveness, and the following metrics are
measured against different levels of AOA:

o Makespan, which is the total execution time for a work-
flow application from start to finish. It is used to measure
the performance of a scheduling algorithm from the
perspective of workflow applications.

o The loss time, which is defined as the total time of partial
execution including both data transmission and computa-
tion. It measures the system resource waste caused by
resource failures.

o The number of rescheduling jobs, which is defined as
the total number of job rescheduling which is caused by
resource failures. If a node fails in the middle of job
execution, the job is terminated and placed back to job
pool for rescheduling.

o Corresponding AAA, which measures the effectiveness of
failure prediction.

D. Simulation results and analysis

Our previous work [18] demonstrates that RANK_HYBD
outperforms FIFO without resource failure presence, the sim-
ulation result in Fig. 9 further proves that RANK_HYBD based
failure aware scheduler, i.e., FLAW, outperforms FIFO based
one in terms of makespan when 10 concurrent DAGs are
running in the system. As our interest is studying the impact
of failure prediction, we do not further evaluate FIFO.

Most of the analysis below is to evaluate performance
metrics against different levels of AOA. The simulation also
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Fig. 9. FIFO vs FLAW with 10 concurrent DAGs.

includes two extreme situations: 1) AOA is 0, which means
the scheduler is failure blind and does not predict failure at
all (i.e., the basic RANK_HYBD); 2) AOA is 1.0, which means
the scheduler knows exactly failure happens by looking up the
actual failure trace.

It can be easily seen that with AOA increasing, workflow
applications perform better in terms of makespan, as shown in
Fig. 10. As the work load intensity increases measured by the
number of concurrent DAGs, the performance improvement is
even bigger.
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Fig. 10. Average makespan vs prediction accuracy (AOA).

Fig. 11 shows that, on average, higher level of AOA helps
FLAW reduces the loss time considerably. Similarly, the num-
ber of rescheduling jobs is improved with more accurate failure
prediction as shown in Fig. 12. Figure 13 reports the impact
of predication accuracy on makespan of different workloads.
We can see that the advantage of failure predication increases
as the workload increases.

We also study whether false positives or false negative has
more significant impact on scheduler effectiveness. In order to
do that, for each one of 10 real failure traces, additional 10
prediction traces are generated with full spectrum of possible
mixtures of Fp and Fn. The simulation is performed against
total 200 generated traces with AOA levels of 50% and 60%.
The Fig. 14 does not tell any correlation of average makespan
and the percentage of F),/(F), + F,).
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Fig. 11. Average loss time vs. prediction accuracy (AOA).
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Fig. 12.  Number of job rescheduling vs. prediction accuracy (AOA).

Finally we try to understand what is the right and practically
achievable objective of failure prediction accuracy. Fig. 15
shows that the effectiveness measured by AAA is about 96%
when AOA is as low as 50%, which indicates that a high
AAA can be achieved with moderate AOA. As work load gets
more intensive, a failure blind scheduler (i.e., AOA=0.0) can
accomplish closer to 50% of AAA, and the AAA rate is more
stable and increases steadily as AOA improves and FLAW
performs well even with trivial AOAs.

VI. SUMMARY AND FUTURE WORK

In this paper, we present FLAW, and propose two new
definitions of failure prediction accuracy in the context of
workflow scheduling. Proactive failure handling is introduced
into a dynamic scheduling scheme, HYBD_RANK, which
significantly reduces the impact of failures on application
performance in terms of makespan, loss time and the number
of job rescheduling. A comprehensive simulation is conducted
using real failure trace of a large scale cluster and a published
workflow application test bench. The evaluation results not
only demonstrate that FLAW can effectively improve the
application performance in a failure prone high performance
computing system but also shows that the FLAW can be very
effective even with moderate failure prediction accuracy in a
system with intensive workloads.

The paper presents a preliminary study of what is the
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right and practically achievable objective of failure prediction
accuracy, further work is required to refine the definition of
AAA and AOA so these metrics can be better measurable in
practice. While this paper assumes the availability of an online
failure predictor, we will need to implement FLAW with an
actual one and integrate with popular workflow schedulers,
such as DAGMan [15] or Pegasus [23].
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