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Abstract— Workflow applications are gaining popularity in
recent years because of the prevalence of cluster environments.
Many algorithms have been developed since, however most static
algorithms are designed in the problem domain of scheduling
single workflow applications, thus not applicable to a common
cluster environment where multiple workflow applications and
other independent jobs compete for resources. Dynamic schedul-
ing approaches can handle the mixed workload practically by
nature but their performance has yet to optimize as they do not
have a global view of workflow applications. Recent research
efforts suggest merging multiple workflows into one workflow
before execution, but fail to address an important issue that mul-
tiple workflow applications may be submitted at different times
by different users. In this paper, we propose a planner-guided
dynamic scheduling strategy for multiple workflow applications,
leveraging job dependence information and execution time es-
timation. Our approach schedules individual jobs dynamically
without requiring merging the workflow applications a priori. The
simulation results show that the proposed algorithm significantly
outperforms two other algorithms by 43.6% and 36.7% with
respect to workflow makespan and turnaround time respectively,
and it performs even better when the number of concurrent
workflow applications increases and the resources are scarce.

I. INTRODUCTION

Scheduling workflow applications in a cluster environment
is a great challenge. A workflow application is typically
represented as a direct acyclic graph (DAG), where nodes
represent individual jobs and edges represent the inter-job de-
pendence. Its performance is generally measured by makespan,
the time difference between the start time and completion
time of a workflow. We use DAG and workflow application
interchangeably in this paper.

At a high level, DAG scheduling algorithms can be divided
into two groups: static and dynamic. A static algorithm pre-
sumes knowledge of the whole structure of a DAG and its
job execution time estimation, and resource mapping is made
on DAG level before the execution. Conversely, a dynamic
algorithm makes a decision only when an individual job
is ready to execute. Comparative studies [1], [2], [3] from
different perspectives show that static algorithms outperform
dynamic ones in most cases.

However, static algorithms do not consider the real world
situation where a cluster serves mixture of multiple workflow
applications and other independent jobs. All of the 27 static
algorithms surveyed in [4] and other ones [5], [6], [7]
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devised later are restricted to single DAG scheduling. Recent
efforts [8], [9] attempt to schedule multiple DAGs, but they
merely merge multiple DAGs into one unified DAG a priori
and schedule as a single one. But this approach is not feasible
when DAGs are submitted by different users at different time.

On the other hand, dynamic algorithms can handle multiple
DAGs in a natural way because of their intrinsic adaptability
to the dynamics of both workload and environment. From the
scheduler’s point of view, a ready-to-execute individual job
within a DAG is no different than other ordinary independent
jobs waiting in the queue. As the job interdependence is
transparent to the scheduler, it can handle one or many
workflow applications.

When a user submits a workflow application, a key question
he or she wants to ask is what the turnaround time will
be, which is measured by the time difference between sub-
mission and final completion of the application. In addition,
the makespan is used to measure the workflow application
performance. From a system management perspective, the
concern is the overall resource utilization and throughput.
While existing dynamic algorithms support dynamic workload
allowably consisting of multiple DAGs, their performance is
not yet evaluated and comparatively studied with any static
counterpart to the best of our knowledge. Given the historic
performance evaluation on single DAG scheduling [1], [2], [3],
[10], it is not hard to envision that even with multiple DAGs
the dynamic algorithms can be optimized if the DAG structure
and job execution estimation are taken into account.

In this paper, we propose a planner-guided dynamic schedul-
ing algorithm for multiple workflow applications in a clus-
ter environment, inheriting both adaptability of dynamic ap-
proaches and performance advantages of static ones. With
this approach, the workflow planner helps the executor to
prioritize jobs globally across multiple DAGs so that the
executor is able to assign the job of highest priority to the best
resource to achieve better performance. More importantly, it
is a practical solution capable of plugging into a real world
workflow management system, and it can also be extended to
grid environments with applications of mixed varieties. The
contributions of this paper are:

1) Propose a planner-guided priority based dynamic
scheduling algorithm for scheduling multiple workflow
applications in a cluster environment;

2) Evaluate the performance of proposed algorithm using
a published comprehensive test bench [11] and study



its effectiveness with respect to number of static and
dynamic parameters; and

3) Observe that RANDOM and FIFO have very similar
performance while the proposed algorithm improves the
average makespan and turnaround time over the former
two by 43.6% and 36.7% respectively.

The rest of the paper is organized as follows. Related work
is discussed in Section II. Then we describe the planner-guided
dynamic scheduling algorithm in Section III. Section IV elab-
orates the experiment design and evaluates the performance
of proposed algorithm along with other popular ones. Finally,
we summarize and lay out the future work in Section V.

II. RELATED WORK

The DAG scheduling problem has drawn extensive atten-
tion in the last two decades and various algorithms have
been proposed in literature with objective of achieving near
optimal performance of single DAG. Several of them, static
or dynamic, have been successfully implemented in num-
ber of workflow management systems like DAGMan [12],
ASKALON [1], GidFlow [13], Pegasus [14], Taverna [15],
GrADS [16], and so on.

By its nature a dynamic algorithm can support multiple
DAGs as scheduling decision is made only when the individual
job is ready to execute. For example, DAGMan [12] manages
jobs of a DAG in an internal queue reflective of the job
interdependence. When jobs in the internal queue become
ready they will be forwarded to the Condor queue which
contains jobs from different users. Each job can be assigned
with user defined priority, otherwise an FIFO order will be
used to schedule next available job in the Condor queue [17].

Iverson et al. [19] present a hierarchical matching and
scheduling framework where multiple workflow applications
compete for resources. A decentralized scheduling strategy is
proposed where each application makes its own scheduling
decision during the allocated time slots. Different scheduling
time policies are compared for their impacts on overall re-
source utilization, but the discussion does not cover measure-
ment of average turnaround and makespan, which are of most
interest from the user’s perspective.

Several static algorithms are also proposed for multiple
DAG scheduling. Zhao et al. [8] propose composition ap-
proaches to merge multiple DAGs into a single DAG first
before applying an algorithm designed for fairness. Similarly
Hönig et al. [9] devise a meta-scheduler for multiple DAGs,
which suggests to merge multiple DAGs into one to improve
the overall parallelism. However, these efforts are limited by
inability to deal with dynamics of workloads, i.e., multiple
DAGs may come at different time.

In this paper, we envision that the key practical issue
of scheduling multiple DAGs is that they may come in at
different time dynamically. With the observation of adaptivity
of dynamic strategies and potential benefits and serious lim-
itations of static ones, we propose a planner-guided dynamic
scheduling approach in order to deal with dynamic workload
by leveraging on advantages of both approaches.

III. PLANNER GUIDED DYNAMIC SCHEDULING

Inspired by some effective algorithms in the single DAG
scheduling problem domain and the fact that workflow applica-
tions are gaining more popularity because of the prevalence of
cluster environments recently, we explore practical solutions to
the real world challenges of scheduling workflow applications
in a cluster environment. In this section, we first discuss the
motivation of our research, then describe how we approach the
solution and finally define the proposed algorithm in detail.

A. Motivation

There have been extensive comparative studies for static
and dynamic algorithms [1], [2], [3], [4], [10] in the context
of scheduling single DAG. It is well concluded that static
approaches outperform dynamic ones in most cases when
resource and workload makeup do not vary over time. Never-
theless, the impracticality of static scheduling algorithms are
recognized in researches [20], [21].

The design in our previous work [21], which builds col-
laboration between workflow Planner and Executor to adapt
to a dynamic environment, can be extended to tackle dynamic
workload issue as well. The Planner can facilitate the Executor
to make wiser decisions with the information of DAG structure
and job execution estimation available, including

1) Use ready job pool to manage dynamic workloads.
The key difference between workflow applications and
ordinary jobs is the job interdependence. If the workflow
Planner submits individual jobs to the job pool only
when they become ready to execute, the job dependence
constraint is transparent to the Executor. The Executor
applies a scheduling algorithm on the jobs in the pool,
even though these jobs may belong to different DAGs.
This mechanism offers the capability to schedule multi-
ple workflow applications which arrive dynamically.

2) Globally prioritize jobs in the pool to optimize dynamic
scheduling performance. The Executor can optimize the
performance if it knows which job has the biggest
impact on overall performance and therefore should be
scheduled with highest priority. Each individual job is
assigned priority locally by the Planner before being
placed in the job pool, reflective of the job interde-
pendence constraints and job execution time estimation.
When the jobs from different users make the pool, the
local priority of each job can be utilized as a base to
form global priorities in the pool. The global priority
of a job in the pool may change dynamically as the
composition of the pool changes in real time.

B. Planner-guided dynamic scheduling

Most static scheduling algorithms are based on the so-
called list scheduling technique, where a job list is maintained
in order of priority [4]. HEFT(Heterogenous Earliest-Finish-
Time) [5] is one of the most popular ones, and its effectiveness
is proved by implementation in ASKALON [1] project. We
will use the upward ranking mechanism introduced in [5] to
locally prioritize jobs in a DAG.
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A workflow application is represented by a direct acyclic
graph, G=(V, E), where V is the set of v jobs (nodes) and
E is the set of e edges between jobs. Each edge (i, j) ∈ E
represents the precedence constraint such that job ni should
complete its execution before job nj starts. data is a v × v
matrix of communication data, where datai,k is the amount
of data required to be transmitted from job ni to job nk. The
upward rank of a job ni is recursively defined, starting from
the job nexit:

ranku(ni) = wi + max
nj∈succ(ni)

(c(i,j) + ranku(nj)) (1)

where succ(ni) is the set of immediate successors of job ni,
c(i,j) is the average communication cost of edge (i, j), and
wi is the average computation cost of job ni. For the exit job
nexit, the upward rank value is defined as

ranku(nexit) = wexit (2)

In order to schedule dynamically and optimize the resource
allocation decision, the proposed system consists of three core
components: DAG Planner, Job Pool and Executor. The DAG
Planner assigns each individual job local priority as defined
above, manages the job interdependence and submits jobs
whenever they are ready to execute into the Job Pool, which is
an unsorted set containing all jobs from different users waiting
to be scheduled. The Executor re-prioritizes the jobs in the Job
Pool before it schedules in the order of job priorities. When a
job finishes, the Executor notifies the DAG Planner which the
job belongs to of the completion status. The collaboration is
implemented by the continuous and dynamic event triggered
communication among core components, as defined in Fig. 1.

1) Job submission. When a new DAG arrives, it is asso-
ciated with an instance of DAG Planner. After ranking
all individual jobs within the DAG initially, the Planner
submits whichever job is ready to the Job Pool. In the
very first time, only entry job(s) will be submitted. After-
wards, upon notification by the Executor of completion
of a job, the Planner will determine if any successor
job(s) become ready and submit them. The job rank
information is submitted along with the job.

2) Job scheduling. Whenever there are resources available
and a job is waiting in the Job Pool, the Executor will
repeatedly do:

a) Re-prioritize all jobs currently present in Job Pool
based on individual job ranks.

b) Remove the job with the highest global priority
from Job Pool;

c) Allocate the job to the resource which allows
earliest finish time.

3) Job completion notification. When a job finishes suc-
cessfully, the Executor will notify the corresponding
DAG Planner of job completion status.

We name this design as planner-guided dynamic scheduling.
As illustrated in Fig. 1, each DAG is associated with an
instance of DAG Planner which ranks individual jobs in the
DAG and forwards the ready jobs to the Job Pool. If we
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Fig. 1. An overview of planner-guided dynamic scheduling.

assume that DAG B arrives in the system right after the job
A-1 finishes, the job A-2, A-3, A-4 and B-1 become ready
and are submitted into Job Pool which may already have jobs
from different users. In turn, the Executor will re-prioritize
all jobs in Job Pool before picking the job with the highest
global priority. Priority permutation may occur when Job Pool
makeup changes, for example, a new job from a different
user enters into the pool. The next section will detail how
to globally prioritize the jobs in the pool.

C. Prioritization algorithms

Traditional DAG scheduling algorithms are developed for
single DAG domain, directly applying them on multiple DAG
scheduling is possible but with great practical limitation. It
is merely equivalent to one of the composition processes
discussed in [8]. It creates a composite DAG by making the
nodes which do not have any predecessors of all DAGs the
immediate successors of a new common entry node, and all
the exit nodes of the DAGs immediate predecessors of a new
common exit node. A node does not have any predecessor
because either itself is an entry node or its predecessors are
executing or have finished when composition process occurs.
These two extra common nodes have no computation and no
communication between them and other nodes. The major
difference from [8] is that we consider that DAGs may arrive
dynamically in different time. Reusing the examples in Fig. 1,
the composition process will create a composite DAG as
illustrated in Fig. 2. As job A-1 has finished, the common entry
node makes itself an immediate predecessor of A-2, A-3 and
A-4 from DAG A, B-1 from DAG B and another independent
job.

One intuitive approach is to simply apply HEFT on the
composite DAG by prioritizing jobs in non increasing order
of rank value. For discussion convenience, we refer to this
algorithm as RANK HF in the rest of the paper, which means
the highest rank first. One can easily recognize that this
approach is in favor of:

• The jobs from later arriving DAGs. If the DAGs are of
similar complexity, the highest possible rank of a partially
executed DAG is very likely smaller than the entry nodes
of a newly arriving DAG.
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T: a set of jobs in ready job pool 
R: a set of free resources 
rank: ranking values for all jobs 
 
procedure schedule(T, R) { 
   while  and  do  ∅≠T ∅≠R
      boolean multiple = checkMultiple(T); 
      if (multiple) 
             sort T as an array L so that: 
       for any i<j, L[i]  and L[j]T∈ T∈ , rank(L[i])≤ rank(L[j]) 
      else 
 sort T as an array L so that: 
       for any i<j, L[i]  and L[j]T∈ T∈ , rank(L[i])≥  rank(L[j]) 
      endif 
      select L[0] , where L[0] is the job with the highest priority T∈
      select Rr ∈ , where job L[0]  has the earliest finish time  
                            if assigned to resource r 
      schedule job L[0]  on resource r 
       ]}0[{LTT −=
       }{rRR −=
   endwhile 
}       
 
boolean checkMultiple(T) { 
   //This function checks if the jobs in T belong to multiple DAGs 
  // return true if jobs belong to multiple DAGs, otherwise return false 
} 
 

Fig. 3. The dynamic scheduling algorithm RANK HYBD.

• The jobs that have bigger computation cost. It is obvious
that bigger computation cost can help a job to earn higher
rank. In an extreme case where all DAGs are a single job
type, the priority is actually equivalent to the longest job
first policy.

However our later experiment shows that such intuitive ex-
tension turns out to be the worst performer compared to others
in the evaluation. The reason is as follows. As a DAG starts to
execute, its rank value of subsequent individual jobs decreases
gradually to the lowest point when it reaches to the exit node.
If a new DAG or an independent job with big computation
cost is submitted in the middle of its execution, the DAG
close to completion will not get any resource allocated due
to the likely lower global priority until other DAGs are near
completion as well. Such policy results in unnecessary longer
turnaround and makespan if the resources are not rich enough,
which is validated by the simulation results presented later in
this paper.

Based on the observation above and RANK HF’s well
known efficiency in scheduling single DAG, we propose a hy-
brid prioritization algorithm, RANK HYBD, which calculates
the global priority based on the rank value of each job in
the way as described in Fig. 3. If there is only one DAG
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Fig. 4. Scheduling results: (a) scheduling result for algorithm RANK HF;
(b) scheduling result for algorithm RANK HYBD.

present in the system, RANK HYBD is identical to RANK HF.
Otherwise, it prioritizes the jobs in the opposite order. The
Executor first checks if the jobs in the pool belong to different
DAGs. If the jobs come from multiple DAGs, the Executor
sorts the jobs in a queue (array) which holds the jobs in a
non-decreasing order of job ranking value, i.e., the first job
has the smallest rank value. If all the jobs belong to the same
DAG, the jobs are sorted in opposite order, same as the HEFT
algorithm. Then the Executor picks the first job in the queue
(array) and assigns it to the resource which offers earliest finish
time. In an extreme case where all DAGs are actually single
jobs, the algorithm is equivalent to the shortest job first policy.
The later simulation results show that RANK HYBD improves
the average makespan and turnaround time very impressively
while maintaining similar resource utilization and throughput.

We use the two example DAGs in Fig. 1 to illustrate how
algorithm RANK HF and RANK HYBD work. First, a local
priority will be assigned to each job by calculating the upward
rank values. The job ranking result for each DAG is:

• DAG A: A-1(45); A-2(26); A-3(23); A-4(25) and A-5(8).
• DAG B: B-1(41); B-2(28); B-3(27); B-4(24) and B-5(10).
In this example, we assume that there are two processors,

P1 and P2, and DAG B is submitted 6 time units later than
DAG A. Fig. 4 shows the scheduling results.

One may notice that, with the algorithm RANK HF, job A-
3 and A-4 are scheduled later as they have lower priorities
compared with the jobs from DAG B. As DAG B comes in
the midst of execution of DAG A, the jobs on the top level
certainly have higher rank values. It supports our observation
that RANK HF favors DAGs of later arrival and jobs of
more complexity. Basically, the algorithm RANK HF penalizes
whichever DAG gets close to completion and results in sub-
optimal performance from user’s perspective.

Conversely, the RANK HYBD assigns higher priority to the
jobs of smaller rank value, which implies that either the job is
closer to DAG exit point or the job is less complex, as shown

4



in Fig. 4(b). When DAG A has started, the remaining jobs, A-
2, A-3 and A-4, are the ones on the lower level and therefore
have comparatively smaller rank values, compared with entry
jobs from DAG B. The RANK HYBD allows the DAG which
gets closer to completion higher priority to obtain required
resources, at the expense (delaying) of DAGs arriving later or
jobs of more complexity though. However, it helps to reduce
the majority’s turnaround and better satisfy users. Finally, it
is very fair that when a user submits a new DAG into an
already well loaded cluster environment or his DAG request is
very complex he would reasonably expect a longer turnaround
time.

IV. EXPERIMENT DESIGN AND EVALUATION RESULTS

In this section, we present the experiment design for eval-
uating the effectiveness of RANK HYBD. We comparatively
evaluate RANK HYBD, RANDOM, FIFO and RANK HF with
published workflow application test bench and analyze the
results under an arrange of system parameters.

A. Algorithms to evaluate

In order to evaluate the effectiveness of RANK HYBD, we
compare it with two practically popular algorithms: RANDOM
and FIFO, along with RANK HF. As a matter of fact, the
initial study of RANK HF leads us to design and define
RANK HYBD in this paper.

The algorithm details of RANK HF and RANK HYBD are
described in Section III. As the name suggests, the RANDOM
algorithm randomly picks up a job from the Job Pool without
any priority consideration. With FIFO, the Executor maintains
a queue in the order of job entry time and always chooses the
job at the the first place of the queue to schedule. Once a job is
selected, the four algorithms adopt the same resource selection
process by assigning the job to the free resource which offers
earliest finish time.

B. Workload simulation

The published test bench [11] for workflow applications
is used to evaluate the algorithms. It consists of randomly
generated DAGs and is structured according to several DAG
graph properties [11]:

• DAG Size: the number of nodes in a DAG. As our goal
is to evaluate the algorithm performance with complex
workload, we use the DAG group with the most jobs
only, where each DAG consists of 175 to 249 jobs.

• Meshing degree: the extent to which the nodes are
connected with each other. It is subdivided into four
subcategories: high, medium, low and random.

• Edge-length: the average number of nodes located be-
tween any two connected nodes. It consists of four
subcategories: high, medium, low and random.

• Node- and Edge-weight. These two parameters describe
the time required for a jobs computation and commu-
nication cost. It is related to CCR, the communication
to computation ratio, but is purposely broken down

into Node-high/Edge-high, Node-high/Edge-low, Node-
low/Edge-low, Node-low/Edge-high, Node-random/Edge-
random subcategories, rather than different CCR values.
Obviously, Node-high/Edge-low corresponds to low CCR
and Node-low/Edge-high means high CCR.

There are 25 randomly generated DAGs for each combina-
tion of subcategories, and they make up totally 2,000 unique
test DAGs in our experiment.

The test bench also assumes that each of the available
computing nodes, named as target processing elements (TPE)
in paper[11], executes just one job at a time and that we have
accurate estimates for the computation and communication
times of the corresponding DAG scheduling problems[11].
TPE can represent a CPU resource in most contexts of this
paper.

Besides the graph properties defined by [11] as above, we
add another set of properties to model the dynamic workload:

• Number of concurrent DAGs. This is the total number of
DAGs concurrently execute in a cluster. We simulate 5,
10, 15, 20 and 25 number of concurrent DAGs respec-
tively in the experiment.

• Arrival interval. We are interested in the arrival interval
at which the DAGs are submitted into the environment.
This is used to mimic the workload dynamics. In the
simulation, we assume the the arrival interval follows a
Poisson distribution with mean value of 0, 100, 200, 500,
1000, 2000, 3000 and 6000 time units respectively.

With all possible combination of DAG graph properties with
dynamic workload characteristics, the experiment involves
totally 16,000 test cases based on 2,000 unique DAGs. Finally,
the simulation is developed on top of SimJava [22], an event
based simulation framework. It is worth noting that we are
targeting a cluster environment in this study, but the proposed
scheduling algorithm can be used in a grid of one site with
large number of computing nodes, or multiple sites that are
connected with a high-speed network, such as TeraGrid [23]
and Open Science Grid [24].

C. Performance metrics
Since the objective of our algorithm is to improve the

workflow application performance, we use the following three
metrics to comparatively evaluate all four algorithms:

• Makespan: the total execution time for a workflow ap-
plication from start to finish. It is used to measure the
performance of a scheduling algorithm from the perspec-
tive of workflow applications.

• Turnaround time: the total time between submission
and completion of a workflow application, including the
real execution time and the waiting time. It measures
the performance of a scheduling algorithm from users’
perspective.

• Resource utilization percentage: the ratio of the time for
each resource spending on computation to the total time
span to finish all DAGs. This metric is used to measure
the algorithm efficiency with respect to resource usage
from a system perspective.
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D. Simulation results and analysis

The simulation results of these four algorithms are com-
pared and analyzed with respect to the evaluation metrics
described in previous section against various parameters, in-
cluding DAG graph characteristics and workload dynamic
characteristics of arrival interval and concurrency.

Fig. 5 and Fig. 6 show how the algorithms perform with
different number of concurrent DAGs. As a result, RANDOM
and FIFO have almost identical performance with respect to
average makespan and turnaround, and they both perform
better than the RANK HF algorithm. RANK HYBD always
outperforms others and improves even more significantly
when the computing environment has more DAGs execute
concurrently, with respect to average makespan. The average
makespan improvement rate of RANK HYBD over FIFO in-
creases from 20.6% to 50% when total number of concurrent
DAGs increases from 5 to 25.

The same observation holds too when the performance is
measured by the average turnaround time, that RANK HYBD
outperforms others better when the system serves more DAGs
concurrently, as shown in Fig. 6. The improvement rate of
RANK HYBD over FIFO increases from 19% to 41.9% when
the total number of concurrent DAGs increases from 5 to
25. With the page limitation and the fact that turnaround and
makespan almost share the identical pattern in the evacuation,
in the rest of the paper we will discuss the algorithm evaluation
result of both but do not include all turnaround metric related
figures.

Fig. 7 helps us to understand how the algorithms respond
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Fig. 7. Average makespan vs. the arrival interval of DAGs.

to the workload intensity measured by interval between DAG
submission. It can be easily seen that the more intensively
DAGs are submitted, i.e., the smaller arrival interval, the
better RANK HYBD outperforms other three algorithms in
terms of both makespan, as shown in Fig. 7. When all
the DAGs are submitted at the same time, RANK HYBD
outperforms FIFO by 40% for both average makespan and
average turnaround. Interestingly, once again, RANDOM and
FIFO algorithms have very similar performance. When DAGs
arrive at an interval of about 6000 time units, it is almost
equivalent to the case that one DAG comes in after another
one finishes. In this situation, all of these four algorithms have
similar performance. However, RANK HF is the best one and
outperforms RANK HYBD by 4% slightly with respect to both
average makespan and average turnaround. But in reality, most
high performance computing centers are overloaded.

We also investigate how these algorithms perform in terms
of resource sufficiency, i.e., the number of TPEs, as shown
in Fig. 8. We once again find out that RANDOM and FIFO
algorithms have similar performance in all scenarios. Fig. 8
also show that all algorithms do not perform much differently
when the cluster environment has sufficient resources, more
than 16 TPEs in this experiment. When there are only limited
resources available, RANK HYBD is the algorithm of best
performance. However, its advantage diminishes in a fast pace
when there are more resources available. As shown in Fig. 8,
its makespan improvement rate over FIFO drops quickly from
52.6% in the case of two TPEs, to 31.5% in the case of eight
TPEs. Same pattern is observed with turnaround time, and the
improvement rate drops from 43.6% to 27.7% accordingly.

Fig. 9 shows our further evaluation of RANK HYBD with re-
spect to several DAG graph properties. One can easily observe
that RANK HYBD outperforms the other three algorithms in
all categories significantly. This evaluation also leads to the
discovery that RANK HYBD is less sensitive to DAG graph
properties and therefore a relatively fair algorithm in terms
of makespan. Fig. 9(a) shows that RANK HYBD results in
similar makespan for DAGs of different edge lengths. And its
performance does not vary much for the DAGs with different
meshing degrees either, demonstrated by Fig. 9(b). For the
different communication to computation ratios, as shown in
Fig. 9(c), it has similar performance for DAGs of Node-

6



Number of TPEs

A
ve

ra
ge

 m
ak

es
pa

n

35302520151050

25000

20000

15000

10000

5000

0

Scheduler

RANK_HF
RANK_HYBR

FIFO
RANDOM

Fig. 8. Average makespan vs. the number of TPEs.

TABLE I
SENSITIVITY TO DAG GRAPH PROPERTIES

DAG Statistic Makespan
property attribute RANK HYBD FIFO RANDOM
Mesh degree Std Dev 106.6 544.3 503.9

Mean 4612.3 8228.0 8302.6
Edge length Std Dev 296.0 1032.0 890.6

Mean 4240.3 8017.8 8121.0
CCR Std Dev 1704.1 3181.8 3215.5

Mean 4489.4 7932.8 8007.4

high/Edge-low Node-low/Edge-high, where the former implies
low CCR while the latter indicates high CCR. In terms of
average turnaround time, all algorithms respond to the each
DAG property in a similar way.

In addition, we compare RANK HYBD, FIFO and RADOM
with respect to their sensitivity to DAG graph properties
measuring in the form of the standard deviation (Std Dev),
as shown in Table I. It shows that RANK HYBD is much less
sensitive to different DAG properties than FIFO and RANDOM
with respect to average makespan. Its sensitivity to turnaround
is also less than FIFO and RANDOM, but not significantly. We
attribute this to the fact that the turnaround time is more related
to the system workload, rather than the scheduling algorithm
when the system is considerably busy.

Finally, we study the algorithm performance from the sys-
tems’ perspective. Fig. 10 illustrates the empirical cumulative
distribution function(CDF) of resource utilization percentage
when the simulation is based on 32 TPEs. The figure shows
that all algorithms result in very similar resource utiliza-
tion percentage. Combined all test results, we conclude that
RANK HYBD is the best algorithm, it outperforms FIFO and
RANDOM algorithms by 43.6% and 36.7% with respect to
average makespan and turnaround time respectively.

However, we admit that the conclusion with respect to
resource utilization efficiency is not solid as the simulation
is performed in a relatively small scale. Moreover, the lack
of a proper model of the dynamic workload also makes it
difficult to evaluate system performance. For the same reason,
we do not further evaluate the throughput metric, as the total
number of workflow applications alone does not suffice to
properly quantify the real complexity of the work requests.
We envision that as more and more workflow applications

(a) Average makespan vs. edge length

(b) Average makespan vs. mesh degree

(c) Average makespan vs. CCR

Fig. 9. Effects of DAG properties on the average makespan.

have been developed and executed on cluster environments,
the community will have a better idea of the properties of
workflow applications. At that time, it will make more sense
to evaluate the scheduling algorithms from the perspective of
systems. We also evaluate the algorithm in terms of fairness,
but do not include it due to page limit.

V. SUMMARY AND FUTURE WORK

This paper attacked the problem of scheduling multiple
workflow applications in a cluster environment. When consid-
ering that multiple workflow applications arrive dynamically
and execute concurrently, we found that the most of algorithms
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designed for a single workflow application are impractical
and very little work has contributed to this problem domain.
A new practical solution, planner-guided dynamic schedul-
ing algorithm, is proposed to improve dynamic scheduling
performance by guiding it with information about workflow
structure and job execution time estimation. A comprehensive
simulation has been conducted based on a published workflow
application test bench. The evaluation results show that the
proposed algorithm outperforms significantly over the two
other algorithms by an average of 43.6% and 36.7% with
respect to makespan and turnaround respectively.

Discussion We use one popular ranking mechanism [5]
in this paper to locally prioritize individual jobs of a DAG.
On one hand, it illustrates how the local priority information
can help the Executor to globally re-prioritize jobs from
different users. On the other hand, it demonstrates a two
layered scheduling architecture. While the Planner determines
the local priority for individual jobs in a DAG by utilizing
any applicable static algorithm, the Executor re-prioritizes all
jobs ready to execute in a real time fashion. Even though
this research is inspired for scheduling multiple workflow
applications, it is generically applicable to the cluster and
grid platforms of mixed workloads. Finally, this solution is
implementable in practice. For example, DAGMan can accept
job submissions with a user’s predefined priority. Rather than
allowing users to define these priorities without any guidance,
we can let the Planner determine the order in a unified and
systematic way. What we need to do additionally is to add
a global prioritization functionality to the Condor job queue
manager so it can dynamically re-prioritize the jobs in the
queue, instead of the current FIFO implementation.

In the next step, we will further refine the dynamic workload
model to make it more realistic. We also plan to study
the algorithm efficiency from the system management per-
spective. In addition, we intend to implement the proposed
algorithm RANK HYBD in a real workflow scheduler, such as
DAGMan/Condor-G [12].
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