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LOBOT: Low-Cost, Self-Contained Localization
of Small-Sized Ground Robotic Vehicles

Guoxing Zhan and Weisong Shi, Senior Member, IEEE

Abstract—It is often important to obtain the real-time location of a small-sized ground robotic vehicle when it performs autonomous
tasks either indoors or outdoors. We propose and implement LOBOT, a low-cost, self-contained localization system for small-sized
ground robotic vehicles. LOBOT provides accurate real-time, three-dimensional positions in both indoor and outdoor environments.
Unlike other localization schemes, LOBOT does not require external reference facilities, expensive hardware, careful tuning or strict
calibration, and is capable of operating under various indoor and outdoor environments. LOBOT identifies the local relative movement
through a set of integrated inexpensive sensors and well corrects the localization drift by infrequent GPS-augmentation. Our empirical
experiments in various temporal and spatial scales show that LOBOT keeps the positioning error well under an accepted threshold.

Index Terms—Localization, robot, sensor, GPS.
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1 INTRODUCTION
Small-sized ground robotic vehicles have great potential
to be deployed in situations that are either uncomfort-
able for humans or simply too tedious. For example,
a robot may become part of industrial operations, or
become part of a senior citizen’s life, or become a tour
guide for an exhibition center. The robot is kept as small
as possible to allow access through narrow passageways
such as a tunnel. To fulfill these missions, the robotic
vehicle often has to obtain its accurate localization in
real time. Considering the difficulty or impossibility in
frequent calibration or the management of external facil-
ities, it is desirable to have a self-contained positioning
system for the robot: ideally, the localization system
should be completely integrated onto the robot instead
of requiring external facilities to obtain the position;
the system should work indoors and outdoors without
any human involvement such as manual calibration or
management. Meanwhile, the cost is expected to be as
low as possible.

There exist various localization schemes for ground
robotic vehicles. These techniques normally utilize GPS,
inertial sensors, radio signals, or visual processing. GPS
often becomes inoperable in certain environments such
as indoors or in wild forests. Additionally, the GPS
operations consume power quickly. As an alternative,
a localization system may use various waves including
electromagnetic waves of various frequency (e.g., com-
mon WiFi radio, Ultra-wideband [1], RFID radio [2], In-
frared [3]), laser beam [4], and ultrasound [5]. The radio-
based positioning is among the most popular techniques.
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This technology requires a set of external devices to
generate or receive radio signal; as the reference nodes,
these external devices should have known positions.
The accuracy of the radio-based positioning strongly de-
pends on the proper calibration of the reference devices
and the target node [6], [7] as well as a friendly radio en-
vironment. Maintaining such a positioning system can be
costly and difficult in terms of additional hardware [8],
[9], [10], intensive tuning [11], and environmental man-
agement. It is also vulnerable to interference from other
signals, thus affecting the accuracy of positioning.

Another category of solutions is vision techniques for
mobile robot navigation [12]. Generally, these techniques
heavily rely on sophisticated techniques on the recog-
nition of an object or shape from images and often
have restricted spatial and visional requirements. The
performance usually strongly depends on the environ-
ment in which the robot operates and the localization
suffers frequent failure. Additionally, they may require
a known map of the environment. Overall, the vision-
based positioning is relatively costly and difficult to
implement or maintain.

Additionally, inertial sensors are often used in posi-
tioning or navigation systems to detect movement [13],
[14], [15], [16], [17]. Different than the radio-based and
the vision-based techniques, the operation of inertial
sensors is independent of external features in the en-
vironment and they do not need an external reference.
The inertial sensors mainly comprise accelerometers and
gyroscopes (gyros). An accelerometer measures specific
force and a gyroscope measures angular rate. Many
inertial systems often require extremely accurate inertial
sensors to maintain accuracy, which often causes high
cost and calibration difficulty. Being widely-available
and inexpensive, the accelerometer is often perceived
as a solution for localization. The accelerometer-based
positioning schemes generally use the following for-
mula to derive distance from a given acceleration a:
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s(t) =
∫ ∫

a(t)dtdt. In spite of being theoretically well
founded, empirically, the double integral is likely to
cause cumulative error. The methods proposed to correct
this error often have not been thoroughly evaluated yet.

To resolve the aforementioned issues, we propose
LOBOT, a low-cost, self-contained localization system for
the small-sized ground robotic vehicle. LOBOT identifies
the real-time localization through a set of self-integrated
inexpensive sensors including an accelerometer, a mag-
netic field sensor, several motor rotation sensors, and
infrequent GPS-augmentation. It detects local relative
position with a combination of the accelerometer, the
magnetic field sensor and the motor rotation sensors.
LOBOT infrequently invokes the GPS-augmentation to
assist in identifying global location and correcting drift-
ing errors. LOBOT can be applied to both indoor and
outdoor environments. These extra sensing devices in-
cluding the GPS receiver are integrated onto the ground
robotic vehicle and only induce a limited cost to the
vehicle. LOBOT does not require any external facilities or
prior information and it virtually needs no effort of ex-
ternal maintenance. LOBOT is free of many common re-
quirements or issues raised in other localization schemes
such as radio-based schemes and vision-technique-based
schemes, such as expensive hardware, external reference
facilities, careful tuning or strict calibration, and prior
map information. It also has significant improvement in
location precision over the purely-accelerometer-based
approach. We developed a prototype of the LOBOT
system and conducted various field evaluation. The
empirical results indicate the satisfactory performance
of LOBOT.

The rest of the paper is organized as follows: the
detailed mechanism of LOBOT is described in Section 2;
the implementation and empirical evaluation of LOBOT
are given in Section 3; the conclusions are presented in
Section 4. An appendix is also presented as supplemental
material to help illustrate the different reference frames.

2 THE DESIGN OF LOBOT
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Fig. 1. The design of LOBOT.

LOBOT localizes a robotic vehicle with a hybrid
approach consisting of infrequent absolute positioning
through a GPS receiver and local relative positioning

based on a 3D accelerometer, a magnetic field sensor
and several motor rotation sensors (Fig. 1). All these
sensors are installed on the robotic vehicle. The motor
rotation sensors are to detect the rotational movement
of the motors and thus infer the travel distance of the
robot. An embedded microcontroller inside the robot
vehicle takes central control of these sensors and is also
responsible for computing the current absolute position.
LOBOT infrequently uses GPS to obtain an absolute
position and utilizes the accelerometer, the magnetic
field sensor and the motor rotation sensors to measure
local relative movement since the last known absolute
position through GPS. With the GPS data, correction
is performed to reduce the cumulative error from the
local relative positioning component. The infrequent use
of GPS reduces the dependence on the environmental
impact, e.g., a small area without GPS signal. As a
matter of fact, even if GPS is available, LOBOT may still
only uses the local relative component over a short time
period instead of GPS because GPS is known to have
error of up to 20m while the local relative component has
much lower error over a short time elapse. Additionally,
the infrequent use of GPS saves electric power.

The local relative positioning component measures
the instantaneous three-dimensional moving direction
through both the accelerometer and the magnetic field
sensor. It also measures the momentary travel distance
for every small amount of time elapse through the
rotation sensors attached to the vehicle motors. With
the moving direction data together with the momen-
tary travel distance, we can obtain an estimate of the
movement vector. This seemingly straightforward strat-
egy, however, has encountered a few major technical
issues that arise in practical applications. One lies in
the distinction between the world reference system and
the on-board relative reference system. Another factor
that impacts the localization practice is the way the
robotic vehicle operates the motors to move. A further
complication comes from the cumulative error.

The overall procedure for LOBOT to decide the posi-
tion is illustrated by Fig. 2. Roughly, the local relative
positioning infers the momentary moving orientation
(Subsection 2.2) and estimates the momentary travel
distance (Subsection 2.3), with the aid of the accelerom-
eter, the magnetic sensor, and the rotation sensors. The
local relative positioning accumulates these momentary
estimates to compute the position of the vehicle at
any time. Over certain time elapse, the infrequent GPS-
augmentation is conducted and is used to perform drift
correction (Subsection 2.4) so as to obtain better position
estimate.

LOBOT is a low-cost, self-contained system. All the
necessary hardware devices needed to perform the po-
sitioning are a GPS receiver, a 3D accelerometer, a mag-
netic field sensor, and several motor rotation sensors.
LOBOT only needs the commodity versions of these de-
vices that come with moderate precision and low prices.
For ease of development, our prototype uses a GPS
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Fig. 2. The overall procedure of LOBOT.

receiver, a 3D accelerometer, a magnetic field sensor from
an unlocked HTC Legend smartphone that is sold at no
more than $300 at the time of this writing. The motor
rotation sensors used in this prototype is obtained from
a brand of hobby servo motor that sells at $20. Given a
complete circuit design, the actual cost of manufacturing
a microcontroller chip integrating all these raw sensors
(including the GPS receiver) can very likely be brought
down to well under $100 per set. Additionally, all these
sensing devices including the GPS receiver can be well
powered by the battery of the HTC legend smartphone.
Compared with the intense power needed to drive a
robotic vehicle, these sensing devices induce only limited
overhead in the power consumption. Thus, LOBOT is
a low-cost system. The self-containedness of LOBOT is
reflected in two aspects: virtually no requirement of
external devices or external facility management; no
prior information needed. All the necessary devices are
attached to the body of the robotic vehicle that we need
to localize. Except for GPS, LOBOT does not require
any external devices (e.g., a reference anchor point). The
GPS satellite network is maintained by official organi-
zations and thus the use of a GPS receiver virtually
needs no effort to maintain external facilities. Unlike
many positioning schemes based on vision recognition
techniques, LOBOT does not require prior information
of the environment either.

2.1 Reference Frames

To determine the current moving orientation, we will
first need to make a choice on the reference frame. The
direction is expressed in a coordinate system relative to
the reference frame chosen. In the appendix presented
as supplemental material, we present more intuitive
illustration of the reference frames used. Here we briefly
cover the definition of the reference frames and their
meanings. We adopt a right-handed orthogonal reference
frame, LOBOTFrame{XL, YL, ZL} as follows: the Y axis
is parallel to the magnetic field of the earth and points
towards the magnetic north pole; the Z axis points
towards the sky and is parallel to the gravitational force;
the X axis is defined as the outer vector product of
a unit vector of Y and that of Z so that {XL, YL, ZL}
defines a right-handed orthogonal reference frame. For
the purpose of measuring relative movement, the choice

of the origin does not affect our result and thus we
omit the origin when describing the reference frames.
Additionally, we assume that in an area being explored
by the robot the directions of both the gravitational force
and the earth’s magnetic field are constant. As a matter
of fact, the gravitational direction rarely changes in a
city-magnitude area. The change of the earth’s magnetic
field direction in such an area is usually also negligible
without the existence of another strong magnetic field.
If the strength of another magnetic field is so strong
that it causes a noticeable difference on the readings
of the magnetic sensor, LOBOT will switch to the pure
GPS-based mode if the GPS service is available. Thus,
we have a well-defined reference frame LOBOTFrame
for measuring the relative movement of the vehicle.
Roughly, the X axis is tangential to the ground at the
robot’s current location and points east; the Y axis is
tangential to the ground and points north (it is slightly
different than the magnetic north); the Z axis roughly
points towards the sky and is perpendicular to the
ground.

Before introducing how to determine the robot’s mov-
ing orientation, we first show three other closely re-
lated right-handed orthogonal reference frames. Unlike
LOBOTFrame, these frames change as the robot moves.
The first one is the reference frame relative to the rigid
body of the robot, which we name VehicleBodyFrame.
VehicleBodyFrame is not a static frame when the vehicle
moves. Specifically, VehicleBodyFrame is a right-handed
orthogonal reference frame {XV , YV , ZV }, described as
follows: the Y axis is parallel to the lines connecting the
centers of a motor and another motor right behind it,
and points to the front; the Z axis points towards the
sky and is perpendicular to the surface containing all
the centers of the motors; the X axis is defined as the
outer vector product of a unit vector of the Y axis and
that of the Z axis so that {XV , YV , ZV } defines a right-
handed orthogonal reference frame (the X axis points to
the right side of the vehicle).

Another relative reference frame, denoted as Ac-
celerometerBodyFrame, is also a right-handed orthogonal
reference frame {XA, YA, ZA} on which the accelerom-
eter reading is based. Usually the 3D reading from an
accelerometer indicates how the measured acceleration
is decomposed into these three axis directions. This
reference frame is relative to the circuit board of the
accelerometer and is defined by the manufacturer. Two
of the axes are often parallel to the circuit board. Simi-
larly, the last reference frame which we name as Magnet-
icSensorBodyFrame, is another right-handed orthogonal
relative reference frame {XM , YM , ZM} on which the
magnetic sensor reading is based. Note that Vehicle-
BodyFrame, AccelerometerBodyFrame and MagneticSensor-
BodyFrame may all change when the vehicle moves;
however, a fixed installation ensures inherent unchanged
relations between VehicleBodyFrame and the two latter
frames and such relations can be decided during instal-
lation.
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2.2 Inferring Orientation of Robotic Vehicle

Now we describe how LOBOT infers the current instan-
taneous moving direction of the robotic vehicle relative
to LOBOTFrame, which is a static frame (relative to the
earth). Denote the unit vectors along the axes of each
reference frame (normalized basis vector) as in Table 1.
To infer the orientation of the vehicle, it is enough to

TABLE 1
Reference frames and their normalized basis vectors

Frame Normalized basis vectors

LOBOTFrame {X̂L, ŶL, ẐL}
VehicleBodyFrame {X̂V , ŶV , ẐV }

AccelerometerBodyFrame {X̂A, ŶA, ẐA}
MagneticSensorBodyFrame {X̂M , ŶM , ẐM}

express {X̂V , ŶV , ẐV } in terms of {X̂L, ŶL, ẐL}. Given
the gravitational acceleration vector g, then

ẐL = − g

‖g‖
(1)

Let the normalized accelerometer reading be (a1, a2, a3)
relative to AccelerometerBodyFrame. Then

ẐL = − g

‖g‖
= a1 · X̂A + a2 · ŶA + a3 · ẐA (2)

Similarly, given the normalized reading (m1,m2,m3)
from the magnetic sensor, we have

ŶL = m1 · X̂M +m2 · ŶM +m3 · ẐM (3)

Let TAV be the transformation matrix between Accelerom-
eterBodyFrame and VehicleBodyFrame, TMV be the trans-
formation matrix between MagneticSensorBodyFrame and
VehicleBodyFrame, so that

(X̂A, ŶA, ẐA) = (X̂V , ŶV , ẐV ) · TAV (4)
(X̂M , ŶM , ẐM ) = (X̂V , ŶV , ẐV ) · TMV (5)

Thus, we have the following equations:

ẐL = (a1, a2, a3) · (X̂A, ŶA, ẐA)
′

(6)

= (a1, a2, a3) · T
′

AV · (X̂V , ŶV , ẐV )
′

(7)

ŶL = (m1,m2,m3) · (X̂M , ŶM , ẐM )
′

(8)

= (m1,m2,m3) · T
′

MV · (X̂V , ŶV , ẐV )
′

(9)

Now, we are able to construct a special orthogonal matrix
as the transformation matrix TLV between LOBOTFrame
and VehicleBodyFrame as follows: the second column
vector of TLV is:

((m1,m2,m3) · T
′

MV )
′
= TMV · (m1,m2,m3)

′
(10)

The third column vector is:

((a1, a2, a3) · T
′

AV )
′
= TAV · (a1, a2, a3)

′
(11)

The first column vector will be the outer product of the
second column vector and the third column vector. TLV

is determined in this way because the unique transfor-
mation matrix between {X̂L, ŶL, ẐL} and {X̂V , ŶV , ẐV }
must be an orthogonal matrix with a determinant 1.
Consequently, we have constructed the transformation
matrix TLV between LOBOTFrame and VehicleBodyFrame
from TAV , TMV , the accelerometer readings and the
magnetic sensor readings, such that

(X̂L, ŶL, ẐL) = (X̂V , ŶV , ẐV ) · TLV (12)

All the above computation involves only a limited num-
ber of basic arithmetic operations. Considering that an
orthogonal matrix has its inverse being its transpose, we
have

(X̂V , ŶV , ẐV ) = (X̂L, ŶL, ẐL) · T−1
LV (13)

= (X̂L, ŶL, ẐL) · T
′

LV (14)

Therefore, we have achieved expressing {X̂V , ŶV , ẐV } in
terms of {X̂L, ŶL, ẐL} through limited algebraic arith-
metic operations and thus determined the orientation of
the vehicle. The question whether the robotic vehicle is
moving forward or backward can be decided from the
readings (positive or negative) of the rotation sensors.

Note that the above derivation assumes that the read-
ings of the accelerometer reflect the gravitational force.
When the robotic vehicle is moving, the accelerometer
measurement often involves the movement acceleration.
However, the movement acceleration for such a robotic
vehicle is usually a very small fraction of the gravita-
tional acceleration. As verified in our experiments, the
effect of movement acceleration is negligible; even if it
might show a considerable value during speeding up
and braking, the time elapse in which it occurs is so short
that it almost has no observable effect to localization.

2.3 Travel Distance

After inferring the instantaneous orientation of the
robotic vehicle, we also need to know the momentary
travel distance so as to compute the momentary relative
movement. The rotation sensor attached to a motor con-
tinually measures the rotating angle. Let r be the rotation
sensor reading in degrees, d be the wheel’s diameter,
then the travel distance of the wheel’s movement is
r·π·d
360 . In the case of slippage and obstacle, a few recent

research projects have been developed to handle such
issues using methods such as sensing modalities and
obstacle avoidance [18].
Another important issue we need to address relates to
the way the robotic vehicle operates its motors. It is
common that a robotic vehicle may make turns or follow
a curved path through adjusting its two sides of motors
at different speeds and even in reverse direction. Now,
the question is how to calculate the moving distance
given two different rotation sensor readings, one on
each side. First, we observe that any small segment of
movement, in a short enough time, can be perceived
as part of a circular movement around a certain origin.
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This observation can be made even when the two sides
of wheels move in reverse direction. As an extreme
scenario, when the vehicle makes a turn by reversing
the two sides of motors at exactly the same magnitude
of speed, the approximating arc has a radius of zero. In
mathematical terms, a local curve, if short enough, can
be approximated by a small arc with the same curvature
and tangential at the intersection, as illustrated in Fig. 3.
The curvature reflects how fast the curve turns at a point
and depends on both the first derivative and second
derivative of the curve. Approximating a curve locally
with such an approximating arc produces a negligible
cumulative difference when computing distance; that is
because the approximating arc locally has almost the
same first and second derivatives.
We claim that the travel distance of the robotic vehi-
cle can be approximated by the average of the two
side motor’s travel distance. A motor may rotate either
forward or backward; it rotates forward (backward) in
an attempt to move the vehicle forward (backward).
Correspondingly, in addition to the absolute distance
measured, each reading of rotation sensor is assigned a
sign: positive for forward rotation and negative for back-
ward rotation. When the two sides’ motors are moving
in reverse direction, a positive distance is recorded as
one side’s reading and a negative distance for the other
side. The robotic vehicle’s direction is determined by the
resulting average’s sign. First, we discuss the case when
the two motors are moving in the same direction but at
different pace. As illustrated in Fig. 4(a), the center of the
vehicle moves in an arc equally between Motor A’s trace
arc and Motor B’s trace arc. It is straightforward that the
center’s arc length is the average of Motor A’s arc length
and Motor B’s. Thus, we just theoretically proved the
claim in the case that Motor A and B move in the same
direction but at different pace. Next, we discuss the case
that Motor A and B move in reverse direction. In this
case, as shown in Fig. 4(b), the origin O around which
the whole vehicle almost circularly moves is between
the two motors. It is closer to the one with the smaller
absolute pace. A bit straightforward geometry shows
that the center’s travel distance is the average of Motor
A’s and B’s, with Motor A and B having different signs.
The sign of the average determines the moving direction

Motor A

Motor B

θ
Origin O

Center

(a)Same direction.
Motor A

Motor B

Origin O

Vehicle 
center

(b)Reverse direction.

Fig. 4. Travel distance with different-pace motors.

of the vehicle center.

2.4 Drift Correction

As in many inertial systems, the localization computed
through movement direction and travel distance tends
to show drifting effect after a while. Fig. 5 compares the
the trace retrieved in one of our outdoor experiments
through our local relative positioning and through GPS.
We observe that positioning purely through local relative
positioning gradually drifts from the correct position and
finally accumulates large error. Thus, LOBOT needs to
apply drift correction to the localized results by utilizing
the absolute position obtained from GPS.

LOBOT requests GPS sampling in an adaptive way
that incorporates both location accuracy and energy
use. The more frequent GPS sampling likely results in
better correction of positioning; but more frequent GPS
sampling also means significantly higher cost of power
consumption [19], [20], [21]. Roughly, LOBOT adjusts
its GPS sampling frequency according to the magnitude
of the cumulative error of the local relative positioning.
When the cumulative error of the local relative position-
ing between the current GPS sampling and its preceding
GPS sampling increases, LOBOT increases its GPS sam-
pling frequency accordingly; otherwise, LOBOT reduces
its GPS sampling frequency. Specifically, let CErrThd
be the tolerant threshold of the cumulative error of
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the local relative positioning between two consecutive
GPS samplings; P be the time elapse between the two
most recent GPS samplings; CErr be the cumulative
error of the local relative positioning between these
two most recent GPS samplings. Then the time elapse
from the most recent GPS sampling to the next GPS
sampling will be P ·CErrThd/CErr. CErr is calculated
on the runtime as the difference between the current
GPS reading and the location computed purely based
on the local relative positioning and the previous GPS
reading. In our outdoor experiments, we used 8 meters
as the value of CErrThd. Initially, a value is set up
as the gap between the two first GPS samplings; then,
the next gap will be calculated as P · CErrThd/CErr;
after that, a third gap can be calculated in the same way
based on the second gap. Thus, we only need to set up
the initial gap value and the subsequent time elapses
will evolve by themselves. In our outdoor experiments,
we used 2 minutes as the initial gap. In practice, to
increase stability, LOBOT adopts a GPS sampling gap
period slightly lower than P ·CErrThd/CErr. When the
GPS signal is not available, LOBOT periodically wakes
up the GPS receiver to check its availability and then
puts it to sleep.

LOBOT assumes identical distribution of cumulative
error among all time periods of equal length. Let the
probability sample space be the set X of all possible
localization-related events, err(X, t) be the random error
of local relative positioning at time t, and corr(X, t) be
the correction at time t. corr(X, t) is the difference be-
tween the position obtained through relative positioning
and the ground truth. err and corr are both stochas-
tic processes. Let the time start at 0 (last successful
GPS request), end at T(the current GPS reading time);
assume LOBOT performs local relative positioning at
time 1, 2, 3..., T − 1, T . Here we analyze the correction
with these simplified assumptions in mind; in fact, our
reasoning works with a more general situation with the

same logic. Then corr(X, 0) = 0. We have

corr(X, t) =

t∑
i=0

err(X, i), 0 < t < T (15)

According to the maximal-likelihood estimation, an op-
timal estimate of corr(X, t) is its mean value

E(corr(X, t)) =

t∑
i=0

E(err(X, i)) (16)

= t · E(err(X, 1)) (17)

We also have

E(err(X, 1)) = E(corr(X,T ))/T (18)

Therefore, combining the above two equations, we have

E(corr(X, t)) = t · E(err(X, 1)) (19)
= t · E(corr(X,T ))/T (20)

Again, based on the principle of maximal-likelihood
estimation, the mean value E(corr(X,T )) has its esti-
mated value being the difference between the current
GPS-supplied reading and the last position obtained
through relative positioning. Additionally, an optimal
estimate of the random correction corr(X, t) at time t
is t · E(corr(X,T ))/T . Therefore, to correct the drift at
time t, we only need to estimate E(corr(X,T )) and then
add t ·E(corr(X,T ))/T to the original position estimate.
E(corr(X,T )) is estimated to be the difference between
the current GPS-supplied reading and the last position
obtained through local relative positioning.

Finally, it is possible that LOBOT is inactivate first and
then becomes active when there is no GPS signal. In this
situation, LOBOT is only able to compute its relative
movement until it receives a GPS signal in the future.
Once a GPS sampling is available, it starts to trace back
and restore all the absolute location before that point. If
no GPS signal is available, LOBOT will interpolate one
of it absolute position linearly with respect to time and
derive the rest using its recorded relative movement.

3 IMPLEMENTATION AND EMPIRICAL EVALU-
ATION

To implement LOBOT, we used a low-cost LEGO MIND-
STORM NXT 2.0 vehicle robot [22] and a moderately
priced HTC Legend smart phone [23] as shown in Fig. 6.
The HTC Legend phone is mounted onto the robot,
merely to supply a set of sensors: an accelerometer, a
magnetic sensor and a GPS. In our experiments, the HTC
phone is lifted higher to avoid the magnetic interference
from both the robot and the ground. Powered by six
AA batteries, this LEGO NXT robot moves on its two
servo motors (one on the left and the other on right). The
two servo motors can rotate at their own user-specified
speeds, either in the same direction or reverse, providing
flexible movement. Their rotating speeds can be changed
by user programs at any moment. The LEGO NXT has a
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Fig. 6. The LEGO NXT robot and the HTC Legend phone.

set of built-in rotation sensors to continually measure the
rotating distance of each motor. The HTC Legend phone
has an accelerometer (G-sensor), a magnetic sensor (dig-
ital compass) and an internal GPS. Our programs control
the motor’s movement, collect the data from rotation
sensors, the accelerometer, the magnetic sensor as well
as GPS.

We performed repeated experiments indoors and out-
doors on the main campus of Wayne State University,
scaling from 1m x 1m (meter) areas up to areas of 50m x
50m. The LEGO robot randomly moves from its minimal
speed (the speed of a snail) to its full speed (several
inches per second) and may change its speed and di-
rection every few seconds. It may also operate its two
motors at different pace or reversely to follow curved
path and make turns. These experiments computed the
location data on all three axes: x (East), y (North) and
z (upward). Each experiment lasts from 1 minute to 20
minutes. The programmed robot randomly decided its
next movement after every certain amount of time from
5 seconds to 1 minute.

The two approaches, LOBOT and the purely
accelerometer-based approach, were both executed
simultaneously during each experiment. The GPS
raw data were collected during outdoor experiments
when applicable. To get the ground truth, we performed
manual recording of positions in most cases and camera-
assisted positioning in small areas. Our experiments
indicate that the purely accelerometer-based approach
can not achieve satisfactory results within the context of
localizing a ground robotic vehicle like the LEGO robot
we used. In contrast, LOBOT, with a low-cost setting,
realizes relatively accurate positioning either indoors or
outdoors. Although the pure local relative positioning
component of LOBOT shows the cumulative drifting
effect, LOBOT well compensates the drift through the
infrequent GPS-augmentation.

3.1 Inaccuracy of Sensing Data
Before dipping into the detailed performance analysis,
we would like to observe the inaccuracy of the received
sensing data. The sensing data usually display certain
deviation from the true sensing value due to various
issues from the hardware or the software. When such

inaccuracy starts to accumulate, the resulting location
might noticeably deviate from the ground truth. A suc-
cessful localization system should at least be able to
reduce the cumulative errors. It is noteworthy that the
various positioning techniques often differ not by their
theoretical soundness, but by their capability to resist
data inaccuracy. The purely accelerometer-based posi-
tioning approach has its strong theoretical foundation
from the Newton’s Second Law of Motion; however,
the position resolved from the acceleration data might
quickly deviate from the ground truth. Admittedly, our
LOBOT system is also impacted by the cumulative
error from the rotation sensor, the accelerometer, the
magnetic sensor and the GPS. Fortunately, in the first
place, LOBOT tends to have much lower cumulative
error than the accelerometer-based approach; further,
after performing the GPS-augmentation, the remnant of
the cumulative error is well under an acceptable range,
considering the low cost of LOBOT.

While these sensors are capable of capturing instan-
taneous movement, the accuracy of the positioning re-
sults are strongly impacted by the specific localization
approaches being used. The sensing error varies, de-
pending on the sensors. Generally, the magnetic sensor,
motor rotation sensor, and the accelerometer tend to
show small instantaneous sensing error; the GPS receiver
may produce a relative large error in location. The very
small instantaneous inaccuracy of the acceleration data
could lead to large positioning errors if the acceleration
is used as the exclusive raw data for positioning. That
is due to the major quadratic effect in computing the
travel distance from the acceleration: S = vt + 1

2at
2, a

being the acceleration. Even with a perfect instantaneous
acceleration, the inaccuracy resulting from applying that
value as estimation for a whole small time interval could
be detrimental.

While the purely acceleration-based schemes may suf-
fer from the quadratic effect, LOBOT involves only
linear computation among the raw data. It tends to
accumulate errors much slower than the accelerometer-
based approach. Although a single GPS reading can
have error of up to three meters in our experiments,
unlike the relative position based on accumulation, the
GPS positioning does not accumulate errors: a previous
inaccurate GPS reading would not affect the current GPS
reading. Finally, when the GPS-augmentation is applied
to the drifting outcome of the local relative positioning
component, the resulting location solution is satisfactory.

3.2 Evaluation of Local Relative Positioning

LOBOT strongly relies on the low cumulative errors of
its local relative positioning component. A major portion
of the experiments were performed to evaluate the local
relative positioning. Both the manual measurement and
the camera-assisted positioning were used to gain the
ground truth. Though most results are from experi-
ments on relatively flat planes (2D experiments), we
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also carried out 3D experiments of localizing the robot
on surfaces with a slope. LOBOT does not favor one
dimension over another. As a matter of fact, any two
dimensions from a 3D experiment can be viewed as a
2D experiment. For that reason, the major analysis is on
the 2D experiments while the 3D experiments exhibit
similar characteristics.

3.2.1 Two-Dimensional Experiments
We present the 2D trace of the robot as well as the
time series of the movement on each single dimen-
sion. The results show the relatively low cumulative
errors of LOBOT and the large deviation of the purely
accelerometer-based approach.

According to our 10 experiments with each running
20 minutes in 12m x 12m areas, the trace resulting from
LOBOT has an accuracy of within 2.5 meters compared
to manual recordings. One such experiment is shown
in Fig. 7. In Fig. 7, the (x, y) coordinates by LOBOT are
relatively close to the manual recordings. In contrast, the
accelerometer-based approach tends to suggest almost
“no-movement” on the plane and dramatic movement
on the third dimension (the altitude). As in Fig. 7, the
results from the accelerometer-based approach falsely
“suggest” that the robot moves within a small circle with
1m radius. Since the movement is on flat plane sur-
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Fig. 7. Trace comparison of a 2D experiment.

faces, LOBOT naturally verifies the limited movement
on the third dimension. The altitude from LOBOT is
within a range from -0.5m to 0.5m through 20 minutes.
One such example is presented in Fig. 8. In contrast,
the accelerometer-based approach often falsely reports a
dramatic movement on the third dimension. Again as in
Fig. 8, according to that approach, the robot is driving
down a steep slope though it never leaves the flat plane
ground. As for such results, it is reasonable to suspect
that the acceleration data on the third dimension might
have a constant large negative deviation from its true
zero value and that the deviation could have resulted
from an inaccurate gravitational constant or simply the

sensing errors. However, the acceleration data on the
third dimension seems to suggest only very small con-
stant deviation of the acceleration data might exist. The
corresponding data for the same previous experiment is
extracted and shown in Fig. 9. The figure indicates that
the acceleration data oscillates around zero. To explain
the dramatic error on the z-value of the accelerometer-
based approach, we note that this approach involves a
quadratic expression of the time and thus the time elapse
accumulates such errors very fast.
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Fig. 8. (x,z) trace comparison.
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Fig. 9. Sensing data: acceleration

In addition to the trace, the time series of the compo-
nents of the movement vector on each dimension also
confirms the satisfactory performance of LOBOT’s local
relative positioning. With the same experiment in Fig. 7,
the time series of the x is almost perfectly close to the
ground truth. The time series of y values is plotted in
Fig. 10. The y values of LOBOT exhibit a deviation of
up to 1.75m over 20 minutes. On the other hand, as
for the accelerometer-based approach, the figure displays
almost static y values.
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Fig. 10. Time series of y-value

Finally, getting the ground truth through the camera-
assisted positioning allows better examination of
LOBOT. As found in our experiments, the error of
LOBOT generally accumulates slowly; however, occa-
sionally a relative noticeable transient error occurs due
to accidents such as slippage. Despite the cumulative
errors, the trace LOBOT retrieves generally follows the
overall movement trend. As in one experiment (Fig. 11),
the robot moved for one minute, over which the local
relative positioning performs almost perfectly except
when a slippage occurred around the position (-0.07,
0.33). After the slippage, the trace curve still has a
very similar shape as the camera-retrieved ground truth,
however, with a shifting effect. When such a noticeable
error happens, after the GPS-augmentation, the results
can often be adjusted to be relatively close to the ground
truth.
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Fig. 11. LOBOT trace with cumulative errors.

3.3 Evaluation of LOBOT with GPS-Augmentation
We performed a few outdoor experiments in GPS-
available areas of up to 50m x 50m. To obtain the ground

truth, the GPS on the HTC Legend phone is turned
on and computes positions at least once every three
seconds. Since the GPS’s (longitude, latitude) data can
be locally viewed as Cartesian coordinates, we mapped
the GPS data onto a meter-based distance coordinate
through linear regression. The trace produced by LOBOT
is compared against the continuous GPS timestamped
trace. The empirical analysis shows that the LOBOT’s
local relative positioning produces an inaccuracy of up
to 18m; with one-time GPS-augmentation, the error is
well under 8m. Without the GPS-augmentation, the trace
retrieved still has a similar shape to the ground truth but
with a drift. The result of one experiment is illustrated
in Fig. 12. In Fig. 12, the thicker red line is the trace
produced by the LOBOT without the GPS-augmentation,
the small circles are the GPS trace, and the thinner green
line is the trace by LOBOT with the correction from
the last GPS-detected position. The one-time adjustment
from the GPS data largely corrects the drift. With the
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Fig. 12. Outdoor experiments with one-time GPS-
augmentation.

same experiment, we performed a two-time adjustment:
first correction based on the GPS data collected in the
middle of the experiment time; the other correction
based on the last GPS data. Interestingly, the two-time
adjustment does not seem to suggest much improvement
over the one-time adjustment, as shown in Fig. 13. The
main reason is, the GPS measurement itself is known to
have inherent inaccuracy.

4 CONCLUSIONS

We propose LOBOT, a low-cost, self-contained, accurate
localization system for small-sized ground robotic vehi-
cles. LOBOT localizes a robotic vehicle with a hybrid
approach consisting of infrequent absolute positioning
through a GPS receiver and local relative positioning
based on a 3D accelerometer, a magnetic field sensor
and several motor rotation sensors. LOBOT fuses the
information from an accelerometer, a magnetic sensor
and motor rotation sensors to infer the movement of
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Fig. 13. Outdoor experiments with two-time GPS-
augmentation.

the robot through a short time period; then the in-
ferred movement is corrected with infrequent GPS-
augmentation. The hardware devices LOBOT uses are
easily-available at low cost. LOBOT is self-contained
in that it virtually requires no external devices or ex-
ternal facility management and that it needs no prior
information. Unlike other localization schemes such as
radio-based solutions, LOBOT does not require external
reference facilities, expensive hardware, careful tuning
or strict calibration. Additionally, LOBOT applies to
both indoor and outdoor environments and realizes
satisfactory performance. We developed a prototype of
LOBOT and conducted extensive field experiments. The
empirical experiments of various temporal and spa-
tial scales with LOBOT verified its accuracy. In con-
trast to the accelerometer-based approach, LOBOT suc-
ceeds in maintaining low cumulative error. The GPS-
augmentation greatly enhances LOBOT’s resilience.
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