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Abstract—Cloud computing, arguably, has become the de facto
computing platform for the big data processing by researchers
and practitioners for the last decade, and enabled different
stakeholders to discover valuable information from large scale
data. At the same time, in the decade, we have witnessed the
fast growing deployment of billions of sensors and actuators
in multiple applications domains, such as transportation, man-
ufacturing, connected/wearable health care, smart city and so
on, stimulating the emerging of Edge Computing (a.k.a., fog
computing, cloudlet). However, data, as the core of both cloud
computing and edge computing, is still owned by each stakeholder
and rarely shared due to privacy concern and formidable cost
of data transportation, which significantly limits Internet of
Things (IoT) applications that need data input from multiple
stakeholders (e.g., video analytics collects data from cameras
owned by police department, transportation department, retailer
stores, etc.).

In this paper, we envision that in the era of IoT the demand
of distributed big data sharing and processing applications will
dramatically increase since the data producing and consuming
are pushed to the edge of the network. Data processing in
collaborative edge environment needs to fuse data owned by
multiple stakeholders, while keeping the computation within
stakeholders’ data facilities. To attack this challenge, we propose
a new computing paradigm, Firework, which is designed for
big data processing in collaborative edge environment (CEE).
Firework fuses geographically distributed data by creating virtual
shared data views that are exposed to end users via predefined
interfaces by data owners. The interfaces are provided in the form
of a set of datasets and a set of functions, where the functions are
privacy preserved and bound to the datasets. Firework targets
to share data while ensuring data privacy and integrity for
stakeholders. By pushing the data processing as close as to data
sources, Firework also aims to avoid data movement from the edge
of the network to the cloud and improve the response latency.

I. INTRODUCTION

In the big data era, the volume of data is increasing at
an unprecedented speed along with the fast development of
information technology. The data itself has attracted plenty
of attentions of stakeholders due to the underneath valuable
information the data contains. Cloud computing has been
arguably used as the de facto computing platform for the big
data processing by the researchers and practitioners for the
last decade. A key promise behind cloud computing is that
the data should be already hold in or being transmitted to the
cloud and eventually be processed in the cloud. Based on such
centralized data processing model, a number of batched [1],
[2], [3], [4], [5] and streaming [6], [7], [8], [9], [10], [11],

[12] big data processing platforms have been proposed and
they suit the cloud services well so far.

At the same time, we are entering the era of Internet of
Things (IoT). Billions of sensors and actuators are being
deployed worldwide and huge amount of data generated by
things are immersed in our daily life. According to the
estimation of Cisco [13], [14], 50 billions things will be con-
nected to the network by 2020 and generate 507.5 zettabytes
(ZB) data per year due to the increasing machine-to-machine
connections, which is 49 times greater than the projected data
center traffic (10.4 ZB) for 2019. Given that scale, current
cloud computing platform is not economic enough to process
all data in a centralized environment in terms of the network
bandwidth cost and response latency requirement. Instead,
the emerging Edge Computing (a.k.a., fog computing [15],
cloudlet [16]) referring to “the enabling technologies allowing
computation to be performed at the edge of the network, on
downstream data on behalf of cloud services and upstream
data on behalf of IoT services” [17], is more efficient to
process data at the proximity of data sources. Edge computing
decentralizes the data storage and performs data processing at
the edge of the network (e.g., micro-datacenter [18], cloudlet
[16]). To leverage the computation resource in the cloud for
IoT applications, recent industrial systems employ message
brokers [19], [20], [21], [22], [23] and streaming processing
engines to build IoT analytics, including IoT in Google [24],
AWS IoT [25], and Quarks [26]. For data processing across
geo-distributed data sources, previous studies [27], [28], [29],
[30] have extended existing platforms to optimize the network
bandwidth usage, data aggregation, query execution, and re-
sponse latency.

Although cloud computing and edge computing are adopted
in most data processing scenarios, an important or fundamental
assumption behind them is that data is owned by a single
stakeholder, where the user or owner has fully control privi-
leges of the data. As we mentioned, cloud computing requires
the data to be preloaded in data centers before a user runs its
applications in the cloud [31], while edge computing processes
data at the edge of the network but requires closely control
of the data producers and consumers. Data owned by multiple
stakeholders is rarely shared due to various reasons, such as
security concern (e.g., data across border), conflict of interest
(e.g., data from competitors), privacy issue (e.g., data of health



care), and resource limitation (e.g., extremely large and long
network distance data transportation) and etcetera.

Taking the cooperation in connected health as an example,
the health records of patients hosted by hospitals and customer
records owned by insurance companies are highly private to
the patients and customers and rarely shared. If an insurance
company has the access to its customers’ health records, this
insurance company could initiate personalized health insurance
policies for its customers based on their health records. An-
other example is “find the lost” in the city [32], where video
analytics in crowdsourcing leverages video data from multiple
stakeholders across the city. It is common that the police
department manually collects video data from surveillance
cameras on the streets, retailer shops, individual smart phones,
or car video recorders in order to identify a specific lost object,
which usually costs a lot of resources and labor hours. If all
these data could be shared seamlessly, it can save huge amount
of human work and identify an object in real-time fashion.
Furthermore, simply replicating data or running analyzing
application provided by third party on stakeholders’ data may
break the privacy and security restricts. Unfortunately, none
of the aforementioned can be easily achieved by leveraging
cloud computing or edge computing individually.

Our Vision: In this paper, we envision that in the era of IoT,
the demand of distributed data sharing and processing appli-
cations will dramatically increase because the data producing
and consuming are pushed to the edge of the network. To fa-
cilitate data sharing and processing in such collaborative edge
environment (CEE), we propose a new computing paradigm,
Firework1, that enables distributed data sharing and processing
for IoT applications while keeping the data and computation
within stakeholders’ data facilities. Firework fuses geograph-
ically distributed data by creating virtual shared data views
that are exposed to end users via predefined interfaces by data
owners. The interfaces are provided in the form of a set of
datasets and a set of functions, in which the functions are
privacy preserved and bound to the datasets. By pushing the
data processing as close as to data producers, Firework aims to
avoid data movement from the edge of the network to the cloud
and reduce the response latency. A Firework instance involves
multiple stakeholders and these stakeholders need register their
datasets and corresponding functions, which will be abstracted
as data views. The registered data views are exposed to
all participants in the same Firework instance so that any
participant can combine multiple data views into a single job to
achieve specific data analytics. A job request will be parsed
into tasks that are scheduled to corresponding participants’
data facilities for execution. More details of the Firework
framework will be discussed in Section II. Firework extends
the border of data visibility and provides a new computing
paradigm for distributed data sharing and processing in CEE,

1We name the computing paradigm as Firework is because the request sent
from the customer to the cloud, and the distribution of the many computing
tasks from the cloud to the edge are very similar to the procedure of fireworks.
Different shapes of fireworks represent the different organization of “shared”
data.

where resources from the cloud and edge can be employed by
Firework.

The reminder of this paper is organized as follows. Section
II introduces the architecture design of Firework. In Section
III, we use connected health and “find the lost” as case studies
to explore potential benefits brought by Firework. Then we
discuss the opportunities and challenges of Firework in Section
IV and finally Section V concludes this paper.

II. FIREWORK COMPUTING PARADIGM

Firework is designed for data sharing and processing among
multiple stakeholders in CEE. As a data producer, a stake-
holder can collect data from sensors, cameras, and smart
phones, or generated by the stakeholder. As a data consumer,
a stakeholder may process not only the data owned by itself
(optional) but also data from other stakeholders. A stakeholder
also has various local computation capabilities, such as clouds,
IoT gateways, and mobile devices. The data is shared through
predefined interfaces, which define the accessible datasets and
applicable functions upon the datasets. To protect data privacy
and avoid large volume data transmission, privacy preserving
functions prevent data leakage by sharing sensitive knowledge
only to intended users such that one cannot infer the raw
data from the outputs, and the size of the functions’ output
would be at least three orders of magnitude smaller than that
of the raw input dataset (e.g., the output of 1TB input data
is 1GB). In this section, we describe the preliminary design
of Firework. In details, we first introduce the terminologies
and architecture of Firework, then we describe the virtually
shared data abstraction, and lastly we compare Firework with
existing distributed data processing paradigms.

A. Terminology

We introduce the terminologies used in Firework to illustrate
its major components in this subsection.
• Distributed Shared Data (DSD): It provides a virtual

view of shared data in Firework. It is worth noting that
stakeholders might have different views of DSD.

• Firework.View: Inspired by the success of object oriented
programming, we define the dataset and bound functions
as Firework.View, which provides partial/full view of the
entire DSD. The dataset describes the data to be shared
and the functions define the applicable operations upon
the dataset.

• Firework.Node: A Firework participant/user is denoted
as a Firework.Node. As a data producer, it publishes
datasets, privacy preserving functions, and computation
resources, while as a data consumer, it subscribes datasets
from other participants. The data pub/sub is carried out
by Firework.Views, which are available for all partici-
pants/users.

• Firework.Manager: A Firework.Manager is responsible
for the management of Firework.Views and user jobs.
First, a Firework.Node registers its Firework.View to Fire-
work.Manager. Second, the Firework.Manager receives,
analyzes, and dispatches user jobs to Firework.Nodes



Fig. 1. A high level overview of Firework. Each Firework.Node could leverage
heterogeneous computing platforms and define the dataset and functions.

where the real computation is conducted. The Fire-
work.Manager also serves as a job tracker that pro-
vides job operation interfaces (e.g., creation, cancellation,
and status query). Third, the Firework.Manager retrieves
intermediate outputs from Firework.Nodes to facilitate
iterative and interactive queries.

• Firework: A Firework is an operational instance of the
Firework paradigm. A Firework instance consists of mul-
tiple Firework.Nodes and one Firework.Manager.

Figure 1 shows a high level overview of a Firework instance
consisting of five Firework.Nodes. Firework is compatible with
all kinds of computing platforms, ranging from clouds with
Apache Spark, databases and Apache Kafka to edge devices
of smart phones or IoT gateways (e.g., Intel Edison, Raspberry
Pi), which allows Firework to handle batch and stream data
processing in CEE. If all Firework.Nodes are homogeneous,
such an instance will be similar to cloud computing or edge
computing. The most important difference between cloud/edge
computing and Firework is the data ownership, which conse-
quently affects the data movement involving privacy concern
and network cost. Another difference is that the size of output
data would be much smaller than the input data. The output
data here refers to the data returned to the user. There is no
restriction for the intermediate data generated by the local
computation in a Firework.Node, since those data will not be
visible to the user. All Firework.Nodes should define the shared
datasets and privacy preserving functions and register them to
the Firework.Manager. As a major abstraction of DSD, the
Firework.View is abstracted as a ’class-like’ (i.e., the class in
C++/JAVA) object for a Firework.Node, which describes the
private data and public functions. Figure 2 shows a preliminary
abstraction for Firework.View in JSON format. The ‘Datasets’
field describes the data to be shared and the ‘Functions’ field
lists all applicable functions for corresponding dataset. This
is a conceptual design that does not involve much details of
implementation.

Fig. 2. A conceptual abstraction of Firework.View in JSON format.

B. Distributed Data Sharing

The major abstraction of the DSD is Firework.View, which
includes the dataset and functions. Based on the assumption
that data is private and no raw data transmission is allowed
between Firework.Nodes, all computation is conducted in
data owner’s local computing facilities. A virtual data set in
Firework is an aggregated view of datasets in Firework.Views.
As an example, a Firework instance can define a virtual data
set that consists of temperature data citywide, in which real
temperature data are the data shared by participants across
the city. To share the temperature data, each Firework.Node
defines its local dataset and functions, which depend on
the underlying storage system (where the data is stored,
e.g., filesystem, database) and computation framework (how
to provide the public functions to others, e.g., REST API,
Mapreduce job). The datasets and privacy preserving functions
are managed by its owner and only the metadata that a
user needed to develop applications are registered at Fire-
work.Manager. Once a new dataset and its corresponding
functions are defined and implemented, a Firework.Node can
register it as a Firework.View. A data owner can add, remove,
and update a Firework.View. A user can get all available
Firework.Views by querying the Firework.Manager and choose
which Firework.Views are involved in his/her computation. The
computation should be limited to the functions bound to the
dataset and no other operation is allowed.

A user job is represented by a sequence of operations
on Firework.Views and sent to Firework.Manager. Upon the
receiving of a user job, a job descriptor is created, where the
operation sequence is used to generate a directed acyclic graph
(DAG). A job analyzer splits the DAG into different stages



TABLE I
COMPUTING PARADIGM COMPARISON.

Computing Paradigm Grid Computing Cloud Computing Service Computing Edge Computing Firework
Objective Computing resource share SaaS/PaaS/IaaS Service share Compute at edge Virtual data share
Functionality Ownership User specified User specified Service provider defined User specified Data owner defined
Data Distribution Local Geo-distributed Local Geo-distributed Geo-distributed
Raw Data Transfer Across data centers Across data centers Across data centers Edge to data center No
Heterogeneity No Yes No Yes Yes

and tasks and a job manager dispatches the tasks to involved
Firework.Nodes based on the DAG. When a Firework.Node
receives a task, it will schedule and execute the task based on
its available computing frameworks, resources and schedule
policies. Finally, the user fuses the results retrieved from all
involved Firework.Nodes.

C. Computing Paradigm Comparison

To distinguish from other computing paradigms, we com-
pared Firework with Grid Computing, Cloud Computing,
Service Computing, and Edge Computing in five dimensions.
As illustrated in Table I, Firework distinguishes from other
paradigms in the following aspects: i), Firework provides
virtual data sharing among multiple stakeholders while others
focus on computation resource sharing; ii), Firework allows
data owners to define the functions that can be performed
on their data. The others collect data from users and define
the computation/services by the data facility owners; iii),
compared to cloud computing, Firework also reduces the data
transmission cost by applying functions that generate relatively
small size of output data; and iv), Firework pushes the com-
putation to the edge of the network, which is similar to edge
computing, but Firework can leverage the other computing
paradigms to act as local data computation facilities, while
edge computing usually leverages sensors, mobile devices,
gateways, and base stations as computing resources.

Up to this point, we have introduced the new computing
paradigm of Firework, which distinguishes the most from other
computing paradigms in terms of data sharing among multiple
stakeholders. In the following section, we will use connected
health and “find the lost” as two case studies to show the
potential capabilities of Firework.

III. CASE STUDY

In this section, we will use connected health and “find the
lost” to show how Firework facilitates the cooperation among
multiple data owners. For the connected health case, it uses
a flu outbreak to show how the participants collaborate at the
enterprise level. For the “find the lost”, it shows how Firework
leverages edge devices to find a lost object.

A. Connected Health

In the connected health case, we assume that there are
six major participants including hospital, insurance, pharmacy,
pharmaceutical, logistics, and government forming a Firework
instance, as shown in Figure 3. The connected health case

Fig. 3. An example Firework instance for connected health. Only the job
requests (J1 and J2) of pharmacy are showed.

consists of different types of data owners with distinct com-
putation facilities and each participant provides heterogeneous
datasets and functions. In the following flu outbreak scenario,
we show how Firework brings benefit to the participants..

At the beginning of a flu outbreak, many patients flow to
hospitals and the patients’ electronic medical record (EMR)
will be updated. A patient theoretically will follow the pre-
scription to get the pills from pharmacies. If the patient did not
follow the therapy, the hospital has to take the responsibility
for rehospitalization since it cannot get the proof of that the
patient did not take the pills. Now with Firework, the pharmacy
can provide the purchase record of a patient to the hospital,
which significantly facilitates the accountable heath care. At
the same time, if an increasing flu population is observed
by querying the hospitals via Firework, which is represented
by J1 and J1′ in figure 3, it will be a wise decision for
the pharmacy to provision more flu vaccines. The pharmacy
queries pharmaceutical and retrieves the locations, prices and
inventories of vaccine warehouses. The pharmacy can also
quote for transportation price from the logistics. Then the
pharmacy can make a provision plan by solving the cost
optimization problem according to the retrieved information.
In figure 3, the job J2 is split into two tasks J2′ and
J2′′, which accomplishes the transportation price query to
the logistics and the inventory query to the pharmaceutical,
respectively. After the flu outbreak, the insurance company
has to pay the treatment bills for the patients. The insurance
company can analysis the cost for flu treatment and adjust
the policy for the future. Furthermore, the insurance company
can also provide personalized health care policy based on a
patient’s EMR.

In the connected health case, most participants can benefit
from Firework in terms of reducing operational cost and



Fig. 4. An example Firework instance for “find the lost” in the city. A user
sends features of a lost object to other Firework.Nodes to find the lost object.

improving profitability. However, the hospital in this case
could be a pure contributor to health care industry since it
is the major data collector in the connected health ecosystem.

B. Find The Lost

In the era of IoT, the widespread of cameras are deployed
in either fixed locations (e.g., intersection, light pole, store)
or mobile carriers (e.g., smartphone, vehicle), which makes
video analytics an emerging technology. Cloud computing
is not time- and cost-efficient for video analytics since it
suffers long response latency and formidable cost of data
transportation. Another important concern is privacy because
video analytics requires access to data owner’s private data,
which is unacceptable to send the data to the cloud. In figure
4, we illustrate a Firework instance for finding a lost object in
the urban area. In such scenario, all Firework.Nodes provide a
video search interface. A user can spread the search request to
all connected devices and do the search in real time fashion.

When an object is reported as lost, it is very likely that this
object is captured by cameras around at either fixed locations
or mobile devices in the urban area. In cloud computing,
the video data from the camera has to be uploaded to the
cloud to locate the lost object. Even though the data owner
pay no attention to privacy, the data transmission is still
costly, which makes it extremely difficult and inefficient to
leverage the wide area video data. With Firework paradigm, a
request of searching the lost object can be created at a user’s
device, where the feature extraction could be conducted. The
feature vector then is distributed to all connected devices with
cameras and each device performs the object searching using
archived local data or real time video stream. The requester
collects results from the other devices to locate the lost object.
With Firework, the video data is no longer necessary to be
uploaded to the cloud and the latency is also significantly
reduced due to the real time video searching. In this use case,
all Firework.Nodes perform homogeneous video searching
task, which is different from the connected health case. An
extension of video analytics could be real time object tracking
which is common in public security scenarios, where the GPS

information of smart phones and vehicles can be used to track
a target.

In this section, we used two different types of applications
to show that Firework can enhance the cooperation between
data owners. However, to implement a prototype of Firework,
a lot of issues need to be addressed in legal and technical
level, and in the following section we will introduce several
key challenges and opportunities still remaining in Firework.

IV. OPPORTUNITIES AND CHALLENGES

Firework provides a novel data sharing and processing
paradigm for geographically distributed data-centric applica-
tions in CEE. Although Firework.Node can directly adopt tech-
niques of cloud computing and edge computing, several issues
involving legal and technical problems are still open to discuss,
including privacy, programmability, and extensibility, to name
a few, and we will bring forward these three challenges and
opportunities worth further research.

A. Privacy

Data privacy protection is an important issue for any data
sharing system. In Firework, we assume that data owners
define virtual shared data within a Firework instance and
no extra information can be deduced via exchanging the
computing results between any two or more users. Otherwise,
the data privacy cannot be guaranteed. One potential solution
is to provide privacy preserving functions on edge nodes to
prevent data leakage due to backward inferencing, where a
privacy preserving function allows the sensitive knowledge to
be shared by the intended persons not to everyone to access
[33]. This also puts an end to the motivation of obtaining
more knowledge via data exchange between participants in
different Firework instances. However, the privacy preserving
function suffers reduced accuracy and increased overhead
issues. Furthermore, data sharing among multiple stakeholders
requires enforcement authorities to defend the fair competition
in both business and market.

B. Programmability

In cloud computing, an application is written in one pro-
gramming language and compiled for a specific target plat-
form, since the program only runs in the cloud. However,
in Firework, computation is conducted by data owners who
most likely have heterogeneous platforms. Although the Fire-
work.View defines open datasets and functions, these inter-
faces could be defined in different ways (i.e., programmed in
different programming languages) depending on data owner’s
computation platform. For a user, it will be difficult to write an
application which leverages different interfaces written in var-
ious programming languages. This also involves the standard-
ization issue that each Firework.Node should provide standard
APIs. Firework also needs to provide APIs for users to write
applications, which can be analyzed by Firework.Manager and
deployed to Firework.Node. Moreover, the collaboration issues
(e.g., synchronization, user interaction, etc.) also have to be
addressed across multiple layers in Firework.



C. Extensibility

As aforementioned, each Firework.Node has its own com-
puting facilities. When a data owner joins a Firework instance,
a bunch of Firework.Views could be added. An application
may be reprogrammed to adapt the new interfaces provided by
the new participant. Similar things could happen when a data
owner quits a Firework instance. In a more complex case, if
one data owner joins multiple Firework instances and exposes
different sets of datasets and functions, the data privacy may
be threatened because a user in one instance can get extra
data from another user in the other instance. All these issues
require that Firework should be able to extend easily so that
the transitions could be done seamlessly.

V. CONCLUSION

In this paper, we have introduced Firework as a computing
paradigm for big data processing in CEE. Firework can lever-
age data from multiple stakeholders and various heterogeneous
computation platforms. We have also introduced the concept
of virtual data sharing among stakeholders and illustrated
that how emerging data-centric applications take advantage of
Firework via two use cases (i.e., connected health and “find the
lost”). At last, we put forward the challenges and opportunities
that are worth working on, and we hope this paper can bring
these issues to the attention of the community.
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