
Edge-Assisted Over-the-Air Software Updates
Arpan Bhattacharjee∗, Hamza Mahmood∗, Sidi Lu†, Nejib Ammar‡, Akila Ganlath‡, Weisong Shi∗

University of Delaware, DE, USA∗∗∗, William & Mary†, Toyota InfoTech Lab‡‡

{arpan,mhamza,weisong}@udel.edu, sidi@wm.edu, {nejib.ammar,akila.ganlath}@toyota.com

Abstract—The imperative transformation of future con-
nected vehicles into intelligent computing platforms necessitates
the implementation of Software-defined Vehicles (SDVs). SDVs
enable the progressive addition and upgrading of automotive
applications throughout the vehicle’s lifecycle, facilitated by
software Over-the-Air (OTA) update technology. However, the
exploration of OTA updates for automotive applications is
currently very limited. To the best of our knowledge, our work
is pioneering in implementing an edge-assisted framework for
automotive OTA updates. It meticulously considers the hetero-
geneity of vehicular software models and vehicle computing
units, varied communication distances, and diverse sizes of
vehicle clusters. We offer crucial insights based on pertinent
evaluation metrics, such as update latency, transmission band-
width, and successful rate, alongside an in-depth scalability
analysis. Our study employs three distinct sizes of fundamental
vehicle models: ResNet-18 (46.8 MB), ResNet-50 (102.5 MB),
and Faster R-CNN (175.2 MB). These models are employed to
evaluate the update performance across eight distance groups
ranging from 0 to 21 meters with a 3-meter gap. We also exploit
heterogeneous computing platforms to appraise the success
rate and execute comprehensive scalability analysis. This novel
approach significantly advances the current understanding and
implementation of OTA updates in the automotive community.

Index Terms—Software-Defined Vehicle (SDV), Edge Com-
puting, Software Over-the-Air (OTA) update, Autonomous
Vehicles and Vehicle Computing.

I. INTRODUCTION

A. Software Defined Vehicle (SDV)

SDV is an automobile with predominantly software-driven
capabilities and functionalities. It represents the ongoing
evolution of automobiles, shifting from being predominantly
hardware-oriented products to becoming electronic devices
on wheels with a strong emphasis on software integration
[1]. An extensive volume of software code has become an
integral part of modern luxury vehicles. Specific high-end
models now incorporate an astonishing 150 million lines
of code [2]. These lines are intricately woven throughout
many electronic control units (ECUs) and advanced sensors,
cameras, radar systems, light detection, and lidar devices
[3]. The convergence of three key trends—electrification,
automation, and connectivity—is revolutionizing customer
expectations, compelling manufacturers to increasingly rely
on software solutions to meet the evolving demands of the
market [3]. Consumers are increasingly drawn to software-
centric features encompassing advanced driver assistance
functionalities, cutting-edge infotainment systems, and in-
telligent connectivity solutions [4].

B. Software Over-the-Air (OTA) Updates

Software OTA updates refer to remotely updating and
upgrading software on devices, such as smartphones, IoT
devices, and more recently connected vehicles.

1) Traditional OTA Updates: Traditionally, OTA updates
provide a convenient and efficient way to deliver bug fixes,
security patches, feature enhancements, and other software
improvements to many devices without physical access
[7]. By wirelessly transmitting the updated software to the
target devices, OTA updates enable seamless and on-demand
software maintenance and ensure that devices run the latest
and most secure software versions. This mechanism is cru-
cial in enhancing software functionality, security, and user
experience while minimizing downtime and the need for
manual intervention in the update process. Table. I shows
a comparative analysis of three distinct approaches to OTA
updates in the context of Apple [5], Linux [6] and Tesla [7].

2) Automotive OTA Updates: The significance of OTA
updates has grown significantly in connected and au-
tonomous vehicles. These updates are crucial in delivering
new software features to vehicles without physical visits
to service centers. By leveraging OTA updates, vehicles
can seamlessly receive and install the latest software im-
provements, ensuring enhanced functionality and reliability
while eliminating the logistical challenges associated with
traditional maintenance procedures [8]. Furthermore, OTA
updates offer manufacturers flexibility and agility in swiftly
introducing new vehicle features and functionalities, effec-
tively addressing customer needs and market demands with
more significant efficiency [9]. These updates also enhance
performance by optimizing vehicle systems, improving fuel
efficiency, and fine-tuning autonomous driving capabilities.
In addition, they also bolster security measures by promptly
addressing vulnerabilities and safeguarding vehicles against
cyber threats while enhancing the consumer experience by
ensuring vehicles remain up to date with the latest software
features and improvements. This, in turn, elevates customer
satisfaction and extends the longevity of vehicles.

As cloud, edge, and vehicle computing technologies get
popular, they will likely play a pivotal role in enabling
efficient OTA updates from edge RSUs to vehicles. By bring-
ing computational resources closer to vehicles, cloud/edge
computing reduces latency and network congestion, en-
suring faster and more reliable updates [10]. RSUs with
edge computing infrastructure serve as local repositories
for update packages, minimizing the need for individual

TABLE I
COMPARATIVE ANALYSIS OF OTA UPDATES BETWEEN APPLE, LINUX, AND TESLA.

Criteria Apple Linux Tesla
Update

Delivery
Mechanism

Distributed through Apple Software
delivery mechanism.

Utilize package management systems
like APT or DNF to deliver updates.

Tesla vehicles receive OTA updates
remotely initiated by the company.

Scope of
Updates

Updates include new features, bug
fixes, performance improvements, and

security patches

Primarily focus on software packages
and can include bug fixes, security
patches, and new package versions

Updates encompass various components
such as firmware, Autopilot system, and

infotainment features, enabling
continuous feature enhancements and bug

fixes

Emphasis on
Security

Updates are digitally signed and
verified to prevent tampering or

unauthorized modifications

Depends on the distribution and package
sources, with maintainers ensuring the

integrity of software packages

Digitally signed by the company,
ensuring the authenticity and integrity of

the software delivered to vehicles

User
Intervention

Requires minimal user intervention,
with automatic prompts and an

intuitive installation process

Requires user intervention, such as
running package managers or approving
updates, and may involve system restarts

Initiated remotely by the company,
reducing the need for user intervention

beyond confirming installation

Industry
Impact

Significant impact on the consumer
electronics industry, providing regular

updates and improving device
performance and security

Popularized the concept of OTA updates
in the open-source community, ensuring
software packages stay up to date with

bug fixes and security patches

Revolutionized the automotive industry,
allowing vehicles to receive new features,

enhancements, and bug fixes without
requiring physical visits to service

centers

Fig. 1. OTA Updates from Edge-RSU to SDN enabled Vehicles (OBU).

vehicle connections to remote servers. This localized storage
and processing optimize bandwidth utilization. Additionally,
edge computing enables the intelligent distribution of up-
dates based on location and criticality, improving efficiency.
Furthermore, edge computing enhances OTA update security
through authentication and verification within the trusted
edge environment [11]. Overall, edge computing empowers
RSUs to efficiently deliver OTA updates, improving reliabil-
ity, bandwidth utilization, and security. Fig. 1 showcases an
edge-vehicle OTA architecture, wherein the SDN controller
delegates control plane management to local controllers or
Edge-RSUs and end vehicle nodes. In this setup, the SDN
controller base station’s role is limited to forwarding new
software updates and policies to the Edge-RSUs, rather than
sending the entire updates and instructions to the vehicles
for individual update decisions. This decentralized approach
empowers Edge-RSUs and vehicle nodes to autonomously
handle their current software updates, enabling efficient and
streamlined OTA management within the network.

3) Motivation of Adopting OTA: Our primary motivation
to adopt OTA is as follows:

• Minimization of vehicle recalls and cost savings: OTA
updates significantly reduce the need for vehicle recalls,
resulting in substantial cost reductions for automakers.

• Timely updates beyond traditional locations: OTA up-
dates allow vehicles to be updated at various locations,
such as the owner’s home or workplace, eliminating the
need to visit dealerships or maintenance garages.

• Centralized software distribution: OTA updates enable
direct distribution of software to target vehicles without
the involvement of dealers and maintenance garages.

• Faster time to market: New software can be distributed
efficiently as needed without relying on customer vehi-
cle returns or scheduled maintenance.

• Mandatory updates for improved safety: Critical up-
dates, particularly safety-related ones, can be pushed
to vehicles without waiting for customer approval.

• Proven technology from the telecommunications in-
dustry: OTA updates have been widely adopted in
the telecommunications industry, providing users with
updated software through successful OTA mechanisms.

4) Challenges of Adopting OTA: The challenges of adopt-
ing OTA updates is as follows:

• Network Connectivity and Bandwidth: OTA updates
require stable and reliable network connectivity, partic-
ularly in areas with limited internet access. Bandwidth
limitations can lead to slow or failed updates.

• Compatibility and Fragmentation: Ensuring software
compatibility across different vehicle models, hardware
configurations, and software versions is challenging.

• Security Risks: OTA updates introduce potential se-
curity vulnerabilities, as they involve transmitting and
installing software over the air. Safeguarding against
unauthorized access, tampering and ensuring data in-
tegrity during the update process is crucial.

• Data Management and Storage: Efficiently managing
and storing the data generated by OTA updates, includ-
ing update histories, is essential.

• User Acceptance and Trust: Gaining user trust and ad-
dressing concerns about privacy, security, and potential
disruptions are essential for OTA update adoption.

C. Contribution of This Work

The core contribution of this work is in implementing
software OTA updates on the physical testbed and providing
actionable insights on the trade-off between updating differ-
ent sizes of software, diverse distances, successful rates, and
transmission bandwidth. We also conduct a comprehensive
scalability analysis on a group of heterogeneous computing
units and figure out their influences on the success of the
OTA update, latency, and bandwidth. Specific contributions
are listed as follows.

• To the best of our knowledge, this is the first work to
implement an edge-assisted framework for automotive
software OTA updates. It has the potential to advance
the current understanding and implementation of soft-
ware OTA updates in the automotive community.

• We offer crucial and unique insights based on pertinent
evaluation metrics, such as update latency, transmission
bandwidth, and successful rate. Evaluate the trade-
off between these metrics with varied communication
distances (up to 21 meters) and diverse sizes of vehicle
clusters with heterogeneous computing units for the in-
depth scalability analysis.

• We also explored and discussed the state-of-the-art
research efforts and works for automotive software OTA
updates in both academia and industry.

The rest of this paper is organized as follows: Sec. II
reviews the background and related work on OTA. The
building blocks of software OTA updates are presented in
Sec. III. Extensive experimental results are shown in Sec. IV
and finally we conclude the entire paper discussion in Sec. V.

II. BACKGROUND AND RELATED WORK

A. Theoretical Exploration

The motivation behind adopting OTA updates from edge
server-based Roadside Units (RSUs) to SDN-enabled ve-
hicles (On-Board Units or OBUs) stems from several key
factors. However, we will look into the advantages and
disadvantages of the cloud and fog/edge-based OTA before
diving deep into that.

1) Cloud based OTA Updates: The software updates
are recently pushed to the network cloud/edge/fog nodes
for further dissemination to the software-defined vehicles.
Automakers deploy software updates to the cloud, where
all connected vehicles can retrieve the latest software ver-
sions. These OTA updates can occur when the vehicles are
stationary or in motion. However, certain drawbacks are
associated with downloading updates from a remote cloud
data center [1]. Due to the distance between the vehicle

and the cloud, response times for downloading time-critical
updates may need to be faster. Moreover, transmitting critical
updates through globally connected channels exposes them
to security vulnerabilities [12].

2) Edge-based OTA Updates: In contrast, edge Com-
puting brings cloud functionality closer to data generation
sources. It involves deploying edge nodes directly connected
to cyber-physical devices like sensors and actuators. These
edge nodes near the data-generating devices can process data
locally, reducing response latency. Additionally, the edge
nodes are distributed and decentralized, ensuring a more de-
pendable and resilient system without a single point of fail-
ure [13]. Regarding OTA updates, edge computing outshines
cloud computing in several aspects. The primary advantage
of edge computing is it brings computing resources near to
the vehicles, enabling faster and more efficient delivery of
updates. By processing updates locally at the edge, edge
computing reduces latency, ensuring timely updates even in
time-critical scenarios [14]. Additionally, edge computing
optimizes bandwidth usage by distributing updates locally,
minimizing network congestion. It enhances reliability by
allowing updates to be processed even in intermittent or
unreliable network connectivity [15].

B. The Gap in Previous Work

OTA update technology plays an essential role in the
entire lifecycle of SDVs, spanning design, development,
manufacturing, and continuous usage over the vehicle’s lifes-
pan. Compared to conventional wired updates, the benefits
of OTA updates for automotive software are outlined in
[16], along with a high-level architecture for these updates.
However, this research needs more specific information
regarding the wireless medium, essential security mecha-
nisms, and other technical aspects. A study conducted by
multiple authors in [9], [17] has predominantly concentrated
on remote software updates for vehicles and related secu-
rity considerations. However, these studies would greatly
benefit from exploring scenarios involving local updates
performed within service centers and integrating advanced
update mechanisms such as parallel updates [18].

Idrees et al. [17] presented a system that facilitates OTA
updates by utilizing a Hardware Security Module (HSM)
for tasks such as data encryption, key management, and
ensuring data integrity across the wireless interface and all
Electronic Control Units (ECUs) in the vehicle. However,
it is essential to note that this implementation necessitates
the installation of an HSM on each ECU, leading to a
considerable escalation in costs associated with the system.
Therefore, careful consideration should be given to the cost
implications before implementing this approach. Nilsson et
al. [19] propose a system where automotive OTA updates
are facilitated by connecting the vehicle to a server via
an internet link. The authors highlight key security aspects
concerning data integrity and confidentiality in OTA updates
but do not describe the wireless network being used within
the network. In [20], a linear programming software update

scheme is proposed. The objective is to minimize handovers
when pushing OTA updates from fog nodes. In this work,
the fog node directly engaged all the vehicles available in its
communication range. Thus, this could overburden the fog
nodes and impact the performance of other delay-sensitive
applications deployed at the fog.

III. PROPOSED FRAMEWORK AND METHODOLOGY

A. Framework Description

We propose a two-phase system model for OTA update
dissemination in the SDV network. Let E = e1, ..., en
represent a set of n Edge-RSU units, and V = v1, ..., vi
represent a set of i vehicles, where n < i. In the first phase,
vehicles in the lower tier, which require periodic updates to
their application software, are involved. In the second phase,
strategically positioned Edge-RSU units broadcast software
updates to nearby vehicles based on their demands. Each
vehicle has OBUs and storage capabilities, allowing it to
install updates and relay them to neighboring vehicles. The
timely dissemination of newer versions of software is critical
to ensure software security and stability and delivering a
positive user experience across the vehicular network.

1) Network Model: The SDN network operates within
a routable networking environment. This network configu-
ration enables wireless connectivity among mobile nodes,
forming a self-configured and self-healing network without
a fixed infrastructure. As the network topology undergoes
frequent changes, the mobile nodes have the freedom to
move randomly. Each node functions as a router, responsible
for forwarding traffic to other designated nodes within the
network. In this context, we assume that the spectrum
assigned to vehicles is orthogonal, ensuring no collisions
between the connected nodes and edge units.

2) Adversarial Model: The adversary model consid-
ers the system’s Edge-RSU units (E) and vehicles (V).
The adversary, represented by functions AdvE(S,AE) and
AdvV (S,AV), can monitor and manipulate software up-
dates. The Edge-RSU adversary AdvE(S,AE) aims to com-
promise the updates’ integrity, security, or functionality. In
contrast, the vehicle adversary AdvV (S,AV) aims to evade
or bypass the security measures implemented by the Edge-
RSU units. They may intercept, modify, or distribute unau-
thorized updates, threatening the system’s security. Coun-
termeasures, represented by the function C(S,AE , AV),
can mitigate these risks by integrating cryptographic mech-
anisms, secure protocols, verification techniques, and in-
trusion detection systems. In this adversarial setting, the
objective functions OE(S,AE) and OV (S,AV) capture the
adversaries’ goals, seeking to maximize their advantage.

B. Quantitative Requirements of Automotive OTA Updates

1) Parameters: Cv is the computational capacity of ve-
hicle V. Sv is the storage capacity and Rv represents
communication range of vehicle V. Uf represents the size of
update file f. Additionally network topology and connectivity
information as well as security requirements are required.

2) Variables:
• Routing decisions: This defines the paths for update dis-

semination from Edge-RSU units to vehicles. Let Xve
be a binary variable indicating if vehicle V receives an
update from E (1 if true, 0 otherwise).

• Scheduling decisions: Scheduling helps to determine
the timing and order of updates for each vehicle. Let
Tv the time at which vehicle V receives the update.

• Resource allocation: Assigns available bandwidth B
and storage capacity S to vehicles for receiving and
processing updates. Let, Bv the bandwidth allocated to
vehicle V for receiving updates and Svu be the storage
space allocated to V for storing updates.

• Security measures: Specify the cryptographic algo-
rithms, authentication protocols, and integrity verifica-
tion techniques used during the update process.

3) Constraints:
• Bandwidth limitations: We have to ensure that the sum

of the updated file sizes transmitted to vehicles does not
exceed the available bandwidth. Bandwidth limitation is
shown here as:

∑
U−f

∗C−ve ≤ B−v for all vehicles
v where U−f is the file size, C−v is the capacity and
B−v is bandwidth.

• Communication Range: Vehicles must be within the
communication range of an Edge-RSU unit to receive
updates. X−ve ≤ R−v for all vehicles V and Edge-
RSU E and X−ve be a binary variable indicating if V
receives an update from E.

• Computational and storage capacities: Updates must fit
within the computational and storage capacities of the
vehicles.

∑
U−f * X−v e ≤ C−v for all vehicles V

and
∑

U−f * Xve ≤ S−vu for all vehicles V.
• Security constraints: Apply authentication and autho-

rization during initial connection set up between the
Edge E and vehicle V to prevent unauthorized updates.

• Real-Time Constraints: Time-sensitive updates must be
delivered within specified deadlines. T−v ≤ deadline
for time-sensitive updates.

• Energy consumption: Limit the energy consumption of
vehicles during the update process.

4) Objective Function:
• Minimize the overall update time, which includes up-

date dissemination and installation time across all V.
• Minimize

∑
(T−v− t−e) for all vehicles v, where t−e

is the time at which the update is available at E.

C. Proposed OTA Update Mechanism

The OTA update mechanism facilitates the distribution of
software updates from Edge-RSU to vehicles in a wireless
network. In this scenario, the updates are packaged as
Docker images, which provide a lightweight and portable
containerization format. When the edge-RSU in our OTA
framework receives an update request, it is divided into
multiple modules for parallel processing and reliable com-
putation. The vehicle in our framework shown in Fig.

Fig. 2. Edge-RSU-Vehicle based Software Update Workflow

Fig. 3. Software Update Dissemmination using a Publish Subscriber
Paradigm.

2 is equipped with separate lightweight components (as
containers) for OTA update exposure and reception, ensuring
isolation and controlled sharing. Upon receiving the update
request, the edge node directs it to the relevant workflow
components (as containers) for processing. This includes
aggregating sensor data from multiple vehicles or traffic
infrastructure, ensuring data consistency, and applying fusion
algorithms to combine the data effectively. The fused data is
then passed to an object detection module, which identifies
the locations and types of objects based on the nature of the
data and the current load on the edge node. Furthermore, the
generation and consumption of updates between vehicles and
edge nodes are decoupled using a publish-subscribe subsys-
tem shown in Fig. 3. This subsystem employs a broker that
maintains a list of topics, allowing vehicles to publish their
sensor data through the broker. By leveraging this subsystem,
edge nodes can efficiently handle multiple workflows by
retrieving the necessary data from the appropriate containers,
reducing the overall workload. Both vehicles and edge nodes
subscribe to specific topics managed by the broker. When a
new update is received, the broker notifies the subscribers
using notification method tailored to the characteristics of
the update. The broker can be distributed across multiple
edge nodes for improved scalability and reliability.

1) Prepare the Update Server: Create an update server
as a centralized repository for hosting the latest software
updates. This server ensures the secure and reliable storage
and distribution of updates to the connected systems. The
updates are packaged as Docker images, encompassing the
essential components and configurations required for the

updated software. The server setup process includes con-
figuring the network settings and deploying the server.

2) Update Trigger Mechanism: The update trigger mech-
anism enables the OTA update server to initiate software
updates on vehicles in a wireless network. Let V be the set
of vehicles in the network, U be the set of software updates
available on the OTA update server, and t be the update
trigger function that sends a notification to the vehicles for
initiating the update process. The update trigger mechanism
can be represented as t: U → V . This function t maps each
software update u ∈ U to the set of V that need to receive
the update. When a new update u is available on the update
server, the update trigger function t is invoked to send a
notification to the vehicles in V , indicating that an update
is available and should be retrieved and installed.

3) Update Broadcasting and Deployment: The update
broadcasting and deployment mechanism involves the Edge-
RSU units broadcasting software updates to nearby (V).
These (E) units act as the distribution points for the updates
and are responsible for delivering the updates to nearby
vehicles (V). Each Edge-RSU unit e in E performs the
broadcasting function B(e, v), where v is a specific vehi-
cle in V , ensuring that the updates reach their intended
recipients. Additionally, the deployment function DF (e, V)
captures the process of an E deploying updates to a set of V.
By utilizing this mechanism, the E units efficiently broadcast
and deploy OTA updates, enabling connected vehicles to
receive and install the latest software updates.

4) Rollback and Recovery Mechanism: Implement a
mechanism for rollback and recovery in case of update
failures or system instability after updates. This mechanism
should allow for reverting to the previous software version
and recovering from potential issues introduced by the
updates. The rollback and recovery mechanism involves
monitoring the OTA update process and detecting failures
using the failure detection function F (t). When a failure is
detected (F(t) = true), the rollback function R(t) is invoked
to revert the software to the previous version U−previous.

5) Logging and Monitoring: Logging and monitoring
mechanism is crucial in overseeing the OTA update process.
It systematically records events and actions in a log file,
denoted by L. The log file captures essential information
about the software update process, including the sequence
of events and any notable actions taken. With each new event
E, the log file is updated using the logging function L(t) =
L(t − 1) ∪ E(t), where E(t) represents the event occurring
at time t. This ensures a comprehensive record of the OTA
update process, facilitating analysis and troubleshooting if
any issues arise. In addition to logging, the OTA system
incorporates a monitoring function, denoted by M, which
continuously evaluates the progress and performance of the
update process. The monitoring function, represented by
M(t) = f(L(t)), leverages the log file at time t to provide
insights and assessments. By analyzing the recorded infor-
mation, the monitoring function identifies potential issues,
tracks the update’s progress, and enables timely intervention

Fig. 4. Two categories of hardware. Subfigure (a)-(b) shows the Intel
Fognodes, and Apple Macbooks, respectively.

if necessary. This proactive approach ensures that the OTA
update process remains robust, reliable, and capable of
detecting anomalies for a swift resolution.

D. Hardware Setup

Our OTA framework utilizes three types of hardware,
namely Intel Fognode, Apple Macbook Air M1 and Mac-
Book M2 Pro, as depicted in Fig. 4. The Edge-RSU is
equipped with an Intel Fognode, which offers programmabil-
ity and configuration options for diverse use cases, ensuring
consistent throughput for different workloads [21]. The Mac-
Book workstation, equipped with high-quality components
including 8 & 32 core GPU and 16 &32 GB memory de-
livers cluster-level performance for demanding applications.
Further details about these devices are provided in Table. II.

TABLE II
CONFIGURATION INFORMATION OF TWO HARDWARE DEVICES.

Intel Fognode Macbook Air Macbook Pro
CPU Intel Xeon E3-1275 v5 M1 M2 Max
GPU NONE 8 Core 32 Core

Frequency 3.6 GHz 3.2 GHz 3.6 GHz
Memory 32 GB 16 GB 32 GB

OS Ubuntu 16.04.6 LTS MacOS Ventura 13.6 MacOS Ventura

E. Model Description

We conducted our OTA experiment using three machine
learning models: Faster R-CNN, ResNet-18, and ResNet-50.
Following is their description:

1) Faster R-CNN: Faster R-CNN is a two-stage object
detection model that consists of a Region Proposal Network
(RPN) and a Fast R-CNN network. The RPN generates
potential object proposals by sliding a small network over
the convolutional feature map, predicting regions likely to
contain objects [22]. These proposals are fed into the Fast
R-CNN network, which performs classification and bound-
ing box regression. The model uses shared convolutional
features to extract features from the entire image, enabling
efficient computation.

2) ResNet-18: ResNet-18 [23] is a deep convolutional
neural network architecture comprising 18 layers, includ-
ing convolutional pooling, and fully connected layers. It
introduces the concept of residual connections, allowing
the network to learn residual mappings instead of directly
learning the desired output. This helps alleviate the van-
ishing gradient problem and enables the training of very

deep networks. ResNet-18 uses residual blocks with two
convolutional layers and shortcut connections that skip one
or more layers, allowing information to bypass the layers
and propagate through the network more effectively [24].

3) ResNet-50: Similar to ResNet-18, ResNet-50 [25] is
also a deep convolutional neural network architecture com-
prising 50 layers, including convolutional, pooling, and fully
connected layers. It is an extension of the ResNet-18 model
with more layers and increased complexity. Like ResNet-18,
ResNet-50 also incorporates residual connections to address
the vanishing gradient problem and facilitate the training of
deeper networks.

F. Container-based OTA Update

Container-based OTA software updates can be a potential
solution for facilitating software updates in the automotive
industry. Containers are built from layered images rep-
resenting specific data, software, hardware, and network
configuration parameters [26]. Each container image consists
of multiple layers, encompassing all necessary software
libraries, binaries, and configuration settings. In this paper
to remove the latency constraints we adopt Delta file based
OTA update where instead of updating the whole software
binary files we are updating the delta files.

1) Delta file based OTA Update: Delta file flashing
involves comparing the base file with the new version file
to generate a smaller delta file, significantly reducing the
update size [27]. This method offers faster transmission,
saving up to 90% of the transmission time compared to
complete binary updates. It requires less storage and utilizes
a patching algorithm to overwrite old and new data.

IV. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS

A. Experimental Setup

1) Intel Fognode as Edge-RSU: The Intel Fognode is
a central component of the experimental setup, function-
ing as the Edge-RSU responsible for hosting the software
updates. It provides the necessary computational resources
and creates a Wi-Fi hotspot for vehicle connectivity. For our
experiment we used a 100Mbps WiFi connection.

2) Device Connection and Logging: A logging mecha-
nism is implemented to track device connections and dis-
connections to the RSU’s Wi-Fi hotspot. Whenever a device
connects or disconnects, the log records the corresponding
MAC address of the device. The entire log output is stored
in a designated log file for analysis.

3) MAC Address Extraction: A script is employed to
monitor changes in the log file size. Upon detecting a
change, the script retrieves the last line of the log file,
which typically corresponds to the connection status of a
new device. This line contains the device’s MAC address.

4) IP Address Retrieval: With the MAC address obtained,
the experimental setup employs the “arp” (address resolution
protocol) command to determine the associated IP address
of the connected device. This information is crucial for
subsequent communication and software update delivery.

0

400

800

1200

1600

2000

2400

2800

3200

1 51 101 151 201 251 301 351 401T
ra

n
s
m

is
s
io

n
 B

a
n
d
w

id
th

 (
K

B
/S

)

Transmission Time (Second)

OTA Update ResNet-18

0 meters

3 meters

6 meters

9 meters

12 meters

15 meters

18 meters

21 meters

0

400

800

1200

1600

2000

2400

2800

3200

1 51 101 151 201 251 301 351 401T
ra

n
s
m

is
s
io

n
 B

a
n
d
w

id
th

 (
K

B
/S

)

Transmission Time (Second)

OTA Update ResNet-50

0 meters

3 meters

6 meters

9 meters

12 meters

15 meters

18 meters

21 meters

0

400

800

1200

1600

2000

2400

2800

3200

1 51 101 151 201 251 301 351 401T
ra

n
s
m

is
s
io

n
 B

a
n
d
w

id
th

 (
K

B
/S

)

Transmission Time (Second)

OTA Update Faster R-CNN

0 meters

3 meters

6 meters

9 meters

12 meters

15 meters

18 meters

21 meters

Fig. 5. Transmission bandwidth of OTA update for ResNet-18, ResNet-50, and Faster R-CNN.

Fig. 6. The change curves of successful rate (%) when update ResNet-18.

5) Device Readiness Verification: A ping test ensures the
connected device is ready to receive the software update. The
setup verifies the device’s responsiveness by pinging, and a
successful ping response confirms the device’s operational
state and readiness for the update.

6) Software Update Files: The software update package
consists of several components, including a Dockerfile for
building a new Docker image, a Python script for executing
a new model, the model weights, and a Bash script to initiate
the Docker build and run the updated image. For file transfer
between the Edge-RSU (Intel Fognode) and connected vehi-
cle (Macbook), the “nc” (netcat) command is utilized. Here,
“nc ”operates as a versatile networking utility, functioning
as both a client and a server for bidirectional communication
over the network. In this setup, “nc” operates in server
mode (nc-l) and listens on a specific port (port 1234).
When a device connects to the Wi-Fi hotspot hosted by the
Intel Fognode, the “nc” command establishes a connection,
allowing the Edge-RSU (Intel Fognode) to transmit the
software update files to the connected vehicle (Macbook).

Fig. 7. OTA update latency of ResNet-18, ResNet-50, and Faster R-CNN
under different distances from 0 to 21 meters.

The received data is processed through a pipeline of orders,
starting with compression using the “gzip” command to
reduce file size for efficient transmission. The compressed
data is then extracted using the “tar” command to restore
the original files from the compressed archive.

7) Definition of OTA Update Failure: Given the com-
plexity of OTA updates, a universally accepted definition of
OTA update failure does not exist. Various factors, such as
power outages, faulty batteries, connectivity loss, and user
interference, can contribute to the failure of OTA updates
and are commonly recognized as frequent causes of failures
[28]. During our development of the OTA mechanism, it
became apparent that these failures can hinder the success-
ful reception, installation, or execution of updated vehicle
software, resulting in potential functional inconsistencies,
malfunctions, or even system instability. In our study, we
consider an OTA update to fail when network connectivity
issues arise due to bandwidth limitations. The vehicular
network operates in a dynamic environment where vehicles
constantly move. As the distance increases between the
Edge-RSU station and the target vehicles, when triggers the
updates, the time required for deploying updates significantly
extends. This could potentially lead to update failures. Fur-
thermore, simultaneously executing multiple OTA updates
on different vehicles increases the risk of failures.

8) Definition of OTA Update Latency: OTA update la-
tency refers to the time it takes to complete an update
process. It is influenced by factors such as the size of the
update package and the distance between the source (Edge-
RSU) and the target (vehicle). Generally, the OTA update la-
tency increases as the model size or distance increases. This
latency is an important metric to consider when assessing
the efficiency and effectiveness of OTA update mechanisms,
as longer latencies may lead to extended periods of potential
system operational disruptions.

B. Experiment Groups
The experimental procedure involved conducting a series

of software OTA update experiments from the Edge-RSU
(Intel Fognode) to a vehicle (MacBook) at varying distances.
Distances of 0, 3, 6, 9, 12, 15, 18, and 21 meters were
selected to examine the impact of distance on the OTA
update process. We also used three distinct sizes of funda-
mental vehicle models, Faster R-CNN (175.2 MB), ResNet-

18 (46.8 MB), and ResNet-50 (102.5 MB), to assess the
update performance across the eight distances. Throughout
each experiment, the bandwidth was logged on the vehicle’s
log file, and the time taken for the update.

1) Correlation among OTA Update Time, Model Size,
Distance and Transmission Bandwidth: To understand the
correlation between OTA update time vs. the update model
size and the varying distances between Edge-RSU and
vehicles, we set the placement of Edge-RSU and the vehicle
at different distances varying from 0, 3, 6, 9, 12, 15, 18, and
21 meters are analyzed, and their impact on the transmission
bandwidth speed during OTA update is shown in Fig. 5.

The experiment confirms that the OTA update time in-
creases as the distance between the Edge-RSU and the
vehicle increases. The influence of model size on the up-
date time was also observed, with larger models, such as
Faster R-CNN, requiring more time than smaller models,
like ResNet-18, to update. For example, at a distance of
21 meters, ResNet-18 took approximately 140 seconds to
complete the update, while Faster R-CNN took around 410
seconds, almost four times longer. Similarly, ResNet-50, a
larger model than ResNet-18 but smaller than Faster R-
CNN, took approximately 350 seconds to complete the
update at the same distance. Besides we also monitored the
bandwidth throughout the experiment to identify variations
or fluctuations during the OTA update. The analysis revealed
correlations between distance, model size, update time, and
bandwidth speed. Fig. 5 demonstrates that at lower distances,
such as 0 or 3 meters, all three models exhibited higher
transmission bandwidth, with ResNet-18 and Faster R-CNN
peaking at around 2800 KB/s and ResNet-50 at 1600 KB/s.
In contrast, at higher distances (12, 15, 18, and 21 meters),
the transmission bandwidth remained consistent between
400 and 800 KB/s.

Successful Rate Exploration: As shown in Fig. 6, during
our OTA update experiment, we set threshold times (60s,
90s, and 120s) to determine update success or failure. If
the update process exceeded the threshold time, it was
classified as a failure. We used the ResNet-18 model for this
experiment, as shown in Fig. 6, and at the 60s threshold,
we observed failures at 9m and 18m distances, indicating
the process needed longer to complete the update. The
successful rate increased as the threshold increased to the
90s and 120s. However, successful rates are varied. For
example, it is around 10% at 18m and 50% at 21m for
the 90s, while for the 120s threshold, it is 50% at 18m.
These failures were attributed to network connectivity and
software compatibility issues. Addressing these challenges
is crucial for ensuring successful OTA updates. To be
short, this experiment provided valuable insights into the
impact of distance and model size on OTA update time. As
distance and size increase, OTA update takes longer, and the
transmission bandwidth speed gets slower.

2) Correlation between OTA Update Latency Vs. Model
Size and Distance: We also investigated the OTA update

Fig. 8. Network setup time.

latency in relation to varying model sizes and distances, as
depicted in Fig. 7. The analysis revealed a clear correlation
between update latency vs. model size, and distance. As
the model size and distance increased, the latency also
increased. For example, as shown in the Fig. 7, the latency
for completing the OTA update of ResNet-18 increased from
31 seconds at 0 meters to approximately 101 seconds at 21
meters. Additionally, the latency increased significantly with
larger model sizes. At a distance of 9 meters, the latency for
ResNet-18 was 47 seconds, while for ResNet-50, it was 149
seconds, and for Faster R-CNN, it was around 266 seconds.
These findings support the intuition that larger model sizes
and longer distances result in longer OTA update latencies.

3) Network Setup Time: Network setup time refers to the
duration required to establish a network connection between
the update server and the target vehicle while initiating
an OTA update. It involves configuring network param-
eters, establishing communication channels, and verifying
connectivity. The setup time can vary based on network
infrastructure, signal strength, and configuration complexity.
Our experiment measured the network setup time while
updating ResNet-18 across different distances (0m to 21m)
as shown in Fig. 8. We conducted ten runs at each distance
and observed a consistent network setup time of around 10
seconds, with a maximum of approximately 15 seconds at
a distance of 6m. A shorter network setup time ensures a
quicker start to the update process and facilitates efficient
communication between the update server and the vehicle.

4) OTA Update based on Heterogeneous Computing
Units: We analyzed the downlink bandwidth, which mea-
sures the data transfer speed from the Intel Fognode acting
as the Edge-RSU to the Macbooks serving as vehicles. Three
groups were formed with varying configurations, as depicted

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29 33 37 41 45 49 53

B
an

dw
id

th
 (

K
B

/S
)

Time (Second)

Downlink Bandwidth from Intel Fognode

Group 1 (RSU: One Intel Fognode; vehicle: one Macbook Air)

Group 2 (RSU: One Intel Fognode; vehicles: two Macbook Airs)

Group 3 (RSU: One Intel Fognode; vehicles: two Macbook Airs and one MacBook Pro)

Fig. 9. Three group’s downlink bandwidth from RSU.

0

500

1000

1500

2000

2500

3000

1 20 39

B
a
n
d

w
id

th
 (

K
B

/S
)

Time (Second)

Group 3

Outgoing traffic from Intel Fognode

Incoming traffic to Macbook Air 1

Incoming traffic to Macbook Air 2

Incoming traffic to Macbook Pro

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29

B
a
n
d

w
id

th
 (

K
B

/S
)

Time (Second)

Group 1

Outgoing traffic from Intel Fognode

Incoming traffic to Macbook Air

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51

B
a
n
d

w
id

th
 (

K
B

/S
)

Time (Second)

Group 2

Outgoing traffic from Intel Fognode

Incoming traffic to Macbook Air 1

Incoming traffic to Macbook Air 2

Fig. 10. Outgoing and incoming traffic for ResNet-18 OTA update.

in Fig. 9: Group 1 consisted of one Intel Fognode and one
Macbook Air, Group 2 had one Intel Fognode and two
Macbook Air, and Group 3 had one Intel Fognode, two
Macbook Air, and one Macbook Pro. The OTA update for
Group 1 was completed in 32 seconds, while for Group
2, Macbook Air 1 took 49 seconds, and Macbook Air 2
took 47 seconds. However, Group 3 exhibited a different
trend, with the OTA update completing in 29 seconds for
Macbook Air 1, and 27 seconds for Macbook Air 2, but
failing to complete on the Macbook Pro around 9 seconds
into the update. The peak bandwidth speed observed in all
three groups was approximately 2800 KB/S, with the lowest
observed speed being around 0 KB/S. This experiment
provided valuable insights into the impact of factors such as
vehicle performance and the number of vehicles on downlink
bandwidth performance.

To comprehensively evaluate the importance of OTA up-
dates across heterogeneous computing units, we conducted
experiments involving the same three groups of varying
computing units using the same ResNet-18 model. The OTA
update was initiated again from the Edge Fognode, and
the distribution of bandwidth traffic among the connected
vehicles was observed, as depicted in Fig.10. In Group
1, where a single vehicle (Macbook Air 1) received the
update, both the incoming bandwidth on the vehicle and
the outgoing bandwidth from the Intel Fognode followed
the same pattern. The peak outgoing bandwidth speed and
incoming bandwidth traffic were measured at approximately
2800 KB/S, and the update was completed in around 32
seconds. However, group 2, where we used two vehicles
with identical computing units, showed that both vehicles’
incoming bandwidth traffic equally shares the bandwidth
traffic 1300 KB/S but vehicle 1 experienced a sudden surge
in bandwidth towards the end (2800 KB/S), resulting in
an earlier update completion time of around 41 seconds
compared to the other vehicle, which took approximately
50 seconds. In Group 3, an additional vehicle (Macbook
Pro) was included in the experiment. Due to its superior
hardware performance, the transfer of files was completed
in a significantly shorter time of 20 seconds with a peak
bandwidth speed of around 2700 KB/S. Although all three
experimental groups finished the updates, vehicle one and
vehicle two took longer to complete their respective updates
than vehicle three.

The experiment demonstrated that vehicles with better
hardware performance can receive a larger share of the net-
work traffic. While the resources were shared equally among
the two Macbook Airs in the experiment, the Macbook
Pro obtained a more significant portion of the bandwidth
due to its superior capabilities. These findings highlight the
significance of considering the heterogeneity of computing
units in OTA updates and its potential impact on network
traffic distribution.

C. Observations and Insights

We presented OTA update for three models at varying
distances to observe the impact of distance on OTA update
time and how it also impacts the bandwidth traffic. Some
interesting observations are listed, including supporting ev-
idence and reasons to explain the observed trends and
practical implications for researchers and domain experts.

Observation 1: During the analysis of the collected data,
it was observed that the bandwidth experienced an irreg-
ular pattern in relation to the distance. Typically, as the
distance increased, the bandwidth decreased, indicating
a decrease in data transmission speed. However, there
were certain cases where this pattern did not hold, and
deviations were observed.
Observation 2: An additional phenomenon contradicted
the anticipated pattern of decreasing bandwidth with
increasing distance. In certain instances, it was observed
that the bandwidth exhibited unexpected behavior. Specif-
ically, the bandwidth was lower at shorter distances,
while it appeared to be faster at longer distances. This
anomaly introduced complexity to the relationship be-
tween distance and bandwidth during the software update
process, deviating from the conventional understanding
that greater distance corresponds to reduced bandwidth.
Observation 3: The bandwidth measurements occasion-
ally exhibited substantial fluctuations, with intermittent
instances where the bandwidth dropped to zero during
the update process. These occurrences were classified
as failed updates, suggesting the presence of potential
obstacles or interruptions in the wireless connection.
Observation 4: OTA updates using delta files offer sig-
nificant advantages over complete binary updates. By
only transmitting the differences between the old and new
versions, delta updates have smaller file sizes, resulting in

faster transmission times and reduced bandwidth usage.
In our experiment, we observed a substantial improve-
ment in update efficiency. While updating the binary file
of Yolo [29] model took approximately 2 hours and 30
seconds, the three model we used for updating using
only delta file was completed around 7 minutes. This
highlights the efficiency and effectiveness of delta updates
in OTA deployments.

The existence of diverse patterns and intermittent bandwidth
irregularities impacts the software OTA update process.
Various elements, including environmental conditions, signal
interference, and other variables, may contribute to the
observed variations and deviations from the anticipated
distance-based pattern.

V. CONCLUDING REMARKS

In conclusion, our study addresses the imperative need
for SDVs and implmement software OTA updates in the
automotive industry. We have made significant contribu-
tions to the field by pioneering the implementation of an
edge-assisted framework for automotive OTA updates. By
carefully considering factors such as vehicular software
models, vehicle computing units, communication distances,
and vehicle cluster sizes, we have provided valuable insights
and evaluation metrics for OTA updates. It may significantly
contribute to the future development and implementation of
SDVs and OTA updates in the automotive industry.

REFERENCES

[1] A. Mahmood, W. E. Zhang, and Q. Z. Sheng, “Software-defined
heterogeneous vehicular networking: The architectural design and
open challenges,” Future Internet, vol. 11, no. 3, p. 70, 2019.

[2] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence
applications in the development of autonomous vehicles: A survey,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 315–329,
2020.

[3] S. R. Pokhrel, “Software defined internet of vehicles for automation
and orchestration,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 6, pp. 3890–3899, 2021.

[4] C. Jiacheng, Z. Haibo, Z. Ning, Y. Peng, G. Lin, and S. X. Sherman,
“Software defined internet of vehicles: architecture, challenges and
solutions,” Journal of communications and information networks,
vol. 1, no. 1, pp. 14–26, 2016.

[5] P. Nikbakht Bideh and C. Gehrmann, “Rosym: Robust symmetric key
based iot software upgrade over-the-air,” in Proceedings of the 4th
Workshop on CPS & IoT Security and Privacy, 2022, pp. 35–46.

[6] E. Cebel, N. Donum, and H. Karacali, “Platform independent em-
bedded linux ota method,” The European Journal of Research and
Development, vol. 2, no. 4, pp. 243–252, 2022.

[7] B. Shen, “Competitive strategies for ota services: Adapting the
strategic clock for tesla,” Highlights in Business, Economics and
Management, vol. 11, pp. 26–32, 2023.

[8] S. Halder, A. Ghosal, and M. Conti, “Secure over-the-air software
updates in connected vehicles: A survey,” Computer Networks, vol.
178, p. 107343, 2020.

[9] M. Khurram, H. Kumar, A. Chandak, V. Sarwade, N. Arora, and
T. Quach, “Enhancing connected car adoption: Security and over the
air update framework,” in 2016 IEEE 3rd World Forum on Internet
of Things (WF-IoT). IEEE, 2016, pp. 194–198.

[10] C. Sun, R. Xing, Y. Wu, G. Zhou, F. Zheng, and D. Hu, “Design
of over-the-air firmware update and management for iot device
with cloud-based restful web services,” in 2021 China Automation
Congress (CAC). IEEE, 2021, pp. 5081–5085.

[11] S. Al Blooshi and K. Han, “A study on employing uptane for
secure software update ota in drone environments,” in 2022 IEEE
International Conference on Omni-layer Intelligent Systems (COINS).
IEEE, 2022, pp. 1–6.

[12] A. Ghosal, S. Halder, and M. Conti, “Stride: Scalable and secure
over-the-air software update scheme for autonomous vehicles,” in ICC
2020-2020 IEEE International Conference on Communications (ICC).
IEEE, 2020, pp. 1–6.

[13] O. Rana, K. Fizza, L. Bittencourt, and N. Auluck, “Pashe: privacy
aware scheduling in a heterogeneous fog environment,” 2019.

[14] A. W. Malik, A. U. Rahman, A. Ahmad, and M. M. D. Santos,
“Over-the-air software-defined vehicle updates using federated fog en-
vironment,” IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 5078–5089, 2022.

[15] M. Al Maruf, A. Singh, A. Azim, and N. Auluck, “Faster fog
computing based over-the-air vehicular updates: A transfer learning
approach,” IEEE Transactions on Services Computing, 2021.

[16] R. v. Stokar, “Updating car ecus over-the-air (fota), 2013.”
[17] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann,

and O. Henniger, “Secure automotive on-board protocols: A case
of over-the-air firmware updates,” in Communication Technologies
for Vehicles: Third International Workshop, Nets4Cars/Nets4Trains
2011, Oberpfaffenhofen, Germany, March 23-24, 2011. Proceedings
3. Springer, 2011, pp. 224–238.

[18] I. Hossain and S. M. Mahmud, “Analysis of a secure software upload
technique in advanced vehicles using wireless links,” in 2007 IEEE
Intelligent Transportation Systems Conference. IEEE, 2007, pp.
1010–1015.

[19] D. K. Nilsson, P. H. Phung, and U. E. Larson, “Vehicle ecu classifica-
tion based on safety-security characteristics,” in IET Road Transport
Information and Control-RTIC 2008 and ITS United Kingdom Mem-
bers’ Conference. IET, 2008, pp. 1–7.

[20] K. Fizza, N. Auluck, A. Azim, M. A. Maruf, and A. Singh, “Faster
OTA updates in smart vehicles using fog computing,” in Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, 2019, pp. 59–64.

[21] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are {FPGAs} suitable
for edge computing?” in USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[22] M. Maity, S. Banerjee, and S. S. Chaudhuri, “Faster r-cnn and yolo
based vehicle detection: A survey,” in 2021 5th international con-
ference on computing methodologies and communication (ICCMC).
IEEE, 2021, pp. 1442–1447.

[23] X. Ou, P. Yan, Y. Zhang, B. Tu, G. Zhang, J. Wu, and W. Li, “Moving
object detection method via resnet-18 with encoder–decoder structure
in complex scenes,” IEEE Access, vol. 7, pp. 108 152–108 160, 2019.

[24] Q. A. Al-Haija, M. A. Smadi, and S. Zein-Sabatto, “Multi-class
weather classification using resnet-18 cnn for autonomous iot and
cps applications,” in 2020 International Conference on Computational
Science and Computational Intelligence (CSCI). IEEE, 2020, pp.
1586–1591.

[25] B. Koonce and B. Koonce, “Resnet 50,” Convolutional Neural Net-
works with Swift for Tensorflow: Image Recognition and Dataset
Categorization, pp. 63–72, 2021.

[26] Y. Wang and Q. Bao, “Adapting a container infrastructure for au-
tonomous vehicle development,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2020, pp.
0182–0187.

[27] M. Steger, C. A. Boano, T. Niedermayr, M. Karner, J. Hillebrand,
K. Roemer, and W. Rom, “An efficient and secure automotive wire-
less software update framework,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 5, pp. 2181–2193, 2017.

[28] P. Dakić and M. Źivković, “An overview of the challenges for
developing software within the field of autonomous vehicles,” in 7th
Conference on the Engineering of Computer Based Systems, 2021,
pp. 1–10.

[29] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

