
Quantifying the Isolation Characteristics in Container
Environments

Chang Zhao1, Yusen Wu1, Zujie Ren1, Weisong Shi2, Yongjian Ren1, and Jian Wan3

1 Hangzhou Dianzi University, China
chaos_zhch@163.com, yusen.wu08@gmail.com, renzj@hdu.edu.cn,

yongjian.ren@infocore.cn
2 Wayne State University, USA

weisong@wayne.edu
3 Zhejiang University of Science and Technology, China

wanjian@zust.edu.cn

Abstract. In recent years, container technologies have attracted intensive atten-
tion due to the features of light-weight and easy-portability. The performance iso-
lation between containers is becoming a significant challenge, especially in terms
of network throughput and disk I/O. Compared with virtual machines (VMs),
containers suffer from a worse isolation as they share not only physical resources
but also OS kernels. A couple of solutions have been proposed to enhance the
performance isolation between containers. However, there is a lack of study on
how to quantify the performance isolation between containers.
In traditional VM environments, the performance isolation is often calculated
based on performance loss ratio. In container environments, the performance loss
of well-behaved containers may be incurred not only by misbehaving containers
but also by container orchestration and management. Therefore, the measurement
models that only take performance loss into consideration will be not accurate
enough. In this paper, we proposed a novel performance isolation measurement
model that combines the performance loss and resource shrinkage of containers.
We conducted a group of performance evaluation experiments based on an open-
source container project Docker. Experimental results validate the effectiveness
of our proposed model. Our results highlight the performance isolation between
containers is different with the issue in VM environments.

Key words: containers, performance isolation, isolation measurement models

1 Introduction

Containers enable new ways to run applications by containerizing applications and ser-
vices, making them portable, extensible, and easy to be transferred between private data
centers and public clouds. Comparing with traditional virtual machines (VMs), contain-
ers have several advantages in terms of simplicity, lower-overhead, and light-weight.
Docker, a user friendly open source application with high flexibility and efficiency, has
been widely applied in the cloud industry and providing a compelling set of Platform-
as-a-Service (PaaS) services, such as the Amazon, Alibaba, and so on.



2 Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian Wan

However, containers suffer from a poor performance isolation as they share both
OS kernels and physical servers. The misbehaving containers could easily overwhelm
resource and interfere with the performance of the well-behaved containers. Therefore,
the research on isolation improvement is becoming a hot topic in the field of container
technologies [1] [2]. However, there is still a lack of study on how to quantify perfor-
mance isolation, which is a preliminary step for isolation optimization.

A straightforward method to apply the performance isolation model for VMs is us-
ing the metric of performance loss ratio [3]. This kind of measurement models is based
on an implicit assumption that the resource capacity of each VM remains constant.
The pre-interfered performance and post-interfered performance statistics are collected
from an identical VM without resource shrinkage. While in container environments,
the life cycle and resources of containers are controlled by the container orchestrations.
Therefore, the performance isolation measurement model in VM environments, is in-
applicable for container environments.

In this paper, we proposed a comprehensive performance isolation measurement
model that combines the performance loss and resource shrinkage of containers. The
advantage of this model is that if the resource occupied by each container varies, the
model can express the resource change, as well as the performance change. We conduct-
ed a group of performance evaluation experiments based on an open-source container
project Docker. Experimental results validate the effectiveness of our proposed model.
Our results highlight the performance isolation between containers is different with the
issue in VM environments.

The rest of this paper is organized as follows. Section 2 gives a brief introduction
about docker containers and isolation model. In Section 3, we describe the isolation
model for containers. The validation experimental setups and results are presented in
Section 4. Section 6 concludes this work and points out some future works.

2 Related Work

2.1 Containers technologies

In the mainstream cloud platforms, there are two different ways of virtualization: vir-
tual machines and containers. Typical examples of virtual machines include KVM [4]
and Xen [5]. Container is a new technology of operating system and application vir-
tualization. It is widely used by cloud providers with the launch of Docker Project [6]
and LXC [7]. A container is a lightweight, stand-alone, executable package of a piece
of application. Containerized applications will always run the same, regardless of the
environment, thereby promoting the portability of applications.

Containers running on an identical server share that the operating system kernel
and server physical resources, and each container run as an isolated process in user
space. Compared with VMs, containers start much quicker, and consume less CPU and
memory spaces. Containers are an abstraction at the application layer that packages
code and dependencies together.

Currently popular container technologies include Docker, OpenVZ [8], Linux-VServer
[2] and so on [9]. Several cloud providers implemented container-as-a-service products



Quantifying the Isolation Characteristics in Container Environments 3

based on Dockers, and used Kubernetes [10] for container orchestration [11]. Con-
tainer orchestration is the automated arrangement, coordination, and management of
containers in their clusters. It controls different aspects of container life-cycles, such as
placement and initial deployment, scaling and replication, and so on.

2.2 Isolation in virtualized environments

Performance isolation is one of the desirable features in virtualized environments. Well
isolation contributes to guarantee enough resources for each tenant which is co-hosted
with other tenants on an identical server [12] [13]. The resources include CPU cycles,
memory space, and network bandwidth. To achieve a good isolation, a misbehaving
tenant should be controlled to consume excessive resource and interfere other tenants.

In the field of traditional VMs, many research effort has been conducted to improve
the performance isolation between VMs. Gupta et al. [14] developed a XEN-based
monitoring system called XenMon. XenMon is designed to monitor CPU utilizations
of each VM, and dynamically schedule the resource allocation of CPU shares to en-
hance isolation. Some solutions, such as Seawall[15] and SPIN[16], were proposed for
enhancing the performance isolation in cloud data centers. Liu et al. [17] proposed an
isolation measure model for VMs using multiple linear regression. This model com-
bines the multiple performance indicators including resources utilization and number
of VMs to calculate the isolation degree.

Eiras et al. [18] analyzed the performance of two open source virtualization solu-
tions, KVM and Docker. The research results showed that the processing time for HTTP
requests in Docker is lower than the ones of KVM. Morabito et al. [19] conducted a
performance comparison of VMs and containers, to explore the strengths, weaknesses,
and anomalies introduced by these different platforms in terms of processing, storage,
memory, and network.

Shi et al. [20] proposed that in a distributed system the shared resource could be
managed with different synchronization mechanisms such as a lock or token ring. How-
ever, in a smart EdgeOS, this performance isoltion might be more complicated. To solve
this challenge, a well designed control access mechanism should be added to the service
management layer in the EdgeOS.

In the field of container technologies, some researchers propose to improve the iso-
lation by optimizing the schedule of jobs. For example, Xavier et al. [21] analyzed the
performance interference suffered by disk-intensive workloads within noisy-perturbed
containers. The authors in [21] proposed workload consolidation methods to reduce the
performance interference between containers. Tang et al. [22] proposed a unified testing
framework EIS to analyze on Docker, Lmctfy [23], ZeroVM [24] and as well as KVM.
The authors in [22] compared these containers systems and conducted experiments to
evaluate the virtualization technique alternatives for PaaS in clouds. Most studies fo-
cus on the impact of different load types on Docker isolation, or the degree of isola-
tion of containers under some certain scenarios, high-performance computing [25, 26],
workload-intensive environments and Hadoop framework [27]. Techniques and meth-
ods of performance isolation evaluation in container virtualization environment are not
mature yet.



4 Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian Wan

We noticed a few research works on performance isolation measured designed for
traditional virtual machines [28]. These works often use the performance loss ratio to
measure the isolation, which works on the assumption that the resource capacity of
each virtualized machine is static. While for containers, the resource capacity for each
container fluctuates. The resource is equally shared by containers. Therefore, the cause
for performance losses for a container may not only due to the interference by the
overloaded container, but also the decrease of resources. Therefore, the existing models
for VMs are inapplicable in container environments.

In this work, we focus on how to measure and optimize the performance isolation of
containers. We proposed a comprehensive performance isolation measurement model
that combines the performance loss and resource shrinkage of containers. The advan-
tage of this model is that if the resource occupied by each container varies, the model
can express the resource changes, as well as the performance changes.

3 Performance Isolation Model

In this section, we will describe the measurement model for isolation characteristics
between containers. Prior to the description of our proposed model, we would like to
revisit the traditional isolation measurement model and clarify the motivation of this
work.

3.1 Revisit the traditional isolation model

Traditional virtualized performance isolation models use the performance loss ratio
[3][22][29], which is calculated as the formula 1. In the formula 1, Pi and Pj repre-
sent the pre-interfered performance and post-interfered performance of a specific VM
being observed respectively. The resources of each VM resources are kept constant,
so the performance loss is mainly caused by the performance isolation between VMs.
While for containers, the resource capacity for each container fluctuates continuously.
When a group of containers are running, their resources will be changed due to contain-
er orchestration and management.

I =
|Pi − Pj |

Pi
(1)

In container environments, the performance loss of containers may be caused by the
resources shrinkage. Therefore, we think that only using performance loss ratio as a
metric of the isolation for containers is inapplicable for container environments. The
performance isolation of the containers should take both performance loss and resource
shrinkage into account.

Let us take an example. Suppose there are two servers with same capacity, S1 and
S2. Both of them host two containers, S1 hosts container A1 and B1, and S2 hosts
containers A2 and B2. The configurations of all the four containers are same. Both B1

and B2 are misbehaving containers. Suppose A1 and A2 suffer same performance loss
ratio, such as twenty percent. Meanwhile, the resource consumed by A1 decreases a
considerable portion, and A2 does not. The isolation of S1 should be better than the one
of the S2, because A1 consume less resources to achieve a specific performance.



Quantifying the Isolation Characteristics in Container Environments 5

3.2 A model combining performance loss and resource shrinkage

Our proposed model is designed to combine performance loss and resource shrinkage
to measure the performance isolation between containers. As shown in the following
model 2, the performance isolation is associated with Ploss and Rshrinkage. Ploss repre-
sents the performance loss degree of the containers, Rshrinkage represents the resource
shrinkage degree of the containers, and the larger value of Ploss and Rshrinkage means
the slower drop of the corresponding metrics. Through this model 2, we can normalize
the performance isolation degree to the range of [0, 1].

As shown in the model 2, given the same degree of resource shrinkage, if the perfor-
mance loss is becoming large, the performance isolation is worse. But when the perfor-
mance loss is the same, if the resource shrinkage is larger, the performance isolation is
better. This is because when the performance degradation is same, the resources shrink-
age is larger, indicating that the container resources fall more, the fewer resources are
consumed. That means the containers can achieve the same performance while using
fewer resources, which means the flexibility of containers resources is better.

I = f(Ploss, Rshrinkage) =
(1 + β2) ∗ Ploss ∗ (1−Rshrinkage)

β2Ploss + (1−Rshrinkage)
(2)

The β in the formula 2 represents the scale factor used to adjust the weight of perfor-
mance loss degree and resource shrinkage degree. A large β means that the performance
loss is emphasized, while a small β means the resource elasticness is emphasized. When
the β is ∞, it means that performance isolation is determined entirely by the degree of
performance loss. And if the β is 0, performance isolation is determined entirely by the
degree of resources shrinkage. By default, we can set β equal to 1.

The model 2 shows that the performance isolation of the containers is not only
related to the degree of the performance loss of the containers, but also to the degree of
resource shrinkage of the containers. For Ploss and Rshrinkage in the model, we will
use the formula 3 to calculate.

3.3 Quantifying performance loss

The performance of the containers is sensitive to the increased workload of other con-
tainers. Thus the container system composes primarily of two types of containers, af-
fected containers and overloaded containers. If a container’s workload is abnormally
increasing and affecting the performance of other containers, we call this container an
overloaded container.

Performance loss ratio does not take into account the curve progression. This im-
plies that the performance is straight down and the parabola drops to the same value,
resulting in the same result. But obviously when the performance is declining like the
parabola, the performance isolation of the container system is better.

So in calculating Ploss in the model 2, we use the following method. Then we ex-
plain the isolation calculation method by Figure 1, the x-axis represents the performance
of the overloaded containers, and the y-axis represents the performance of the affected
containers.



6 Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian Wan

In a well-isolated container system, the performance increasing of the overloaded
containers does not affect the performance of other containers, as the green line shown
in Figure 1. In a no isolation container system, as the performance of the overloaded
containers increasing, the performance of the affected containers will drop linearly as
the red line shown. And performance increasing of the overloaded containers is the
same as the performance loss of the affected containers.Therefore, the slope of the red
line in Figure 1 should be -1, and the values of Pa init and Pb end should be the same.

0
0

Performance of overloaded containers

P
er

fo
rm

an
ce

 o
f a

ffe
ct

ed
 c

on
ta

in
er

s

perfect isolation
no isolation
real system

P
a_init

P
b_end

Fig. 1. Isolation curve including perfect isolation, no isolation and real system isolation.

However, in an actual container system, the performance of the affected containers
is often not straight down, but as the blue dotted line in Figure 1, it shows a downward
trend in the curve. Thus we found that the blue dotted line closer to the green line and
the shadow area is larger, the performance loss degree is better, the blue dotted line
closer to the red line and the shadow area is smaller, the performance loss degree is
worse.We use the function Pa = f(Pb) to represent the blue curve, then we define the
calculation formula of the Ploss as the formula 3.

I =

∫ Pb end

0
f(Pb)dPb − Pb end ∗ Pa init/2

Pb end ∗ Pa init/2
(3)

The resource shrinkage degree between the containers is similar to the performance loss
degree, it is also affected by the overloaded containers. For the model 2, we can also
use the formula refequ:fomula to calculate Rloss.

Due to the isolation of the containers is very weak, and the containers are sensitive
to mutual influence, the containers’ resources and performance change more frequently.
This situation leads to instability in the experimental data, when calculating the Ploss

and Rshrinkage. Since the calculated curve is not smooth, it fluctuates. So before we



Quantifying the Isolation Characteristics in Container Environments 7

calculate the results, we need to fit the measured experimental data to obtain a smooth
curve. The abnormal value in the data should be processed to make the calculation result
more accurate.

In this paper, we use the cubic spline interpolation method as a curve fit to obtain
a smoothing curve to calculate Ploss and Rshrinkage. Spline interpolation is a kind
of interpolation method commonly used and obtained a smooth curve. And the cubic
spline interpolation is one of the most commonly used ones. Through the cubic spline
interpolation, we can fit a smooth curve with the limited points to approximate the trend
of the metrics.

4 Validation of the Model

In this section, we will describe the experiments to validate the measurement model.
And we will experiment and evaluate the performance isolation from the workload of
the affected containers and the total number of containers.

4.1 Experiment Setups

The performance of the experimental record is the common metric TPS (the number of
transactions per second) in the database performance test, and we use CPU occupancy
rate as a resource metric. The database is selected as MySQL 5.1, and the workload is
generated by Sysbench.

Sysbench is a modular, cross-platform, multi-threaded benchmarking tool that is
used to evaluate the database workload under a variety of system parameters and to
evaluate database performance by random reading and writing to the database [30].

The operating system in the experiment is Centos7, and Docker version is 1.12.6.
Docker is configured without any quotas on the use of the resources, that means a
container can use as many resources are available.

4.2 Methodologies

The containers for each experiment consist of two parts, the affected containers and
the overloaded containers, and the number of containers in both parts is equal. The
performance and resource of the two kinds of containers take the average separately.

In the experiment, the affected containers run a stable database workload task, and
the database workload task of the overloaded containers is gradually increased, and the
performance metric and resource metric are recorded respectively.

For the obtained multiple sets of data, we fit the data to derive the curve by using the
cubic spline interpolation method, and calculate the Ploss and Rshrinkage by the formu-
la 3, finally we use the isolation measure formula 2 to calculate the final performance
isolation.



8 Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian Wan

4.3 Validation of Isolation Changes

In theory, when the total number of containers is different, the degree of impact between
containers is also unlike. When the number of containers is small, the influence is small
between the containers, then the performance isolation is good. And when the num-
ber of containers increased, the competition between the container increased, and the
containers interact with each other frequently, so the performance isolation is relatively
poor.In order to measure the effect of the number of containers on system performance
isolation, we conducted the following experiments.

We will perform 4 groups of experiments respectively in the same system, and the
total number of containers was different between these experiments.We calculate the
performance isolation, when the total number of containers is 2, 4, 8, and 16 respec-
tively.For each case, we conducted eight experiments. Figure 2 shows the results of the
case 1 when the total number of containers is 8.

0 5 10 15 20

5

10

15

20

CPU utilization of overloaded containers

C
P

U
 u

til
iz

a
tio

n
 o

f 
a

ff
e

ct
e

d
 c

o
n

ta
in

e
rs

0 2 4 6 8 10 12 14

0

5

10

15

TPS of overloaded containers(transaction/s)
T

P
S

 o
f 

a
ff

e
ct

e
d

 c
o

n
ta

in
e

rs
(t

ra
n

sa
ct

io
n

/s
)

Fig. 2. Isolation curve of resource and perfor-
mance with 8 containers in case1.

1 2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Test case index

P
e

rf
o

rm
a

n
ce

 is
o

la
tio

n 2 containers
4 containers
8 containers
16 containers

Fig. 3. Performance isolation with differen-
t number of containers.

As Figure 2 shows, when the total number of containers is 8, the container CPU re-
sources and TPS performance decline curve.We can see from the figures, with the work-
load of the overloaded containers increasing, the affected containers decline sharply at
the beginning, then gradually slow down. Using the curves in Figure 2, we can calculate
Ploss and Rshrinkage when the total number of containers is 8. And then through the
isolation model to calculate the performance isolation. Similarly, the results of the other
three groups of experiments are computed by this way.

Experimental results are shown in Figure 3, we can find that when the total number
of containers is the same, performance isolation of the container system is relatively
stable. While the total number of containers is different, the performance isolation of the
system showed a big difference. And performance isolation of the containers decreases
with the increase of the number of containers. The experimental results are in agreement
with our suppose and verify the accuracy and validity of the performance isolation
measure model.



Quantifying the Isolation Characteristics in Container Environments 9

4.4 Model Comparison

There are two types of containers in the container system, affected containers and over-
loaded containers. And the workload of the affected containers will have an impact on
the performance isolation in a certain degree. When the workload on the affected con-
tainers is low, the overloaded containers can easily grab the resources from the affected
containers and have a significant impact on the affected containers. In this case, the
affected degree of the containers becomes larger and the performance isolation is poor.
And if the workload of affected containers is high, then the overloaded containers are
not easy to interfere with the affected containers. This time the performance isolation
is relatively good. The purpose of these experiments is to measure the impact of the
affected container workload on performance isolation.

The experiment controls the workload of the containers by controlling the num-
ber of threads of Sysbench. When the number of threads increases, the workload on
the containers increases. The number of threads in the experiment was 4, 6, 8 and 10,
respectively. The number of affected containers and overloaded containers for each ex-
periment is 4.

In order to compare with the traditional isolation model of the performance loss
ratio, we will use the performance loss ratio and our measurement model to calculate
the performance isolation, and then the experimental results were compared. In each
case, eight experiments were performed and 64 sets of data were recorded.

Experimental results are shown in Figure 4. Model1 represents our model, and mod-
el2 represents the traditional performance loss ratio. Mode1-4 means the result of 4
threads in our model. The top four lines are the result of the decline of traditional per-
formance loss ratio, and the bottom four lines are the result of our model. As we can
see from Figure 4, when the affected containers workload is different, the difference of
the performance loss ratio is small, so it can not effectively measure the changes of the
performance isolation. And our model presents a large difference, the difference of the
performance isolation corresponding to the different workload is more obvious.

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Test case index

P
er

fo
rm

an
ce

 is
ol

at
io

n

model1−4
model1−6
model1−8
model1−10

model2−4
model2−6
model2−8
model2−10

Fig. 4. Performance isolation with differen-
t workload of affected containers.

4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of threads

P
er

fo
rm

an
ce

 is
ol

at
io

n model1
model2

Fig. 5. Performance isolation with differen-
t workload of affected containers in case 6.



10 Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian Wan

We will take out the eight sets of data of the case 6 in Figure 4, and drawn into
Figure 5. So Figure 5 shows the results of the performance loss ratio and our metric
model in the first experiment. From Figure 5, we found that both methods show an
upward trend in performance isolation, but the results of the performance loss ratio are
less obvious, and our model clearly shows that the performance isolation increases as
the workload increases in the affected containers.

We validate our model through experiments and compare it with the model of per-
formance loss ratio. The experimental results show that in some cases, the result of our
model is more likely to reflect the performance isolation trend of the containers than
the performance loss ratio in container system. The result shows that in the container
environment, only considering the performance loss is not an accurate measurement of
performance isolation, and we need to join the measurement of resources.

5 Discussion

5.1 Performance isolation vs. resource elasticity

Resource elasticity is the feature of dynamic, flexible and frequent resizing of resources
that are provided to an application by the virtualized platform. High elasticity can be
considered as a key benefit of the container-based virtualization. We should notice that
resource elasticity and performance isolation may have conflicts when the server is
overloaded because of one misbehaving container. In other words, there is a tradeoff
between performance isolation and resource elasticity. Therefore, when a method for
optimizing the isolation is designed, it is quite necessary to guarantee an appropriate
elasticity. That is why we combine the resource changes into the measurement model
proposed in this work.

5.2 Resource management optimization

A simple way to optimize the performance isolation is to implement an effective re-
source management for containers. The central problem for resource management is
allocating resources to support the varying demand for these containers. One approach
is to maintain a pool of idle resource capacity that is allocated to containers as they suf-
fer overload. The problem of dynamic resource resources is to do it in time according
to the variant of workload. Using the model proposed in this work, system designer-
s can evaluate not only performance isolation, but also the effectiveness of resource
management.

5.3 Workload-aware container orchestration

Container orchestration is container scheduling, cluster management, and provisioning
of more hosts in containers environment. To achieve effective orchestration and reduce
the performance interference between containers, the first step is to characterize work-
load within containers. Their workloads may belong to one of the categories, including
CPU-intensive, IO-intensive and so on. For each container, its workload can be mod-
eled as a vector of resource usage. The workload model of containers will be used to
guide container consolidation and mitigate the performance interference.



Quantifying the Isolation Characteristics in Container Environments 11

6 Conclusions

In this paper, we proposed a performance isolation model for container-based virtual-
ization systems. The performance isolation model combines the performance loss ratio
and resource shrinkage. We implemented a continuous dynamic model to calculate the
changes of resources and performance, to improve the accuracy and effectiveness of the
results. Finally, we conducted a group of experiments to validate our proposed model.

7 Acknowledgement

This research is supported by the National Natural Science Foundation of China (No.61572163).
Weisong Shi is in part supported by National Science Foundation (NSF) grant CNS-
1563728.

References

1. Ma, S., Jiang, J., Li, B., Li, B.: Maximizing container-based network isolation in parallel
computing clusters. In: Network Protocols (ICNP), 2016 IEEE 24th International Conference
on, IEEE (2016) 1–10

2. Xavier, M.G., Neves, M.V., De Rose, C.A.F.: A performance comparison of container-based
virtualization systems for mapreduce clusters. In: Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on, IEEE (2014) 299–306

3. Huber, N., von Quast, M., Hauck, M., Kounev, S.: Evaluating and modeling virtualization
performance overhead for cloud environments. In: CLOSER. (2011) 563–573

4. Zhang, B., Wang, X., Lai, R., Yang, L., Wang, Z., Luo, Y., Li, X.: Evaluating and optimizing
i/o virtualization in kernel-based virtual machine (kvm). In: IFIP International Conference
on Network and Parallel Computing, Springer (2010) 220–231

5. Masood, A., Sharif, M., Yasmin, M., Raza, M.: Virtualization tools and techniques: Survey.
Nepal Journal of Science and Technology 15(2) (2015) 141–150

6. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Com-
puting 1(3) (2014) 81–84

7. Linux Container-LXC: (2017)
8. Babu, A., Hareesh, M., Martin, J.P., Cherian, S., Sastri, Y.: System performance evaluation

of para virtualization, container virtualization, and full virtualization using xen, openvz, and
xenserver. In: Advances in Computing and Communications (ICACC), 2014 Fourth Interna-
tional Conference on, IEEE (2014) 247–250

9. Kozhirbayev, Z., Sinnott, R.O.: A performance comparison of container-based technologies
for the cloud. Future Generation Computer Systems 68 (2017) 175–182

10. Medel, V., Rana, O., Arronategui, U., et al.: Modelling performance & resource management
in kubernetes. In: Proceedings of the 9th International Conference on Utility and Cloud
Computing, ACM (2016) 257–262

11. Netto, H.V., Lung, L.C., Correia, M., Luiz, A.F., de Souza, L.M.S.: State machine replication
in containers managed by kubernetes. Journal of Systems Architecture 73 (2017) 53–59

12. Krebs, R.: Performance Isolation in Multi-Tenant Applications. PhD thesis, Karlsruhe Insti-
tute of Technology (2015)

13. Krebs, R., Momm, C., Kounev, S.: Metrics and techniques for quantifying performance
isolation in cloud environments. Science of Computer Programming 90 (2014) 116–134



12 Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian Wan

14. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance isolation across
virtual machines in xen. In: ACM/IFIP/USENIX International Conference on Distributed
Systems Platforms and Open Distributed Processing, Springer (2006) 342–362

15. Shieh, A., Kandula, S., Greenberg, A.G., Kim, C.: Seawall: Performance isolation for cloud
datacenter networks. In: HotCloud. (2010)

16. Li, X.H., Liu, T.C., Li, Y., Chen, Y.: Spin: Service performance isolation infrastructure in
multi-tenancy environment. In: International Conference on Service-Oriented Computing,
Springer (2008) 649–663

17. Liu, W., Feng, G.: Study of quantifying performance isolation of virtualization system.
Computer Engineering & Applications (2015)

18. Eiras, R.S., Couto, R.S., Rubinstein, M.G.: Performance evaluation of a virtualized http
proxy in kvm and docker. In: Network of the Future (NOF), 2016 7th International Confer-
ence on the, IEEE (2016) 1–5

19. Morabito, R., Kjällman, J., Komu, M.: Hypervisors vs. lightweight virtualization: a perfor-
mance comparison. In: Cloud Engineering (IC2E), 2015 IEEE International Conference on,
IEEE (2015) 386–393

20. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges. IEEE
Internet of Things Journal 3(5) (2016) 637–646

21. Xavier, M.G., De Oliveira, I.C., Rossi, F.D., Dos Passos, R.D., Matteussi, K.J., De Rose,
C.A.: A performance isolation analysis of disk-intensive workloads on container-based
clouds. In: Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro
International Conference on, IEEE (2015) 253–260

22. Tang, X., Zhang, Z., Wang, M., Wang, Y., Feng, Q., Han, J.: Performance evaluation of
light-weighted virtualization for paas in clouds. In: International Conference on Algorithms
and Architectures for Parallel Processing, Springer (2014) 415–428

23. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs containerization to support paas. In:
Cloud Engineering (IC2E), 2014 IEEE International Conference on, IEEE (2014) 610–614

24. Rad, P., Lindberg, V., Prevost, J., Zhang, W., Jamshidi, M.: Zerovm: secure distributed pro-
cessing for big data analytics. In: World Automation Congress (WAC), 2014, IEEE (2014)
1–6

25. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.: Performance
evaluation of container-based virtualization for high performance computing environments.
In: Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro Inter-
national Conference on, IEEE (2013) 233–240

26. Chung, M.T., Quang-Hung, N., Nguyen, M.T., Thoai, N.: Using docker in high performance
computing applications. In: Communications and Electronics (ICCE), 2016 IEEE Sixth
International Conference on, IEEE (2016) 52–57

27. Rizki, R., Rakhmatsyah, A., Nugroho, M.A.: Performance analysis of container-based
hadoop cluster: Openvz and lxc. In: Information and Communication Technology (ICoICT),
2016 4th International Conference on, IEEE (2016) 1–4

28. Walraven, S., Monheim, T., Truyen, E., Joosen, W.: Towards performance isolation in multi-
tenant saas applications. In: Proceedings of the 7th Workshop on Middleware for Next Gen-
eration Internet Computing, ACM (2012) 6

29. Matthews, J.N., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D., Hamilton, G., M-
cCabe, M., Owens, J.: Quantifying the performance isolation properties of virtualization
systems. In: Proceedings of the 2007 workshop on Experimental computer science, ACM
(2007) 6

30. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of
virtual machines and linux containers. In: Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, IEEE (2015) 171–172


