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Abstract— Indoor autonomous driving testbeds have emerged
to complement expensive outdoor testbeds and virtual simula-
tions, offering scalable and cost-effective solutions for research
in navigation, traffic optimization, and swarm intelligence.
However, they often lack the robust sensing and computing
infrastructure for advanced research. Addressing these limita-
tions, we introduce the Indoor Connected Autonomous Testbed
(ICAT), a platform that not only tackles the unique challenges of
indoor autonomous driving but also innovates vehicle comput-
ing and V2X communication. Moreover, ICAT leverages digital
twins through CARLA and SUMO simulations, facilitating both
centralized and decentralized autonomy deployments.

I. INTRODUCTION

The emergence of autonomous driving technologies has
necessitated the development of specialized testbeds for their
validation and improvement. Prominent outdoor autonomous
driving testbeds like Mcity [1] at the University of Michigan,
the edge computing testbed for autonomous driving at the
University of Leeds [2], Singapore’s Smart Mobility Testbed
[3], and an autonomous shuttle testbed [4] built upon Taltech
smart mobility city in Estonia, have been instrumental in
facilitating this progress. These environments replicate real-
world traffic scenarios, offering invaluable data and insights.

However, outdoor testbeds encounter several practical
challenges that limit their efficacy and accessibility [5]. One
of the most significant hurdles is the difficulty in creating
realistic multi-agent traffic systems in a safe and controlled
manner. Simulating dense, interactive traffic scenarios in
outdoor settings poses substantial safety risks, making it
challenging to test and refine autonomous systems under
varied conditions. Additionally, the economic burden of
establishing and maintaining such extensive outdoor infras-
tructure is substantial, often beyond the reach of smaller
institutions and research entities.

Thanks to the more developed simulation technology,
simulators like SUMO [6], CARLA [7], and LGSVL [8]
generate high-fidelity autonomous driving testing scenarios
for the community while circumventing the financial costs
of building an outdoor testbed. The gap between real-world
autonomous driving and simulation, however, still exists
because of the inability of the simulation to run hardware-
in-loop vehicle computing and V2X analysis. Besides the
pure simulations, to tackle the efficiency dilemma in both
financial and time costs of a real-world testbed, several
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indoor autonomous driving testbeds have been developed
[9], [5], [10], [11], [12]. These testbeds are ingeniously
downscaled to fit limited indoor spaces, simulating real-
world scenarios. Utilizing motion-capturing systems, they
provide centralized localization information directly from
the scenario, bypassing decentralized sensor data processing.
This streamlined approach significantly benefits research
areas like path-trajectory planning, traffic optimization, and
swarm intelligence. However, these testbeds are somewhat
limited in their sensing and computing capabilities due to
the absence of robust sensors and computing power, which
leads to inefficiency in simulating real-world decentralized
commuting-intensive autonomous driving tasks.

We introduce ICAT, an Indoor Connected and Au-
tonomous Testbed (ICAT) in response to these limitations.
ICAT stands apart by not only focusing on the unique
challenges of indoor autonomous driving but also pioneering
in vehicle computing and V2X communication. With digital
twins, specifically leveraging the capabilities of CARLA
and SUMO simulations, ICAT enables both centralized and
decentralized autonomy deployments in simulated and real-
world testbeds.

The merits of ICAT can be summarized into two-
manifolds. (i) Connectivity and Vehicle Computing: Com-
pared to other indoor autonomous driving testbeds, ICAT
is emphasized on its V2X capability, which supports inter-
vehicle, vehicle-infrastructure, and vehicle-server communi-
cations. While the on-board computing devices could serve
as the resources for handling data from vehicles, infrastruc-
ture, and other information systems. (ii) Digital Twin and
Multi-agent Simulation: The previous studies although built
up a real-world multi-agent traffic or swarm system, faster
developing process is prohibited without the full endorsement
of a digital twin system. ICAT is not only integrated with
CARLA, and SUMO interfaces but also a tailored pure
Python multi-agent simulation environment, which releases
the full potential in algorithm testing and iterating of au-
tonomous driving tasks.

The rest of the paper is arranged as follows. The mo-
tivation and challenge of building ICAT are explained in
Section II, related works are introduced and compared in
Section III, and methods and technologies leveraged for
designing ICAT are explained in Section IV. Two concrete
case studies are conducted in Section V for validating the
ICAT system. The design and implementation experience is
then discussed in Section VI, and conclusions are drawn in
Section VII.



Fig. 1. Panoptic view of ICAT platform in real world. ICAT is 6 by 5 meters in size, and 10 intelligent robots are used in ICAT now for autonomous
driving studies. Traffic lights and signs are now integrated seamlessly with ICAT and enable interactions with traffic agents

II. MOTIVATION AND CHALLENGE

To better circumvent the unaffordable costs of building the
outdoor autonomous driving testbed, and create more oppor-
tunities for the increasing interest in autonomy technologies,
an indoor substitute would be an alternative to achieve the
beginning stage of developing autonomous algorithms and
modular structures. Moreover, thanks to the fast iteration
of high-fidelity simulation platforms, developers could test
their design in simulations conveniently. Although some
indoor autonomous driving testbeds have been built, we have
observed some challenges in previous studies building such
a system, which are explained below.

(i) Localization Accuracy: An indoor testbed is highly
downscaled compared to the real one, such that the lo-
calization accuracy in the downscaled road system plays
a significant role in the downstream planning and control
tasks. In some previous works, the localization is handled by
a centralized motion-capturing vision system to extract the
pose of each robot, such a method could limit the localization
error to a smaller range of about 2cm. However, such a
camera system for motion capture is very expensive, which
brings more challenges for resource-limited entities. Using a
decentralized method with sensors like 2D lidars to localize
the robot is more affordable but introduces more challenges
in accuracy.

(ii) Lack of On-board Computing Power: In the current
studies, most robot agent running in the testbed does not have
a proper computing device for decentralized autonomous
driving, whereby the planning module would solely rely on a
center computer or a server. This limits the research on vision
and machine learning, which is inefficient in supporting
decentralized information extraction and planning for each
intelligent agent.

(iii) Digital Twin with Simulation Capability: The merit
of a simulation platform for autonomous driving has been
illustrated above. How to build a digital twin with access
to such simulation software like CARLA and SUMO is
vital for improving the quality and efficiency of the testbed.
Unfortunately, the previous works do not support CARLA
or SUMO interfaces.

To tackle these problems for a newer generation indoor
autonomous driving testbed, we carefully choose different

methods to solve them. The methods are explained in Sec-
tion IV in detail.

III. RELATED WORK

In the domain of autonomous driving testbed, recent
research has predominantly explored either simulation-based
environments or real-world instances with limitations in
scalability and decentralization. Studies like those in [13]
and [14] have focused on single-vehicle testing. The former
developed a system using RTK localization and AUTOSAR
design on a remote-controlled car, effective for controller
design testing but lacking in broader traffic system impacts.
The latter introduced an autonomous delivery robot with
a Gazebo environment, supporting real-world simulation
collaborations, yet not addressing multi-agent autonomous
driving capabilities.

On the pure traffic simulation front, AMoDeus, a testbed
for autonomous transportation analysis is introduced in [15],
which is confined to simulations without real-world appli-
cability or sensory integration. Popular simulation platforms
CARLA and SUMO enable 3D and 2D traffic generation
and partial sensing capabilities. Both simulators have rich
interfaces open to the public, however, they still provide sim-
to-real transferring with limited resources.

Studies focusing on multi-robot systems, like [12] and
[16], have made strides in swarm formation and autonomous
driving systems. The former uses QR tags for localization but
omits autonomous driving systems and onboard computing.
The latter, despite including traffic signs and a digital twin
map, is constrained by its design for cost-effectiveness,
limiting independent localization and computing.

Research in indoor autonomous driving testbeds, such as
in [5], [10], [9], [11] utilized motion-capturing systems for
localization. Robots are controlled via a cloud server but
are not equipped with independent driving capabilities in
[5]. Study [10], while setting up a lane-free environment
for multi-agent control algorithm testing, similarly did not
enable decentralized methods. Scheffe et al. [9] introduces
a scaled, remotely accessible autonomous driving environ-
ment. It supports multi-agent MPC-based collision avoidance
in a centralized manner using a motion-capturing system.
Nonetheless, it does not address decentralized autonomous



TABLE I
TESTBEDS BENCHMARK

Research Centralized Decentralized Independent
Localization

V2X
Communication

Vehicle
Computing Infrastructure Digital

Twin Multi-agent Carla /
SUMO

Vedder et al. [13] ✓ - ✓ - - - - - -
Tian et al. [14] - ✓ ✓ - ✓ - ✓ - -
Ruch et al. [15] ✓ - - - - - - ✓ -

Dosovitskiy et al. [7] - ✓ ✓ - - ✓ - ✓ ✓
Krajzewicz et al. [6] ✓ - - - - ✓ - ✓ ✓

Pickem et al. [12] ✓ - - - - - - ✓ -
Paull et al. [16] ✓ - - - - ✓ ✓ ✓ -
Tran et al. [5] ✓ - - - - - - ✓ -
Li et al. [10] ✓ - - - - - ✓ ✓ -

Scheffe et al. [9] ✓ ✓ - - ✓ - ✓ ✓ -
Stager et al. [11] ✓ - - - - ✓ ✓ ✓ -

ICAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

driving with multi-sensors. Lastly, Stager et al.[11] describe
a similarly scaled, remotely accessible autonomous driv-
ing environment, including simulated buildings. While it
allows multi-agent centralized control with motion-capturing
localization, the system is not designed for decentralized
information processing and computing.

These works highlight a trend toward developing a scal-
able, decentralized autonomous driving testbed with onboard
communication and computing capabilities. A brief compari-
son between our ICAT testbed and previous works is attached
in Table I where independent localization shows that the
localization relies on the onboard sensors, not a centralized
motion-capturing system.

IV. ICAT DESIGN

In this section, different aspects of our proposed ICAT
platform are introduced in detail. The methods and tech-
nologies that we have investigated for designing ICAT are
illustrated as follows.

A. Digital Twin

Digital Twin technology is a rapidly evolving field with
numerous motivations and applications across various in-
dustries. In the autonomous driving industry, road system
planning, traffic management, and machine learning can be
facilitated by digital twins where the detailed and accurate
representation of physical assets, systems, or processes,
allows for better analysis, simulation, and decision-making.
This is particularly useful in complex systems where physical
testing is impractical or costly.

The merits of leveraging a digital twin for our proposed
ICAT platform can be summarized in three aspects. (i)
Algorithm testing. Faster algorithm iteration can be achieved
by efficient simulations. (ii) Traffic management. Manag-
ing a group of interacted traffic agents with a centralized
autonomous driving algorithm in the real world hardly guar-
antees safety, the counterpart in a digital twin can release
such safety burden. (iii) Remote testing. With advanced
visualization capabilities, the information of testing in the
real world can be accurately reflected on a remote end.

To build an indoor testbed for autonomous driving, a dig-
ital twin could support multi-purpose research and improve
the developing efficiency. In such a digital design, however,

we need to consider several problems. i) What road structure
or features should be included? ii) What size is feasible
to be implemented in the real world? iii) What interfaces
it should have to integrate plug-ins of current autonomous
driving simulators?

The proposed problems are tackled in sequence for our
design. i) To meet the requirements of simulating intersec-
tions, merging points, and loops, we think a designed road
system should include at least one intersection with left-
turn, right-turn, and go-straight options for each direction.
Also, merging points between lanes would support merging
behavior research, and loops would simulate the traffic
running in the system repeatedly with an automatic path
planning algorithm. ii) We need to make sure the size of
the real-world system can fit into the lab room. So finally
the real-world system is sized at 6 by 5 meters, which is a
10-times downscale of a 60 by 50 digital system. Thereby,
the finalized design is processed in RoadRunner [17], a road
system building tool for autonomous driving development,
and the final result is shown in Fig. 2(a). Correspondingly,
we printed the digital map and deployed it in the lab, which
is shown in Fig. 1. iii) To incorporate the convenience
provided by current autonomous driving simulators, we build
simulations using the designed ICAT map in both CARLA
and SUMO, such that the built-in functions and algorithms
can be leveraged by ICAT in a plug-and-play way. The
CARLA and SUMO simulation demonstrations are shown
in 2(b)(c), where the traffic could be either controlled by a
traffic management algorithm from CARLA or SUMO.

To support user-defined simulation scenarios, we have also
developed a pure Python simulation system for ICAT, which
enables the development of traffic management, trajectory
planning, and control algorithms. One of the use cases is
demonstrated in Fig. 3, where a traffic management system
with a trajectory planning algorithm is developed, and this
process will be further illustrated in Section IV-D

B. Infrastructure and V2X

ICAT also contains a down-scaled infrastructure system.
To ensure a realistic representation, multiple traffic signs and
traffic lights are used as Fig. 1 shown. The traffic signs
include speed limit, yield sign, construction zone, stop sign,



Fig. 2. Digital twin system of ICAT. (a) ICAT’s map is designed within RoadRunner [17], which is a 3D interactive autonomous driving system builder.
(b) The designed map then can be seamlessly imported into CARLA simulations. (c) SUMO simulations are also enabled with the ICAT road system.

and do not enter signs.
The infrastructure information is also shared following the

J2735 C-V2X standards. To accurately mimic realistic V2X
communication, ICAT leverages the in-door WiFi system
for communication. WiFi systems are similar to outdoor C-
V2X systems due to their broadcasting nature. An underlying
ROS communications stack is fitted into the WiFi system. A
network model is used to mimic C-V2X message latency and
packet loss.

Map information such as lane and intersection location and
allow maneuvers are broadcasted by the infrastructure nodes.
We’ve also added a Raspberry Pi controller to each traffic
light signal so that traffic light state and timing information
can be broadcast to nearby test vehicles. Furthermore, the
J2735 standards also allow emergency vehicles to change
traffic light states. This can be replicated with the help
of the WiFi network, ROS communications stack, and the
Raspberry Pi.

C. Localization

Compared to using an expensive centralized motion cap-
turing system for localization, based on the onboard 2D
Lidar, an ICAT robot can conduct localization using some
mature algorithm in an efficient way. Additionally, a de-
centralized localization method could endorse richer testing
scenarios for autonomous driving offering more realistic
sensing inputs.

Specifically, to enable safe navigation of ICAT, we need
to establish a solid localization foundation, including two
functions, flexible global re-localization and real-time accu-
rate pose tracking to produce reliable pose information of
vehicle status. Global re-localization refers to obtaining the
rough pose in the map with only the most recent observation
when the localization system of ICAT is just booted or the
tracking function fails. After producing an initial pose, the
pose tracking function continues to estimate the movement of
sensors periodically to ultimately calculate the vehicle status
such as speed and orientation relative to the map.

Currently, there are many SLAM systems supporting both
localization functions. For example, the ORB SLAM family

[18], [19] which is a group of camera-based SLAM systems
can locate the 3D world position of ORB features from
images to track camera movements. By recording historical
features into a library of historical pose, the ORB SLAM
can achieve global re-localization by searching most similar
features. However, this solution is less effective in an indoor
environment as shown in a common indoor room as shown
in the figure. Due to the limited performance of the camera
depth sensor, the system found it hard to recognize the same
wall at different distances. As a result, ORB SLAM is easy to
commit tracking failure. Compared to camera-based SLAM,
LiDAR-based SLAM [20], [21] is better at pose tracking
since the sensor data includes more accurate and wider
depth information, but is worse at global re-localization
due to the challenge of pose description especially for 2D
LiDAR equipped by ICAT whose data is sparse and lack of
geometrical structure.

In our implementation of the localization framework,
we use Normal Distribution Transform (NDT) SLAM [22]
which is designed for 3D LiDAR originally to build a
tracking layer due to its reliable performance compared to
traditional 2D LiDAR SLAM such as [23], [24]. Further-
more, the generated layer is a 2D point cloud map that can
be directly re-used by all robots in an ICAT fleet. NDT is
also responsible for obtaining tracking results after obtaining
the initial pose from global re-localization which is based
on ORB features and historical pose library in the format
of Bags of Words [25]. Inspired by ORB SLAM, global re-
localization will first extract ORB features from the latest
image to calculate a visual word for searching the nearest
word in the historical pose library. The found image is then
matched with current features to estimate a rough pose.
NDT SLAM can further optimize this pose to promise later
tracking quality.

D. Centralized Traffic Management System

CARLA and SUMO are designed primarily for au-
tonomous vehicle research and development. Its traffic man-
agement system is created to simulate realistic traffic scenar-



Fig. 3. ICAT traffic management system testing in a Python simulation, where simulated 10 traffic agents could be controlled by a centralized traffic
management algorithm. The planned trajectories for different robots are marked in different colors.

ios, providing a safe, controllable, and flexible environment
for testing autonomous driving systems and algorithms.

Both CARLA and SUMO primarily operate with a cen-
tralized architecture. In this system, the simulation envi-
ronment, including traffic scenarios, vehicle behaviors, and
environmental conditions, is controlled by a central server or
application. The control over individual vehicles, pedestrians,
and other elements can be scripted or managed through the
central API, allowing for precise control and manipulation
of the simulation environment. Specifically, in the context
of autonomous vehicle testing, this centralized approach
allows for a centralized planning framework and cooperative
collision avoidance.

The merit of using a centralized traffic management sys-
tem can be summarized as follows. i) Capable of simulating
large networks of roads and junctions, complete with public
transport, pedestrians, and varying traffic densities [26]. ii)
Supports traffic light control, route planning, and vehicle-to-
infrastructure communication. iii) Can better support traf-
fic flow analysis, such as measuring travel times, system
throughout, and emissions [27].

However, in the implementation of CARLA’s traffic man-
agement system, we found a deadlock problem when the
number of cars increased, and traffic efficiency degraded sig-
nificantly. The reason is that in the intersections or merging
points, the checking points are preset such that the first car
hitting the checking point will go first leaving the other car
totally stopped to yield. Such a First-In-First-Out(FIFO) [28]
policy is not optimal, and further optimization is needed.

In ICAT, we build such a traffic management system
independently from CARLA and SUMO but refer to some
ideas from them, i.e., the node-based traffic system graph.
This graph will determine a full junction system of the roads,
and support graph-based path search. Moreover, to tackle the
problems of deadlocks and low efficiency, we leverage multi-
agent trajectory planning to dynamically tune the speed for
intersection/merging cars to pass at a higher efficiency.

The process of operating such a traffic manager system
is described in Algorithm 1. First, A traffic system graph is
built up with nodes and edges, where each node is connected
with others with a directed edge either shaped as a curve or

Algorithm 1 Optimized Traffic Management System
1: Initialize traffic graph G, car states X , path buffer P ,

trajectory buffer Traj.
2: Initialize traffic signals, obstacles states O.
3: for each car i do
4: if P [i] is empty or invalid then
5: P [i]← A*(G)
6: end if
7: (si, di)← LOCALIZETOSD(P [i])
8: Traj[i]← POLYNOMIALPLANNING(si, di, Xi, O)
9: conflicts← COLLISIONDETECTION(Traj[i],Traj)

10: for each conflict in conflicts do
11: Traj[i]← REPLANTRAJECTORY(i, conflict)
12: end for
13: end for
14: Update global state based on new trajectories and envi-

ronment changes for the next time step.

Fig. 4. Graph topology for ICAT traffic system, consisting of nodes and
edges that a pair of nodes is connected with either a straight line or a curve.
Waypoints are discretized with a fixed distance as an attribute of the edge.



straight line shown in Fig. 4. Then A* search can be applied
to each initialized robot to automatically generate paths and
update goals (when approaching the previous goals) such that
the simulation of a traffic system would not stop at reaching
goals.

After that, the coordinates of (x, y) in Euclidian coor-
dinates need to be transformed into (s, d) Frenet coordi-
nates [29], such that the location of cars can be associated
with roads in a convenient way. Based on the Frenet localiza-
tion, the trajectory for each car is planned with polynomial
interpolation between the current state and the future state.
Other cars’ states are also considered for trajectory planning,
for example, the leading car’s location and speed will be
taken into account for doing an Adaptive Cruise Control
(ACC) style trajectory planning. Other than ACC, the logic
of trajectory planning for merging and diverging cases will
be considered independently. A visualization of the planned
trajectories is shown in Fig. 3

Finally, the conflicts among planned trajectories will be
addressed using a replanning process, where a non-linear
optimization problem is usually set up to minimize the sum
of the inter-car distance between conflicted cars for collision
avoidance [30]. The implementation of our designed traffic
management system is illustrated in Section V.

E. Decentralized Autonomous Driving

Decentralized Autonomous Driving differs from traffic
management methods in that it doesn’t rely on externally
received command information, the traffic agents solely rely
on their own sensors and computing devices to conduct
perception and data processing. Thanks to heterogeneous
on-board computing devices, the ICAT robots with ARM
computing platforms leverage Scalable Open Architecture
For the Embedded Edge (SOAFEE) [31] and Autoware [32]
OpenAD Kit to support autonomous driving. SOAFEE and
OpenAD Kit serve as a baseline for autonomous driving
and enable researchers to quickly and easily modify the
perception, planning, and control algorithms. Robot vehicles
with other computing architectures leverage Autoware.AI, an
autonomous driving stack based on ROS1, as the baseline.

Besides the mature autonomous driving pipelines like
Autoware and SOAFEE, ICAT robots incorporate advanced
vision reasoning technology for object detection and end-
to-end navigation. Similar to Tesla’s current solution, the
current decentralized method uses depth cameras for en-
vironmental data perception [33]. To ensure smooth driv-
ing along the road boundaries, we employ Color-based
Lane Keeping [34]. The process begins with calibration,
addressing distortions in the camera image caused by radial
and tangential deformations. Calibration utilizes a known
spatial relationship (calibration board) to deduce the camera’s
intrinsic parameters, correcting distortions in raw images.

Following calibration, we apply distortion correction to
raw images and implement real-time HSV control for color
tracking. Adjusting HSV thresholds filters out interfering
colors, allowing for ideal recognition of squares in complex

environments. Color transforms and gradients create a thresh-
olded binary image.

Additionally, due to the limited variety and quantity of
traffic sign shapes, we employ a lightweight YOLOv5 [35]
network for single-stage object detection to recognize these
signs. We perform data augmentation by cropping standard
traffic signs and introducing slight variations in brightness,
angles, and horizontal flips, while simultaneously generating
labeled bounding boxes. The lightweight YOLOv5 network
helps reduce the computational load on the experimental
vehicle, decrease space requirements, lower overall system
energy consumption, and achieve real-time output speeds.

Fig. 5. Our designed HydraT platform, is equipped with an advanced Lidar-
camera sensing system and empowered with up-to-date navigation software.

F. Vehicle Computing and Multi-user Management

Besides the intelligent transportation and autonomous sys-
tems highlighted in the ICAT platform, the ICAT platform
implements an innovative integration of vehicle computing
and multi-user management. As the vehicle computing power
is increasing rapidly, vehicle can serve as mobile computing
platforms for various tasks. [36]. Adapting such an idea, our
platform harnesses a fleet of 10 sophisticated robots with het-
erogeneous computing devices including Nvidia Nano, TX2,
and NX. Each robot serves a dual purpose for computing:
participating in a dynamic traffic system and acting as a
resource for distributed computing tasks, such as federated
Machine Learning (ML) [37].

At the core of our platform lies the autonomous driving
algorithms, which are rigorously tested within a simulated
traffic system. For example, in decentralized autonomous
driving, perception, and planning tasks will be processed
onboard, where decentralized computational power plays an
important role for autonomous agents to make decisions
in real-time, adapting to the continuous flow of the traffic
system.

Beyond traffic management, our robots with advanced
computational capabilities, allowing them to engage in fed-
erated ML tasks during their “commute”. This innovative ap-
proach utilizes the otherwise idle processing power, turning
each robot into a node within a distributed learning network.
By doing so, we enhance the utility of our robotic fleet,
contributing to a range of computational tasks for multi-
user cases, from optimizing traffic algorithms to processing
large-scale data analyses, all while ensuring the integrity and
privacy of the data involved.

To address the complexities of multi-user management,
our platform leverages Docker containers, providing a robust
and isolated environment for each user. These containers



encapsulate the necessary tools, libraries, and runtime for
users to deploy and manage their autonomous driving and
ML applications without interference. This separation is
crucial for maintaining system stability and security, ensuring
that the computational activities of one user do not adversely
affect those of another.

G. HydraT Platform and Auto-recharge

Inspired by [38], [14], we developed a scaled autonomous
car platform, Hydra-T, suitable for experiments in the
ICAT environment shown as Fig. 5 While having the same
Ackermann-steering system as a real car. To facilitate accu-
rate sensing, the environment information can be extracted
from both an accurate industry-level 2D-LiDAR, and an Intel
RealSence depth camera. Combined with a 9-DOF IMU,
the accuracy of localization and pose estimation can be fur-
ther enhanced. Supporting intensive vehicle computation for
multi-purposes, the robot is designed to adapt an Nvidia Orin
machine that provides a powerful online machine inference
capability.

To reduce maintenance requirements we design a cus-
tom charging dock for the robot, such that the robot can
conduct automatic recharge before the battery is running
out. This eliminates the need for researchers’ intervention
since the charging feature enables the robot to dock and
recharge itself autonomously similar to vacuuming robots,
thus achieving a higher time efficiency for a multi-agent
system. Furthermore, the charging stations can also be a part
of experiments simulating the real-world problems of electric
vehicles with charging path planning and optimization for
energy management.

V. CASE STUDIES

The ICAT platform’s efficacy is evaluated by two case
studies: the operational integrity of the traffic management
system and the execution of federated machine learning (ML)
algorithms. These case studies are designed to validate the
ICAT platform’s functionality and showcase its versatility
in handling complex computational tasks while managing a
fleet of autonomous robots.

A. Traffic Management System

As we explained in Section IV-D, the whole management
system is first built in a pure Python environment for valida-
tion. As shown in Fig. 3, running 10 robots simultaneously
in ICAT allows each car to automatically plan a path with
random start and stop nodes with an A* algorithm. Then the
car plans trajectories that dynamically adjust space and speed
to a leading car in an ACC logic. The planned trajectory is
rendered as apparent frames in the front of cars.

However, in real-world experiments, the communications
between cars and the centralized server are implemented
in ROS [39] system, which is different in simulations. To
bridge this transferring gap between simulations and ROS
real-world tests, we first assign the different robot namespace
from robot1 to robotn based on the number of robots used,
hereby all the robot topics will be separated under their

unique namespace. Next, different functions are separated
into different ROS nodes, for instance, the localization mod-
ule and trajectory planning module will publish poses and
trajectories from different nodes.

Besides interface issues, real-world validations, localiza-
tion, and trajectory following (control) problems need to
be handled carefully. This is because, in the simulation,
the position/pose information is captured from the defined
vehicle dynamic models without any sensors and control
noises, which is assumed as ground truth. Assuming perfect
trajectory tracking for every robot enables the robot to
update its state perfectly to follow the trajectory, which
is impossible in the real world where each frame in the
trajectory necessitates accurate following by a well-designed
control module.

To respectively conquer the localization and control prob-
lem, we leveraged the NDT method [22] for localization
and observed an accuracy improvement from the original
AMCL method [40], which has been explained in Section IV-
C. For the control method, we have implemented a pure
pursuit method [41] to track the planned trajectory, where the
controller takes a look-forward distance as input to chase the
look-forward point, and hence improve the robustness against
localization noises by ignoring the very close errors.

To better visualize the real-world experiments and support
monitoring at the digital end shown in Fig. 6, we developed
an RViz-based monitoring system where each car’s trajectory
and ICAT road system will be published as topics to be
shown on screen. Furthermore, a pose initialization tool
is integrated into the RViz, such that an initial pose for
localization can be easily achieved by pulling the mouse
toward the corresponding pose in the real world.

B. Federated Machine Learning

The second aspect of our evaluation focused on the execu-
tion of federated ML tasks. Each robot, during its simulated
commute, participated in a distributed ML training session.
The task involved collaboratively learning a predictive model
while keeping on each robot the training data which is
provided by our industry partner.

The experimental evaluation of the ICAT platform con-
firmed its robustness and versatility. The proposed traffic
management system proved efficient, safe, and scalable.
Simultaneously, the platform’s capability to perform feder-
ated ML tasks without compromising its primary functions
was successfully demonstrated. These results underscore
the potential of ICAT as a dual-purpose platform, catering
to the needs of intelligent traffic management and vehicle
computing research.

VI. DISCUSSION AND FUTURE WORK

This paper presents the innovative ICAT platform and
details our extensive experimentation and setup processes.
Through our testing and evaluation, we have gained valuable
insights into the complexities of autonomous vehicle technol-
ogy. Our experiences and findings can be summarized in the
following key observations:



Fig. 6. An illustration of traffic management real-world experiments. (a) 4 robots are running a traffic management demo. (b) Real-world demos can be
also monitored in RViz, where the ICAT road is published as a Path message (the tilted lines are caused by the automatic connection of section start and
end points in the Path message), the planned car trajectories from the central manager are rendered as different colors. (c) We have tested up to 6 robots
in the ICAT real-world traffic system.

(i) Impact of NDT Localization Noise on Pose Initializa-
tion. One of the significant challenges encountered dur-
ing our experiments was the influence of noise in NDT
localization on pose initialization. We observed that even
minor noise in NDT measurements could lead to inaccuracies
in initial pose estimation. This, in addition, also affected
the navigation accuracy of the autonomous vehicles on our
platform. The findings underscore the need for more robust
noise filtering techniques in NDT localization to enhance the
system precision.

(ii) Control Challenges in Trajectory Tracking. Another
key observation was related to the control aspects, particu-
larly in tracking the planned trajectory using a pure-pursuit
controller. While the pure-pursuit algorithm is a widely
accepted method for trajectory following in autonomous
vehicles, we noticed that the controller still exhibited errors
in trajectory tracking, particularly on a curvy path.

(iii) Effect of Communication Lag on Response Speed.
Lastly, our experiments brought to light the significant impact
of communication lag on the response speed of the cars.
The communication delay can have critical implications in
a system where multiple autonomous vehicles communicate
and operate synchronously. We observed that even minimal
lags could lead to noticeable delays in the vehicles’ responses
to control commands. This finding is particularly pertinent
in scenarios requiring fast decision-making and rapid maneu-
vering.

In our future works, the insights we have obtained will be
leveraged to improve the performance of the ICAT platform.
Our future research plans will include the following items.
First, optimize the localization accuracy with better filtering
tricks. Second, a localization error-considered model predic-
tive control method will be implemented to minimize the
trajectory tracking errors. A learning method will acquire an
accurate spatial-temporal environment dynamic model based
on the collected real-time data. Finally, we will equip ICAT
with more powerful communication devices, increasing the
bandwidth at the hardware end. Furthermore, task scheduling

and lag-considered safety protection will be investigated to
avoid the harmful impact of communication delays.

VII. CONCLUSION

This paper presented the ICAT platform, an advanced
indoor testbed developed for cutting-edge research in au-
tonomous vehicle systems and advanced vehicle computing.
Through our evaluations, ICAT has demonstrated its profi-
ciency in managing simulated traffic systems and executing
complex federated ML tasks, proving its value as a versatile
tool for the intricate demands of modern intelligent trans-
portation and computational research.

A key strength of the ICAT platform lies in its integration
of connectivity, vehicle computing, digital twin technology,
and multi-agent simulation. The platform’s exceptional V2X
(Vehicle-to-Everything) capabilities and advanced onboard
computing devices allow ICAT to adeptly manage and
process data from various sources, including inter-vehicle,
vehicle-infrastructure, and vehicle-server communications.

Furthermore, ICAT’s digital twin system, integrated with
CARLA and SUMO interfaces and a tailored pure Python
multi-agent simulation environment, sets it apart from previ-
ous studies. This integration allows for the simulation of real-
world multi-agent traffic or swarm systems and significantly
accelerates the development and iteration of algorithms for
autonomous driving tasks.

As we look to the future, we will focus on expanding
ICAT’s capacity, enhancing its simulation fidelity, and in-
tegrating decentralized computing paradigms more deeply.
These advancements are directed towards supporting the
evolving field of autonomous vehicle research, ensuring
that ICAT remains a pivotal and invaluable resource for
researchers and practitioners in this rapidly advancing area.
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