
Accelerating Dynamic Web Content Delivery Using
Keyword-based Fragment Detection

Daniel Brodie, Amrish Gupta, and Weisong Shi

Department of Computer Science
Wayne State University
Detroit, Michigan 48202

Abstract. The recent trend in the Internet traffic is increasing in requests for
dynamic and personalized content. To efficiently serve this trend, several server-
side and cache-side fragment-based techniques, which exploit reuse of Web pages
at the sub-document level, have been proposed. Most of these techniques do not
focus on the creation of the fragmented content from existing dynamic content.
Also, existing caching techniques do not support fragment movement across the
document, a common behavior in dynamic content.
This paper presents two proposals that we have suggested to solve these prob-
lems. The first, DyCA, a dynamic content adapter, takes original dynamic Web
content and converts it to fragment-enabled content. Thus the dynamic parts of
the document are separated into separate fragments from the static template of
the document. This is dependent on our proposed keyword-based fragment de-
tection approach that uses predefined keywords to find these fragments and to
split them out of the core document. Our second proposal, an augmentation to the
ESI standard, allows splitting the information of the position of each fragment in
the template from the template data itself by using a mapping table. Using this,
a fragment enabled cache can have a more fine grained level of identifying frag-
ments independent of their location on the template, which enables it to take into
account fragment behaviors such as fragment movement.
We used the content taken from three real Web sites to achieve a detailed perfor-
mance evaluation of our proposals. Our results show that our keyword-based ap-
proach for fragment extraction provides us with cacheable fragments that, when
combined with our proposed mapping table augmentation, can provide significant
advantages for fragment-based Web caching of existing dynamic content.

1 Introduction

Researchers have recently proposed several server-side and cache-side mechanisms to
improve the generation and serving of dynamic Web content. Server-side techniques,
exemplified by techniques such as delta encoding [1], data update propagation [2],
fragment-based page generation [3, 4], reduce the load on the server by allowing reuse
of previously generated content to serve new requests. Cache-side techniques, exem-
plified by systems such as Active Cache [5], Gemini [6], CONCA [7], and the content
assembly technique proposed by Willset al. [8], attempt to reduce the latency of dy-
namic content delivery by moving some functionality to the edge of network. Similar
trends are also visible in commercial caching and edge server products, most notably

IBM’s WebSphere [9] and Akamai’s Edgesuite [12]. Despite their difference in focus,
both server-side and cache-side approaches share the same rationale, specifically that
it is possible to view the document in terms of a quasi-statictemplate(expressed us-
ing formatting languages such as XSL-FO [10] or, what is currently becoming thede
facto standard, edge-side include (ESI) [11]), which is filled out with multiple indi-
vidually cacheable and/or uncacheableobjects1. This object composition assumption
enables surrogates and downstream proxy caches to reuse templates and cached objects
to efficiently serve subsequent requests and additionally reduce server load, bandwidth
requirements, and user-perceived latencies by allowing only the modified or unavailable
objects to be fetched.

Although the above techniques appear promising, there are a number of issues that
are not addressed in these current infrastructures. Even though there might techniques
used by certain companies [12], due to their closed nature we cannot check them, and
so to the best of our knowledge, there is no open and free method of separating objects
from existing dynamic document, except from our existing work on DYCE [13]. Also,
current technologies for supporting dynamic objects do not differentiate between the
location of the objects in the document, and object itself. This makes it impossible
to efficiently implement the situations where the object can move between different
places in the document without changing data, which is common in certain news Web
sites [17].

This paper describes our efforts on addressing these shortcomings. We are propos-
ing two methods that should solve these shortcomings. The first is an augmentation to
the ESI standard, the most used method for specifying the format of the templates, to
allow the fragment locations to be specified in a mapping table that is sent with the tem-
plate. This allows the objects to move across the document without needing to re-serve
the template. Our second proposal, DyCA, a Dynamic Content Adapter, is a two part
model for creating object-based content from original dynamic content. The first part
extracts the objects from the original content, giving us the needed separation between
template, objects, and object location by using our mapping table approach. The sec-
ond part of DyCA delivers the content to a fragment-enabled client, like a caching proxy
server. A Python-based fragment-enabled caching proxy, named CONCA-Lite was de-
veloped to allow the testing of the object extraction, and content delivery modules of
DyCA.

Our method for creating the dynamic content from the original Web content is based
on a simple and effective keyword based object extraction technique to find dynamic
objects inside a static Web page. The dynamic content can then be served by our DyCA
server, which can serve fragments from the document as needed, enabling a client to
support template and object caching. Our proposed ESI-extended format allows for
caching of both the objects and the template and allows for object movement. This
type of concept, where the object in the template maps, based on a mapping table,
is, to our knowledge, introduced here for the first time. By having a fully functional
fragment-enabled content server and client, and by testing on real world data, we have
gotten accurate results, beyond regular experiments done in the field. These results have
shown that our proposed method for fragment extraction based on the keywords in the

1 The termsobjectsandfragmentswill used interchangeably in this paper.

document can allow us to cache existing non-fragmented content and achieve significant
performance improvements by utilizing our proposed augmentation for a mapping-table
based template.

The rest of the paper is organized as follows. Section 2 describes the related back-
ground for this field. Section 3 addresses problems with the current infrastructures.
Section 4 shows the design and implementation of the system. Section 5 presents the
evaluation and results of the testing of our architecture. Section 6 concludes the paper
and discusses our planned future work.

2 Background

2.1 Fragment Based Caching

S1

S2

S3

S4

S5

P1

P2

S1 (TTL = 1 day)

P1
(TTL = 5

min)

P2
(TTL = 1

hour)

S2 (TTL = 20 min)

S3 (TTL = 20 min)

S4 (TTL = 20 min)

S5 (TTL = 1 hour)

Document Template

Fig. 1.Dynamic content can be viewed in terms of a quasi-static document template and individ-
ual objects, which exhibit different sharing, cacheability, and freshness time characteristics.

One fundamental block in caching dynamic content is allowing to split up a doc-
ument into different static and dynamic parts. By doing this, parts of the document,
calledfragments, can be treated separately rather then treating the document as a whole.
Thus each fragment can have its own behavior allowing more fine-grained control over
caching behavior and data sharing of the different segments of a document. Certain frag-
ments of a document can be shared between different clients whereas some clients want
different information in other fragments. Also, some parts of a document change more
frequently than others, while other parts are completely static. By treating the document
as a whole rather then separating it into fragments a page cannot be partially shared be-
tween users nor can it be partially cached. Rather, when a little part of the document
changes the whole document needs re-fetching, and if parts of the document can’t be
shared, then the document can’t be shared at all. For example, consider a popular cus-
tomizable Web site with content that gets continuously updated with information such
as news and weather. Figure 1 shows the snapshot of a personalizedmy.yahoo.com

page, which fits in such an example, and what the corresponding document template
and component objects might look like.S* and P* represent objects that are shared
and private respectively, andTTL captures the length of time this object remains valid.
The contents of fragments on the page can change as new stories develop or as the
weather changes, leaving other fragments unchanged and with no need to re-fetch the
data. Users that are viewing sports stories can share those fragments, and if some of
those users are also viewing the economic section, then that can be shared by all the
people viewing that fragment as well. There currently are a number of ways to split a
document into fragments and reconstruct it. Different approaches do reconstruction in
different parts of the network, including the originating server, the cache proxy, and the
client. Each one of these methods has a different way of dealing with caching and the
fragments.

2.2 Edge-Side Includes

The ESI [11], Edge-Side Include, has currently become the de facto standard in specify-
ing the format for templates in fragment based documents. It uses a simple XML-based
markup format that specifies content fragments for inclusion and dynamic assembly in
a base template. These ESI specific tags are provided as extensions to the traditional
HTML format allowing for minimal format change to the original document format.
It separates the document in such a way that allows for the server or proxy to manage
the objects as separate entities. This allows for different levels of cacheability for each
fragment, and for large amount of dynamic content to be cached. ESI also includes a
very complete framework for conditional getting of fragments, cookie support, and er-
ror control. Everyesi:include tag references a specific URI with a TTL, all of
this is included in the template file which gives the layout and aesthetic look to the doc-
ument. Thus, all the information regarding the fragments and the template are actually
sent in the template itself. For a client to support the ESI framework all that it needs to
do is to implement support for parsing and acting based on the template format. Thus,
ESI’s simplicity is a very strong point.

CONCA [7] allows for additional client information, such as the type of device of
the client, to modify the returned content, based on a different template yet reusing the
same objects.

3 Existing Problems of ESI

An important factor of the efficiency of fragment based documents is the method used
to update it. One of the popular uses in fragment documents is for object movement.
This type of behavior, as can be seen in Figure 2, is represented when one or more
fragments from a dynamic document move between the different available positions
on the template. A good example is a news Web site where old stories (represented as
fragments) move down the document and new ones are added from the top. If we use
ESI to construct our document then there are two possible ways to update the document
so that the objects can move across the document. Since in ESI the document is split up
into two parts, the template, and the fragments, then one possibility will be to update
the fragments where the object moved to where it moved from. Another possibility is

Fig. 2.An example of template caching problem.

to update the template such that the updated template has the URL of the new locations
in the template pointing to the correct fragment.

3.1 ESI - Static Template

One obvious solution to fragment movement, which we will callstatic template, is
to update the fragments themselves, leaving the template completely static. Using our
news Web site example from earlier, the news template points to a series of objects, and
when a new story gets added to the page it pushes the old one out of the page. All the
objects in the page need to expire, be invalidated, and be re-retrieved as the fragments
lower down on the page. Considering that a document, like a news Web site, that has
most of its objects moving around the Web page, this means invalidating most of the
objects on the page and fetching them from the server on a regular basis. The biggest
problem with this method is that most of these fragments are already present on the
client just in a different location, and re-fetching them in a different place means a lot
of wasted data transfer that could otherwise be cached.

3.2 ESI - Static Objects

A different approach to solve this problem, which we will callstatic objects, is to in-
validate the template and re-fetch it for spatial changes, leaving the objects static for
such a change. The fragments will still contain only dynamic data and would need to be
re-fetched for a data change. The new template will have the object in the first position
pointing to the new objects, and all the other positions pointing to the moved objects.
This seems to solve the problem since the objects are unmodified do not need to be
re-fetched. Supposedly, this saves a lot of data transfer by transferring only the new
objects and not requiring all the objects to be re-fetched as in our earlier example. Since
the only things that has actually changed in the template is the URL of a few of the
fragments, this means that most of the transferred template, which would still contain
only static data, is already on the client. Considering that the template can be very large,
as we show later in section 5, doing this on a regular basis, and transferring all this data
that could otherwise be cached, this is not a very efficient solution as it might seem at
first.

3.3 Mapping Table

There is no way to solve the problem of object movement in the current ESI infras-
tructure. Either you will be invalidating many objects that really are valid, or you will

be invalidating a template which has very little data actually modified. That is why a
proposed solution needs to make additions to the ESI infrastructure. These additions,
a mapping table that gets sent along with the template and an addition to the template
format to allow inclusion of objects from the mapping table, allow for a new method
of fragment-based caching, which we will denote asmapping table, which does not
requires either the objects or the templates to be invalidated for spatial changes. Thus,
when a client retrieves a template, the client will also cache the mapping table that was
sent with the template. When this client needs to fetch a fragment from the template,
the identifier in the template is looked up in the mapping table, and then the fragment
is fetched from the appropriate URL. The mapping table is relatively a small amount
of data compared to the template and object sizes. When an object needs to be moved
across a document, from one locations in the template into another, the only thing that
needs to be updated is the mapping table. Thus, both the template and the objects con-
tinue to be cached and treated efficiently, while still allowing for object movement. The
mapping table’s small size and ease of use makes it optimal for these cases.

4 DyCA: Dynamic Content Adapter

Original Unfragmented
Content

Fragment
Generator Template

 Mapping Table
 Fragments

Cache

Content Delivery Servlet

Web Server

Fig. 3.The general architecture of DyCA.

4.1 Design

As mentioned earlier, DyCA, our proposedDynamicContentAdapter, has been de-
signed to augment the existing servers to serve dynamic content efficiently. In the client-
proxy-server model it sits on the front-end of the server and can then take existing Web
content that is requested from the server and process it to serve the dynamic content in-
stead. So when the original content changes, DyCA will regenerate its fragment-enabled
content. This allows it to be deployed anywhere from the same location as the actual
Web server or to the ISP level. As shown in Figure 3, DyCA is actually split up into 2
separate but very important parts, the Dynamic Content Generator module, and the Dy-
namic Content Delivery module. The generator module deals with taking the existing
dynamic content and converting it into fragmented content. The delivery module can
then take the dynamic Web pages generated by the earlier module, and serve them to
the client appropriately.x These two modules together let us take an existing static Web
site and easily change it into a fragment-based dynamic Web site, that can be cached
properly.

The content generation module generates the objects and template from the original
dynamic Web content. It uses a keyword based approach to split up the dynamic content
into fragments. The keyword based approach works by building an XML of the Web site
and searching this XML tree for specific tags that can signify a different object. These

tags are set separately for different Web site based on the structure of the HTML and the
content. By looking at popular Web sites, such as the personalizedmy.yahoo.com
page shown earlier in figure 1, it is fairly simple to see the implicit fragments contained
in the document. Fragments can be easily distinguished based on certain differences
such as a different font or a table tag, and based on certain predefined keywords, such
as the TV Listings headlines, or the Weather headlines. Once the tags in the XML tree
are identified, the children XML tags and the rest of the XML content contained in the
identified tags is extracted to create the objects. A special include tag, that has a special
object id for each object, will be placed in the position where the object was extracted
from the main document. The mapping table is just a list of the object ids and their
corresponding URLs in a parse-able file.

Additional information for each object, such as the TTL of the object, is calculated
by looking at a long term overview of the Web site. Numerous instances of the Web page
are collected over a regular period of time. Each instance is parsed and separated into
the different objects, template, and mapping table by the content generation module. By
comparing the objects and their position over the period of time, an accurate dynamic
behavior can be seen that allows the correct generation of the mapping table to be most
efficient with regards to object movement. It also allows the TTL for each fragment
location in a document to be generated. Since the location in the TTL of a location in
the template remains mostly the same, this TTL is then reused later as the TTL for each
fragment location in the document. In our news Web site example, the sidebar listing
all the news from yesterday will always have a TTL of 24 hours.

The content delivery module is responsible for serving the template, objects, and
mapping table to the fragment-enabled proxy cache. The content delivery module uses
the data created by the content generation module. The content delivery module needs
to implement the extensions to the protocols in order to send the data created by the
content generation module in an appropriate way. It needs to add information regarding
the mapping table, and so notify its client, the fragment-enabled proxy cache, when a
request is dynamic and has a template or when it is static. By sending the mapping
table to the client, the client can then get the static URLs of the objects to be able to
access them from the template. The content delivery module also needs to support the
client updating only its mapping table, so that bandwidth would not need to be wasted
with already cached objects, or templates. This module can be backwards compatible
with existing technologies and can support serving to both client level caching [14], and
proxy level caching [7, 12].

4.2 Implementation

The dynamic content generator is program that parses existing Web sites and outputs a
dynamic, fragment based, cacheable, Web page. Three Web sites, New York Times [15],
India Times [16], and Slashdot.com [17], were chosen due to their dynamic nature, and
since none of them supported any form of cacheable dynamic data. The Web sites were
constantly monitored for changes during an extensive period covering 2 weeks. This
data was then passed through the keyword based object extraction. Each object was ex-
tracted from each instance of the Web site by finding appropriate, predefined tags in the
document. Once each object was extracted and the ESI-based template was constructed,

the resulting fragmented documents were compared across their time element to calcu-
late the TTL and the mapping table. Object movement across the document is taken
into account and allows for the object to not be replaced too soon, and remain in the
mapping table. An object was considered expired once it wasn’t in any part of the doc-
ument. Once the template, objects, and mapping table are in place from the generator

���������	

����������	���

�����������������

��������������	�

�����
��������������

 !�
���������"

��������������

#	��������
�����������

#���
������������$��

����� ������
�����������

�	
�������

���������������
���������
�������

������
�������

���������������

���������������

����� ������

�	
�������

��������
�������

��������������� �

!��������"�#

��������������

������������

$������%
�#

&�����'��������

%
�#

�	
�������

������������

�	
���

(a) (b)

Fig. 4. (a) Process of initial retrieval (b) Process of cached retrieval.

module, the dynamic content delivery module just needs to serve them. Implemented as
a server extension using servlets in Java and sitting on top of popular Web servers such
as the Apache Web Server [18] or the Jigsaw Web Server [19], this module appears as
a traditional Web server to regular clients, but provides the dynamic content ability to
able clients. This module uses information from the generator module to build up infor-
mation such as which pages are templates, the TTL for certain objects, and the mapping
table. Figure 4 shows the process of events when a client request for a Web page. When
a CONCA-enabled request from a proxy for a document is made, if the document has
fragments then the mapping table is looked up and added as anX-CONCA-MAPPING
HTTP header to the response. The expiration of the object is set based on the TTL
contained with the mapping table. The body of the response is just the ESI augmented
template. Once the cache has the template, it will go on and request the fragment as
needed from the server. The cache can then build up the proper final document and
send that off to the client. The servlet’s support of theIf-Modified-Since HTTP
header when requesting the template is crucial to the efficiency of the mapping table.
When the template expires on the cache, the cache will request the template over again
using theIf-Modified-Since HTTP header. Since the template rarely changes,
this will mean that the cache will usually get a ’304 Not Modified’ response. This re-
sponse will contain the new mapping table, allowing the cache to update it’s mapping
table without having to re-transfer the template. If a static document, or a static frag-
ment is requested from the content delivery module, then the content delivery module
will behave just like a regular Web server.

4.3 ESI Augmentation

As explained earlier, ESI provides and extensive range of existing technology to support
a wide range of uses in structuring a template file and specifying things like TTL and so
forth. In trying to remain as standard compliant as possible, the ESI format was picked
to represent the structure of the template. Yet the ESI standard only supports document
fragments identified by static URLs, which will not suffice in our case. Thus we needed
to augment the ESI standard by adding theesi:xconca-include tag. This tag
allows the specification of an ID number that can be looked up by the client in the
mapping table and retrieve the object’s static URL.

5 Performance Evaluation

The experimentation of our proposed method for object extraction and object delivery
required simulating a fragment-enabled client-cache-server model. Using this model
we can compare different types of performance for the different types of fragment-
enabled dynamic content behaviors. The experiments we used to test the performance
of the different caching systems targeted user-perceived latency and bandwidth usage
specifically.

5.1 CONCA-Lite

The experiments in our client-cache-server model required a proxy that supported our
proposed augmentation to the ESI and supported the dynamic assembly of the final
content for the client. To achieve this, a simple cache proxy, called CONCA-Lite, was
implemented using Python and itsasyncore modules to create a simple extensi-
ble proxy. It was designed such that testing different caching methods would require
little or no change on the proxy side. Thus, allowing us to make fair and accurate com-
parisons between the different caching methods, which are tested on the same caching
framework. This CONCA-Lite proxy, which implemented a minimalistic version of the
CONCA proposal [7], was then used to test the different dynamic caching methods
described later.

5.2 Evaluation Platform

We simulated the client-cache-server model using three machines, all connected on
a 100Mbit/s LAN, at most, separated by a switch. The server, a 2.0 Ghz Pentium 4
machine with 512 MB RAM with Linux, ran the Jigsaw Java server to host the DyCA
servlets. The cache, a 2.4 Ghz Pentium 4 machine with 1 GB RAM with Linux, ran
the CONCA-Lite. The client, a 2.2 Ghz machine with 512B of RAM with Linux, ran a
Python-based simulation of a client accessing Web pages in a predefined order.

We modeled 4 different caching behaviors using our experimentation. To test each
approach, the client was set up to request the Web page of the server from the cache at
request intervals of 10 seconds, for a total of 10 minutes. The cache would check to see
if it has the needed document, request the document from the server if it needs to, and
return the document to the client. When testing a caching behavior that has a fragment
enabled template, it would request all of the objects in the template, it would construct

the final document, and return it to the client. Thus the client does not need to implement
anything beyond the standardized HTTP protocol. The first method, using no fragment
caching, was implemented by disabling caching in the proxy, and having the server
send the original Web page. This is consistent with the behavior of real dynamic content
using static pages in today’s Internet, due to cookies, and other such information, that
render a page uncacheable. In the second method the template of the document remains
static, while the fragments of the objects are updated for content change. The template
was cacheable for the whole testing session, while the objects were cacheable for as
long as their TTL was valid. In the third caching behavior, the template is updated
when a fragment moves between locations in the document, and the objects change due
to data changes only, and not spatial changes. The last model represents our proposed
mapping table approach. When the template is returned a mapping table is returned
with it in the HTTP header, the proxy can then cache the mapping table, and update
the mapping table when a spatial change happens. The template remained static for the
testing session, while the objects only changed for data changes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

User Precieved Latency (seconds)

New York Times

No fragment cache
Static Template

Static Objects
Mapping Table

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

User Precieved Latency (seconds)

Slashdot.com

No fragment cache
Static Template

Static Objects
Mapping Table

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

User Precieved Latency (seconds)

Indian Times

No fragment cache
Static Template

Static Objects
Mapping Table

(c) (d)

Fig. 5. Evaluation results: (a) total data transfer between server and cache, and user perceived
latency for: (b) New York Times, (c) Slashdot, and (d) India Times.

5.3 Experimentation

Three Web sites, New York Times [15], India Times [16], and Slashdot.com [17], were
used for testing each approach. Two types of measurements were taken during the test-
ing to evaluate the performance, the total amount of data transfered between the client

and the server, and the user perceived latency per user request. The first type of mea-
surement is important to show what method performs best as a cache, with the least data
transfer between the cache and the server. There is no need to check for the data trans-
fer between the client and the cache, since in all four models it should remain roughly
the same. The generation of the final non-fragmented Web page by the cache that gets
sent to the client, and the method it is updated, is what changes between each method.
The second measurement type is important to show how an improved Web caching
architecture will benefit the client as well, and not only the server.

5.4 Results and Analysis

Figure 5(a) demonstrates the total bytes used in transferring data in all of the methods
mentioned. As can be seen from the graphs, using a static template and updating the
objects to support object movements requires considerable more data transfer between
the server and the proxy. This is the method that is most commonly used today in dy-
namic Web sites. Using static objects and a dynamic template to achieve a dynamic Web
page might seem efficient enough when looking at the bytes transfered, but, as we will
see later, this efficiency is lost when looking at the user perceived latency. There is no
comparison, though, between any of the dynamic methods and using traditional static
objects. The amount of data transfer when not using a fragment based architecture can
be more then 10 times the amount of data transfer when using a good fragment based
caching. When using a mapping table to transfer the data, the amount of bytes trans-
fered is considerably smaller. In fact, the total bytes transfered with a mapping table is
little over the total size of the initial site and the size of the changes, meaning a minimal
amount of wasted data is being transfered. This should considerably reduce the server
load when using such an architecture. Figures 5 (b)(c)(d), show the user perceived la-
tency in seconds for New York Times, Slashdot, and India Times respectively. This
figure shows that the user has to wait the least amount of time for the Web site when
the mapping table architecture is used. With regard to user perceived latency, the static
object method’s performance is almost as bad as the performance of using regular static
Web pages. The only method that comes close to the method of using a mapping table
is the static template method, which as we saw before performed badly when looking at
the amount of bytes transfered. This type of optimization is very important for the client
so it may receive its data in a timely manner, especially clients that use slower connec-
tions such as dialup. Otherwise, from the users prospective, the actual retrieval of the
page is slower. From these figures we can conclude that the mapping table method has
performed better then all of the other proposed methods in all of our tested fields.

We can see some unaccounted behavior in how the 2nd and 3rd method flip in their
efficiency between the results of the amount of bandwidth used, and the user latency
done. When the template is static and there is no mapping table, the objects get trans-
fered at a higher request rate since the proxy can’t cache them due to object movement.
This extra data transfer has little effect on the user perceived latency in our testing envi-
ronment due to it being a high speed network. Yet this extra data transfer is significant
in terms of amount of data transfered, as can be seen in the earlier figure. Since the only
thing that needs to get updated every once in a while is the transferring of the template,
in terms of latency, this is very close to transferring a mapping table at about the same

interval. Yet by looking at Table 1 you can see that the template is considerably larger
then the mapping table in most cases. This is what causes the large amount of bytes to
be transfered. Had we artificially slowed down the network, the user perceived latency
for static objects would have been much greater. In the case of static objects, the tem-
plates is considered dynamic, and gets updated every time there an object moves. Every
such template fetch requires the cache to re-parse the template, which can be very large
as seen in Table 1, and recheck it’s cache for every single object, in some cases this
requires the cache to send HTTP request to see if the data was modified. This type of
overhead causes the extra latency seen in the graph.

New York TimesIndia TimesSlashdot
Template Size 17 KB 15 KB 1.7 KB

Avg. Object Size 3.6 KB 4.8 KB 0.6 KB
Mapping Table Size 1.0 KB 0.8 KB 2.2 KB

Table 1.The comparison of template and object sizes for the different Web sites.

6 Related Work
Dynamic Web content delivery have increasingly becoming an important Web engineer-
ing issue as more and more Web content are generated in a dynamic and personalized
way. Fragment-based techniques have received considerable attention from the research
community in recent years [2–4, 8, 14]. Most of these approaches either assume the
fragment-based content is served by Web server automatically, or look at server-side
caching only.

To our knowledge, few of existing work discuss the manner of how to generate
fragment from existing legacy Web servers without server-side information. One of
the first effort is DYCE [13], which is model-based dynamic Web content emulator.
Recently, Ramaswamyet al.proposed a novel scheme to automatically detect and flag
fragments [20], which share the similar goal of this paper. However, there are three
differences between us: First, although both of our work intends to automatic detection
of fragments, our keyword-based is simple and easy to implement, while their approach
is complex and has theoretical analysis. However, which one is better is still not clear.
Second, in our work we focus on engineering implementation of DYCA, while their
work focuses on automatic detection. In this sense, their work is a good complement
to DYCA. Third, the mapping table based fragment delivery proposed in this paper is
novel.

Edge Side Includes [11] is becoming one of the foundation blocks in specifying
a common format and method for fragments and templates in this field. It is popular
among many different existing methods. Naamanet al. [21] have done studies compar-
ing ESI to delta encoding, finding ESI to have possible performance advantages.

Automatic detection of templates from Web pages has been studied from data min-
ing field as well [22, 23]. They discuss the problem of template detection through dis-
covery of pagelets in the Web pages. However, our work differs from the work on
template detection both in context and content. First, the work on template detection
is aimed towards improving the precision of search algorithms. While our aim is im-
proving dynamic content delivery. Second, only template is interested in their work,

while we care both template and fragments. Therefore, the method used in these two
approaches are different too. The method presented there to finding fragments is done
based on amount of hyperlinks present in certain parts of the document. They do not
build up an XML tree, nor treat anything more then hyperlinks, unlike we have done in
our approach. This method applies better to search algorithms rather then to dynamic
fragment extraction.

Our current research differentiates from earlier work done on DYCE [13], the Dy-
namic Web Content Emulator. With DYCE, we were attempting to build up general
models for usage to describe the behavior of current fragment-based caching. Although
it looked promising at the time, it generated too many objects and didn’t match up to
actual real world designs. Our current research was an attempt to try and continue that
same research using real world Web sites so as to get more correct results.

Other research groups [24, 25] have also defined other criteria for finding objects in
documents. While they have focused on content of the fragments and of the Web pages
themselves, we have focused on their existence on a spatial, and location axis in the
document.

7 Conclusions and Future Work

We have shown our proposed solution for keyword based object extraction, and object
delivery. We have also explained our proposal of augmenting the ESI to include sup-
port for a mapping table. We have implemented these proposals into DyCA and then
by taking actual Web pages and running through DyCA’s keyword-based extraction to
transform them into fragment-enabled content we have been able to run simulations
between our sample proxy and the DyCA adapter. These simulations allowed us to
compares our proposals to the current available methods of serving dynamic content on
the Web. Our keyword-based approach allows for creation of dynamic content in such
a way as to maximize the cache-ability of the content in a fragment-enabled caching
system. Using the mapping table approach in the cache proxy which, according to our
results, will give the best performance for both the server and the client, together with
our DyCA adapter we can effectively cache in an efficient way Web sites that currently
use non-fragmented content. Currently our DyCA and CONCA-Lite implementations
are very young, and could still be further optimized. Our future work consists of con-
tinuing testing of these implementations to further refine the design of our CONCA
prototype [7], which incorporates a novel design for efficient caching of dynamic and
personalized content.

References
1. Mogul, J.C., Douglis, F., a. Feldmann, Krishnamurthy, B.: Potential Benefits of Delta-

Encoding and Data Compression for HTTP. In: Proc. of the 13th ACM SIGCOMM’97.
(1997) 181–194

2. Challenger, J., Iyengar, A., Dantzig, P.: A scalable system for consistently caching dynamic
Web data. In: Proc. of IEEE Conference on Computer Communications (INFOCOM’99).
(1999)

3. Challenger, J., Iyengar, A., Witting, K., Ferstat, C., Reed, P.: A publishing system for effi-
ciently creating dynamic Web content. In: Proc. of IEEE Conference on Computer Commu-
nications (INFOCOM’00). (2000)

4. Douglis, F., Haro, A., Rabinovich, M.: HPP:HTML macro-pre-processing to support dy-
namic document caching. In: Proc. of the 1st USENIX Symposium on Internet Technologies
and Systems (USITS’97). (1997) 83–94

5. Cao, P., Zhang, J., Beach, K.: Active cache: Caching dynamic contents on the Web. In: Proc.
of IFIP Int’l Conf. Dist. Sys. Platforms and Open Dist. Processing. (1998) 373–388

6. Myers, A., Chuang, J., Hengartner, U., Xie, Y., Zhang, W., Zhang, H.: A secure and
publisher-centric Web caching infrastructure. In: Proc. of IEEE Conference on Computer
Communications (INFOCOM’01). (2001)

7. Shi, W., Karamcheti, V.: CONCA: An architecture for consistent nomadic content access.
In: Workshop on Cache, Coherence, and Consistency(WC3’01). (2001)

8. Wills, C.E., Mikhailov, M.: Studying the impact of more complete server information on
Web caching. In: Proc. of the 5th International Workshop on Web Caching and Content
Distribution (WCW’00). (2000)

9. IBM Corp.: http://www.ibm.com/Websphere (Websphere platform)
10. http://www.w3.org/Style/XSL/ (W3C XSL Working Group)
11. Tsimelzon, M., Weihl, B., Jacobs, L.: ESI language specification 1.0 (2000)
12. http://www.akamai.com/ (Akamai Technologies Inc.)
13. Shi, W., Collins, E., Karamcheti, V.: DYCE: A synthetic dynamic Web content emulator. In:

Poster Proc. of 11th International World Wide Web Conference. (2002)
14. Rabinovich, M., Xiao, Z., Douglis, F., Kamanek, C.: Moving edge side includes to the real

edge – the clients. In: Proc. of the 4th USENIX Symposium on Internet Technologies and
Systems (USITS’03). (2003)

15. http://www.nytimes.com (Nytimes Web site)
16. http://www.indiatimes.com (Indiatimes Web site)
17. http://www.slashdot.com (Slashdot Web site)
18. http://httpd.apache.org (Apache HTTP Server Project)
19. http://www.w3.org/Jigsaw (Jigsaw Project)
20. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic detection of fragments in

dynamically generated Web pages. In: Proc. of the 13th International World Wide Web
Conference (2004). (2004)

21. Naaman, M., Garcia-Molina, H., Paepcke, A.: Evaluation of esi and class-based delta encod-
ing. In: Proc. of the 8th International Workshop on Web Caching and Content Distribution
(WCW’03). (2003)

22. Arasu, A., Garcia-Molina, H.: Extracting structured data from Web pages. In: Proc. of ACM
SIGMOD’03. (2003)

23. Bar-Yossef, Z., Rajagopalan, S.: Template detection via data mining and its applications. In:
Proc. of the 11th International World Wide Web Conference (2002). (2002)

24. Butler, D., Liu., L.: A Fully Automated Object Extraction System for the World Wide Web.
In: Proceedings of ICDCS-2001. (2001)

25. Gu, X., et al.: Visual based content understanding towards Web adaptation. In: Proceedings
of AH-2002. (2002)

